JP4150234B2 - Sludge water treatment method for ready-mixed concrete - Google Patents

Sludge water treatment method for ready-mixed concrete

Info

Publication number
JP4150234B2
JP4150234B2 JP2002262156A JP2002262156A JP4150234B2 JP 4150234 B2 JP4150234 B2 JP 4150234B2 JP 2002262156 A JP2002262156 A JP 2002262156A JP 2002262156 A JP2002262156 A JP 2002262156A JP 4150234 B2 JP4150234 B2 JP 4150234B2
Authority
JP
Japan
Prior art keywords
sludge water
water
sludge
cement
dehydrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002262156A
Other languages
Japanese (ja)
Other versions
JP2004097916A (en
Inventor
環 広田
博久 深江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP2002262156A priority Critical patent/JP4150234B2/en
Publication of JP2004097916A publication Critical patent/JP2004097916A/en
Application granted granted Critical
Publication of JP4150234B2 publication Critical patent/JP4150234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、生コンクリートの混練設備や残存した生コンクリートの処理工程から砂利及び砂などの骨材を回収した後に排出されるセメント分を含んだスラッジ水を脱水機によって脱水処理する方法に関するものである。
【0002】
【従来の技術】
生コンクリートの混練設備では混練設備の洗い水や生コンクリートからの流出水などのセメント分を含んだスラッジ水が排出される。また、コンクリート製品工場や工事現場などで使われずに残った生コンクリートの処理工程では、生コンクリートから砂利や砂などの骨材を回収した後のセメント分を含んだスラッジ水が同様に排出される。
【0003】
これらセメント分を含んだスラッジ水はスラッジ水槽に一時的に蓄えられ、フィルタープレスなどの脱水機に送られてセメント分を脱水ケーキとして固形化させて安定な状態にする脱水処理を行い、脱水処理によってろ過された処理水は処理水槽に蓄えられて設備内での洗い水や混練水として再利用され、余った処理水はpH値などの水質調整を行って外部に放出している。
【0004】
スラッジ水の脱水処理方法としては、スラッジ水槽のスラッジ水を一定時間静的状態に置き、スラッジ水に含まれるセメント分を自然沈殿させ、セメント分の希薄な上層のスラッジ水はそのまま脱水処理せずに処理水槽へ送り、下層のセメント分の沈殿したスラッジ水は脱水機へ送って脱水処理を施し、その後処理水槽へ送られる。
これは、脱水処理にかかる時間をできるだけ短縮してスラッジ水の脱水処理工程を早く終了させるために行われている。
【0005】
例えば、容量60mのスラッジ水槽にセメント濃度3%のスラッジ水を貯めて3時間静的状態に置き、自然沈降させた場合では、全スラッジ水量の4/5程度がセメント濃度0.1%の希薄な上層のスラッジ水となり、1/5程度が下層に沈殿するスラッジ水となる。この下層に沈殿するスラッジ水を脱水処理してセメント濃度0.001%のスラッジ水にろ過すると、処理水槽には4/5のセメント濃度0.1%のスラッジ水と1/5のセメント濃度0.001%のスラッジ水が混在して、処理水槽の全体ではセメント濃度0.08%のスラッジ水が蓄えられる。
ところが、スラッジ水を施設の外部へ放出する時には、セメント濃度が50ppm(0.005%)以下のスラッジ水にする必要があり、前記の方法ではスラッジ水を施設の外部に放出することができない。そのため、スラッジ水槽内の全てのスラッジ水を脱水処理して、全てのスラッジ水のセメント濃度を小さくする必要がある。
【0006】
そこで、スラッジ水を施設の外部へ放出するために、スラッジ水槽のスラッジ水の全量を脱水機へ送り、均一のセメント濃度に脱水処理する。しかしながら、このように処理水槽のスラッジ水のセメント濃度を0.001%として施設の外部に放出できるように処理すると、スラッジ水の脱水処理工程に時間がかかってしまい、次々に施設から排出されるスラッジ水を溜めることなく脱水処理することは困難である。
【0007】
【特許文献1】
特開平7‐195099号公報
【0008】
【発明が解決しようとする課題】
したがって、本発明は、前記の問題点に鑑み、スラッジ水を脱水機によって脱水処理する方法において、スラッジ水槽の全てのスラッジ水を脱水処理する工程を短時間で行うことを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するため、本発明は、生コンクリートの混練設備などから排出されるセメント分を含んだスラッジ水を脱水機によって脱水処理するスラッジ水処理方法において、脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線を算出して、スラッジ水のセメント濃度が小さくなる程脱水機の脱水処理量が急激に向上し始める前記相関曲線上の偏向点を検出し、前記偏向点のセメント濃度以下のスラッジ水を脱水処理する第一工程と、前記偏向点のセメント濃度以上のスラッジ水をスラッジ水槽で攪拌を行い脱水処理する第二工程とからなることを特徴とする。
【0010】
【発明の実施の形態】
本発明の実施の形態を図を用いて説明する。図2には脱水機の処理容量に違いがある3種類の脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線が示されている。
図2に示す脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線Aにより、スラッジ水のセメント濃度がある数値以下になると、スラッジ水のセメント濃度が小さくなる程脱水機の脱水処理能力が飛躍的に増大する点aが検出される。(以後この相関曲線上の点aを偏向点と呼ぶ)この偏向点aのセメント濃度以下のスラッジ水の脱水処理は短時間で大量に脱水処理することが可能となる。
【0011】
これは、スラッジ水のろ過工程では、脱水機内に備えられたろ布にスラッジ水を通すことによってセメント分がろ過されて、処理水を得る。ろ布によりろ過されたセメント分は、ろ布に付着し、スラッジ水のろ過を続けることによって、ろ布へのセメント分の付着が増大してゆく。最初は薄い膜としてろ布に付着するセメント分が次第に厚い層としてろ布へ付着し、スラッジ水のろ過を妨げるようになる。
このため、セメント分濃度の小さいスラッジ水を用いると、ろ布への付着が少なく、ろ過の妨げにならないので脱水機の単位時間当たりの脱水処理量は大きい。これに対してセメント分濃度の大きいスラッジ水を用いると、ろ布への付着が多く、ろ過の妨げになり脱水機の単位時間当たりの脱水処理量が小さくなるのである。
【0012】
また、攪拌しないスラッジ水槽の水面部のスラッジ水のセメント濃度は、セメント分の自然沈降により一定時間沈殿させなくてもセメント分は希薄となり、前記偏向点のセメント濃度より小さい数値である。
本発明は以上の点に着目し、スラッジ水槽の水面部のスラッジ水を脱水機へ送り、多量のセメント濃度の小さいスラッジ水は優先的に脱水処理を行い、高い脱水処理能力を活かして短時間で脱水処理し、セメント濃度の大きいスラッジ水は、少量にてろ過することにより、スラッジ水槽全てのスラッジ水の脱水処理を行い、さらに処理時間の短縮を実現させるものである。
【0013】
相関曲線の偏向点を説明すると、図2に示す脱水機の相関曲線Aでの偏向点aの例では、相関曲線上にある点の接線は、図2のグラフ右側のセメント濃度が高い数値の領域では水平に近い小さな角度の傾きを示し、これはセメント濃度の変動があっても脱水能力は大きく変動しないことを表す。
セメント濃度が次第に小さい数値になると接線の傾きは徐々に大きな角度となり、接線の傾きが45°程度になる付近で、セメント濃度が小さくなると脱水機の脱水処理能力が飛躍的に増大する偏向点aが得られる。
この偏向点aより小さなセメント濃度になる点では接線の傾きは急激に45°以上の大きな傾きとなり、これらの領域ではセメント濃度が小さくなればなる程脱水能力が高くなり、脱水処理を効率的に行うことができる。
偏向点は相関曲線上の点での接線の傾きの0°から90°までの間の中立点である45°の点に近傍に位置しており、この点を境に脱水機の脱水処理能力の変移が極端に変動する。
【0014】
以下、本発明の実施例を説明する。
施設から排出するスラッジ水を蓄えるスラッジ水槽にはスラッジ水を脱水機へ送る送水ポンプが設けられている。スラッジ水槽のスラッジ水を送水ポンプに吸い上げる吸水管がスラッジ水槽から送水ポンプまで設けられており、吸水管へ設けられた取込口にはフロート(浮き具)が備えられて、スラッジ水の水面の上下に合わせて取込口が移動するようになされて、水面部のスラッジ水を取り込んで脱水機へ送るようになされている。
スラッジ水槽にはスラッジ水を攪拌する攪拌手段が備えられており、攪拌することでスラッジ水槽内の濃度を全て均一にできるようになされている。
前記脱水機により脱水処理された処理水は処理水槽に蓄えられて、設備内での洗い水や混練水として再利用され、またpH値などの水質調整を行って外部に放出される。
【0015】
第一図に本発明の脱水処理工程のフロー図を示す。
スラッジ水の脱水処理の第一工程1では、スラッジ水槽のスラッジ水はセメント分を沈殿させる静的状態に置くことなく、また、取込口が水面部に位置するように設けられているので、すぐさま水面部のスラッジ水が取り込まれて脱水機へ送られる。このとき水面部のスラッジ水がセメント濃度の小さい状態を維持するために攪拌手段は動作させず、スラッジ水の攪拌は行わない。
攪拌を行わないことで、水面部のスラッジ水のセメント濃度は前記相関曲線A上の偏向点a以下となり、脱水機の脱水処理は高い脱水能力となり、短時間でより大量のスラッジ水の処理が可能となる。
【0016】
例えば、平均3%濃度のスラッジ水において攪拌を行わない場合の水面部のスラッジ水のセメント濃度はセメント分の自然沈降によって0.5%程度となる。
図2に示す脱水機の脱水処理量とスラッジ水のセメント濃度との相関曲線Aによると、このグラフの偏向点aのセメント濃度は約3%であり、前記水面部のスラッジ水のセメント濃度0.5%はこれよりも小さな濃度であるので、脱水機には高い脱水処理能力が得られる。
スラッジ水の脱水処理が進むとスラッジ水槽の水量が減少し、水面が下がってくる。セメント濃度の小さい水面部のスラッジ水を脱水機へ送り続けるために取込口にはフロートが備えられており、水面が上下に変動しても取込口が水面の上下に合わせて移動して水面部に置くことができる。
【0017】
取込口を移動する他の実施例としては、センサーを用いて水面の位置を判断し、電動チェンブロやウインチなどによって水面部の位置へ取込口を上下に移動させたり、水面の位置を作業者が目視にて確認して手動にてチェンブロを操作する。また、前記例では取込口は送水ポンプに吸い上げる吸水管に備えられているが、スラッジ水槽と送水ポンプを繋ぐ吸水管を設けることなく、送水ポンプをスラッジ水槽内に設けて、送水ポンプの吸水口を取込口として送水ポンプ自体を前記例のようにフロートやチェンブロを用いて水面の移動に合わせて上下移動するようになしても同様の効果が得られる。
【0018】
第二工程2では、スラッジ水槽の水量が減少すると残されたスラッジ水のセメント濃度が大きくなり、水面部のスラッジ水のセメント濃度が偏向点aに近づき、セメント濃度が大きくなると脱水処理能力が大幅に低下してしまう。
そこで、スラッジ水層に備えられた攪拌手段によりスラッジ水を攪拌して水槽内のスラッジ水のセメント濃度を極端に大きくさせずに均一化し、脱水能力の低下を防ぎながらスラッジ水を脱水機へ送り、全てのスラッジ水の脱水処理を行う。
また、スラッジ水を攪拌することは、セメント濃度が大きくなることで発生するセメント分の固化による作業性の低下や水槽への付着も防止できる。
【0019】
図2で示される各々の相関曲線では、各脱水機の処理容量の違いによって単位時間当たりのスラッジ水処理量が異なり、各相関曲線の偏向点でのセメント濃度が異なっている。これは、各脱水機の処理容量の大きさの違いによって各脱水機の備えるスラッジ水をろ過するろ布の表面積に違いがあり、処理容量の大きい脱水機の相関曲線Cではろ布の表面積も大きく、処理容量の小さい脱水機の相関曲線Aではろ布の表面積も小さくなる。このため、ろ布によりろ過されるセメント分の量が各々異なるので、単位時間当たりのスラッジ水処理量に違いが生じ、偏向点の位置も各々異なる。例えば、処理容量が78Lとなる脱水機の相関曲線Aにおける偏向点aのセメント濃度は3%となり、処理容量が138Lとなる脱水機の相関曲線Bにおける偏向点bのセメント濃度は4%、処理容量が230Lとなる脱水機の相関曲線Cにおける偏向点cのセメント濃度は5.5%となり、各脱水機の処理容量の違いによって偏向点の数値には幅ができる。
【0020】
以上の工程によりスラッジ水の脱水処理を全てのスラッジ水に対して行うことができ、セメント濃度の小さい処理水を得ることができる。また全てのスラッジ水の脱水処理を短時間で行うことができる。
【0021】
【発明の効果】
以上述べたように本発明によれば、スラッジ水槽全てのスラッジ水を脱水処理するので、セメント濃度の小さい処理水を得ることができる。
また、脱水処理の最初に第一工程としてセメント濃度の小さいスラッジ水を脱水処理するので、脱水処理の最初の脱水処理能力が大きく大量のスラッジ水の処理が可能となり、急いで処理水が必要な時に緊急に対応ができる。
同様に、スラッジ水の最初の脱水処理量が大きいので、急なスラッジ水の発生にも容易に対応でき、従来に比べてスラッジ水槽の小容量化が可能となる。
【0022】
さらに、従来の全量を均一のセメント濃度とする脱水処理工程に比べて、第一工程にてセメント濃度の小さいスラッジ水を処理するので、脱水処理内の機械の磨耗防止や配管内のセメント分の付着を減少できる。
また、取込口が水面の上下に合わせて移動することにより、セメント濃度の小さい水面部のスラッジ水が常に脱水機へ送られるので脱水機は最初の高い脱水処理能力を維持することができる。
【図面の簡単な説明】
【図1】本発明の脱水処理工程のフロー図を示す。
【図2】脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線図を示す。
【符号の説明】
1 第一工程
2 第二工程
[0001]
[Industrial application fields]
The present invention relates to a method for dewatering sludge water containing cement discharged after collecting aggregates such as gravel and sand from a raw concrete kneading facility and a remaining raw concrete processing step using a dehydrator. is there.
[0002]
[Prior art]
In the concrete mixing facility, sludge water containing cement such as washing water from the mixing facility and runoff from the ready concrete is discharged. In addition, in the processing process of ready-mixed concrete that is not used at concrete product factories and construction sites, sludge water containing cement after the collection of aggregates such as gravel and sand from ready-mixed concrete is similarly discharged. .
[0003]
The sludge water containing the cement is temporarily stored in the sludge tank and sent to a dehydrator such as a filter press to solidify the cement as a dehydrated cake and dehydrate it to make it stable. The treated water filtered by is stored in the treated water tank and reused as washing water and kneaded water in the facility, and the surplus treated water is discharged to the outside after adjusting the water quality such as pH value.
[0004]
Sludge water is dehydrated by placing the sludge water in the sludge tank in a static state for a certain period of time, allowing the cement contained in the sludge water to spontaneously settle, and not dewatering the sludge upper layer of the cement as it is. Then, the sludge water in which the cement in the lower layer is precipitated is sent to a dehydrator for dehydration treatment, and then sent to the treatment water tank.
This is performed in order to shorten the time required for the dewatering process as much as possible and to finish the dewatering process of the sludge water early.
[0005]
For example, when sludge water with a cement concentration of 3% is stored in a sludge tank with a capacity of 60 m 3 and placed in a static state for 3 hours and allowed to settle naturally, about 4/5 of the total sludge water amount is 0.1% with a cement concentration of 0.1%. Dilute upper layer sludge water becomes about 1/5 of the sludge water precipitated in the lower layer. When the sludge water settled in this lower layer is dehydrated and filtered to a sludge water with a cement concentration of 0.001%, the treated water tank has a sludge water with a 4/5 cement concentration and a 1/5 cement concentration of 0. .001% sludge water is mixed and sludge water with a cement concentration of 0.08% is stored in the entire treated water tank.
However, when the sludge water is discharged to the outside of the facility, the cement concentration needs to be 50 ppm (0.005%) or less, and the above method cannot discharge the sludge water to the outside of the facility. Therefore, it is necessary to dehydrate all the sludge water in the sludge water tank to reduce the cement concentration of all sludge water.
[0006]
Therefore, in order to release the sludge water to the outside of the facility, the entire amount of sludge water in the sludge tank is sent to the dehydrator and dehydrated to a uniform cement concentration. However, if the cement concentration of the sludge water in the treated water tank is set to 0.001% so that it can be discharged to the outside of the facility, the sludge water dehydration process takes time and is discharged from the facility one after another. It is difficult to perform dehydration without accumulating sludge water.
[0007]
[Patent Document 1]
JP-A-7-195099 [0008]
[Problems to be solved by the invention]
Therefore, in view of the above problems, an object of the present invention is to perform a step of dehydrating all sludge water in a sludge water tank in a short time in a method of dewatering sludge water using a dehydrator.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a sludge water treatment method in which sludge water containing cement content discharged from a raw concrete kneading facility is dehydrated by a dehydrator. Calculating a correlation curve between the throughput and the cement concentration of sludge water, detecting a deflection point on the correlation curve where the dewatering amount of the dehydrator starts to increase rapidly as the cement concentration of the sludge water decreases; It comprises a first step of dewatering sludge water below the cement concentration at the deflection point, and a second step of stirring the sludge water above the cement concentration at the deflection point in a sludge water tank.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 2 shows a correlation curve between the amount of dewatering per unit time and the cement concentration of sludge water of three types of dehydrators having different treatment capacities of the dehydrators.
According to the correlation curve A between the dewatering amount per unit time of the dehydrator shown in FIG. 2 and the cement concentration of sludge water, when the cement concentration of sludge water falls below a certain value, the dewaterer becomes smaller as the cement concentration of sludge water becomes smaller. A point a at which the dewatering capacity of the water increases dramatically is detected. (Hereinafter, the point a on the correlation curve will be referred to as a deflection point.) The sludge water having a cement concentration equal to or less than the cement concentration at the deflection point a can be dehydrated in a large amount in a short time.
[0011]
In the sludge water filtration step, the cement content is filtered by passing the sludge water through a filter cloth provided in the dehydrator to obtain treated water. The cement content filtered by the filter cloth adheres to the filter cloth, and the adhesion of the cement content to the filter cloth increases by continuing the filtration of sludge water. At first, the cement adhering to the filter cloth as a thin film gradually adheres to the filter cloth as a thick layer, which prevents the sludge water from being filtered.
For this reason, when sludge water having a low cement content is used, the amount of dewatering per unit time of the dehydrator is large because there is little adhesion to the filter cloth and it does not hinder the filtration. On the other hand, when sludge water with a high cement content is used, it adheres to the filter cloth, hinders filtration and reduces the amount of dewatering per unit time of the dehydrator.
[0012]
Further, the cement concentration of the sludge water in the water surface portion of the sludge water tank that is not agitated is a numerical value smaller than the cement concentration at the deflection point, even if the cement content is not settled for a certain period of time due to natural sedimentation of the cement.
The present invention pays attention to the above points, and sends sludge water on the surface of the sludge tank to the dehydrator. A large amount of sludge water with a low cement concentration is preferentially dehydrated, and the high dewatering capacity is utilized for a short time. The sludge water having a high cement concentration is filtered with a small amount, so that the sludge water in all the sludge water tanks is dehydrated to further reduce the processing time.
[0013]
The deflection point of the correlation curve will be described. In the example of the deflection point a in the correlation curve A of the dehydrator shown in FIG. 2, the tangent of the point on the correlation curve is a numerical value with a high cement concentration on the right side of the graph of FIG. The region shows a small angle inclination near the horizontal, which means that the dewatering capacity does not vary greatly even if the cement concentration varies.
When the cement concentration becomes gradually smaller, the tangential slope gradually becomes larger, and the deflection point a where the dewatering capacity of the dehydrator is dramatically increased when the cement concentration is reduced in the vicinity of the tangential slope being about 45 °. Is obtained.
At the point where the cement concentration is smaller than the deflection point a, the slope of the tangential line suddenly becomes a large inclination of 45 ° or more. In these regions, the lower the cement concentration, the higher the dewatering ability, and the dewatering treatment is efficiently performed. It can be carried out.
The deflection point is located near the 45 ° point, which is the neutral point between 0 ° and 90 ° of the tangent slope at the point on the correlation curve. The transition of fluctuates extremely.
[0014]
Examples of the present invention will be described below.
A water supply pump for sending sludge water to a dehydrator is provided in a sludge tank for storing sludge water discharged from a facility. A water absorption pipe that sucks up sludge water from the sludge tank into the water supply pump is provided from the sludge water tank to the water supply pump, and a float (floating device) is provided at the intake port provided in the water absorption pipe. The intake port is adapted to move up and down, and the sludge water on the water surface is taken in and sent to the dehydrator.
The sludge water tank is provided with a stirring means for stirring the sludge water, and all the concentrations in the sludge water tank can be made uniform by stirring.
The treated water dehydrated by the dehydrator is stored in a treated water tank, reused as washing water or kneaded water in the facility, and discharged to the outside after adjusting the water quality such as pH value.
[0015]
FIG. 1 shows a flowchart of the dehydration process of the present invention.
In the first step 1 of the sludge water dehydration treatment, the sludge water in the sludge tank is not placed in a static state where the cement content is settled, and the intake port is located at the water surface. Immediately sludge water on the water surface is taken in and sent to the dehydrator. At this time, in order to maintain the state where the sludge water on the water surface portion has a low cement concentration, the stirring means is not operated and the sludge water is not stirred.
By not stirring, the cement concentration of the sludge water on the water surface is below the deflection point a on the correlation curve A, and the dewatering process of the dehydrator has a high dewatering capacity, so that a larger amount of sludge water can be processed in a short time. It becomes possible.
[0016]
For example, the cement concentration of sludge water on the water surface when stirring is not performed in sludge water having an average concentration of 3% is about 0.5% due to natural sedimentation of the cement.
According to the correlation curve A between the dewatering amount of the dehydrator and the cement concentration of sludge water shown in FIG. 2, the cement concentration at the deflection point a in this graph is about 3%, and the cement concentration of sludge water in the water surface is 0%. .5% is a concentration lower than this, so that the dehydrator has a high dewatering capacity.
As the sludge water dehydration proceeds, the amount of water in the sludge tank decreases and the water level drops. In order to continue sending sludge water on the water surface part with low cement concentration to the dehydrator, the intake port is equipped with a float, and even if the water level fluctuates up and down, the intake port moves along the top and bottom of the water surface. Can be placed on the water surface.
[0017]
As another example of moving the intake port, the position of the water surface is judged using a sensor, and the intake port is moved up and down to the position of the water surface part by an electric chamber or winch, or the position of the water surface is operated. The operator confirms it visually and manually operates the chamber. In the above example, the intake port is provided in the water absorption pipe sucked up by the water supply pump, but without providing the water absorption pipe connecting the sludge water tank and the water supply pump, the water supply pump is provided in the sludge water tank, The same effect can be obtained even if the water pump itself is moved up and down in accordance with the movement of the water surface by using a float or a chamber as in the above example using the mouth as an inlet.
[0018]
In the second step 2, when the amount of water in the sludge tank decreases, the cement concentration of the remaining sludge water increases, the cement concentration of the sludge water on the water surface approaches the deflection point a, and when the cement concentration increases, the dewatering capacity increases greatly. It will drop to.
Therefore, the sludge water is agitated by the agitation means provided in the sludge water layer to equalize the cement concentration of the sludge water in the water tank without extremely increasing it, and the sludge water is sent to the dehydrator while preventing the dewatering capacity from being lowered.・ Dehydrate all sludge water.
In addition, stirring the sludge water can also prevent deterioration in workability due to solidification of the cement component generated by increasing the cement concentration and adhesion to the water tank.
[0019]
In each correlation curve shown in FIG. 2, the amount of sludge water treated per unit time varies depending on the treatment capacity of each dehydrator, and the cement concentration at the deflection point of each correlation curve differs. This is because there is a difference in the surface area of the filter cloth for filtering the sludge water provided in each dehydrator due to the difference in the treatment capacity of each dehydrator. In the correlation curve C of the dehydrator having a large treatment capacity, the surface area of the filter cloth is also In the correlation curve A of a dehydrator having a large processing capacity, the filter cloth has a small surface area. For this reason, since the amount of the cement part filtered with a filter cloth each differs, a difference arises in the sludge water treatment amount per unit time, and the position of the deflection point also differs. For example, the cement concentration at the deflection point a in the correlation curve A of the dehydrator with a processing capacity of 78 L is 3%, and the cement concentration at the deflection point b in the correlation curve B of the dehydrator with a processing capacity of 138 L is 4%. The cement concentration at the deflection point c in the correlation curve C of the dehydrator with a capacity of 230 L is 5.5%, and the numerical value of the deflection point can vary depending on the processing capacity of each dehydrator.
[0020]
Through the above steps, sludge water can be dehydrated with respect to all sludge water, and treated water with a low cement concentration can be obtained. In addition, all sludge water can be dehydrated in a short time.
[0021]
【The invention's effect】
As described above, according to the present invention, since the sludge water in all the sludge water tanks is dehydrated, treated water having a low cement concentration can be obtained.
In addition, sludge water with a low cement concentration is dehydrated as the first step at the beginning of the dewatering process, so the initial dewatering capacity of the dewatering process is large and a large amount of sludge water can be treated, and the treated water is needed quickly. Sometimes we can respond urgently.
Similarly, since the initial dewatering amount of the sludge water is large, it is possible to easily cope with the sudden generation of sludge water, and the capacity of the sludge water tank can be reduced as compared with the conventional case.
[0022]
Furthermore, since sludge water with a low cement concentration is treated in the first step compared to the conventional dehydration step where the total amount of cement is uniform, it prevents the wear of the machine in the dehydration treatment and the amount of cement in the piping. Adhesion can be reduced.
Further, since the intake port moves along the upper and lower surfaces of the water surface, the sludge water in the water surface portion with a low cement concentration is always sent to the dehydrator, so that the dehydrator can maintain the first high dewatering capacity.
[Brief description of the drawings]
FIG. 1 is a flowchart of a dehydration process according to the present invention.
FIG. 2 shows a correlation curve between the amount of dewatering per unit time of the dehydrator and the cement concentration of sludge water.
[Explanation of symbols]
1 1st process 2 2nd process

Claims (3)

生コンクリートの混練設備などから排出されるセメント分を含んだスラッジ水を脱水機によって脱水処理するスラッジ水処理方法において、脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線を算出して、スラッジ水のセメント濃度が小さくなる程脱水機の脱水処理量が急激に向上し始める前記相関曲線上の偏向点を検出し、前記偏向点のセメント濃度以下のスラッジ水を脱水処理する第一工程と、前記偏向点のセメント濃度以上のスラッジ水をスラッジ水槽で攪拌を行い脱水処理する第二工程とからなることを特徴とする生コンクリートのスラッジ水処理方法。Correlation curve between the amount of dewatering per unit time of the dehydrator and the cement concentration of the sludge water in the sludge water treatment method in which the sludge water containing cement discharged from ready-mixed concrete mixing equipment is dehydrated by the dehydrator The deflection point on the correlation curve where the dewatering amount of the dehydrator begins to increase sharply as the cement concentration of sludge water decreases is detected, and sludge water below the cement concentration of the deflection point is dewatered. A method for treating sludge water of ready-mixed concrete, comprising: a first step of performing a dehydration process by stirring sludge water having a cement concentration at the deflection point or higher in a sludge water tank. 前記偏向点のスラッジ水のセメント濃度が3〜6%となる請求項1記載の生コンクリートのスラッジ水処理方法。The method for treating sludge water of ready-mixed concrete according to claim 1, wherein the cement concentration of sludge water at the deflection point is 3 to 6%. 前記第一工程において、スラッジ水槽のスラッジ水を脱水機へ送る取込口が水面部に設けられており、該取込口が水面の上下に合わせて移動することを特徴とする請求項1記載の生コンクリートのスラッジ水処理方法。The intake port for sending sludge water from the sludge water tank to the dehydrator is provided in the water surface portion in the first step, and the intake port moves along the top and bottom of the water surface. Of raw concrete sludge water treatment.
JP2002262156A 2002-09-06 2002-09-06 Sludge water treatment method for ready-mixed concrete Expired - Fee Related JP4150234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262156A JP4150234B2 (en) 2002-09-06 2002-09-06 Sludge water treatment method for ready-mixed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262156A JP4150234B2 (en) 2002-09-06 2002-09-06 Sludge water treatment method for ready-mixed concrete

Publications (2)

Publication Number Publication Date
JP2004097916A JP2004097916A (en) 2004-04-02
JP4150234B2 true JP4150234B2 (en) 2008-09-17

Family

ID=32262278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262156A Expired - Fee Related JP4150234B2 (en) 2002-09-06 2002-09-06 Sludge water treatment method for ready-mixed concrete

Country Status (1)

Country Link
JP (1) JP4150234B2 (en)

Also Published As

Publication number Publication date
JP2004097916A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
US9149746B2 (en) High speed filtration device using porous media, and backwash method thereof
CN101696077B (en) Method for screening and dewatering urban sludge efficiently
GB1578050A (en) Method for separating pollutants from liquid
JP2689366B2 (en) Portable turbid water treatment device
KR102013076B1 (en) Movable sludge dewatering appratus
CN110482745A (en) A kind of sewage disposal system and sewage water treatment method of waste incineration slag
JP4150234B2 (en) Sludge water treatment method for ready-mixed concrete
CN102489073A (en) Construction method for rapidly dehydrating dredging mud by centrifugation and plate frame
JP3618113B2 (en) Equipment for recycling raw wastewater
JP3325049B2 (en) Sludge treatment method and sludge treatment apparatus therefor
JP4875292B2 (en) Sludge recovery system and sludge recovery treatment method
JP6199834B2 (en) Mobile mud treatment facility
JPH06319916A (en) Continuous muddy water treatment apparatus
JPH0290911A (en) Sludge treatment apparatus
JP2002292400A (en) Dehydration equipment for low concentration slurry
US7077968B2 (en) Method for continuously filtering raw brine for use in chlor-alkali electrolysis
KR101573624B1 (en) Dredged processing device using a magnetic field
JP2004122096A (en) Method and apparatus for dehydrating sludge
KR200377591Y1 (en) Waste water equipment with one body assembly a movable type
JP3506724B2 (en) Thickener with built-in filter
JP2005193125A (en) Waste sludge treatment method of water purification plant
JP2004148185A (en) Method and equipment for cleaning filthy and turbid water
US11834808B1 (en) Programmable dredge spoils slurry process and dewatering system
JP2006095413A (en) Sand separation/washing device
JP2001079562A (en) Yard wastewater treatment method for removing suspended solid(ss)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4150234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees