JP2004097916A - Treatment method for sludge water of ready-mixed concrete - Google Patents

Treatment method for sludge water of ready-mixed concrete Download PDF

Info

Publication number
JP2004097916A
JP2004097916A JP2002262156A JP2002262156A JP2004097916A JP 2004097916 A JP2004097916 A JP 2004097916A JP 2002262156 A JP2002262156 A JP 2002262156A JP 2002262156 A JP2002262156 A JP 2002262156A JP 2004097916 A JP2004097916 A JP 2004097916A
Authority
JP
Japan
Prior art keywords
sludge water
water
sludge
cement
dehydrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002262156A
Other languages
Japanese (ja)
Other versions
JP4150234B2 (en
Inventor
Tamaki Hirota
広田 環
Hirohisa Fukae
深江 博久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP2002262156A priority Critical patent/JP4150234B2/en
Publication of JP2004097916A publication Critical patent/JP2004097916A/en
Application granted granted Critical
Publication of JP4150234B2 publication Critical patent/JP4150234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform a process for dehydrating all of sludge water of a sludge water tank in a short time in a method for dehydrating sludge water containing a cement component discharged from ready-mixed concrete kneading equipment by a dehydrator. <P>SOLUTION: The sludge water of the water surface part of the sludge water tank is sent to the dehydrator to preferentially perform the dehydration treatment of a large amount of sludge water low in the concentration of cement and a high dehydration capacity is put to practical use to perform dehydration treatment in a short time. By filtering a small amount of sludge water high in the concentration of cement, all of the sludge water in the sludge water tank is subjected to dehydration treatment to further shorten a treatment time. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、生コンクリートの混練設備や残存した生コンクリートの処理工程から砂利及び砂などの骨材を回収した後に排出されるセメント分を含んだスラッジ水を脱水機によって脱水処理する方法に関するものである。
【0002】
【従来の技術】
生コンクリートの混練設備では混練設備の洗い水や生コンクリートからの流出水などのセメント分を含んだスラッジ水が排出される。また、コンクリート製品工場や工事現場などで使われずに残った生コンクリートの処理工程では、生コンクリートから砂利や砂などの骨材を回収した後のセメント分を含んだスラッジ水が同様に排出される。
【0003】
これらセメント分を含んだスラッジ水はスラッジ水槽に一時的に蓄えられ、フィルタープレスなどの脱水機に送られてセメント分を脱水ケーキとして固形化させて安定な状態にする脱水処理を行い、脱水処理によってろ過された処理水は処理水槽に蓄えられて設備内での洗い水や混練水として再利用され、余った処理水はpH値などの水質調整を行って外部に放出している。
【0004】
スラッジ水の脱水処理方法としては、スラッジ水槽のスラッジ水を一定時間静的状態に置き、スラッジ水に含まれるセメント分を自然沈殿させ、セメント分の希薄な上層のスラッジ水はそのまま脱水処理せずに処理水槽へ送り、下層のセメント分の沈殿したスラッジ水は脱水機へ送って脱水処理を施し、その後処理水槽へ送られる。
これは、脱水処理にかかる時間をできるだけ短縮してスラッジ水の脱水処理工程を早く終了させるために行われている。
【0005】
例えば、容量60mのスラッジ水槽にセメント濃度3%のスラッジ水を貯めて3時間静的状態に置き、自然沈降させた場合では、全スラッジ水量の4/5程度がセメント濃度0.1%の希薄な上層のスラッジ水となり、1/5程度が下層に沈殿するスラッジ水となる。この下層に沈殿するスラッジ水を脱水処理してセメント濃度0.001%のスラッジ水にろ過すると、処理水槽には4/5のセメント濃度0.1%のスラッジ水と1/5のセメント濃度0.001%のスラッジ水が混在して、処理水槽の全体ではセメント濃度0.08%のスラッジ水が蓄えられる。
ところが、スラッジ水を施設の外部へ放出する時には、セメント濃度が50ppm(0.005%)以下のスラッジ水にする必要があり、前記の方法ではスラッジ水を施設の外部に放出することができない。そのため、スラッジ水槽内の全てのスラッジ水を脱水処理して、全てのスラッジ水のセメント濃度を小さくする必要がある。
【0006】
そこで、スラッジ水を施設の外部へ放出するために、スラッジ水槽のスラッジ水の全量を脱水機へ送り、均一のセメント濃度に脱水処理する。しかしながら、このように処理水槽のスラッジ水のセメント濃度を0.001%として施設の外部に放出できるように処理すると、スラッジ水の脱水処理工程に時間がかかってしまい、次々に施設から排出されるスラッジ水を溜めることなく脱水処理することは困難である。
【0007】
【特許文献1】
特開平7‐195099号公報
【0008】
【発明が解決しようとする課題】
したがって、本発明は、前記の問題点に鑑み、スラッジ水を脱水機によって脱水処理する方法において、スラッジ水槽の全てのスラッジ水を脱水処理する工程を短時間で行うことを目的とする。
【0009】
【課題を解決するための手段】
上記の課題を解決するため、本発明は、生コンクリートの混練設備などから排出されるセメント分を含んだスラッジ水を脱水機によって脱水処理するスラッジ水処理方法において、脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線を算出して、スラッジ水のセメント濃度が小さくなる程脱水機の脱水処理量が急激に向上し始める前記相関曲線上の偏向点を検出し、前記偏向点のセメント濃度以下のスラッジ水を脱水処理する第一工程と、前記偏向点のセメント濃度以上のスラッジ水をスラッジ水槽で攪拌を行い脱水処理する第二工程とからなることを特徴とする。
【0010】
【発明の実施の形態】
本発明の実施の形態を図を用いて説明する。図2には脱水機の処理容量に違いがある3種類の脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線が示されている。
図2に示す脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線Aにより、スラッジ水のセメント濃度がある数値以下になると、スラッジ水のセメント濃度が小さくなる程脱水機の脱水処理能力が飛躍的に増大する点aが検出される。(以後この相関曲線上の点aを偏向点と呼ぶ)この偏向点aのセメント濃度以下のスラッジ水の脱水処理は短時間で大量に脱水処理することが可能となる。
【0011】
これは、スラッジ水のろ過工程では、脱水機内に備えられたろ布にスラッジ水を通すことによってセメント分がろ過されて、処理水を得る。ろ布によりろ過されたセメント分は、ろ布に付着し、スラッジ水のろ過を続けることによって、ろ布へのセメント分の付着が増大してゆく。最初は薄い膜としてろ布に付着するセメント分が次第に厚い層としてろ布へ付着し、スラッジ水のろ過を妨げるようになる。
このため、セメント分濃度の小さいスラッジ水を用いると、ろ布への付着が少なく、ろ過の妨げにならないので脱水機の単位時間当たりの脱水処理量は大きい。これに対してセメント分濃度の大きいスラッジ水を用いると、ろ布への付着が多く、ろ過の妨げになり脱水機の単位時間当たりの脱水処理量が小さくなるのである。
【0012】
また、攪拌しないスラッジ水槽の水面部のスラッジ水のセメント濃度は、セメント分の自然沈降により一定時間沈殿させなくてもセメント分は希薄となり、前記偏向点のセメント濃度より小さい数値である。
本発明は以上の点に着目し、スラッジ水槽の水面部のスラッジ水を脱水機へ送り、多量のセメント濃度の小さいスラッジ水は優先的に脱水処理を行い、高い脱水処理能力を活かして短時間で脱水処理し、セメント濃度の大きいスラッジ水は、少量にてろ過することにより、スラッジ水槽全てのスラッジ水の脱水処理を行い、さらに処理時間の短縮を実現させるものである。
【0013】
相関曲線の偏向点を説明すると、図2に示す脱水機の相関曲線Aでの偏向点aの例では、相関曲線上にある点の接線は、図2のグラフ右側のセメント濃度が高い数値の領域では水平に近い小さな角度の傾きを示し、これはセメント濃度の変動があっても脱水能力は大きく変動しないことを表す。
セメント濃度が次第に小さい数値になると接線の傾きは徐々に大きな角度となり、接線の傾きが45°程度になる付近で、セメント濃度が小さくなると脱水機の脱水処理能力が飛躍的に増大する偏向点aが得られる。
この偏向点aより小さなセメント濃度になる点では接線の傾きは急激に45°以上の大きな傾きとなり、これらの領域ではセメント濃度が小さくなればなる程脱水能力が高くなり、脱水処理を効率的に行うことができる。
偏向点は相関曲線上の点での接線の傾きの0°から90°までの間の中立点である45°の点に近傍に位置しており、この点を境に脱水機の脱水処理能力の変移が極端に変動する。
【0014】
以下、本発明の実施例を説明する。
施設から排出するスラッジ水を蓄えるスラッジ水槽にはスラッジ水を脱水機へ送る送水ポンプが設けられている。スラッジ水槽のスラッジ水を送水ポンプに吸い上げる吸水管がスラッジ水槽から送水ポンプまで設けられており、吸水管へ設けられた取込口にはフロート(浮き具)が備えられて、スラッジ水の水面の上下に合わせて取込口が移動するようになされて、水面部のスラッジ水を取り込んで脱水機へ送るようになされている。
スラッジ水槽にはスラッジ水を攪拌する攪拌手段が備えられており、攪拌することでスラッジ水槽内の濃度を全て均一にできるようになされている。
前記脱水機により脱水処理された処理水は処理水槽に蓄えられて、設備内での洗い水や混練水として再利用され、またpH値などの水質調整を行って外部に放出される。
【0015】
第一図に本発明の脱水処理工程のフロー図を示す。
スラッジ水の脱水処理の第一工程1では、スラッジ水槽のスラッジ水はセメント分を沈殿させる静的状態に置くことなく、また、取込口が水面部に位置するように設けられているので、すぐさま水面部のスラッジ水が取り込まれて脱水機へ送られる。このとき水面部のスラッジ水がセメント濃度の小さい状態を維持するために攪拌手段は動作させず、スラッジ水の攪拌は行わない。
攪拌を行わないことで、水面部のスラッジ水のセメント濃度は前記相関曲線A上の偏向点a以下となり、脱水機の脱水処理は高い脱水能力となり、短時間でより大量のスラッジ水の処理が可能となる。
【0016】
例えば、平均3%濃度のスラッジ水において攪拌を行わない場合の水面部のスラッジ水のセメント濃度はセメント分の自然沈降によって0.5%程度となる。図2に示す脱水機の脱水処理量とスラッジ水のセメント濃度との相関曲線Aによると、このグラフの偏向点aのセメント濃度は約3%であり、前記水面部のスラッジ水のセメント濃度0.5%はこれよりも小さな濃度であるので、脱水機には高い脱水処理能力が得られる。
スラッジ水の脱水処理が進むとスラッジ水槽の水量が減少し、水面が下がってくる。セメント濃度の小さい水面部のスラッジ水を脱水機へ送り続けるために取込口にはフロートが備えられており、水面が上下に変動しても取込口が水面の上下に合わせて移動して水面部に置くことができる。
【0017】
取込口を移動する他の実施例としては、センサーを用いて水面の位置を判断し、電動チェンブロやウインチなどによって水面部の位置へ取込口を上下に移動させたり、水面の位置を作業者が目視にて確認して手動にてチェンブロを操作する。また、前記例では取込口は送水ポンプに吸い上げる吸水管に備えられているが、スラッジ水槽と送水ポンプを繋ぐ吸水管を設けることなく、送水ポンプをスラッジ水槽内に設けて、送水ポンプの吸水口を取込口として送水ポンプ自体を前記例のようにフロートやチェンブロを用いて水面の移動に合わせて上下移動するようになしても同様の効果が得られる。
【0018】
第二工程2では、スラッジ水槽の水量が減少すると残されたスラッジ水のセメント濃度が大きくなり、水面部のスラッジ水のセメント濃度が偏向点aに近づき、セメント濃度が大きくなると脱水処理能力が大幅に低下してしまう。
そこで、スラッジ水層に備えられた攪拌手段によりスラッジ水を攪拌して水槽内のスラッジ水のセメント濃度を極端に大きくさせずに均一化し、脱水能力の低下を防ぎながらスラッジ水を脱水機へ送り、全てのスラッジ水の脱水処理を行う。
また、スラッジ水を攪拌することは、セメント濃度が大きくなることで発生するセメント分の固化による作業性の低下や水槽への付着も防止できる。
【0019】
図2で示される各々の相関曲線では、各脱水機の処理容量の違いによって単位時間当たりのスラッジ水処理量が異なり、各相関曲線の偏向点でのセメント濃度が異なっている。これは、各脱水機の処理容量の大きさの違いによって各脱水機の備えるスラッジ水をろ過するろ布の表面積に違いがあり、処理容量の大きい脱水機の相関曲線Cではろ布の表面積も大きく、処理容量の小さい脱水機の相関曲線Aではろ布の表面積も小さくなる。このため、ろ布によりろ過されるセメント分の量が各々異なるので、単位時間当たりのスラッジ水処理量に違いが生じ、偏向点の位置も各々異なる。例えば、処理容量が78Lとなる脱水機の相関曲線Aにおける偏向点aのセメント濃度は3%となり、処理容量が138Lとなる脱水機の相関曲線Bにおける偏向点bのセメント濃度は4%、処理容量が230Lとなる脱水機の相関曲線Cにおける偏向点cのセメント濃度は5.5%となり、各脱水機の処理容量の違いによって偏向点の数値には幅ができる。
【0020】
以上の工程によりスラッジ水の脱水処理を全てのスラッジ水に対して行うことができ、セメント濃度の小さい処理水を得ることができる。また全てのスラッジ水の脱水処理を短時間で行うことができる。
【0021】
【発明の効果】
以上述べたように本発明によれば、スラッジ水槽全てのスラッジ水を脱水処理するので、セメント濃度の小さい処理水を得ることができる。
また、脱水処理の最初に第一工程としてセメント濃度の小さいスラッジ水を脱水処理するので、脱水処理の最初の脱水処理能力が大きく大量のスラッジ水の処理が可能となり、急いで処理水が必要な時に緊急に対応ができる。
同様に、スラッジ水の最初の脱水処理量が大きいので、急なスラッジ水の発生にも容易に対応でき、従来に比べてスラッジ水槽の小容量化が可能となる。
【0022】
さらに、従来の全量を均一のセメント濃度とする脱水処理工程に比べて、第一工程にてセメント濃度の小さいスラッジ水を処理するので、脱水処理内の機械の磨耗防止や配管内のセメント分の付着を減少できる。
また、取込口が水面の上下に合わせて移動することにより、セメント濃度の小さい水面部のスラッジ水が常に脱水機へ送られるので脱水機は最初の高い脱水処理能力を維持することができる。
【図面の簡単な説明】
【図1】本発明の脱水処理工程のフロー図を示す。
【図2】脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線図を示す。
【符号の説明】
1  第一工程
2  第二工程
[0001]
[Industrial applications]
The present invention relates to a method for dewatering a sludge water containing a cement component discharged after collecting aggregates such as gravel and sand from a ready-mixed concrete kneading facility and a process for treating remaining ready-mixed concrete by a dehydrator. is there.
[0002]
[Prior art]
In the ready-mixed concrete kneading facility, sludge water containing cement, such as washing water from the kneading facility and runoff from the ready-mixed concrete, is discharged. In the process of treating raw concrete that has not been used in concrete product factories or construction sites, sludge water containing cement is also discharged after collecting aggregates such as gravel and sand from raw concrete. .
[0003]
The sludge water containing these cement components is temporarily stored in a sludge water tank, sent to a dehydrator such as a filter press, and solidifies the cement components as a dehydration cake to perform a dehydration process to make a stable state. The treated water filtered is stored in a treated water tank and reused as washing water and kneading water in the facility. Excess treated water is adjusted to a pH value or the like and discharged to the outside.
[0004]
As a method of dewatering sludge water, the sludge water in the sludge tank is kept in a static state for a certain period of time, and the cement contained in the sludge water is allowed to settle naturally, and the sludge water in the upper layer where the cement is thin is not directly dewatered. To the treated water tank, and the sludge water in which the lower layer of cement has settled is sent to a dehydrator to be subjected to dehydration treatment, and then sent to the treated water tank.
This is performed in order to shorten the time required for the dewatering process as much as possible and to finish the dewatering process of the sludge water as soon as possible.
[0005]
For example, when sludge water with a cement concentration of 3% is stored in a sludge water tank having a capacity of 60 m 3 and placed in a static state for 3 hours and allowed to settle naturally, about 4/5 of the total amount of sludge water has a cement concentration of 0.1%. Dilute upper layer sludge water is formed, and about 1/5 becomes sludge water precipitated in the lower layer. When the sludge water precipitated in the lower layer is subjected to dehydration treatment and filtered into sludge water having a cement concentration of 0.001%, a sludge water having a cement concentration of 4/5 and a cement concentration of 0.1% and a cement concentration of 1/5 having a cement concentration of 0/5 are contained in the treated water tank. 0.001% of sludge water is mixed, and sludge water with a cement concentration of 0.08% is stored in the entire treatment tank.
However, when discharging the sludge water to the outside of the facility, the cement concentration must be 50 ppm (0.005%) or less, and the above method cannot discharge the sludge water to the outside of the facility. Therefore, it is necessary to dehydrate all the sludge water in the sludge water tank to reduce the cement concentration of all the sludge water.
[0006]
Therefore, in order to discharge the sludge water to the outside of the facility, the entire amount of the sludge water in the sludge tank is sent to a dehydrator, and dewatered to a uniform cement concentration. However, if the treatment is performed so that the sludge water in the treated water tank can be discharged to the outside of the facility with the cement concentration being 0.001%, the sludge water dewatering process takes a long time and is discharged from the facility one after another. It is difficult to perform a dehydration treatment without storing sludge water.
[0007]
[Patent Document 1]
JP-A-7-195099
[Problems to be solved by the invention]
Therefore, in view of the above problems, it is an object of the present invention to provide a method for dewatering sludge water using a dewatering machine, in which the step of dewatering all the sludge water in a sludge water tank is performed in a short time.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a method for treating sludge water containing cement component discharged from a kneading facility for ready-mixed concrete by a dehydrator, the method comprising: Calculate the correlation curve between the treatment amount and the cement concentration of the sludge water, and detect the deflection point on the correlation curve where the dewatering amount of the dehydrator begins to rapidly increase as the cement concentration of the sludge water decreases, It is characterized by comprising a first step of dehydrating sludge water having a cement concentration of the deflection point or less and a second step of dehydrating the sludge water having a cement concentration of the deflection point or more in a sludge water tank.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIG. 2 shows a correlation curve between the amount of dehydration treatment per unit time of three types of dehydrators having different treatment capacities of the dehydrators and the cement concentration of the sludge water.
According to the correlation curve A between the amount of dewatering treatment per unit time of the dewatering machine and the cement concentration of the sludge water shown in FIG. 2, when the cement concentration of the sludge water becomes lower than a certain value, the lower the cement concentration of the sludge water becomes, the smaller the dewatering machine becomes. The point a at which the dehydration processing capacity of the is dramatically increased is detected. (Hereinafter, point a on this correlation curve is referred to as a deflection point.) Dewatering of sludge water having a cement concentration of this deflection point a or less can be performed in a short time in a large amount.
[0011]
In the sludge water filtration step, the sludge water is passed through a filter cloth provided in the dehydrator, whereby the cement content is filtered to obtain treated water. The cement component filtered by the filter cloth adheres to the filter cloth, and the adhesion of the cement component to the filter cloth increases by continuing the filtration of the sludge water. Initially, the cement component that adheres to the filter cloth as a thin film gradually adheres to the filter cloth as a thick layer, which hinders filtration of sludge water.
For this reason, when the sludge water having a low cement content is used, the sludge water adheres little to the filter cloth and does not hinder the filtration. On the other hand, when the sludge water having a high cement content is used, the sludge water adheres much to the filter cloth, hinders the filtration, and reduces the amount of dehydration treatment per unit time of the dehydrator.
[0012]
Further, the cement concentration of the sludge water in the water surface portion of the unstirred sludge tank is a value smaller than the cement concentration at the deflection point, since the cement becomes thin even if it is not settled for a certain time due to the natural sedimentation of the cement.
The present invention pays attention to the above points, sends the sludge water on the water surface of the sludge tank to the dehydrator, and preferentially performs a dehydration treatment on a large amount of small-concentration sludge water, taking advantage of the high dehydration treatment capacity for a short time. The sludge water having a high cement concentration is filtered with a small amount to perform a dewatering treatment of the sludge water in the entire sludge tank, thereby further reducing the treatment time.
[0013]
Explaining the deflection point of the correlation curve, in the example of the deflection point a in the correlation curve A of the dehydrator shown in FIG. 2, the tangent to the point on the correlation curve is the value of the cement concentration on the right side of the graph of FIG. In the region, the inclination shows a small angle close to horizontal, which indicates that the dewatering ability does not fluctuate greatly even if the cement concentration fluctuates.
When the cement concentration becomes gradually smaller, the inclination of the tangent becomes a larger angle, and when the inclination of the tangent becomes about 45 °, when the cement concentration becomes lower, the dewatering capacity of the dehydrator dramatically increases. Is obtained.
At the point where the cement concentration becomes smaller than the deflection point a, the inclination of the tangent suddenly becomes a large inclination of 45 ° or more. In these regions, the lower the cement concentration is, the higher the dewatering capacity becomes, and the more efficient the dewatering process becomes. It can be carried out.
The deflection point is located in the vicinity of a 45 ° point which is a neutral point between 0 ° and 90 ° of the inclination of the tangent line at a point on the correlation curve. Changes extremely.
[0014]
Hereinafter, examples of the present invention will be described.
The sludge tank for storing the sludge water discharged from the facility is provided with a water pump for sending the sludge water to the dehydrator. A water absorption pipe that sucks up the sludge water in the sludge tank to the water supply pump is provided from the sludge water tank to the water supply pump, and an intake port provided in the water suction pipe is provided with a float (floating tool), and the water level of the sludge water surface is increased. The intake port is moved up and down to take in the sludge water on the water surface and send it to the dehydrator.
The sludge water tank is provided with a stirring means for stirring the sludge water, and the stirring allows the concentration in the sludge water tank to be all uniform.
The treated water dehydrated by the dehydrator is stored in a treated water tank, reused as washing water and kneading water in the facility, and discharged to the outside after adjusting water quality such as pH value.
[0015]
FIG. 1 shows a flowchart of the dehydration treatment step of the present invention.
In the first step 1 of the dewatering treatment of the sludge water, the sludge water in the sludge tank is not placed in a static state for sedimenting the cement component, and the intake port is provided so as to be located on the water surface, Immediately, the sludge water on the water surface is taken in and sent to the dehydrator. At this time, the stirring means is not operated in order to maintain the state in which the sludge water on the water surface has a low cement concentration, and the stirring of the sludge water is not performed.
By not performing the stirring, the cement concentration of the sludge water on the water surface portion becomes equal to or less than the deflection point a on the correlation curve A, and the dewatering process of the dehydrator has a high dewatering capacity, so that a larger amount of sludge water can be processed in a short time. It becomes possible.
[0016]
For example, when the agitation is not performed in the sludge water having an average concentration of 3%, the cement concentration of the sludge water on the water surface becomes about 0.5% due to the natural sedimentation of the cement. According to the correlation curve A between the dewatering treatment amount of the dehydrator and the cement concentration of the sludge water shown in FIG. 2, the cement concentration at the deflection point a in this graph is about 3%, and the cement concentration of the sludge water on the water surface is 0%. Since 0.5% is a smaller concentration, a high dehydration capacity can be obtained in the dehydrator.
As the dewatering process of the sludge water proceeds, the amount of water in the sludge tank decreases, and the water level decreases. The intake is equipped with a float to keep the sludge water on the surface of the cement with low cement concentration sent to the dehydrator, and even if the water surface fluctuates up and down, the intake moves in accordance with the top and bottom of the water surface. Can be placed on the water surface.
[0017]
As another example of moving the intake port, the position of the water surface is determined using a sensor, and the intake port is moved up and down to the position of the water surface portion by using an electric chamber brochure or a winch, or the position of the water surface is worked. The operator visually checks and manually operates the chamber blow. In addition, in the above example, the intake port is provided in the water suction pipe that sucks up the water supply pump, but without providing a water absorption pipe connecting the sludge water tank and the water supply pump, the water supply pump is provided in the sludge water tank, and the water suction pump absorbs water. The same effect can be obtained even if the water supply pump itself is moved up and down in accordance with the movement of the water surface by using a float or a chamber blow as in the above-mentioned example using the mouth as an inlet.
[0018]
In the second step 2, when the amount of water in the sludge tank decreases, the cement concentration of the remaining sludge water increases, and the cement concentration of the sludge water on the water surface approaches the deflection point a. Will decrease.
Therefore, the sludge water is stirred by the stirring means provided in the sludge water layer to make the cement concentration of the sludge water in the water tank uniform without excessively increasing, and the sludge water is sent to the dehydrator while preventing a decrease in dewatering capacity. Dewater all sludge water.
In addition, stirring the sludge water can also prevent workability deterioration due to solidification of the cement generated due to an increase in the cement concentration and adhesion to the water tank.
[0019]
In each of the correlation curves shown in FIG. 2, the sludge water treatment amount per unit time varies depending on the treatment capacity of each dehydrator, and the cement concentration at the deflection point of each correlation curve varies. This is because there is a difference in the surface area of the filter cloth for filtering the sludge water provided in each dehydrator according to the difference in the processing capacity of each dehydrator. In the correlation curve C of the dehydrator having a large processing capacity, the surface area of the filter cloth is also different. In the correlation curve A of the dehydrator having a large and small processing capacity, the surface area of the filter cloth is also small. For this reason, since the amount of the cement component filtered by the filter cloth differs, the sludge water treatment amount per unit time differs, and the position of the deflection point also differs. For example, the cement concentration at the deflection point a in the correlation curve A of the dehydrator having a processing capacity of 78 L is 3%, and the cement concentration at the deflection point b in the correlation curve B of the dehydrator having a processing capacity of 138 L is 4%. The cement concentration at the deflection point c in the correlation curve C of the dehydrator having a capacity of 230 L is 5.5%, and the numerical value of the deflection point varies depending on the processing capacity of each dehydrator.
[0020]
Through the above steps, the dewatering treatment of the sludge water can be performed on all the sludge water, and the treated water having a low cement concentration can be obtained. In addition, all the sludge water can be dehydrated in a short time.
[0021]
【The invention's effect】
As described above, according to the present invention, since the sludge water in all the sludge tanks is dewatered, treated water having a low cement concentration can be obtained.
In addition, since the sludge water with a low cement concentration is dewatered as the first step of the dehydration treatment, the dehydration treatment capacity of the first dehydration treatment is large, and a large amount of sludge water can be treated. Can respond urgently sometimes.
Similarly, since the initial dewatering amount of the sludge water is large, it is possible to easily cope with sudden generation of the sludge water, and it is possible to reduce the capacity of the sludge water tank as compared with the related art.
[0022]
Furthermore, since sludge water with a low cement concentration is treated in the first step as compared with the conventional dehydration treatment step in which the entire amount is made to have a uniform cement concentration, wear of the machine in the dehydration treatment is prevented and the cement content in the piping is reduced. Adhesion can be reduced.
In addition, since the inlet moves vertically above and below the water surface, the sludge water on the water surface having a low cement concentration is always sent to the dewatering machine, so that the dewatering machine can maintain the initial high dewatering capacity.
[Brief description of the drawings]
FIG. 1 shows a flowchart of a dehydration treatment step of the present invention.
FIG. 2 is a diagram showing a correlation curve between a dewatering treatment amount per unit time of a dehydrator and a cement concentration of sludge water.
[Explanation of symbols]
1 First step 2 Second step

Claims (3)

生コンクリートの混練設備などから排出されるセメント分を含んだスラッジ水を脱水機によって脱水処理するスラッジ水処理方法において、脱水機の単位時間当たりの脱水処理量とスラッジ水のセメント濃度との相関曲線を算出して、スラッジ水のセメント濃度が小さくなる程脱水機の脱水処理量が急激に向上し始める前記相関曲線上の偏向点を検出し、前記偏向点のセメント濃度以下のスラッジ水を脱水処理する第一工程と、前記偏向点のセメント濃度以上のスラッジ水をスラッジ水槽で攪拌を行い脱水処理する第二工程とからなることを特徴とする生コンクリートのスラッジ水処理方法。In a sludge water treatment method in which sludge water containing cement discharged from a kneading facility for ready-mixed concrete is dewatered by a dehydrator, a correlation curve between the amount of dewatering per unit time of the dehydrator and the cement concentration of the sludge water. Calculates, detects the deflection point on the correlation curve where the dewatering amount of the dewatering machine begins to rapidly increase as the cement concentration of the sludge water decreases, and dewaters the sludge water having a cement concentration of the deflection point or less. And a second step in which sludge water having a cement concentration equal to or higher than the cement concentration at the deflection point is stirred and dewatered in a sludge tank. 前記偏向点のスラッジ水のセメント濃度が3〜6%となる請求項1記載の生コンクリートのスラッジ水処理方法。The sludge water treatment method for ready-mixed concrete according to claim 1, wherein a cement concentration of the sludge water at the deflection point is 3 to 6%. 前記第一工程において、スラッジ水槽のスラッジ水を脱水機へ送る取込口が水面部に設けられており、該取込口が水面の上下に合わせて移動することを特徴とする請求項1記載の生コンクリートのスラッジ水処理方法。2. The first step, wherein an inlet for feeding the sludge water in the sludge tank to the dehydrator is provided on a water surface portion, and the intake port moves up and down according to the water surface. Of fresh concrete sludge water treatment.
JP2002262156A 2002-09-06 2002-09-06 Sludge water treatment method for ready-mixed concrete Expired - Fee Related JP4150234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262156A JP4150234B2 (en) 2002-09-06 2002-09-06 Sludge water treatment method for ready-mixed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262156A JP4150234B2 (en) 2002-09-06 2002-09-06 Sludge water treatment method for ready-mixed concrete

Publications (2)

Publication Number Publication Date
JP2004097916A true JP2004097916A (en) 2004-04-02
JP4150234B2 JP4150234B2 (en) 2008-09-17

Family

ID=32262278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262156A Expired - Fee Related JP4150234B2 (en) 2002-09-06 2002-09-06 Sludge water treatment method for ready-mixed concrete

Country Status (1)

Country Link
JP (1) JP4150234B2 (en)

Also Published As

Publication number Publication date
JP4150234B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
KR101342551B1 (en) The Equipment of Reduction Sludge Dewatering Water Content Rate to Total Solids Improvement in Unity Sludge Tank and Belt Press Filter on the Upper and Lower Percolate using High Pressure Cleaning Water Supply
JP2689366B2 (en) Portable turbid water treatment device
KR101199583B1 (en) Equipment for treating waste water using integrated membrane-clarification system
KR102013076B1 (en) Movable sludge dewatering appratus
US20070193930A1 (en) Aqueous liquid clarification system
JP2002172394A (en) Method for ss removing treatment of yard wastewater
JP4150234B2 (en) Sludge water treatment method for ready-mixed concrete
JP2001170656A (en) Process for removing solid particulate, more particularly silica and/or alumina particulate from waste water
JP4129479B1 (en) Sludge treatment method and treatment system
JPH1177094A (en) Apparatus and method for purifying treatment of dredged soil
JP2001347103A (en) Apparatus for treating filthy water
JP3325049B2 (en) Sludge treatment method and sludge treatment apparatus therefor
JP2002292400A (en) Dehydration equipment for low concentration slurry
JP2001079562A (en) Yard wastewater treatment method for removing suspended solid(ss)
JP4952877B2 (en) Sludge concentration method and sludge concentration apparatus
JP2005193125A (en) Waste sludge treatment method of water purification plant
JP2007000792A (en) Treating method of suspended matter in steel manufacturing degassing drain
JP4569772B2 (en) Sludge concentration apparatus and sludge concentration method
KR101573624B1 (en) Dredged processing device using a magnetic field
JPH07195353A (en) Reutilization apparatus of waste water of ready-mixed concrete
JP2000325968A (en) Treatment method of sludge from a wastewater treatment system for fluegas desulfurization
JPH0546280B2 (en)
CN211226669U (en) Sewage purification system for aluminum profile oxidation workshop
CN211497205U (en) Small-size printing ink waste water treatment retrieval and utilization device
WO2012093478A1 (en) Method and system for dehydration of muddy water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4150234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees