JP4149057B2 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP4149057B2
JP4149057B2 JP35613698A JP35613698A JP4149057B2 JP 4149057 B2 JP4149057 B2 JP 4149057B2 JP 35613698 A JP35613698 A JP 35613698A JP 35613698 A JP35613698 A JP 35613698A JP 4149057 B2 JP4149057 B2 JP 4149057B2
Authority
JP
Japan
Prior art keywords
land portion
tread
step land
tire
twenty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35613698A
Other languages
Japanese (ja)
Other versions
JP2000177323A (en
Inventor
兼一郎 入宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP35613698A priority Critical patent/JP4149057B2/en
Publication of JP2000177323A publication Critical patent/JP2000177323A/en
Application granted granted Critical
Publication of JP4149057B2 publication Critical patent/JP4149057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気入りタイヤ、より詳細には、小形トラック、トラック及びバス用などのラジアルプライタイヤに関し、特に、タイヤのトレッドゴムの耐偏摩耗性の改善と耐摩耗性の向上とを両立させた空気入りタイヤに関する。
【0002】
【従来の技術】
小形トラック、トラック、バスなどの重車両と呼ばれる比較的車両総重量が重い車両に使用するラジアルプライタイヤ(以下空気入りタイヤ又はタイヤという)は、トレッド部の踏面の周りに沿って周回し連続して延びる周方向溝をトレッド部に備えるのが一般であり、この種の周方向溝をトレッド部に備える空気入りタイヤには、周方向溝縁に沿って、リバーウエア乃至レイルウエイ摩耗と呼ばれる偏摩耗が多少にかかわらず発生し、ときにはこの種の偏摩耗が進展して互いに隣り合う周方向溝相互間にわたり、トレッドゴム陸部にリブパンチと呼ばれる偏摩耗欠損部を生じさせる。これらの偏摩耗は、トレッドゴムの摩耗寿命を大幅に短くするばかりか、車両の操縦安定性や振動乗心地性を著しく損なう。また、直状周方向溝を備えるタイヤが、偏摩耗に対し最も不利であることは周知である。
【0003】
この種の偏摩耗を改善するため、トレッド部のトレッドゴムに、踏面周方向に連続して延びる一対の溝、一対の溝及び狭い切込み、一対の狭い切込みなどを設け、これら一対の溝又は狭い切込みにより、トレッドゴム陸部から離隔され、踏面からの段下がり表面をもつ複数本の段差陸部をトレッド部に形成したタイヤが提案され、この提案は偏摩耗改善に著しく貢献している。
【0004】
段差陸部の機能は、荷重負荷の下で転動するタイヤのトレッド部の接地面内にて、段差陸部の表面を路面に対して滑り接触させ、これにより車両の進行方向とは逆方向の周方向せん断力、いわばブレーキングフォースを段差陸部に集中させ、段差陸部を偏摩耗犠牲部とする働きにある。これにより、段差陸部をもたない周方向溝縁に生じていたブレーキングフォースによる局所摩耗発生、すなわちリバーウエアなどの偏摩耗発生を阻止するか、又は軽微なものとすることができることになる。以上から明らかなように、段差陸部は、一対の直状の溝又は狭い切込みの間に設ける場合の効果が最も著しく、一対のジグザグ状の溝又は狭い切込みの間に設ける場合がこれに次ぐ効果を発揮する。
【0005】
偏摩耗発生阻止のためには、段差陸部の表面に成るべく大きなブレーキングフォースを作用させればよく、ブレーキングフォースの大きさは、踏面から段差陸部表面までの段下がり代が或る値に達するまでほぼリニヤに増加するので、ブレーキングフォース増加の範囲内で、踏面から段差陸部表面までの段下がり代を成るべく大きく設定しているのが現状である。
【0006】
【発明が解決しようとする課題】
しかし、積載/非積載の頻度及び発進加速・停止の頻度が共に低く、かつ、車両の直進走行乃至直進に近い、いわゆる定常走行の時間割合が著しく多く、非定常走行時間の割合が少ない車両に装着する空気入りタイヤとしては、上述した段差陸部は顕著に優れた耐偏摩耗性を発揮する反面、例えば、地場トラック、路線バス、荷物配送トラックなどの車両のように、上記のような定常走行時間の割合が比較的少なく、却って非定常走行時間の割合が多く、この場合は必然的に旋回走行の割合も増え、タイヤへの横方向入力頻度が多い走行を行う車両に装着するタイヤとして、上述した段差陸部を備えるタイヤでは、十分な耐摩耗性が得られないことが分かった。
【0007】
元来、先に述べたリバーウエア偏摩耗や、この種の偏摩耗は、上記した定常走行を主とする走行において顕著に現れる症状であり、よって、これまでの段差陸部は、トレッド部の周方向偏摩耗犠牲部としての諸元が最重要視され、タイヤ回転軸方向(横方向)の諸元に対する配慮、主として横方向剛性に対する配慮が殆どなされていないため、車両旋回に伴うタイヤへの横方向入力が厳しい使用条件の下では、段差陸部の摩耗仕事量が、段差陸部周囲の陸部(リブ、ブロック、ラグなど)の摩耗仕事量に比し減少し勝ちである。ここに摩耗仕事量とは、単位面積当りの接地圧(kgf/mm2 )と滑り量(mm)との積に定数を掛け合わせた値である。
【0008】
その結果、或る程度走行が進んだタイヤの段差陸部の表面が、陸部を形成する踏面から突出する、という現象が見られる。この段差陸部の突出は、耐摩耗性の点で不利である他に、耐偏摩耗性の点でも不利益をもたらす。また、かように横方向入力が厳しいタイヤ使用条件の下では、ブレーキングフォース作用の結果として捉えられるトレッド部周方向引きずり成分による偏摩耗は発生し難いため、段差陸部本来の偏摩耗犠牲部としての役割を果たす機会が、定常走行における機会に比しより少なくなるのは止むを得ないところであり、よって、全体としてみて、段差陸部が耐摩耗性向上に貢献する度合いが大幅に減少しているのが現状である。
【0009】
そうかといって、全ての段差陸部の表面幅を大幅に広げ、段差陸部の横方向剛性を向上させれば、横方向入力が厳しいタイヤ使用条件の下では耐摩耗性向上に有利である反面、偏摩耗犠牲部としての段差陸部のトレッドゴムに占める体積割合が大幅に増加し、耐摩耗性を支配する、段差陸部を除く実際上の陸部の体積割合が大幅に減少するので、直進走行乃至直進走行に近い走行条件の下で、要求される耐摩耗性(トレッドゴムの摩耗寿命)を確保できない不利を併せもつ。
【0010】
従ってこの発明の請求項1〜5に記載した発明は、直進走行乃至直進走行に近い走行条件では偏摩耗の発生を抑制し、横方向入力が厳しい走行条件ではトレッドゴムの耐摩耗性を向上させることができ、二つの走行条件での使用に対し、耐偏摩耗性と耐摩耗性との双方を同時に向上させた、汎用性に富む空気入りタイヤを提供することが目的である。
【0011】
【課題を解決するための手段】
上記目的を達成するため、この発明の請求項1に記載した発明は、トレッド部に、踏面周方向に連続して延びる一対の、溝又は狭い切込みによりトレッドゴム陸部から離隔され、踏面からの段下がり表面をもつ複数本の段差陸部を備え、該段差陸部は、その表面がタイヤの荷重負荷転動下で路面との間で滑り接触する偏摩耗犠牲部を形成して成る空気入りタイヤにおいて、
上記段差陸部の、踏面から段下がり表面までの段下がり代及び表面幅に関し、複数本の段差陸部相互間で、一方の段差陸部の段下がり代が、他方の段差陸部の段下がり代に比しより小さく、かつ、一方の段差陸部の表面幅が、他方の段差陸部の表面幅に比しより広い関係を有することを特徴とする空気入りタイヤである。
【0012】
請求項1に記載した発明は、実際上、請求項2に記載した発明のように、前記一方の段差陸部及び他方の段差陸部双方における段下がり代が0.1〜3.0mmの範囲内にあり、前記一方の段差陸部及び他方の段差陸部双方における段下がり表面幅が5.0〜30.0mmの範囲内にあるのが適合する。
【0013】
また、一方の段差陸部と他方の段差陸部とを分けた状態では、請求項3に記載した発明のように、前記一方の段差陸部の段下がり代が0.1〜1.5mmの範囲内にあり、前記他方の段差陸部の段下がり代が0.5〜3.0mmの範囲内にあり、
前記段差陸部の表面幅に関し、一方の段差陸部の表面幅が10.0〜30.0mmの範囲内にあり、他方の段差陸部の表面幅が5.0〜15.0mmの範囲内にあるのが適合する。
【0014】
ここで、特に、段差陸部の段下がり代及び表面幅は、1998 JATMA YEAR BOOK(JATMA規格という)に記載された、タイヤ種類毎の適用リムにタイヤを組付け、タイヤとリムとの組立体に、JATMA規格が定める最高空気圧を充てんしたタイヤで測定するものとする。なお、適用リムは、JATMA規格に記載されているように、標準リムと許容リムとを含む。
【0015】
一方の段差陸部と他方の段差陸部とのトレッド部への配置に関しては、タイヤの種類により二通りの場合が存在し、まず、その一は、請求項4に記載した発明のように、トレッド部中央領域に1本以上の前記一方の段差陸部を有し、トレッド部中央領域の両側領域にそれぞれ1本以上の前記他方の段差陸部を有するタイヤとする。
【0016】
次に、その二は、請求項5に記載した発明のように、トレッド部中央領域に1本以上の前記他方の段差陸部を有し、トレッド部中央領域の両側領域にそれぞれ1本以上の前記一方の段差陸部を有するタイヤとする。
【0017】
ここに、トレッド部中央領域とは、タイヤ赤道面を挟む両側それぞれに、踏面幅を3等分した1/3幅を等分に振り分けた領域を指し、トレッド部の両側領域とは、中央領域の両側に位置し、踏面幅の1/3幅を有する領域である。トレッド部がラウンドショルダ乃至面取り状ショルダの場合は、タイヤ断面にて、バットレスの延長線と、踏面輪郭線の延長線との交点相互間距離を踏面幅と定める。
【0018】
【発明の実施の形態】
以下、この発明の実施の形態例を図1〜図6に基づき説明する。
図1は、この発明の空気入りタイヤの回転軸線を含む平面による断面図であり、
図2は、図1に示す空気入りタイヤの踏面展開図であり、
図3は、図2に示す踏面展開図のIII −III 線に沿う拡大断面図であり、
図4は、図2に示す踏面展開図のIV−IV線に沿う拡大断面図であり、
図5は、図2に示す踏面展開図のV −V 線に沿う拡大断面図であり、
図6は、図1に示すタイヤとは別の段差陸部を有する空気入りタイヤの図2同様に示すIV−IV線に沿う拡大断面図である。
【0019】
図1において、空気入りタイヤは、トレッド部1と、トレッド部1の両側に連なる一対のサイドウォール部2及びビード部3とを有し、これら各部1、2、3を補強するため、各ビード部3内部に埋設したビードコア4相互間にわたり延びるカーカス5と、さらにトレッド部1を強化するベルト6とを備え、トレッド部1はベルト6の外周側にトレッドゴム7を有する。カーカス5は1プライ以上、図示例は1プライのラジアル配列スチールコードのゴム被覆プライを有し、ベルト6は2層以上、図示例は4層のスチールコード層を有する。
【0020】
図1〜図5を合わせ参照し、トレッド部1は、踏面1t周方向に連続して延びる一対の溝又は狭い切込み10、11と、一対の狭い切込み又は溝12及び溝13と、一対の狭い切込み又は溝14及び溝15とを有し、トレッド部1は、
一対の溝又は狭い切込み10、11により、トレッドゴム7の陸部7L1 、7L2 から離隔され、踏面1tからの段下がり表面20sをもつ段差陸部20と、
一対の狭い切込み又は溝12及び溝13により、トレッドゴム7の陸部7L1 、7L3 から離隔され、踏面1tからの段下がり表面21sをもつ段差陸部21と、そして
一対の狭い切込み又は溝14及び溝15により、トレッドゴム7の陸部7L2 、7L4 から離隔され、踏面1tからの段下がり表面22sをもつ段差陸部22との複数本(図示例は3本)の段差陸部を備える。
【0021】
これら段差陸部20、21、22の表面20s、21s、22sは、タイヤの荷重負荷転動の下で路面との間で接触すると共に、路面との間で不可避的に発生する踏面1t周方向のタイヤ進行方向とは逆方向のせん断力、換言すればブレーキングフォースの作用を受け、路面に対し滑り接触し、それ故に、段差陸部20、21、22は、他の陸部7L1 、7L2 、7L3 、7L4 に生じる筈の偏摩耗を肩代わりする偏摩耗犠牲部の役目を果たす。
【0022】
ここで、図3〜図5において、複数本の段差陸部20、21、22の、踏面1tの端縁から段下がり表面20s、21s、22sまでの段下がり代d20(mm)、d21(mm)、d22(mm)と、タイヤ回転軸方向の段下がり表面20s、21s、22幅w20(mm)、w21(mm)、w22(mm)とに関し、一方の段差陸部20と、他方の段差陸部21、22との二つのグループに分け、これら二つのグループ相互間で、
一方の段差陸部20の段下がり代d20(mm)が、他方の段差陸部21、22の段下がり代d21(mm)、d22(mm)に比しより小さく、かつ、
一方の段差陸部20の表面20s幅w20(mm)が、他方の段差陸部21、22の表面21s、22幅w21(mm)、w22(mm)に比しより広い、
という関係を満たすものとする。
【0023】
これらの相互関係をより一層明確にするため書換えれば、
段差陸部の段下がり代dについては、
20(mm)<d21(mm)、d20(mm)<d22(mm)であり、
段差陸部の表面幅wについては、
20(mm)>w21(mm)、w20(mm)>w22(mm)である、
ということである。
なお、通常は、d21(mm)=d22(mm)又はd21(mm)≒d22(mm)とし、w21(mm)=w22(mm)又はw21(mm)≒w22(mm)とし、特別なケースで、d21(mm)≠d22(mm)、w21(mm)≠w22(mm)としても良い。
【0024】
さて、研究成果を纏めた、段差陸部の段下がり代dとブレーキングフォースとの関係を線図として示す図7と、段差陸部の表面幅wとブレーキングフォースとの関係を線図として示す図8とから、段下がり代dをゼロから或る値dmax まで増加させる間にブレーキングフォースは単純に増加し、値dmax を超えて段下がり代dを増加させると、ブレーキングフォースはその最大値BFmax から急激に低下し、これに対し、段差陸部表面幅wをほぼゼロに近い値から増加させるとブレーキングフォースは、サチュレート傾向を示しながら増加することが分かる。これらの事実は、要するに、段差陸部に生じさせるブレーキングフォースの大きさは、値dmax 以下の段下がり代dと、段差陸部表面幅wとの組み合わせで容易に制御することができることを意味している。
【0025】
この事柄を別の研究成果として、段差陸部のトレッド部1周方向摩耗仕事量をパラメータとして、段差陸部の段下がり代dと表面幅wとの相互関係を纏めたところ、図9に示す線図が得られた。図9に示す線図から、同一周方向摩耗仕事量を段差陸部に課すための段差陸部の段下がり代dと表面幅wとの組み合わせは無数に存在することが分かる。
【0026】
さらに、段差陸部の段下がり代dを一定とし、段差陸部の表面幅wと段差陸部の横方向(タイヤ回転軸方向)剛性との関係を線図として示す図10から、表面幅wを増加させると、ほぼリニヤに段差陸部の横方向剛性が増加することが分かっている。
【0027】
図7〜図10に示す線図群を合わせ考慮すると、段差陸部20の段差陸部の表面幅w20(mm)を、段差陸部21、22の表面幅w21(mm)、w22(mm)より広くとり、その代わりに、段差陸部20の段下がり代d20(mm)を、段差陸部21、22の段下がり代d21(mm)、d22(mm)より小さくとっても、段差陸部20における、ブレーキングフォースの大きさと、周方向摩耗仕事量の大きさとを、段差陸部21、22のそれらとほぼ同じにすることが可能となり、その結果、一対の溝又は狭い切込み10、11における耐偏摩耗性は、一対の狭い切込み又は溝12及び溝13及び一対の狭い切込み又は溝14及び溝15の耐偏摩耗性と同等に高度に保持することができる。
【0028】
その一方で、段差陸部20の表面幅をw20(mm)を、段差陸部21、22の表面幅w21(mm)、w22(mm)より広くとることにより、段差陸部20の横方向剛性が、段差陸部21、22の横方向剛性より高めることができるので、車両旋回時にタイヤに発生するサイドフォースに対し、一方の段差陸部20は十分に対抗し、逃げることが少なくなり、その結果、サイドフォースの作用下で、少なくとも段差陸部20は、その周囲の陸部7L1 、7L2 に合わせて適度に摩耗し、従来タイヤのように、段差陸部が突出する不具合が生じることはなく、しかも適度な段下がり代を確保することができ、優れた耐偏摩耗性を保持することができる。
【0029】
よって、一方の段差陸部20は大きなサイドフォースの作用領域に配置し、より小さなサイドフォースの作用領域に他方の段差陸部21、22を配置することにより、サイドフォースの作用による段差陸部21、22の突出は抑制され、段差陸部21、22本来の偏摩耗抑制機能を十分に発揮させることができ、さらに段差陸部20、21、22の合計幅(w20+w21+w22)をそれほど広くとる必要はなく、トレッドゴム7の耐摩耗性も優位に保持することができる。
【0030】
上記したところは、一方の段差陸部20と、他方の段差陸部21、22との二つのグループに分けて説明したが、三つ以上のグループに分け、例えば一方の段差陸部20を第一の段差陸部20、他方の段差陸部21、22を第二の段差陸部21、第三の段差陸部21のよう呼び、第一の段差陸部20と第二の段差陸部21との相互間、第一の段差陸部20と第三の段差陸部22との相互間、第二の段差陸部21と第三の段差陸部22との相互間で、前記の段下がり代d関係、前記の幅w関係を満たすようにすることを可とする。勿論、第四以上の段差陸部を設けることを可とする。
【0031】
図1〜図5に示すタイヤは、先に詳述したような相互関係をもつ、段下がり代d20(mm)、d21(mm)、d22(mm)と、表面幅w20(mm)、w21(mm)、w22(mm)とをもつ段差陸部20、21、22につき、図1に示すように、両方の踏面端TE間距離である踏面幅Wを3等分した幅1/3Wをタイヤ赤道面Eの両側に均等に振り分けたトレッド部1中央領域Rc(図2の展開図ではRcdで示す)に一方の段差陸部20を有し、幅1/3W宛のトレッド部1両側領域Rs(図2の展開図ではRsdで示す)にそれぞれ他方の段差陸部21、22を有するものである。このタイヤは比較的大きなサイドフォースが比較的高頻度で発生する非定常走行を行う使用条件の使用下でトレッドゴム7の耐偏摩耗性に優れ、定常走行下での耐摩耗性に優れる特徴を有する。
【0032】
図示は省略したが、トレッド部1の中央領域Rcに段差陸部21又は段差陸部22を1本以上備え、両側領域Rsそれぞれに段差陸部20を備えるタイヤも可とし、このタイヤは、接地圧分布がいわゆる蝶々型分布を有し、主として定常走行を行う使用条件下で、優れた耐偏摩耗性と優れた耐摩耗性とを兼ね備えるタイヤとして適合する。なお、先に述べたタイヤは、接地圧分布が、蝶々型分布をなすタイヤと、いわゆる樽型分布をなすタイヤの両者に適合する。
【0033】
以上は両極端な使用条件下での段差陸部配分について述べたが、段下がり代d20(mm)、d21(mm)、d22(mm)と、表面幅w20(mm)、w21(mm)、w22(mm)とを、以下に述べるように適正な値の範囲内で設定すれば、殆ど全ての使用条件の下で、耐偏摩耗性と耐摩耗性との兼ね合いを最良の状態とすることが可能なタイヤを得ることができる。
【0034】
まず、一方の段差陸部20及び他方の段差陸部21、22の両者は、段下がり代d20(mm)、d21(mm)、d22(mm)は0.1〜3.0mmの範囲内であること、そして、表面幅w20(mm)、w21(mm)、w22(mm)は5.0〜30.0mmの範囲内である、ということである。
【0035】
段下がり代d20(mm)、d21(mm)、d22(mm)は、3.0mmを超えると、荷重負荷転動下のタイヤの接地面で段差陸部20、21、22の表面が路面と接触しなくなるうれいが生じる。なお、下限値は、直進走行乃至直進に近い走行が進むと、段下がり代d20(mm)、d21(mm)、d22(mm)は増加する傾向を有するのでほぼゼロに近い値(0.1mm)で十分である。
【0036】
表面幅w20(mm)、w21(mm)、w22(mm)は、5.0mm未満では、ブレーキングフォースが小さ過ぎて耐偏摩耗性が低下し、合わせて、横方向剛性が小さくなり過ぎ、コーナリングの繰り返しで踏面1tから突出し、30.0mmを超えると段差陸部の横方向剛性は増加するが、直進走行乃至直進に近い走行での耐摩耗性には殆ど寄与しないトレッドゴム7部分が増加し過ぎるため、トレッドゴム7の摩耗寿命が低下するので、いずれも不可である。
【0037】
段下がり代d20(mm)、d21(mm)、d22(mm)と、表面幅w20(mm)、w21(mm)、w22(mm)とを一方の段差陸部20と他方の段差陸部21、22とに分けるとき、段差陸部20の段下がり代d20(mm)は、0.1〜1.5mmの範囲内であり、段差陸部21、22の段下がり代d21(mm)、d22(mm)は0.5〜3.0mmの範囲内が適合する。また、段差陸部20の表面幅w20(mm)は、10.0〜30.0mmの範囲内であり、段差陸部21、22の表面幅w21(mm)、w22(mm)は、5.0〜15.0mmの範囲内が適合する。
【0038】
図6に示す段差陸部21は、図4に示す段差陸部21の変形例であり、狭い切込み溝12の幅に比しより幅が広い溝13側に面取り部21pを有する。面取り部21pを備える段差陸部21の表面幅w21(mm)は、図示のように、面取り部21p側の基準を面取り部21p下端とする。この種のタイヤは砂利などが点在乃至散在する路面を走行する機会があるため、特に、溝13に小石を噛み込むことがあり、そのため小石などの異物が溝13に噛み込み難くするための面取り部21pである。この面取り部21pと同様な面取り部を対向する段差陸部22にも設ける。
【0039】
以上述べた、一対の溝又は狭い切込み10、11と、一対の狭い切込み又は溝12及び溝13と、一対の狭い切込み又は溝14及び溝15とは直状であるが、振幅がちいさなジグザグ状としても良い。なお、図2に示す符号S1 は長いサイプであり、符号S2 は極く短いサイプである。陸部7L1 、7L2 は、全体としてリブであるが、サイプS1 によりブロック状に区画されている。
【0040】
【実施例】
トラック及びバス用ラジアルプライタイヤで、サイズは295/75R22.5(チューブレスタイヤ)であり、構成は図1〜図3及び図5、6に示すところに従い、カーカス5は1プライのラジアル配列スチールコードのゴム被覆プライになり、ベルト6は、4層のゴム被覆チールコード層からなる。
【0041】
トレッド部1は、中央領域Rcに1本の段差陸部20と、両側領域Rsにそれぞれ1本の段差陸部21、22とを備え、段差陸部20の段下がり代d20は0.5mm、表面幅w20は20mmであり、段差陸部21、22の段下がり代d21、d22は2.5mmであり、表面幅w21、w22は面取り部下端基準で5.0mmである。また、一対の溝又は狭い切込み10、11の深さD1 (図3参照)は14.5mmであり、一対の狭い切込み又は溝12及び溝13の深さD2 (図4参照)と、一対の狭い切込み又は溝14及び溝15の深さD3 (図5参照)とは共に14.5mmである。
【0042】
実施例の比較対象として、図11に踏面展開図を示すトレッドパターンを備える比較例タイヤを準備した。比較例タイヤのトレッド部は、中央領域Rc(展開図ではRcd領域)に2本の周方向直状溝30、31を備え、両側領域Rs(展開図ではRcd領域)に、一対の狭い切込み32及び溝33により離隔される段差陸部34と、一対の狭い切込み35及び溝36により離隔される段差陸部37とを有し、段差陸部34及び段差陸部37は同一諸元を有し、段下がり代dが2.5mm、面取り部下端基準の表面幅wが9.0mmである。上記した以外の構成及び諸元は全て実施例に合わせた。
【0043】
以上の実施例タイヤ及び比較例タイヤと、トレッド部が、段差陸部をもたず、比較例タイヤと同じ周方向直状溝30、31をそれぞれ2本宛(合計4本)備える比較例タイヤとほぼ同じトレッドパターンを有する従来例タイヤとを、以下の二種の異なる使用条件のユーザで実地試験に供した。
【0044】
(1)偏摩耗の度合いが著しく、溝乃至狭い切込みに沿うリバーウエアが陸部に進展し、遂には陸部にリブパンチと呼ばれる最も著しい偏摩耗がしばしば発生するユーザ。
(2)或る程度の偏摩耗は発生するが、リブパンチなどの著しい偏摩耗には至らないユーザ。
【0045】
試験結果の纏めを以下に記す。
(1)項に記載したユーザ試験結果(指数であらわす。値は大なるほど良い);
トレッドゴム摩耗により取り外すまでに走行した距離(指数表示);
実施例タイヤは比較例タイヤの指数100に対し115であり、従来例タイヤは75に止まる。その内容は、実施例タイヤには偏摩耗が殆ど発生せず、これに対し比較例タイヤは、トレッド部中央領域で著しいリブパンチが発生し、かつ、両側領域では早期摩耗が生じていた。
なお、偏摩耗の度合いが或る程度進むと、タイヤは棄却されるのが通例であり、この棄却限界に至るまで使用したトレッドゴム厚さ(溝などの深さ)でみると、比較例タイヤ100に対し実施例タイヤは115、従来例タイヤは60である。
【0046】
(2)項に記載したユーザ試験結果(指数であらわす。値は大なるほど良い);
実施例タイヤは比較例タイヤと同じく偏摩耗が殆ど発生せず、トレッドゴム1mm摩耗当りの走行距離でみる耐摩耗性の指数は両者共に100である。従来例タイヤの耐摩耗性は85に止まった。なお、実施例タイヤのトレッド部1中央領域Rcの段差陸部20は、段下がり代d20はほぼゼロとなり、偏摩耗犠牲部ではなく、一種のリブ(完全な陸部)として耐摩耗性向上に大きく寄与していることが分かった。
【0047】
【発明の効果】
この発明の請求項1〜5に記載した発明によれば、直進走行乃至直進走行に近い定常走行を主とする使用条件では偏摩耗の発生を抑制して使用限界距離を伸ばし、横方向入力が厳しい非定常走行を主とする走行条件ではトレッドゴムの耐偏摩耗性及び耐摩耗性を向上させることができ、二種の異なる走行条件での使用に対し、耐偏摩耗性と耐摩耗性との双方を同時に向上させた、汎用性に富む長寿命の空気入りタイヤを提供することができる。
【図面の簡単な説明】
【図1】この発明の一実施形態例の空気入りタイヤの断面図である。
【図2】図1に示すタイヤの踏面展開図である。
【図3】図2に示すIII − III線に沿う断面図である。
【図4】図2に示すIV− IV 線に沿う断面図である。
【図5】図2に示すV − V線に沿う断面図である。
【図6】図4に示す段差陸部の変形例の断面図である。
【図7】段差陸部の段下がり代とブレーキングフォースとの関係を示す線図である。
【図8】段差陸部の表面幅とブレーキングフォースとの関係を示す線図である。
【図9】段差陸部の段下がり代と表面幅との関係線図である。
【図10】段差陸部の表面幅と横方向剛性との関係を示す線図である。
【図11】比較例タイヤの踏面展開図である。
【符号の説明】
1 トレッド部
1t 踏面
2 サイドウォール部
3 ビード部
4 ビードコア
5 カーカス
6 ベルト
7 トレッドゴム
7L1 、7L2 、7L3 、7L4 陸部
10、11 一対の溝
12、13 一対の狭い切込みと溝
14、15 一対の狭い切込みと溝
20 一方の段差陸部
20s 段差陸部表面
21、22 他方の段差陸部
21s、22s 段差陸部表面
21p 面取り部
E タイヤ赤道面
TE 踏面端
Rc トレッド部中央領域
Rs トレッド部両側領域
Rcd 中央領域の展開幅
Rsd 両側領域の展開幅
20、d21、d22 段差陸部の段下がり代
20、w21、w22 段差陸部の表面幅
1 長いサイプ
2 短いサイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to pneumatic tires, and more particularly to radial ply tires for small trucks, trucks, buses, and the like, and in particular, achieves both improvement in uneven wear resistance and improvement in wear resistance of tire tread rubber. Related to pneumatic tires.
[0002]
[Prior art]
Radial ply tires (hereinafter referred to as pneumatic tires or tires) used for heavy vehicles such as small trucks, trucks, and buses, which are relatively heavy vehicles, circulate around the tread surface and continuously. It is common to provide a circumferential groove extending in the tread portion. In a pneumatic tire having such a circumferential groove in the tread portion, along the circumferential groove edge, uneven wear called river wear or railway wear is provided. However, sometimes this type of uneven wear develops to cause uneven wear defects called rib punches in the tread rubber land between the circumferential grooves adjacent to each other. Such uneven wear not only significantly shortens the wear life of the tread rubber, but also significantly impairs the steering stability and vibration ride comfort of the vehicle. It is well known that a tire having a straight circumferential groove is most disadvantageous against uneven wear.
[0003]
In order to improve this kind of uneven wear, the tread rubber of the tread portion is provided with a pair of grooves, a pair of grooves and a narrow cut, a pair of narrow cuts, etc. that continuously extend in the tread surface circumferential direction. A tire is proposed in which a plurality of stepped land portions separated from the tread rubber land portion and having a step-down surface from the tread are formed in the tread portion by cutting, and this proposal contributes significantly to the improvement of uneven wear.
[0004]
The function of the step land portion is to slide the surface of the step land portion against the road surface in the contact surface of the tread portion of the tire that rolls under a load. The circumferential shear force, or so-called braking force, is concentrated on the step land portion, and the step land portion serves as a partial wear sacrifice portion. As a result, it is possible to prevent the occurrence of local wear due to the braking force generated at the circumferential groove edge having no step land portion, that is, the occurrence of uneven wear such as river wear or the like. . As is clear from the above, the step land portion is most effective when provided between a pair of straight grooves or narrow cuts, followed by a case where the step land is provided between a pair of zigzag grooves or narrow cuts. Demonstrate the effect.
[0005]
In order to prevent the occurrence of uneven wear, it is only necessary to act as large a braking force as possible on the surface of the stepped land portion. The size of the braking force has a step-down margin from the tread surface to the surface of the stepped land portion. Since it increases almost linearly until it reaches the value, the step-down margin from the tread to the step land surface is set as large as possible within the range of the braking force increase.
[0006]
[Problems to be solved by the invention]
However, the frequency of loading / unloading and the frequency of starting acceleration / stopping are both low, and the vehicle has a remarkably large time ratio of so-called steady running, which is close to straight running or straight running, and a low percentage of unsteady running time. As the pneumatic tires to be mounted, the above-mentioned stepped land portion exhibits remarkable uneven wear resistance, but on the other hand, for example, a vehicle such as a local truck, a route bus, a luggage delivery truck, etc. As a tire to be mounted on a vehicle that travels with a high frequency of lateral input to the tire, the proportion of unsteady travel time is relatively high, and in this case, the rate of turning travel is inevitably increased. It has been found that sufficient abrasion resistance cannot be obtained with a tire having the above-mentioned step land portion.
[0007]
Originally, the river wear uneven wear described above and this kind of uneven wear are symptoms that are prominently observed in the above-mentioned traveling mainly in steady running. The specifications as the circumferential uneven wear sacrificial part are regarded as the most important, and consideration is not given to the specifications in the tire rotation axis direction (lateral direction), mainly to the lateral rigidity. Under severe conditions of lateral input, the wear work of the step land is likely to decrease compared to the wear work of the land (ribs, blocks, lugs, etc.) around the step land. Here, the work of wear is the contact pressure per unit area (kgf / mm 2 ) And the amount of slip (mm) multiplied by a constant.
[0008]
As a result, there is a phenomenon that the surface of the stepped land portion of the tire that has traveled to some extent protrudes from the tread that forms the land portion. The protrusion of the step land portion is disadvantageous in terms of wear resistance and also in terms of uneven wear resistance. Also, under tire usage conditions where the lateral input is severe, uneven wear due to the circumferential drag component of the tread that is captured as a result of the braking force action is unlikely to occur. It is inevitable that there will be fewer opportunities to play a role as a regular driving opportunity, and as a whole, the degree to which the step land contributes to wear resistance is greatly reduced. This is the current situation.
[0009]
However, if the surface width of all the step land portions is greatly expanded and the lateral rigidity of the step land portions is improved, it is advantageous for improving the wear resistance under tire use conditions where the lateral input is severe. On the other hand, the volume ratio of the stepped land as the uneven wear sacrificial part to the tread rubber is greatly increased, and the volume ratio of the actual land part excluding the stepped land that controls the wear resistance is greatly decreased. In addition, there is a disadvantage that the required wear resistance (the wear life of the tread rubber) cannot be ensured under the straight running or the running condition close to the straight running.
[0010]
Therefore, the invention described in claims 1 to 5 of the present invention suppresses the occurrence of uneven wear under a straight running or a running condition close to the straight running, and improves the wear resistance of the tread rubber under a running condition in which the lateral input is severe. Therefore, it is an object to provide a versatile pneumatic tire in which both uneven wear resistance and wear resistance are simultaneously improved for use under two driving conditions.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 of the present invention is separated from the tread rubber land portion by a pair of grooves or narrow notches extending continuously in the tread portion in the circumferential direction of the tread portion. A plurality of stepped land portions having a stepped surface, and the stepped land portions are formed by forming an uneven wear sacrificial portion in which the surface slides into contact with the road surface under the rolling load of the tire. In the tire,
Regarding the step allowance from the tread surface to the stepped surface and the surface width of the above step land portion, the step allowance of one step land portion is the step difference of the other step land portion between the plurality of step land portions. It is a pneumatic tire characterized in that it has a smaller relationship than the surface, and the surface width of one step land portion is wider than the surface width of the other step land portion.
[0012]
The invention described in claim 1 is, as in the invention described in claim 2, practically, the step allowance in both the one step land portion and the other step land portion is in the range of 0.1 to 3.0 mm. It is suitable that the stepped surface width in both the one step land portion and the other step land portion is in the range of 5.0 to 30.0 mm.
[0013]
Moreover, in the state which divided | segmented one level | step difference land part and the other level | step difference land part, like the invention described in Claim 3, the step-down allowance of said one level | step difference land part is 0.1-1.5 mm. Within the range, the stepped margin of the other step land portion is in the range of 0.5 to 3.0 mm,
Regarding the surface width of the step land portion, the surface width of one step land portion is in the range of 10.0 to 30.0 mm, and the surface width of the other step land portion is in the range of 5.0 to 15.0 mm. It is suitable to be in
[0014]
Here, in particular, the step-down allowance and the surface width of the step land portion are described in 1998 JATMA YEAR BOOK (referred to as JATMA standard). In addition, it shall be measured with a tire filled with the maximum air pressure defined by the JATMA standard. The applicable rim includes a standard rim and an allowable rim as described in the JATMA standard.
[0015]
Regarding the arrangement of the one step land portion and the other step land portion in the tread portion, there are two cases depending on the type of tire. First, as one of the inventions described in claim 4, A tire having one or more one step land portions in the tread portion central region and one or more other step land portions in both side regions of the tread center region.
[0016]
Next, as for the 2nd, it has one or more said other level | step difference land parts in the tread part center area | region, and 1 or more each in the both-sides area | region of a tread part center area | region like invention of Claim 5. The tire has the one step land portion.
[0017]
Here, the central region of the tread portion refers to a region in which the tread width is divided into three equal parts and divided into three equal parts on both sides of the tire equatorial plane. Is a region having a width of 1/3 of the tread width. When the tread portion is a round shoulder or a chamfered shoulder, the distance between the intersection points of the buttress extension line and the tread outline extension line is defined as the tread width in the tire cross section.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
FIG. 1 is a cross-sectional view of a plane including a rotation axis of the pneumatic tire of the present invention,
FIG. 2 is a development view of the tread of the pneumatic tire shown in FIG.
3 is an enlarged cross-sectional view taken along the line III-III of the tread development shown in FIG.
4 is an enlarged cross-sectional view taken along line IV-IV of the tread development shown in FIG.
FIG. 5 is an enlarged sectional view taken along line V-V of the tread development view shown in FIG.
6 is an enlarged cross-sectional view taken along the line IV-IV shown in the same manner as FIG. 2 of the pneumatic tire having a step land portion different from the tire shown in FIG.
[0019]
In FIG. 1, the pneumatic tire has a tread portion 1 and a pair of sidewall portions 2 and bead portions 3 connected to both sides of the tread portion 1. A carcass 5 extending between the bead cores 4 embedded in the portion 3 and a belt 6 that reinforces the tread portion 1 are provided. The tread portion 1 has a tread rubber 7 on the outer peripheral side of the belt 6. The carcass 5 has at least one ply, the illustrated example has a rubber-coated ply of a one-ply radial arrangement steel cord, the belt 6 has two or more layers, and the illustrated example has four steel cord layers.
[0020]
1 to 5, the tread portion 1 includes a pair of grooves or narrow notches 10 and 11 continuously extending in the circumferential direction of the tread surface 1 t, a pair of narrow notches or grooves 12 and a groove 13, and a pair of narrow It has notches or grooves 14 and grooves 15, and the tread portion 1
A land portion 7L of the tread rubber 7 by a pair of grooves or narrow notches 10, 11 1 7L 2 A step land portion 20 having a step-down surface 20s separated from the tread 1t,
The land portion 7L of the tread rubber 7 is formed by a pair of narrow cuts or grooves 12 and 13. 1 7L Three A step land portion 21 having a step-down surface 21s separated from the tread surface 1t, and
The land portion 7L of the tread rubber 7 is formed by a pair of narrow cuts or grooves 14 and 15. 2 7L Four A plurality of (three in the illustrated example) step land portions with the step land portion 22 having a step-down surface 22s from the tread 1t.
[0021]
Surfaces 20s, 21s, and 22s of the step land portions 20, 21, and 22 are in contact with the road surface under the load-bearing rolling of the tire, and the tread surface 1t circumferential direction that is inevitably generated between the road surfaces. Under the action of the shearing force in the direction opposite to the tire traveling direction, in other words, the braking force is applied, and the sliding contact with the road surface is caused. Therefore, the step land portions 20, 21, and 22 are connected to the other land portions 7L. 1 7L 2 7L Three 7L Four It plays the role of a partial wear sacrificial part that replaces the partial wear of the wrinkles.
[0022]
Here, in FIG. 3 to FIG. 5, the step-down allowance d from the edge of the tread surface 1 t to the step-down surfaces 20 s, 21 s, 22 s of the plurality of step land portions 20, 21, 22 is shown. 20 (Mm), d twenty one (Mm), d twenty two (Mm) and stepped surfaces 20s, 21s, 22 width w in the tire rotation axis direction 20 (Mm), w twenty one (Mm), w twenty two (Mm), divided into two groups of one step land portion 20 and the other step land portions 21 and 22, between these two groups,
The step d of the step land 20 20 (Mm) is the step-down allowance d of the other step land portions 21 and 22 twenty one (Mm), d twenty two Smaller than (mm), and
Surface 20s width w of one step land 20 20 (Mm) is the surface 21s, 22 width w of the other step land portion 21, 22 twenty one (Mm), w twenty two Wider than (mm),
It shall satisfy the relationship.
[0023]
If you rewrite these interrelationships to make it clearer,
For the step d of the step land,
d 20 (Mm) <d twenty one (Mm), d 20 (Mm) <d twenty two (Mm)
Regarding the surface width w of the step land,
w 20 (Mm)> w twenty one (Mm), w 20 (Mm)> w twenty two (Mm)
That's what it means.
Usually, d twenty one (Mm) = d twenty two (Mm) or d twenty one (Mm) ≒ d twenty two (Mm) and w twenty one (Mm) = w twenty two (Mm) or w twenty one (Mm) ≒ w twenty two (Mm) and in special cases, d twenty one (Mm) ≠ d twenty two (Mm), w twenty one (Mm) ≠ w twenty two (Mm) may be used.
[0024]
Now, FIG. 7 shows the relationship between the step-down margin d of the step land and the braking force as a diagram, and the relationship between the surface width w of the step land and the braking force. As shown in FIG. 8, the braking force simply increases while the step-down allowance d is increased from zero to a certain value dmax, and if the step-down allowance d is increased beyond the value dmax, the braking force is It can be seen that when the step land surface width w is increased from a value close to zero, the braking force increases while showing a saturating tendency. In short, these facts mean that the magnitude of the braking force generated in the step land portion can be easily controlled by the combination of the step-down allowance d below the value dmax and the step land portion surface width w. is doing.
[0025]
FIG. 9 shows the relationship between the step-down allowance d and the surface width w of the step land, using this matter as another research result, using the wear work amount in the circumferential direction of the tread of the step land as a parameter. A diagram was obtained. From the diagram shown in FIG. 9, it can be seen that there are innumerable combinations of the step allowance d and the surface width w of the step land portion for imposing the same circumferential wear work on the step land portion.
[0026]
Furthermore, the step width d of the step land portion is made constant, and the surface width w is shown in FIG. 10 as a diagram showing the relationship between the surface width w of the step land portion and the lateral direction (tire rotation axis direction) rigidity of the step land portion. It is known that the lateral rigidity of the step land portion increases almost linearly when the is increased.
[0027]
The surface width w of the step land portion of the step land portion 20 is considered in combination with the diagram groups shown in FIGS. 20 (Mm) is the surface width w of the step land portions 21 and 22 twenty one (Mm), w twenty two Instead of (mm), instead of the step land d of the step land 20 20 (Mm) is the step allowance d of the step land portions 21 and 22 twenty one (Mm), d twenty two Even if it is smaller than (mm), it is possible to make the magnitude of the braking force and the amount of circumferential wear work in the step land portion 20 substantially the same as those in the step land portions 21 and 22, and as a result. The uneven wear resistance of the pair of grooves or narrow notches 10 and 11 is maintained at a high level equivalent to the uneven wear resistance of the pair of narrow notches or grooves 12 and 13 and the pair of narrow notches or grooves 14 and 15. be able to.
[0028]
On the other hand, the surface width of the step land portion 20 is set to w. 20 (Mm) is the surface width w of the step land portions 21 and 22 twenty one (Mm), w twenty two Since the lateral rigidity of the step land portion 20 can be increased more than the lateral rigidity of the step land portions 21 and 22 by taking a larger width (mm), one of the side forces generated in the tire when turning the vehicle is The step land portion 20 sufficiently opposes and is less likely to escape. As a result, at least the step land portion 20 has a land portion 7L around it under the action of side force. 1 7L 2 It can be worn moderately according to the tire, and there is no problem that the stepped land part protrudes like conventional tires, and it can secure an appropriate step-down allowance and maintain excellent uneven wear resistance Can do.
[0029]
Accordingly, one step land portion 20 is disposed in the region where the large side force is applied, and the other step land portions 21 and 22 are disposed in the region where the smaller side force is acting, thereby the step land portion 21 due to the side force operation. , 22 can be suppressed, the uneven wear suppression function inherent in the step land portions 21, 22 can be sufficiently exerted, and the total width (w of the step land portions 20, 21, 22) 20 + W twenty one + W twenty two ) Is not required to be so wide, and the wear resistance of the tread rubber 7 can be maintained preferentially.
[0030]
The above description is divided into two groups of one step land portion 20 and the other step land portions 21, 22. However, the step land portion 20 is divided into three or more groups. The first step land portion 20 and the other step land portions 21 and 22 are called the second step land portion 21 and the third step land portion 21, and the first step land portion 20 and the second step land portion 21. Between the first step land portion 20 and the third step land portion 22 and between the second step land portion 21 and the third step land portion 22. It is possible to satisfy the relationship of the cost d and the width w. Of course, it is possible to provide a fourth or more step land portion.
[0031]
The tire shown in FIGS. 1 to 5 has a step-down allowance d having a mutual relationship as described in detail above. 20 (Mm), d twenty one (Mm), d twenty two (Mm) and surface width w 20 (Mm), w twenty one (Mm), w twenty two As shown in FIG. 1, for the step land portions 20, 21, and 22 having (mm), the width 1 / 3W obtained by dividing the tread width W, which is the distance between both tread ends TE, into three equal parts is defined on the tire equatorial plane E. The tread portion 1 central region Rc (indicated by Rcd in the developed view of FIG. 2) equally distributed on both sides has one step land portion 20 and the tread portion 1 both side regions Rs (width of FIG. In the developed view, it is indicated by Rsd) and has the other step land portions 21 and 22 respectively. This tire has excellent uneven wear resistance of the tread rubber 7 under use conditions in which unsteady running in which relatively large side forces are generated at a relatively high frequency, and excellent wear resistance under steady running. Have.
[0032]
Although not shown, a tire including one or more step land portions 21 or step land portions 22 in the central region Rc of the tread portion 1 and step land portions 20 in both side regions Rs is also acceptable. The pressure distribution has a so-called butterfly-type distribution, and is suitable as a tire that has both excellent wear resistance and excellent wear resistance mainly under conditions of steady running. In the tire described above, the contact pressure distribution is suitable for both a tire having a butterfly type distribution and a tire having a so-called barrel type distribution.
[0033]
The above describes the distribution of the step land under extreme extreme conditions. 20 (Mm), d twenty one (Mm), d twenty two (Mm) and surface width w 20 (Mm), w twenty one (Mm), w twenty two If (mm) is set within a range of appropriate values as described below, the balance between uneven wear resistance and wear resistance can be set to the best state under almost all use conditions. Possible tires can be obtained.
[0034]
First, both the step land portion 20 and the other step land portions 21 and 22 have a step-down allowance d. 20 (Mm), d twenty one (Mm), d twenty two (Mm) is within the range of 0.1 to 3.0 mm, and the surface width w 20 (Mm), w twenty one (Mm), w twenty two (Mm) is in the range of 5.0 to 30.0 mm.
[0035]
Step allowance d 20 (Mm), d twenty one (Mm), d twenty two When (mm) exceeds 3.0 mm, there is a joy that the surfaces of the step land portions 20, 21, and 22 do not come into contact with the road surface at the contact surface of the tire under load rolling. It should be noted that the lower limit value is the step-down allowance d when the vehicle travels straight ahead or travels close to straight. 20 (Mm), d twenty one (Mm), d twenty two Since (mm) has a tendency to increase, a value close to zero (0.1 mm) is sufficient.
[0036]
Surface width w 20 (Mm), w twenty one (Mm), w twenty two If (mm) is less than 5.0 mm, the braking force is too small and the uneven wear resistance is lowered. In addition, the lateral rigidity is too small, and the cornering is repeated to protrude from the tread 1t. If exceeded, the lateral rigidity of the stepped land portion increases, but since the portion of the tread rubber 7 that hardly contributes to the wear resistance in straight running or near-straight running increases excessively, the wear life of the tread rubber 7 is reduced. So neither is possible.
[0037]
Step allowance d 20 (Mm), d twenty one (Mm), d twenty two (Mm) and surface width w 20 (Mm), w twenty one (Mm), w twenty two (Mm) is divided into one step land portion 20 and the other step land portions 21, 22. 20 (Mm) is within a range of 0.1 to 1.5 mm, and the step-down margin d of the step land portions 21 and 22 twenty one (Mm), d twenty two (Mm) fits within the range of 0.5 to 3.0 mm. Moreover, the surface width w of the step land portion 20 20 (Mm) is in the range of 10.0 to 30.0 mm and the surface width w of the step land portions 21 and 22 twenty one (Mm), w twenty two (Mm) fits within the range of 5.0-15.0 mm.
[0038]
A step land portion 21 shown in FIG. 6 is a modification of the step land portion 21 shown in FIG. 4, and has a chamfered portion 21 p on the side of the groove 13 wider than the narrow cut groove 12. Surface width w of step land portion 21 with chamfered portion 21p twenty one As for (mm), the reference | standard by the side of the chamfering part 21p is made into the lower end of the chamfering part 21p like illustration. This type of tire has an opportunity to travel on a road surface in which gravel or the like is scattered or scattered, and in particular, pebbles may be bitten into the grooves 13, so that foreign matters such as pebbles are difficult to bite into the grooves 13. A chamfer 21p. A chamfered portion similar to the chamfered portion 21p is also provided on the stepped land portion 22 facing the chamfered portion 21p.
[0039]
As described above, the pair of grooves or narrow cuts 10 and 11, the pair of narrow cuts or grooves 12 and 13 and the pair of narrow cuts or grooves 14 and 15 are straight, but have a zigzag shape with a small amplitude. It is also good. Note that reference numeral S shown in FIG. 1 Is a long sipe with the code S 2 Is a very short sipe. Land part 7L 1 7L 2 Is a rib as a whole, but Sipe S 1 Are divided into blocks.
[0040]
【Example】
It is a radial ply tire for trucks and buses, the size is 295 / 75R22.5 (tubeless tire), the configuration is as shown in FIGS. 1 to 3, and FIGS. 5 and 6, and the carcass 5 is a single ply radial arrangement steel cord. The belt 6 is composed of four rubber-coated teal cord layers.
[0041]
The tread portion 1 includes one step land portion 20 in the central region Rc and one step land portions 21 and 22 in both side regions Rs. 20 0.5mm, surface width w 20 Is 20 mm, and the step-down margin d of the step land portions 21 and 22 is twenty one , D twenty two Is 2.5 mm and the surface width w twenty one , W twenty two Is 5.0 mm based on the lower end of the chamfered portion. Also, the depth D of the pair of grooves or narrow cuts 10, 11 1 (See FIG. 3) is 14.5 mm and a pair of narrow cuts or depths D of grooves 12 and 13 2 (See FIG. 4) and a pair of narrow cuts or depths D of grooves 14 and 15 Three Both (see FIG. 5) are 14.5 mm.
[0042]
As a comparison object of the example, a comparative example tire having a tread pattern whose tread pattern is shown in FIG. 11 was prepared. The tread portion of the comparative example tire includes two circumferential straight grooves 30 and 31 in the central region Rc (Rcd region in the developed view), and a pair of narrow cuts 32 in both side regions Rs (Rcd region in the developed view). And a step land portion 34 separated by a groove 33 and a pair of narrow cuts 35 and a step land portion 37 separated by a groove 36. The step land portion 34 and the step land portion 37 have the same specifications. The step-down allowance d is 2.5 mm, and the chamfered lower end reference surface width w is 9.0 mm. All configurations and specifications other than those described above were adapted to the examples.
[0043]
Example tires and comparative example tires as described above, and comparative example tires in which the tread portion does not have a stepped land portion and each has two circumferential straight grooves 30, 31 that are the same as the comparative example tire (four in total). A conventional tire having a tread pattern almost identical to the above was subjected to a field test by users under the following two different usage conditions.
[0044]
(1) A user who has a remarkable degree of uneven wear, and the river wear along the groove or narrow cut advances to the land, and finally the most significant uneven wear called a rib punch often occurs on the land.
(2) A user who generates a certain amount of uneven wear but does not lead to significant uneven wear such as a rib punch.
[0045]
A summary of the test results is given below.
User test results described in (1) (expressed as an index. The higher the value, the better);
Distance traveled before removal due to tread rubber wear (index indication);
The example tire is 115 with respect to the index 100 of the comparative example tire, and the conventional tire remains at 75. As for the content, uneven wear hardly occurred in the example tire, whereas in the comparative example tire, significant rib punch occurred in the central region of the tread portion, and early wear occurred in the both side regions.
When the degree of uneven wear progresses to a certain extent, the tire is usually rejected, and in terms of the thickness of the tread rubber (depth of grooves, etc.) used until reaching the rejection limit, the comparative example tire In comparison with 100, the example tire is 115 and the conventional tire is 60.
[0046]
User test results described in (2) (expressed as an index. The higher the value, the better);
The tires of the examples show almost no uneven wear as in the comparative tires, and both have an index of wear resistance of 100 in terms of travel distance per 1 mm of tread rubber wear. The wear resistance of the conventional tire was only 85. The step land portion 20 in the center region Rc of the tread portion 1 of the embodiment tire has a step-down allowance d. 20 Was almost zero, and it was found that it contributed greatly to the improvement of wear resistance as a kind of rib (complete land portion) rather than a partial wear sacrifice portion.
[0047]
【The invention's effect】
According to the first to fifth aspects of the present invention, in use conditions mainly in straight running or steady running close to straight running, the occurrence of uneven wear is suppressed and the use limit distance is extended, and the lateral input is reduced. It can improve the uneven wear resistance and wear resistance of the tread rubber under the driving conditions mainly of severe unsteady driving, and it can be used for two different driving conditions. Thus, it is possible to provide a long-life pneumatic tire having improved versatility and rich in versatility.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a pneumatic tire according to an embodiment of the present invention.
FIG. 2 is a development view of a tread surface of the tire shown in FIG.
FIG. 3 is a cross-sectional view taken along line III-III shown in FIG.
4 is a cross-sectional view taken along line IV-IV shown in FIG.
5 is a cross-sectional view taken along line V-V shown in FIG.
6 is a cross-sectional view of a modified example of the step land portion shown in FIG. 4;
FIG. 7 is a diagram showing a relationship between a step-down margin of a step land portion and a braking force.
FIG. 8 is a diagram showing a relationship between a surface width of a step land portion and a braking force.
FIG. 9 is a relationship diagram between a step-down margin of a step land portion and a surface width.
FIG. 10 is a diagram showing the relationship between the surface width of a step land portion and lateral rigidity.
FIG. 11 is a development view of a tread surface of a comparative example tire.
[Explanation of symbols]
1 Tread
1t tread
2 Side wall
3 Bead section
4 Bead core
5 Carcass
6 Belt
7 Tread rubber
7L 1 7L 2 7L Three 7L Four Land
10, 11 A pair of grooves
12, 13 A pair of narrow cuts and grooves
14, 15 A pair of narrow cuts and grooves
20 One step land
20s Step land surface
21, 22 The other step land
21s, 22s Step land surface
21p chamfer
E tire equator
TE tread edge
Rc tread central area
Rs tread area on both sides
Rcd Center width
Rsd Expand width of both sides
d 20 , D twenty one , D twenty two Stepping cost of stepped land
w 20 , W twenty one , W twenty two Surface width of step land
S 1 Long sipe
S 2 Short sipe

Claims (5)

トレッド部に、踏面周方向に連続して延びる一対の、溝又は狭い切込みによりトレッドゴム陸部から離隔され、踏面からの段下がり表面をもつ複数本の段差陸部を備え、該段差陸部は、その表面がタイヤの荷重負荷転動下で路面との間で滑り接触する偏摩耗犠牲部を形成して成る空気入りタイヤにおいて、
上記段差陸部の、踏面から段下がり表面までの段下がり代及び表面幅に関し、複数本の段差陸部相互間で、一方の段差陸部の段下がり代が、他方の段差陸部の段下がり代に比しより小さく、かつ、一方の段差陸部の表面幅が、他方の段差陸部の表面幅に比しより広い関係を有することを特徴とする空気入りタイヤ。
The tread portion is provided with a plurality of step land portions separated from the tread rubber land portion by a pair of grooves or narrow notches extending continuously in the tread surface circumferential direction and having a stepped surface from the tread surface. In the pneumatic tire in which the surface forms a partial wear sacrificial portion that makes sliding contact with the road surface under rolling load of the tire,
Regarding the step allowance from the tread surface to the stepped surface and the surface width of the above step land portion, the step allowance of one step land portion is the step difference of the other step land portion between the plurality of step land portions. A pneumatic tire characterized in that it is smaller than a tire and the surface width of one step land portion is wider than the surface width of the other step land portion.
前記一方の段差陸部及び他方の段差陸部双方における段下がり代が0.1〜3.0mmの範囲内にあり、前記一方の段差陸部及び他方の段差陸部双方における段下がり表面幅が5.0〜30.0mmの範囲内にある請求項1に記載したタイヤ。A step allowance in both the one step land portion and the other step land portion is in a range of 0.1 to 3.0 mm, and a step surface width in both the one step land portion and the other step land portion is The tire according to claim 1, which is in a range of 5.0 to 30.0 mm. 前記一方の段差陸部の段下がり代が0.1〜1.5mmの範囲内にあり、前記他方の段差陸部の段下がり代が0.5〜3.0mmの範囲内にあり、
前記段差陸部の表面幅に関し、一方の段差陸部の表面幅が10.0〜30.0mmの範囲内にあり、他方の段差陸部の表面幅が5.0〜15.0mmの範囲内にある請求項1又は2に記載したタイヤ。
The step allowance of the one step land portion is in the range of 0.1 to 1.5 mm, and the step allowance of the other step land portion is in the range of 0.5 to 3.0 mm.
Regarding the surface width of the step land portion, the surface width of one step land portion is in the range of 10.0 to 30.0 mm, and the surface width of the other step land portion is in the range of 5.0 to 15.0 mm. The tire according to claim 1 or 2.
トレッド部中央領域に1本以上の前記一方の段差陸部を有し、トレッド部中央領域の両側領域にそれぞれ1本以上の前記他方の段差陸部を有する請求項1〜3のいずれか一項に記載したタイヤ。The tread portion central region has one or more one step land portions, and the tread portion central region has one or more other step land portions on each side region. The tire described in 2. トレッド部中央領域に1本以上の前記他方の段差陸部を有し、トレッド部中央領域の両側領域にそれぞれ1本以上の前記一方の段差陸部を有する請求項1〜3のいずれか一項に記載したタイヤ。The tread portion central region has one or more other step land portions, and the tread portion central region has one or more one step land portions on both side regions thereof. The tire described in 2.
JP35613698A 1998-12-15 1998-12-15 Pneumatic tire Expired - Fee Related JP4149057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35613698A JP4149057B2 (en) 1998-12-15 1998-12-15 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35613698A JP4149057B2 (en) 1998-12-15 1998-12-15 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2000177323A JP2000177323A (en) 2000-06-27
JP4149057B2 true JP4149057B2 (en) 2008-09-10

Family

ID=18447522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35613698A Expired - Fee Related JP4149057B2 (en) 1998-12-15 1998-12-15 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4149057B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683513B2 (en) * 2001-03-01 2011-05-18 株式会社ブリヂストン Heavy duty pneumatic tire
JP5078372B2 (en) 2007-01-22 2012-11-21 株式会社ブリヂストン Pneumatic tire
JP5288922B2 (en) 2008-07-22 2013-09-11 株式会社ブリヂストン Tire and tire manufacturing method
DE102011050712A1 (en) 2011-05-30 2012-12-06 Continental Reifen Deutschland Gmbh Tread pattern of a pneumatic vehicle tire for commercial vehicles
US20190092101A1 (en) * 2017-09-22 2019-03-28 The Goodyear Tire & Rubber Company Tread for a tire

Also Published As

Publication number Publication date
JP2000177323A (en) 2000-06-27

Similar Documents

Publication Publication Date Title
JP4738276B2 (en) Pneumatic tire
US6488064B1 (en) Sacrificial ribs for improved tire wear
JP2774775B2 (en) Pneumatic tire
JPH0234802B2 (en)
WO2013150783A1 (en) Pneumatic tire
JP4777768B2 (en) Pneumatic tire
JP4202824B2 (en) Pneumatic tire
JP2009006877A (en) Heavy load tire
JP3321262B2 (en) Heavy-duty pneumatic tires for construction vehicles
JP4782559B2 (en) Pneumatic tire
US6591880B1 (en) Pneumatic tire including zig-zag circumferential fine grooves
JP4149057B2 (en) Pneumatic tire
JP4751070B2 (en) Pneumatic tire
JP2009202772A (en) Pneumatic tire
JP4118390B2 (en) Pneumatic radial tire
JP2002002232A (en) Pneumatic tire for heavy load
JP3875364B2 (en) Pneumatic radial tire
JP2002036819A (en) Pneumatic tire
CN110461624B (en) Tire with tread having grooves with undercut flanks and reinforcing elements
JP3938235B2 (en) Pneumatic tire
JPH0440204B2 (en)
JP4063397B2 (en) Pneumatic radial tire
JPH1159128A (en) Pneumatic radial tire for heavy load
JP2849188B2 (en) Pneumatic radial tire for heavy loads
JP3555782B2 (en) Pneumatic radial tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051118

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees