JP4148695B2 - Instrument transformer - Google Patents

Instrument transformer Download PDF

Info

Publication number
JP4148695B2
JP4148695B2 JP2002122109A JP2002122109A JP4148695B2 JP 4148695 B2 JP4148695 B2 JP 4148695B2 JP 2002122109 A JP2002122109 A JP 2002122109A JP 2002122109 A JP2002122109 A JP 2002122109A JP 4148695 B2 JP4148695 B2 JP 4148695B2
Authority
JP
Japan
Prior art keywords
transformer
instrument
instrument transformer
primary
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002122109A
Other languages
Japanese (ja)
Other versions
JP2003318049A (en
Inventor
真吾 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Electric Corp
Original Assignee
Toko Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Electric Corp filed Critical Toko Electric Corp
Priority to JP2002122109A priority Critical patent/JP4148695B2/en
Publication of JP2003318049A publication Critical patent/JP2003318049A/en
Application granted granted Critical
Publication of JP4148695B2 publication Critical patent/JP4148695B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transformers For Measuring Instruments (AREA)

Description

【0001】
【発明の属する技術分野】
一次巻線及び二次巻線を絶縁樹脂で被覆し、鉄心を装着したモールド形の計器用変成器に関する。
【0002】
【従来の技術】
計器用変成器は、変流器(Current Transformer 以下、CTという)、計器用変圧器(Voltage Transformer 以下、VTという)、および計器用変圧変流器(Voltage Current Transformer 以下、VCTという)を総称するものである。
計器用変成器は、高電圧、大電流の受電設備の母線に一次巻線を接続し、二次巻線から変成比に応じた低電圧、低電流を出力し、継電器や電力量計を作動させる。
【0003】
特に、電力需給用の計器用変成器は電力量計、無効電力計又は最大需要電力計と組み合わせて使用されるものであり、電気料金取引にかかわる計量機器の一部を構成している。
正しい電気料金を徴収するため、計器用変成器として、無視し得るほどの誤差しか生じないという優れた変成比特性を有する電磁式計器用変成器(例えば電磁式VT及びCT)が採用されている。
【0004】
続いて、このような計器用変成器の従来技術の一例としてVCTについて図を参照しつつ説明する。図4はCT・VTの外観図、図5はVCTの電気的結線図、図6はVCTの外形形状を示す外観図、図7はVCTの受電設備内への収納配置を説明する説明図、図8はVCT内部の配線を説明する説明図である。
VCTは、例えば、6.6kV三相3線式高圧需要家の受電設備に配設される。このVCTは、フレームに組付けられたVTとCTとが外箱に一体収納されて構成されるものである。
【0005】
VT及びCT各単体は、例えば、図8(a)、(b),(c)で示すような外観を有している。CT300は、図8(a)で示すように、変成器本体100と鉄心200とを備えている。
変成器本体100は、図4(a),(b)で示すように、円筒状一次巻線と二次巻線とを同心配置し、一次・二次巻線の各端子である一次端子110、二次端子120を設け、絶縁樹脂被覆部130により一体に被覆形成したものである。
絶縁樹脂被覆部130は、耐電気的絶縁性能や耐荷重性能等優れた物理的特性、安定した化学的特性を備え、製作し易く取り扱い易い固体絶縁であるエポキシ樹脂を硬化させて形成したものである。
CTは、鉄心挿入窓140に鉄心200(図8(a),(b),(c)参照)が挿通されて構成される。
【0006】
これらVT・CTは、図5で示すように結線され、図6で示すような計器用変成器が完成する。
図5の結線図において、VTは、一次巻線の両端を母線側のU相−V相間とV相−W相間とにそれぞれ2相並列接続されており、また、CTは、一次巻線の両端を母線側のU相とW相とにそれぞれ2相直列接続されている。
【0007】
VT一次巻線からの接続用リード線を、CT一次巻線と接続している一次側ケーブルに接続して外箱内部で結線し、図6で示すように、外箱1100の両側面に配置されているブッシング1200から伸延する一次側ケーブルを母線に電源側及び負荷側で接続している。
一方、VT及びCTの二次巻線からリード線を引き回して端子配列した二次側接続ターミナル1300を設け、母線側から変成された低電圧及び低電流を、二次側接続ターミナル1300を介して、電力量計、無効電力量計、最大需要電力計、等に供給している。
【0008】
ところで、上述のVCT1000は、図7(a)の懸垂形配置、また、図7(b)の据置形配置の何れの場合でも、キュービクル等受電設備に収納配置する際に、VCT1000の内部でCTの一次巻線が一次側ケーブルを介して母線と直結することと寸法や形状の制約とに起因し、上段に2相のCTを配置し、下段に2相のVTを配置して外箱に一体収納する構成とせざるを得ない。
このような構成を採用する場合、配線に工夫が施されていた。
【0009】
この配線について説明する。
図8(a)〜(c)で示すように、接続用リード線500は下側にあるVT(図示せず)の一次巻線から引出されて配線されることとなるが、CT(計器用変成器)300の鉄心200や図示しない外箱等大地電位部分を避けるため、リードスペーサ400と称する固定具を介して固定保持されて引き回されて一次側ケーブルに接続されている。
【0010】
リードスペーサ400は、図8(a),(b),(c)でも明らかなように二個のCT300に挟まれるような位置で配置されており、このようなリードスペーサ400の貫通する孔部にVT接続用の接続用リード線500が挿通されるという構成を有している。
【0011】
【発明が解決しようとする課題】
従来技術で使用されているリードスペーサ400は、耐電気的絶縁性能に加え、ボルト締付け力、圧縮力に耐え得る耐荷重性能も備える必要があり、ベークライト、或いはフェノール樹脂、ユリア樹脂、メラミン樹脂、等材料が限定されるため高価な部品であった。
【0012】
また、VTの接続用リード線500を挟持するリードスペーサ400自体を係止させる為、CT300の絶縁樹脂被覆部130に別途取付枠加工を施す等、部品点数が多くコスト高の要因であった。
さらにまた、リードスペーサ400の存在が、VT及びCTの円筒状一次巻線と二次巻線から必然的に略円筒形状に形成される絶縁樹脂被覆部130によるデッドスペースの形成も相俟って、必要以上にCTとVT各単体それぞれの相互距離を延ばすこととなり、外箱も大型になっていた。
【0013】
そこで、本発明の目的は、リードスペーサ等高価な部品または取付用加工を無くし、容易に外箱内部で電気的結線を施しながら、小型で低コストのVCTを提供し、ひいてはキュービクル等高圧需要家受電設備の敷設面積低減をはかる計器用変成器を提供することにある。
【0014】
【課題を解決するための手段】
上記課題を解決するため、請求項1記載の発明は、
対をなす二個の変流器が上段となり、また、複数の計器用変圧器が下段となるように、固定用フレームにそれぞれ複数個配置して組み立てた状態で外箱に一体収納し、二個の変流器の間に、計器用変圧器の一次巻線から引出される接続用リード線を挿通した状態で固定保持する計器用変圧変流器であって、
前記変流器は、
一次巻線及び二次巻線を被覆し、一次端子、二次端子及び鉄心挿入窓が形成される絶縁樹脂被覆部と、
絶縁樹脂被覆部上に設けられ、接合面が形成された接合用突起部と、
接合用突起部の接合面上で略平行に設けられる複数の直線状溝部と、
鉄心挿入窓を貫通する鉄心と、
を備えるものであり、
対をなす二個の変流器の接合用突起部の接合面を接触させて、両側の直線状溝部により形成した孔部に接続用リード線が挿通されることを特徴とする。
【0015】
請求項2記載の発明は、
請求項1に記載の計器用変成器において、
上段に変流器を2相配置し、下段に計器用変圧器を2相配置したことを特徴とする。
【0016】
請求項3記載の発明は、
請求項1または請求項2に記載の計器用変成器において、
前記直線状溝部は、一次端子または二次端子の延伸方向に対して略平行または略垂直となる方向に設けられることを特徴とする。
【0017】
請求項4記載の発明は、
請求項1〜請求項3の何れか一項に記載の計器用変成器において、
前記直線状溝部は断面半円、断面△形、または、断面□形の何れかであることを特徴とする。
【0018】
請求項5記載の発明は、
請求項1〜請求項4の何れか一項に記載の計器用変成器において、
前記絶縁樹脂被覆部はエポキシ樹脂を硬化させて形成した被覆部であることを特徴とする。
【0019】
【発明の実施の形態】
以下、図に基づき本発明の第一実施形態を説明する。図1は本実施形態の計器用変成器の構成図、図2は変成器本体の構成図である。
この計器用変成器は、詳しくは、先に図4〜7を用いて説明した6.6kV三相3線式高圧需要家の受電設備に配設されるVCTにおいて使用されるというものであり、CTを2相配置して形成される側面閉空間に、VTの一次巻線から引出される接続用リード線を挿通し固定保持するというものである。
【0020】
この場合の2相配置したCTは、図1(a),(b)で示すように、変成器本体10、鉄心20からなる計器用変成器30を一対に配置し、この一対の計器用変成器30の間に接続用リード線40を配置している。
この変成器本体10は、図2で示すように、絶縁樹脂被覆部1、接合用突起部2、一次端子3、二次端子4、鉄心挿入窓5、直線状溝部6、接合面7を備えている。
【0021】
絶縁樹脂被覆部1は、図示しない一次巻線及び二次巻線を重ねた状態でエポキシ樹脂に代表される絶縁樹脂を被覆して形成されるものであり、絶縁樹脂被覆部1が硬化した場合に一次端子3、二次端子4及び鉄心挿入窓5が一体に形成される。
【0022】
接合用突起部2は、絶縁樹脂被覆部1から突出して一体に形成されるが、直線状溝部6が形成できる程度の高さを少なくとも有している。
巻線に一体被覆して固体絶縁物とするエポキシ樹脂は、もともとリードスペーサにも勝る耐電気的絶縁性能やボルト締付け力に耐え得る耐荷重性能を備えているため、接合用突起部2は、若干の高さを形成すればよく、図1(b)で示す一対の計器用変成器10の間に生じるデッドスペースを低減している。
【0023】
一次端子3は、図示しない一次巻線に電気的に接続されている端子であり、絶縁樹脂被覆部1から突出した状態で形成される。
二次端子4は、図示しない二次巻線に電気的に接続されている端子であり、絶縁樹脂被覆部1から突出した状態で形成される。
【0024】
鉄心挿入窓5は、鉄心20(図1(a),(b)参照)が貫通される孔である。
直線状溝部6は、接続用リード線40(図1(a),(b)参照)の被覆部分が当接できるように断面が略半円状に形成されており、接合用突起部2の側面である接合面7上に形成される。直線状溝部6は、この接合面7の面上に複数(図1,2では4個)形成されており、それぞれが略平行となるように設けられる。
【0025】
直線状溝部6は、図1,図2でも明らかなように、一次端子3の延伸方向に対して略平行に、また、二次端子4の延伸方向に対して略垂直となる方向に設けらている。これは一次端子3・二次端子4に接続されるケーブルも延伸方向に伸びるように配線されるためである。
これにより接続用リード線40と一次端子3に接続されるケーブルとは略平行に配線され、また、接続用リード線40と二次端子4に接続されるケーブルとは略垂直に配線されるため、配線が全体的に整えられるという利点がある。
【0026】
接合面7は、他の変成器本体10と接触する面であり、ここで接合されて対をなす。
なお、接合面7は、図1,図2でも明らかなように、一次端子3の延伸方向および二次端子4の延伸方向に対してそれぞれ平行となる方向に設けらている。
これにより、接続用リード線40は一次端子3の延伸方向に伸びるケーブルおよび二次端子4の延伸方向に伸びるケーブルと交差しないように配慮されている。
【0027】
続いて6.6kV三相3線式高圧需要家の受電設備に配設されるVCTにおける配置について説明する。
図示しないが、円筒状一次巻線及び二次巻線を同心配置しエポキシ樹脂等絶縁樹脂で被覆し、鉄心を装着してなるVT(図8(a),(b)(c)の計器用変成器300と同一形状)が下段に配置される。
VTは、一次巻線の両端を母線側のU相−V相間とV相−W相間にそれぞれ2相並列接続されている。
【0028】
各VTの一次巻線両端をU相とV相の一次側ケーブル及びV相とW相の一次側ケーブルにそれぞれ並列接続する接続用リード線40が立ち上がっている。
一方、二個のCT(図1(a),(b)の計器用変成器30参照)の側面を接触させた場合、両側の断面が略半円の直線状溝部6により孔部が形成される。
VT一次巻線から引出される接続用リード線40をこの孔部に挿通し固定保持している。そして、上段に2相配置される各CTは、それぞれ一次巻線のK端子から電源側母線に、L端子から負荷側母線に直列接続するように、U相とW相の一次側ケーブルが接続される(図5参照)。
【0029】
なお、V相一次側ケーブルは電源側母線から負荷側母線にブッシングを介して外箱内を挿通している。U相、V相、W相の一次側ケーブルは、電源側と負荷側の外箱に配置されるブッシングを介して母線側と接続するように外部に伸びている(図6参照)。
【0030】
以上本実施形態について説明した。
なお、直線状溝部6は断面半円に限るという趣旨ではなく、断面△形、断面□形、任意形状にしてもよく、これら接合用突起部2や直線状溝部6もCT等の樹脂注型用金型の一部を代替するだけで容易に形成することが出来る。
【0031】
さらにまた、接合面7の直線状溝部6は、上述の如く外箱に収納されるVCTの接続用リード線40による電気的接続時の使用に限定されるものではなく、機械的構造用、例えば金属棒、ボルト等、を窪み部に押圧させて、計器用変成器単体を設置固定したり、或いは単にロープ等を窪み部に係止して、計器用変成器単体の運搬輸送用に供する等してもよい。
【0032】
このような本実施形態では、エポキシ樹脂を用いて接合用突起部2を有するような絶縁樹脂被覆部1を形成することで、VTも含めCT等単体同士を固定用フレーム(図示せず)だけで組立て近接配置させ、接続用リード線40を挿通し固定保持しながら寸法縮小をはかることが出来ると共に、リードスペーサ等高価な部品や取付用加工を削減出来る。
【0033】
続いて、本発明の第二実施形態について図を参照しつつ説明する。
図3は、本実施形態の計器用変成器の変成器本体の構成図である。
本実施形態の変成器本体10’は、直線状溝部6’以外は第一実施形態と同様であり、その重複する説明を省略する。
【0034】
この直線状溝部6’は、図2を用いて説明した第一実施形態の直線状溝部6の方向に対し、直角方向となるように形成されている。この場合、図3に示すように接合用突起部2を必要最小限のみ突出させるだけでよくなり、左右一対の形成器本体10’を接合した場合、第一実施形態ではデッドスペースとなっていた位置に接続ケーブルの挿通用の孔部が形成され、デッドスペースを減少させることも出来る。
【0035】
なお、直線状溝部6’も断面△形に限るという趣旨ではなく、断面半円形、断面□形、任意形状にしてもよく、これら接合用突起部2や直線状溝部6’もCT等の樹脂注型用金型の一部を代替するだけで容易に形成することが出来る。
さらにまた、接合面7の直線状溝部6’も、機械的構造用、例えば金属棒、ボルト等、を窪み部に押圧させて、計器用変成器単体を設置固定したり、或いは単にロープ等を窪み部に係止して、計器用変成器単体の運搬輸送用に供する等してもよい。
【0036】
【発明の効果】
本発明によれば、略円筒形状に形成される絶縁樹脂被覆部により、近接配置する際に形成するデッドスペースを低減し、リードスペーサ等高価な部品或いは取付用加工を無くし、容易に外箱内部で電気的結線を施しながら、小型で低コストのVCTを提供し、ひいてはキュービクル等高圧需要家受電設備の敷設面積低減をはかる計器用変成器を提供することができる。
【図面の簡単な説明】
【図1】本発明の第一実施形態の計器用変成器の構成図である。
【図2】変成器本体の構成図である。
【図3】本発明の第二実施形態の計器用変成器の変成器本体の構成図である。
【図4】CT・VTの外観図である。
【図5】VCTの電気的結線図である。
【図6】VCTの外形形状を示す外観図である。
【図7】VCTの受電設備内への収納配置を説明する説明図である。
【図8】VCT内部の配線を説明する説明図である。
【符号の説明】
1 絶縁樹脂被覆部
2 接合用突起部
3 一次端子
4 二次端子
5 鉄心挿入窓
6,6’ 直線状溝部
7 接合面
10,10’ 変成器本体
20 鉄心
30 計器用変成器
40 接続用リード線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a molded instrument transformer in which a primary winding and a secondary winding are covered with an insulating resin and an iron core is mounted.
[0002]
[Prior art]
An instrument transformer is a generic term for a current transformer (hereinafter referred to as CT), an instrument transformer (hereinafter referred to as VT), and an instrument transformer (Voltage Current Transformer hereinafter referred to as VCT). Is.
An instrument transformer connects a primary winding to the bus of a high-voltage, high-current power receiving facility, and outputs a low voltage and low current according to the transformation ratio from the secondary winding to operate relays and watt hour meters. Let
[0003]
In particular, an instrument transformer for power supply and demand is used in combination with a watt hour meter, a reactive power meter, or a maximum demand watt meter, and constitutes a part of a measuring device related to an electricity bill transaction.
In order to collect the correct electricity bill, an electromagnetic instrument transformer (for example, electromagnetic VT and CT) having an excellent transformation ratio characteristic that causes negligible errors is adopted as the instrument transformer. .
[0004]
Next, VCT will be described as an example of the prior art of such an instrument transformer with reference to the drawings. 4 is an external view of the CT / VT, FIG. 5 is an electrical connection diagram of the VCT, FIG. 6 is an external view showing the external shape of the VCT, and FIG. 7 is an explanatory diagram for explaining the storage arrangement of the VCT in the power receiving facility. FIG. 8 is an explanatory diagram for explaining the wiring inside the VCT.
For example, the VCT is installed in a power receiving facility of a 6.6 kV three-phase three-wire high-voltage consumer. This VCT is configured by integrally storing a VT and a CT assembled in a frame in an outer box.
[0005]
Each VT and CT has an appearance as shown in FIGS. 8A, 8B, and 8C, for example. As shown in FIG. 8A, the CT 300 includes a transformer main body 100 and an iron core 200.
As shown in FIGS. 4A and 4B, the transformer main body 100 has a cylindrical primary winding and a secondary winding arranged concentrically, and a primary terminal 110 which is each terminal of the primary and secondary windings. The secondary terminal 120 is provided and integrally covered with the insulating resin coating portion 130.
The insulating resin coating portion 130 is formed by curing an epoxy resin that is a solid insulation that has excellent physical characteristics such as electrical insulation performance and load bearing performance, stable chemical characteristics, and is easy to manufacture and handle. is there.
The CT is configured by inserting an iron core 200 (see FIGS. 8A, 8 </ b> B, and 8 </ b> C) through an iron core insertion window 140.
[0006]
These VT / CTs are connected as shown in FIG. 5 to complete an instrument transformer as shown in FIG.
In the connection diagram of FIG. 5, VT is connected in parallel between the U-phase and V-phase and V-phase and W-phase of the primary winding at both ends of the primary winding, and CT is the primary winding. Both ends are connected in series in two phases to the U-phase and W-phase on the bus side.
[0007]
The connection lead from the VT primary winding is connected to the primary cable connected to the CT primary winding and connected inside the outer box, and arranged on both sides of the outer box 1100 as shown in FIG. The primary cable extending from the bushing 1200 is connected to the bus at the power source side and the load side.
On the other hand, a secondary side connection terminal 1300 in which terminals are arranged by drawing lead wires from the secondary windings of VT and CT is provided, and low voltage and low current transformed from the bus side are supplied via the secondary side connection terminal 1300. , Electricity meter, reactive energy meter, maximum demand electricity meter, etc.
[0008]
By the way, the above-described VCT 1000 can be used within the VCT 1000 when the VCT 1000 is housed in a power receiving facility such as a cubicle in either the suspended arrangement shown in FIG. 7A or the stationary arrangement shown in FIG. 7B. Due to the direct connection of the primary winding to the bus via the primary cable and the size and shape restrictions, a two-phase CT is placed in the upper stage and a two-phase VT is placed in the lower stage in the outer box. It must be configured to be integrated.
When such a configuration is adopted, the wiring has been devised.
[0009]
This wiring will be described.
As shown in FIGS. 8A to 8C, the connection lead wire 500 is drawn from the primary winding of the VT (not shown) on the lower side and wired. In order to avoid a ground potential portion such as the iron core 200 of the transformer 300 or an outer box (not shown), the transformer 300 is fixedly held and led through a fixture called a lead spacer 400 and connected to the primary cable.
[0010]
The lead spacer 400 is disposed at a position sandwiched between two CTs 300, as is apparent from FIGS. 8A, 8B, and 8C, and a hole portion through which the lead spacer 400 penetrates. The connection lead wire 500 for VT connection is inserted into the cable.
[0011]
[Problems to be solved by the invention]
The lead spacer 400 used in the prior art is required to have a load-carrying performance capable of withstanding a bolt tightening force and a compressive force in addition to an electrical insulation performance. Bakelite, phenol resin, urea resin, melamine resin, Since the materials are limited, it is an expensive part.
[0012]
In addition, in order to lock the lead spacer 400 itself that holds the lead wire 500 for connecting the VT, a mounting frame processing is separately performed on the insulating resin coating portion 130 of the CT 300, which causes a high cost.
Furthermore, the presence of the lead spacer 400 is combined with the formation of a dead space by the insulating resin coating portion 130 which is necessarily formed in a substantially cylindrical shape from the cylindrical primary winding and the secondary winding of VT and CT. As a result, the mutual distance between each CT and VT was increased more than necessary, and the outer box was also large.
[0013]
Accordingly, an object of the present invention is to provide a small and low-cost VCT while eliminating the need for expensive parts such as lead spacers or processing for mounting, and easily performing electrical connection inside the outer box, and thus, high-pressure consumers such as cubicles. An object of the present invention is to provide an instrument transformer that can reduce the installation area of power receiving equipment.
[0014]
[Means for Solving the Problems]
In order to solve the above problem, the invention according to claim 1
Two pairs of current transformers are paired on the upper stage, and a plurality of instrument transformers are placed on the lower stage. A transformer for current transformer that is fixedly held in a state where a connecting lead wire drawn from the primary winding of the instrument transformer is inserted between the current transformers,
The current transformer is
An insulating resin coating that covers the primary winding and the secondary winding, and in which a primary terminal, a secondary terminal, and an iron core insertion window are formed;
A bonding protrusion provided on the insulating resin coating and having a bonding surface;
A plurality of linear grooves provided substantially in parallel on the joint surface of the joint projection;
An iron core that penetrates the iron core insertion window;
It is equipped with
The connecting lead wires are inserted into the holes formed by the linear grooves on both sides, with the connecting surfaces of the connecting projections of the two current transformers forming a pair in contact with each other.
[0015]
The invention according to claim 2
The instrument transformer according to claim 1,
Two phases of current transformers are arranged in the upper stage, and two phases of instrument transformers are arranged in the lower stage .
[0016]
The invention described in claim 3
The instrument transformer according to claim 1 or 2,
The linear groove is characterized Rukoto provided in a direction which is substantially parallel or substantially perpendicular to the extending direction of the primary pin or secondary pin.
[0017]
The invention according to claim 4
In the instrument transformer as described in any one of Claims 1-3 ,
The linear groove is semicircular cross-section, sectional △ form or, wherein any der Rukoto sectional □ form.
[0018]
The invention according to claim 5
In the instrument transformer as described in any one of Claims 1-4 ,
The insulating resin coating portion is a coating portion formed by curing an epoxy resin .
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an instrument transformer according to the present embodiment, and FIG. 2 is a configuration diagram of a transformer main body.
Specifically, this instrument transformer is used in the VCT disposed in the power receiving facility of the 6.6 kV three-phase three-wire high-voltage consumer described above with reference to FIGS. A connecting lead wire drawn from the primary winding of the VT is inserted and fixedly held in a side-side space formed by arranging two phases of CT.
[0020]
In this case, as shown in FIGS. 1 (a) and 1 (b), the two-phase CT is provided with a pair of instrument transformers 30 including a transformer body 10 and an iron core 20, and this pair of instrument transformers. A connecting lead 40 is arranged between the containers 30.
As shown in FIG. 2, the transformer main body 10 includes an insulating resin coating portion 1, a joining protrusion 2, a primary terminal 3, a secondary terminal 4, an iron core insertion window 5, a linear groove portion 6, and a joining surface 7. ing.
[0021]
The insulating resin coating portion 1 is formed by coating an insulating resin typified by an epoxy resin in a state where a primary winding and a secondary winding (not shown) are overlapped, and the insulating resin coating portion 1 is cured. The primary terminal 3, the secondary terminal 4, and the iron core insertion window 5 are integrally formed.
[0022]
The bonding projection 2 protrudes from the insulating resin coating 1 and is integrally formed, but has at least a height that allows the linear groove 6 to be formed.
Since the epoxy resin that is integrally coated on the winding to form a solid insulator has an electrical insulation performance superior to that of the lead spacer and a load resistance performance that can withstand the bolt tightening force, A slight height may be formed, and the dead space generated between the pair of instrument transformers 10 shown in FIG. 1B is reduced.
[0023]
The primary terminal 3 is a terminal electrically connected to a primary winding (not shown), and is formed in a state protruding from the insulating resin coating portion 1.
The secondary terminal 4 is a terminal electrically connected to a secondary winding (not shown), and is formed in a state of protruding from the insulating resin coating portion 1.
[0024]
The iron core insertion window 5 is a hole through which the iron core 20 (see FIGS. 1A and 1B) passes.
The straight groove portion 6 has a substantially semicircular cross section so that the covering portion of the connecting lead wire 40 (see FIGS. 1A and 1B) can be brought into contact therewith. It is formed on the joint surface 7 which is a side surface. A plurality of (four in FIG. 1 and FIG. 2) linear groove portions 6 are formed on the surface of the joint surface 7 and are provided so as to be substantially parallel to each other.
[0025]
As is apparent from FIGS. 1 and 2, the straight groove portion 6 is provided in a direction substantially parallel to the extending direction of the primary terminal 3 and in a direction substantially perpendicular to the extending direction of the secondary terminal 4. ing. This is because the cables connected to the primary terminal 3 and the secondary terminal 4 are also wired so as to extend in the extending direction.
As a result, the connecting lead wire 40 and the cable connected to the primary terminal 3 are wired substantially in parallel, and the connecting lead wire 40 and the cable connected to the secondary terminal 4 are wired substantially vertically. There is an advantage that the wiring is arranged as a whole.
[0026]
The joint surface 7 is a surface that comes into contact with another transformer body 10 and is joined here to make a pair.
As is apparent from FIGS. 1 and 2, the bonding surface 7 is provided in a direction parallel to the extending direction of the primary terminal 3 and the extending direction of the secondary terminal 4.
Thereby, consideration is given so that the connecting lead wire 40 does not intersect the cable extending in the extending direction of the primary terminal 3 and the cable extending in the extending direction of the secondary terminal 4.
[0027]
Subsequently, the arrangement in the VCT arranged in the power receiving facility of the 6.6 kV three-phase three-wire high-voltage consumer will be described.
Although not shown in the figure, a cylindrical primary winding and a secondary winding are arranged concentrically, covered with an insulating resin such as an epoxy resin, and equipped with an iron core (for instruments of FIGS. 8A, 8B, and 8C) The same shape as the transformer 300) is arranged in the lower stage.
In the VT, both ends of the primary winding are connected in parallel in two phases between the U phase-V phase and the V phase-W phase on the bus side.
[0028]
Connection lead wires 40 are connected to connect both ends of the primary winding of each VT in parallel to the U-phase and V-phase primary cables and the V-phase and W-phase primary cables.
On the other hand, when the side surfaces of two CTs (see the instrument transformer 30 in FIGS. 1A and 1B) are brought into contact with each other, a hole is formed by the linear groove 6 having a substantially semicircular cross section on both sides. The
The connecting lead wire 40 drawn from the VT primary winding is inserted and fixed in this hole. And each CT that is arranged in two phases in the upper stage is connected to the U-phase and W-phase primary cables so that they are connected in series from the K terminal of the primary winding to the power supply side bus and from the L terminal to the load side bus. (See FIG. 5).
[0029]
The V-phase primary side cable is inserted from the power source side bus to the load side bus through the bushing through the bushing. The U-phase, V-phase, and W-phase primary cables extend to the outside so as to be connected to the busbar side via bushings arranged in the outer box on the power supply side and the load side (see FIG. 6).
[0030]
The present embodiment has been described above.
The straight groove portion 6 is not limited to a semicircular cross section, and may have a cross-section Δ shape, a cross-section □ shape, or an arbitrary shape. The joining projection 2 and the straight groove portion 6 are also cast from resin such as CT. It can be easily formed by simply replacing a part of the mold.
[0031]
Furthermore, the linear groove portion 6 of the joint surface 7 is not limited to use at the time of electrical connection by the VCT connection lead wire 40 accommodated in the outer box as described above, but for mechanical structure, for example, Press a metal rod, bolt, etc. against the recess to install and fix the instrument transformer alone, or simply lock the rope etc. to the recess and use it for transporting and transporting the instrument transformer alone, etc. May be.
[0032]
In this embodiment, by using the epoxy resin to form the insulating resin coating portion 1 having the bonding projection 2, only a fixing frame (not shown) such as CT can be used for CT alone including VT. Thus, it is possible to reduce the size while inserting and fixing and holding the connecting lead wire 40, and it is possible to reduce expensive parts such as lead spacers and mounting processing.
[0033]
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 3 is a configuration diagram of the transformer main body of the instrument transformer according to the present embodiment.
Transformer body 10 'of this embodiment is the same as that of 1st embodiment except linear groove part 6', The description which overlaps is abbreviate | omitted.
[0034]
The linear groove 6 ′ is formed to be perpendicular to the direction of the linear groove 6 of the first embodiment described with reference to FIG. In this case, as shown in FIG. 3, it is only necessary to project the joining protrusion 2 only as much as necessary, and when the pair of left and right formers 10 ′ are joined, the first embodiment is a dead space. A hole for inserting the connection cable is formed at the position, and the dead space can be reduced.
[0035]
The linear groove 6 ′ is not limited to the cross-section Δ shape, and may be a semicircular cross section, a square □ shape, or an arbitrary shape. The joining projection 2 and the linear groove 6 ′ are also made of resin such as CT. It can be easily formed by simply replacing a part of the casting mold.
Furthermore, the straight groove portion 6 ′ of the joint surface 7 is also used for mechanical structure, for example, by pressing a metal rod, bolt, etc. against the recessed portion to install and fix the instrument transformer alone, or simply use a rope or the like. You may latch to a hollow part and you may use for transportation transportation of the instrument transformer single-piece | unit.
[0036]
【The invention's effect】
According to the present invention, the insulating resin coating portion formed in a substantially cylindrical shape reduces the dead space formed when closely arranged, eliminates expensive parts such as lead spacers or processing for mounting, and easily inside the outer box Thus, it is possible to provide an instrument transformer that provides a small and low-cost VCT while performing electrical connection, and consequently reduces the laying area of a high-voltage consumer power receiving facility such as a cubicle.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an instrument transformer according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a transformer main body.
FIG. 3 is a configuration diagram of a transformer main body of the instrument transformer according to the second embodiment of the present invention.
FIG. 4 is an external view of a CT / VT.
FIG. 5 is an electrical connection diagram of a VCT.
FIG. 6 is an external view showing an external shape of a VCT.
FIG. 7 is an explanatory diagram for explaining a storage arrangement of a VCT in a power receiving facility.
FIG. 8 is an explanatory diagram illustrating wiring inside a VCT.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulation resin coating | cover part 2 Joining projection part 3 Primary terminal 4 Secondary terminal 5 Iron core insertion window 6, 6 'Straight groove part 7 Joint surface 10, 10' Transformer main body 20 Iron core 30 Instrument transformer 40 Connection lead wire

Claims (5)

対をなす二個の変流器が上段となり、また、複数の計器用変圧器が下段となるように、固定用フレームにそれぞれ複数個配置して組み立てた状態で外箱に一体収納し、二個の変流器の間に、計器用変圧器の一次巻線から引出される接続用リード線を挿通した状態で固定保持する計器用変圧変流器であって、
前記変流器は、
一次巻線及び二次巻線を被覆し、一次端子、二次端子及び鉄心挿入窓が形成される絶縁樹脂被覆部と、
絶縁樹脂被覆部上に設けられ、接合面が形成された接合用突起部と、
接合用突起部の接合面上で略平行に設けられる複数の直線状溝部と、
鉄心挿入窓を貫通する鉄心と、
を備えるものであり、
対をなす二個の変流器の接合用突起部の接合面を接触させて、両側の直線状溝部により形成した孔部に接続用リード線が挿通されることを特徴とする計器用変成器。
Two pairs of current transformers are paired on the upper stage, and a plurality of instrument transformers are placed on the lower stage. A transformer for current transformer that is fixedly held in a state where a connecting lead wire drawn from the primary winding of the instrument transformer is inserted between the current transformers,
The current transformer is
An insulating resin coating that covers the primary winding and the secondary winding, and in which a primary terminal, a secondary terminal, and an iron core insertion window are formed;
A bonding protrusion provided on the insulating resin coating and having a bonding surface;
A plurality of linear grooves provided substantially in parallel on the joint surface of the joint projection;
An iron core that penetrates the iron core insertion window;
It is equipped with
An instrument transformer characterized in that a connecting lead wire is inserted into a hole formed by a linear groove on both sides, with the joining surfaces of joining projections of two current transformers forming a pair in contact with each other .
請求項1に記載の計器用変成器において、
上段に変流器を2相配置し、下段に計器用変圧器を2相配置したことを特徴とする計器用変成器。
The instrument transformer according to claim 1,
A transformer for an instrument, wherein two phases of current transformers are arranged in the upper stage and two phases of instrument transformers are arranged in the lower stage .
請求項1または請求項2に記載の計器用変成器において、
前記直線状溝部は、一次端子または二次端子の延伸方向に対して略平行または略垂直となる方向に設けられることを特徴とする計器用変成器。
The instrument transformer according to claim 1 or 2,
The linear groove portions, instrument transformer, characterized in Rukoto provided in a direction which is substantially parallel or substantially perpendicular to the extending direction of the primary pin or secondary pin.
請求項1〜請求項3の何れか一項に記載の計器用変成器において、
前記直線状溝部は断面半円、断面△形、または、断面□形の何れかであることを特徴とする計器用変成器。
In the instrument transformer as described in any one of Claims 1-3 ,
The linear groove is semicircular cross-section, sectional △ form or, instrument transformer, wherein either Der Rukoto sectional □ form.
請求項1〜請求項4の何れか一項に記載の計器用変成器において、
前記絶縁樹脂被覆部はエポキシ樹脂を硬化させて形成した被覆部であることを特徴とする計器用変成器。
In the instrument transformer as described in any one of Claims 1-4 ,
The transformer for an instrument, wherein the insulating resin coating portion is a coating portion formed by curing an epoxy resin .
JP2002122109A 2002-04-24 2002-04-24 Instrument transformer Expired - Fee Related JP4148695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002122109A JP4148695B2 (en) 2002-04-24 2002-04-24 Instrument transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002122109A JP4148695B2 (en) 2002-04-24 2002-04-24 Instrument transformer

Publications (2)

Publication Number Publication Date
JP2003318049A JP2003318049A (en) 2003-11-07
JP4148695B2 true JP4148695B2 (en) 2008-09-10

Family

ID=29537816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002122109A Expired - Fee Related JP4148695B2 (en) 2002-04-24 2002-04-24 Instrument transformer

Country Status (1)

Country Link
JP (1) JP4148695B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103325558B (en) * 2013-07-17 2015-10-21 国家电网公司 The all insulation voltage transformer that a kind of high-altitude high-capacity is indoor

Also Published As

Publication number Publication date
JP2003318049A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
US7286337B2 (en) Switching device for power distribution
CN101697314A (en) Current transformer
JP4148695B2 (en) Instrument transformer
JP3982973B2 (en) Current transformer
KR200452103Y1 (en) Transformer current transformer
JP3724212B2 (en) Gas insulated switchgear and its assembling method
JP2004166366A (en) Polyphase current transformer for distribution board
KR200389367Y1 (en) 3 phase current transformer combibed with circuit breaker
JP3482124B2 (en) Phase-separated GIS direct-coupled three-phase transformer
JPH10243601A (en) Terminal box of main electric motor for vehicle
JP3541933B2 (en) Current transformer for instrument and its outer box
KR20120018436A (en) Transformer having bushing terminal cover
US6797875B2 (en) Gas-insulated multi-phase line, and a connection module for going from multi-phase to single-phase in such a line
CN215265811U (en) Mutual inductor with positioning shell
JPH066493Y2 (en) Mold transformer
CN215770791U (en) Stable transformer iron core
KR200389891Y1 (en) Combined Current &amp; Voltage Transformer with Dead-Break Interface like Bushing or Bushing Well onto Primary Terminals
JP5228071B2 (en) Molded transformer
JP3648939B2 (en) Molded transformer
JP6577935B2 (en) Transformer
JP2503664Y2 (en) Closed type switchgear
JPS6211128Y2 (en)
JPH0782946B2 (en) Mold transformer
JP2013162059A (en) Gas insulated instrument voltage transformer
JP2011024339A (en) Bus supporting device and switchgear using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080624

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees