JP4147073B2 - Manufacturing method of light emitting diode - Google Patents

Manufacturing method of light emitting diode Download PDF

Info

Publication number
JP4147073B2
JP4147073B2 JP2002256632A JP2002256632A JP4147073B2 JP 4147073 B2 JP4147073 B2 JP 4147073B2 JP 2002256632 A JP2002256632 A JP 2002256632A JP 2002256632 A JP2002256632 A JP 2002256632A JP 4147073 B2 JP4147073 B2 JP 4147073B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting diode
layer
light
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002256632A
Other languages
Japanese (ja)
Other versions
JP2004095944A (en
Inventor
信幸 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002256632A priority Critical patent/JP4147073B2/en
Publication of JP2004095944A publication Critical patent/JP2004095944A/en
Application granted granted Critical
Publication of JP4147073B2 publication Critical patent/JP4147073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、屋内及び屋外用表示パネル、車載用表示ランプ、信号機、携帯電話用バックライト等で使用される高輝度化合物半導体発光ダイオード及び放出光に指向性を必要とするフォトインタラプター、フォトカプラー、ファイバー光源等の機能デバイスに使用する発光ダイオードの製造方法に関するものである。
【0002】
【従来の技術】
本発明に関連する先行技術文献としては次のものがある。
【0003】
【特許文献1】
特開平7−131066号公報(図1)
【0004】
従来の発光ダイオード素子として、例えば、図5に示すように、GaAlAs赤色発光ダイオード100は、p型GaAs基板101、p型GaAlAsクラッド層102、GaAlAs活性層103、n型GaAlAsクラッド層104、およびn型GaAlAsコンタクト層105を積層した多層構造を有する。また、p型GaAs基板101下面、n型GaAlAsコンタクト層105上面のそれぞれに電極106,107が形成されている。この発光ダイオード100の電極106,107間に電流を流すと、GaAlAs活性層103とn型GaAlAsクラッド層104が発光するようになっている。このとき、光は、素子100の天面、側面および裏面から外方に放出され、その一部は発光ダイオード100内部で反射を繰り返し、最終的に発光ダイオード100外部に放出される。
【0005】
しかしながら、発光層103,104から天面方向に放出された光や結晶内部で反射を繰り返した光は、ダイオード100外部に放出されるまでの過程で結晶に吸収されたり、裏面側の電極106や素子接着用のはんだ材料によって吸収されるため、光の外部取り出し効率は必ずしも良いものではなかった。特に、発光ダイオード100をフォトインタラプターや光ファイバー用の光源とする場合、放出される光の指向性は重要であり、可能な限り天面方向のみに発光することが望ましい。
【0006】
そのため、発光ダイオード100の結晶での吸収を低減させる目的でコンタクト層105のアルミ混晶比を高くしたり、裏面側の電極106の材料やその形状などが工夫され、光の外部取り出し効率の向上が図られている。
【0007】
また、従来の発光ダイオード素子として、例えば、図6に示すように、GaAlInP発光ダイオード108は、n型GaAs基板109、n型AlGaInPクラッド層110、AlGaInP活性層111、p型AlGaInPクラッド層112を積層した多層構造を有する。また、n型GaAs基板109下面、p型AlGaInPクラッド層112上面にn型電極113,p型電極114がそれぞれ形成されている。この発光ダイオード108の電極113,114間に電流を流すと、n型AlGaInPクラッド層110とAlGaInP活性層111が発光するようになっている。この発光ダイオード108では、結晶中に組成の異なる半導体結晶を積層することにより半導体多層膜反射鏡または光反射多層膜115(DBR)が形成されており、裏面側への放出光を天面方向へと反射させるようになっている。このDBR115は液層成長法では形成することが困難なため、気相成長によって積層されるAlGaInPを中心とした4元系発光ダイオードに主に形成されている。さらに、DBR115に加えて、n型AlGaInPクラッド層(電流狭窄層)116を形成したり、天面の電極配置を工夫して光を遮蔽するなどして、強制的に天面方向のみ光が放出されるようになっている。
【0008】
また、別の手法として、素子を樹脂モールドすることにより素子の側面から放出される光を屈折させて、その放出方向を天面方向へ変えたり、図7に示すように、発光ダイオード素子100をすり鉢状のフレーム117の内側底部に配置し、発光ダイオード素子100の側面から放出される光を天面方向に反射させることにより発光ダイオード100の天面方向から見た輝度に関与させる方法が公知である。しかしながら、発光ダイオード素子100を前記すり鉢状のフレーム117に組み込むため、製造工程が複雑化するという問題があった。
【0009】
また、発光ダイオード素子の側面から放出される光を天面方向に向ける他の方法として、例えば、発光ダイオードの発光層から発光された光のうち、水平方向に向けて発光された光を発光層の周囲に形成されたV溝の斜面に設けられた反射膜で反射させたものがある(例えば、特許文献1を参照)。この発光ダイオードの反射膜と電極は、アルミニウムの金属材料から形成されている。また、発光ダイオードの信頼性向上のため、発光ダイオード素子表面に保護膜であるシリコン酸化膜が形成されている。しかしながら、この発光ダイオードは、保護膜を設けるためにシリコン酸化膜を形成する必要があり、製造工程が複雑化するという問題があった。
【0010】
【発明が解決しようとする課題】
そこで、本発明では、放出される光の天面方向への指向性を向上し、輝度の低下を防ぐことができる発光ダイオードの簡単な製造方法を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明は、前記課題を解決するための手段として、
基板上に発光層を積層する発光ダイオードの製造方法において、
前記半導体層の発光層より深い位置までメサエッチングを行うことにより前記発光層の周囲にV溝を形成し、
前記V溝の前記発光層と対向する側面に金からなる反射膜を形成し、
前記半導体層の表面を酸化性溶液により酸化した後、アニール処理することにより保護膜を形成するものである。
【0012】
前記発明によれば、発光層の周囲に形成されたV溝の発光層と対向する側面に金からなる反射膜を形成したので、発光層から放出される光の天面方向への指向性が向上するとともに、光を有効に反射できる。
【0013】
前記発明によれば、アニール処理により保護膜を形成するので、従来の製造方法に比べて簡略化することができる。また、反射膜は金からなるので、このアニール処理時に用いられる酸により侵食されない。
【0014】
前記反射膜形成時に、前記半導体層上面に金からなる電極を薄膜形成することにより、従来の発光ダイオード製造方法に比べて製造方法を簡略化することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に従って説明する。
【0016】
図1は、本発明に係る発光ダイオードであるGaAlAs赤色発光ダイオード1を示す。この発光ダイオード1は、p型GaAs基板2、p型GaAlAsクラッド層3、GaAlAs活性層4、n型GaAlAsクラッド層5、n型GaAlAsコンタクト層6を積層した多層構造を有する。p型GaAs基板2下面とn型GaAlAsコンタクト層6上面には、それぞれp型電極7、n型電極8が形成されている。この発光ダイオード1の発光領域は、GaAlAs活性層4とn型GaAlAsクラッド層5である。また、発光ダイオード1の周囲には、V溝11が形成され、該V溝11の外側の側面すなわちV溝11の発光層4,5と対向する側面には、反射膜12が形成されている。
【0017】
発光ダイオード1の表面には、保護膜として自然酸化膜9が形成されている。この自然酸化膜9は、後述するように、発光ダイオード1の表面を強い酸化性を有する酸でアニール処理することにより結晶表面を酸化させたものである。
【0018】
次に、前記発光ダイオード1を製造する製造方法について説明する。
【0019】
図2(a)に示すように、先ず、p型GaAs基板2上にp型GaAlAsクラッド層3、GaAlAs活性層4、n型GaAlAsクラッド層5およびn型GaAlAsコンタクト層6を液層エピタキシャル成長法により順次積層する。ここで、各エピタキシャル層のアルミ混晶比(Ga1−XAlAs:混晶比X)は、0.6、0.2、0.4および0.6であり、それぞれの厚みは、20μm、1μm、10μmおよび30μmである。p型ドーパントとしてはマグネシウム、n型ドーパントとしてはテルルを用いることが好ましい。
【0020】
次に、図2(b)に示すように、p型GaAs基板2の一部或いは全部をエッチングにより除去し、エピタキシャルウェハを所定の厚みとなるように加工する。
【0021】
続いて、図3(a)に示すように、スパッタ法或いは蒸着法によりp型GaAs基板2下面に電極材料を薄膜形成し、p型電極7を形成する。さらに、図3(a)および図3(b)に示すように、感光性レジストを用いてマスク10を形成することによりパターニングを行う。このマスク10は、n型電極8が形成される部分を保護する領域10aと、各領域10a間の中心を通るような格子状領域10bを有する。
【0022】
この状態で、図4(a)に示すように、発光層4,5より深い位置まで(p型GaAs基板2付近まで)メサエッチングを行い、発光層4,5の周囲にV溝11をそれぞれ形成する。このとき、隣接するV溝11の間に位置する頂部11aは、電極形成部分(n型GaAlAsコンタクト層6上面)と同一の高さである必要は無く、頂部11aが発光領域4,5と比べて高い位置にあればよい。すなわち、メサエッチング時にサイドエッチングが進行して格子状領域10bが剥離してもよい。
【0023】
そして、図4(b)に示すように、スパッタ法或いは蒸着法により金(金属材料)をウェハ状に薄膜形成した後、感光性レジストを用いてn型電極8と反射膜12が残るようにパターンニングを行なう。ここで、n型電極8は、n型GaAlAsコンタクト層6上面の所定領域に形成され、反射膜12は、V溝11の発光層4,5と対向する側面に形成される。電極形成と反射膜形成を同時に行うことにより従来の製造方法に比べて簡単な発光ダイオード製造方法が実現できる。また、前記電極形成、反射膜形成工程は、先にレジスト等でパターンニングしてから金属材料を蒸着により薄膜形成し、リフトオフ方式で形成するようにしてもよい。
【0024】
次に、図4(c)に示すように、発光ダイオード1を酸化性溶液にて処理し、発光ダイオード1の結晶表面を酸化、アニール処理して保護膜9を形成する。このとき、n型電極8と反射膜12は非常に安定的な金からなるので、酸化性溶液により侵食されることなく、反射膜12の反射率および反射膜としての機能が低下することがない。これにより、従来の製造方法のように複雑なシリコン膜形成工程により保護膜を形成するのではなく、アニール処理により保護膜9を形成するので、従来の製造方法に比べて簡単に保護膜9を形成することができる。
【0025】
そして、図4(d)に示すように、反射膜12が形成されている頂部11aを目安にチップ分割を行なう。チップ分割方法としては、裏面からスクライブラインを入れてヘキ開を利用して分割してもよいが、チップ割れやチップ欠けを低減させるためにダイシングによる分割が望ましい。
【0026】
以上のようにして、製造された発光ダイオード1では、図1に示すように、前記発光領域(GaAlAs活性層4、n型GaAlAsクラッド層5)から発光される光のうち、天面方向に放出された光は、n型GaAlAsコンタクト層6を透過して外方に射出される。また、水平方向に発光された光は、V溝11の発光層4,5と対向する側面に位置する反射膜12で天面方向に反射される。さらに、裏面方向に放出された光は、発光ダイオード1の結晶内で反射を繰り返して最終的に外部に放出される。これにより、放出する光の指向性の高いGaAlAs赤色発光ダイオード1が得られる。尚、この製造プロセスは、GaAlAs系の発光ダイオードに限ったものではなく、処理条件を変更することにより他の種類の発光ダイオード材料(例えば、4元系発光ダイオードなど)にも適用可能なものである。
【0027】
【発明の効果】
本発明の発光ダイオード製造方法は、半導体層の発光層より深い位置までメサエッチングを行うことにより発光層の周囲にV溝を形成し、V溝の発光層と対向する側面に金からなる反射膜を形成し、半導体層の表面を酸化性溶液により酸化した後、アニール処理することにより保護膜を形成するようにしたので、信頼性の高い素子を製造できると共に従来の発光ダイオード製造方法に比べて特別な設備を必要とせず、製造方法が簡略化するという効果を奏する。
【0028】
特に、反射膜形成時に、半導体層上面に金からなる電極を薄膜形成することにより、さらに従来の発光ダイオード製造方法に比べて製造方法を簡略化することができる。
本発明の方法により製造された発光ダイオードは、発光層の周囲に半導体層の発光層より深い位置まで形成されたV溝と、V溝の発光層と対向する側面に形成された金からなる反射膜と、半導体層の表面を酸化性溶液により酸化した後、アニール処理することにより形成された保護膜を備えるので、発光層の側面から放出される光を天面方向へと効率よく反射させ、発光ダイオードの輝度を向上させると共に指向性を持った発光ダイオードを得ることができる。更に、反射膜として金を用いることで、より反射率を向上させることが可能である。また、発光ダイオード素子自身が指向性を有するため、フォトインタラプターや光ファイバー用光源などのユニットを作成する際に、従来行われていた樹脂モールドやカップ底面配置などの複雑な工程を必要としなくなる。
【図面の簡単な説明】
【図1】 本発明の発光ダイオードの断面図である。
【図2】 (a),(b)は、図1の発光ダイオードの製造時を示す断面図である。
【図3】 (a)は、図1の発光ダイオードの製造時を示す断面図である。(b)は、図1の発光ダイオードの製造時を示す平面図である。
【図4】 (a),(b),(c),(d)は、図1の発光ダイオードの製造時を示す断面図である。
【図5】 従来の発光ダイオードの断面図である。
【図6】 従来の発光ダイオードの断面図である。
【図7】 従来の発光ダイオードの断面図である。
【符号の説明】
1…発光ダイオード
2…p型GaAs基板(基板)
3…p型GaAlAsクラッド層(半導体層)
4…GaAlAs活性層(半導体層、発光層)
5…n型GaAlAsクラッド層(半導体層、発光層)
6…n型GaAlAsコンタクト層(半導体層)
7…p型電極
8…n型電極
9…自然酸化膜(保護膜)
11…V溝
12…反射膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-brightness compound semiconductor light-emitting diode used in indoor and outdoor display panels, vehicle-mounted display lamps, traffic lights, mobile phone backlights, and the like, and a photointerrupter and photocoupler that require directivity in emitted light. relates to a method for manufacturing a light emitting diode used for functional devices such as a fiber source.
[0002]
[Prior art]
Prior art documents related to the present invention include the following.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 7-131066 (FIG. 1)
[0004]
As a conventional light emitting diode element, for example, as shown in FIG. 5, a GaAlAs red light emitting diode 100 includes a p-type GaAs substrate 101, a p-type GaAlAs cladding layer 102, a GaAlAs active layer 103, an n-type GaAlAs cladding layer 104, and n It has a multilayer structure in which a type GaAlAs contact layer 105 is laminated. Electrodes 106 and 107 are formed on the lower surface of the p-type GaAs substrate 101 and the upper surface of the n-type GaAlAs contact layer 105, respectively. When a current is passed between the electrodes 106 and 107 of the light emitting diode 100, the GaAlAs active layer 103 and the n-type GaAlAs cladding layer 104 emit light. At this time, light is emitted outward from the top surface, side surface, and back surface of the element 100, and part of the light is repeatedly reflected inside the light emitting diode 100 and finally emitted outside the light emitting diode 100.
[0005]
However, light emitted from the light emitting layers 103 and 104 toward the top surface or light repeatedly reflected inside the crystal is absorbed by the crystal in the process until it is emitted to the outside of the diode 100, Since it is absorbed by the solder material for element bonding, the light extraction efficiency is not always good. In particular, when the light emitting diode 100 is used as a light source for a photo interrupter or an optical fiber, the directivity of emitted light is important, and it is desirable to emit light only in the top surface direction as much as possible.
[0006]
Therefore, in order to reduce absorption in the crystal of the light emitting diode 100, the aluminum mixed crystal ratio of the contact layer 105 is increased, and the material and shape of the electrode 106 on the back surface side are devised to improve the light external extraction efficiency. Is planned.
[0007]
As a conventional light emitting diode element, for example, as shown in FIG. 6, a GaAlInP light emitting diode 108 includes an n-type GaAs substrate 109, an n-type AlGaInP cladding layer 110, an AlGaInP active layer 111, and a p-type AlGaInP cladding layer 112. Having a multilayer structure. An n-type electrode 113 and a p-type electrode 114 are formed on the lower surface of the n-type GaAs substrate 109 and the upper surface of the p-type AlGaInP cladding layer 112, respectively. When a current is passed between the electrodes 113 and 114 of the light emitting diode 108, the n-type AlGaInP cladding layer 110 and the AlGaInP active layer 111 emit light. In the light-emitting diode 108, semiconductor crystals having different compositions are stacked in the crystal to form a semiconductor multilayer reflector or a light reflecting multilayer film 115 (DBR), and light emitted to the back side is directed toward the top surface. It is supposed to be reflected. Since it is difficult to form the DBR 115 by the liquid layer growth method, the DBR 115 is mainly formed in a quaternary light emitting diode centering on AlGaInP stacked by vapor phase growth. Furthermore, in addition to the DBR 115, an n-type AlGaInP cladding layer (current confinement layer) 116 is formed or light is forcibly emitted only in the direction of the top surface by shielding the light by devising the arrangement of the electrodes on the top surface. It has come to be.
[0008]
As another method, the light emitted from the side surface of the element is refracted by resin-molding the element, and the emission direction is changed to the top surface direction. As shown in FIG. A method is known which is arranged on the inner bottom of the mortar-shaped frame 117 and causes the light emitted from the side surface of the light emitting diode element 100 to reflect the luminance viewed from the top surface direction of the light emitting diode 100 by reflecting in the top surface direction. is there. However, since the light emitting diode element 100 is incorporated in the mortar-shaped frame 117, the manufacturing process is complicated.
[0009]
As another method for directing light emitted from the side surface of the light emitting diode element in the top surface direction, for example, light emitted from the light emitting layer of the light emitting diode in the horizontal direction is emitted from the light emitting layer. Is reflected by a reflective film provided on the slope of a V-groove formed around (see, for example, Patent Document 1). The reflective film and the electrode of this light emitting diode are made of an aluminum metal material. In order to improve the reliability of the light emitting diode, a silicon oxide film as a protective film is formed on the surface of the light emitting diode element. However, this light emitting diode has a problem that it is necessary to form a silicon oxide film in order to provide a protective film, which complicates the manufacturing process.
[0010]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to provide a simple method for manufacturing a light-emitting diode capable of improving the directivity of emitted light toward the top surface and preventing a decrease in luminance.
[0011]
[Means for Solving the Problems]
As a means for solving the above problems, the present invention provides:
In a method for manufacturing a light emitting diode in which a light emitting layer is stacked on a substrate,
V-grooves are formed around the light emitting layer by performing mesa etching deeper than the light emitting layer of the semiconductor layer,
Forming a reflective film made of gold on a side surface of the V-groove facing the light emitting layer;
The surface of the semiconductor layer is oxidized with an oxidizing solution and then annealed to form a protective film.
[0012]
According to the invention, since the reflective film made of gold is formed on the side surface facing the light emitting layer of the V groove formed around the light emitting layer, the directivity of the light emitted from the light emitting layer toward the top surface is improved. It improves and can reflect light effectively.
[0013]
According to the invention, since the protective film is formed by annealing, it can be simplified as compared with the conventional manufacturing method. Further, since the reflective film is made of gold, it is not eroded by the acid used during the annealing process.
[0014]
By forming a thin electrode of gold on the upper surface of the semiconductor layer when forming the reflective film, the manufacturing method can be simplified as compared with the conventional light emitting diode manufacturing method.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0016]
FIG. 1 shows a GaAlAs red light emitting diode 1 which is a light emitting diode according to the present invention. The light emitting diode 1 has a multilayer structure in which a p-type GaAs substrate 2, a p-type GaAlAs cladding layer 3, a GaAlAs active layer 4, an n-type GaAlAs cladding layer 5, and an n-type GaAlAs contact layer 6 are laminated. A p-type electrode 7 and an n-type electrode 8 are formed on the lower surface of the p-type GaAs substrate 2 and the upper surface of the n-type GaAlAs contact layer 6, respectively. The light emitting regions of the light emitting diode 1 are a GaAlAs active layer 4 and an n-type GaAlAs cladding layer 5. A V-groove 11 is formed around the light-emitting diode 1, and a reflective film 12 is formed on the outer side surface of the V-groove 11, that is, the side surface facing the light-emitting layers 4 and 5 of the V-groove 11. .
[0017]
A natural oxide film 9 is formed on the surface of the light emitting diode 1 as a protective film. As will be described later, the natural oxide film 9 is obtained by oxidizing the crystal surface by annealing the surface of the light-emitting diode 1 with an acid having a strong oxidizing property.
[0018]
Next, a manufacturing method for manufacturing the light emitting diode 1 will be described.
[0019]
2A, first, a p-type GaAlAs cladding layer 3, a GaAlAs active layer 4, an n-type GaAlAs cladding layer 5 and an n-type GaAlAs contact layer 6 are formed on a p-type GaAs substrate 2 by a liquid layer epitaxial growth method. Laminate sequentially. Here, the aluminum mixed crystal ratio (Ga 1-X Al X As: mixed crystal ratio X) of each epitaxial layer is 0.6, 0.2, 0.4, and 0.6, 20 μm, 1 μm, 10 μm and 30 μm. It is preferable to use magnesium as the p-type dopant and tellurium as the n-type dopant.
[0020]
Next, as shown in FIG. 2B, part or all of the p-type GaAs substrate 2 is removed by etching, and the epitaxial wafer is processed to have a predetermined thickness.
[0021]
Subsequently, as shown in FIG. 3A, a thin electrode material is formed on the lower surface of the p-type GaAs substrate 2 by sputtering or vapor deposition to form a p-type electrode 7. Further, as shown in FIGS. 3A and 3B, patterning is performed by forming a mask 10 using a photosensitive resist. The mask 10 has a region 10a that protects a portion where the n-type electrode 8 is formed, and a lattice region 10b that passes through the center between the regions 10a.
[0022]
In this state, as shown in FIG. 4A, mesa etching is performed to a position deeper than the light emitting layers 4 and 5 (to the vicinity of the p-type GaAs substrate 2), and V grooves 11 are formed around the light emitting layers 4 and 5, respectively. Form. At this time, the top portion 11a located between the adjacent V grooves 11 does not have to be the same height as the electrode formation portion (the upper surface of the n-type GaAlAs contact layer 6), and the top portion 11a is compared with the light emitting regions 4 and 5. If it is in a high position. That is, side etching may proceed during mesa etching and the lattice-like region 10b may be peeled off.
[0023]
Then, as shown in FIG. 4B, after a thin film of gold (metal material) is formed in a wafer shape by sputtering or vapor deposition, the n-type electrode 8 and the reflective film 12 are left using a photosensitive resist. Perform patterning. Here, the n-type electrode 8 is formed in a predetermined region on the upper surface of the n-type GaAlAs contact layer 6, and the reflective film 12 is formed on the side surface of the V groove 11 facing the light emitting layers 4 and 5. By performing the electrode formation and the reflective film formation at the same time, a simpler light emitting diode manufacturing method can be realized as compared with the conventional manufacturing method. Further, in the electrode forming and reflecting film forming steps, a metal material may be formed into a thin film by vapor deposition after patterning with a resist or the like, and then formed by a lift-off method.
[0024]
Next, as shown in FIG. 4C, the light emitting diode 1 is treated with an oxidizing solution, and the crystal surface of the light emitting diode 1 is oxidized and annealed to form a protective film 9. At this time, since the n-type electrode 8 and the reflective film 12 are made of very stable gold, the reflectance of the reflective film 12 and the function as the reflective film are not deteriorated without being eroded by the oxidizing solution. . As a result, the protective film 9 is formed by annealing rather than the complicated silicon film forming step as in the conventional manufacturing method, so that the protective film 9 can be easily formed compared to the conventional manufacturing method. Can be formed.
[0025]
Then, as shown in FIG. 4D, the chip is divided with reference to the top portion 11a where the reflective film 12 is formed. As a chip division method, a scribe line may be inserted from the back side and division may be performed using cleaving, but division by dicing is desirable in order to reduce chip cracking and chip chipping.
[0026]
As shown in FIG. 1, the light emitting diode 1 manufactured as described above emits light emitted from the light emitting region (GaAlAs active layer 4, n-type GaAlAs clad layer 5) in the top surface direction. The emitted light passes through the n-type GaAlAs contact layer 6 and is emitted outward. Further, the light emitted in the horizontal direction is reflected in the top surface direction by the reflection film 12 located on the side surface of the V groove 11 facing the light emitting layers 4 and 5. Further, the light emitted toward the back surface is repeatedly reflected in the crystal of the light emitting diode 1 and finally emitted to the outside. Thereby, the GaAlAs red light emitting diode 1 with high directivity of the emitted light is obtained. This manufacturing process is not limited to GaAlAs light emitting diodes, but can be applied to other types of light emitting diode materials (for example, quaternary light emitting diodes, etc.) by changing processing conditions. is there.
[0027]
【The invention's effect】
The light emitting diode manufacturing method of the present invention forms a V groove around the light emitting layer by performing mesa etching deeper than the light emitting layer of the semiconductor layer, and a reflective film made of gold on the side surface facing the light emitting layer of the V groove. After the surface of the semiconductor layer is oxidized with an oxidizing solution, the protective film is formed by annealing, so that a highly reliable device can be manufactured and compared with the conventional light emitting diode manufacturing method. There is an effect that the manufacturing method is simplified without requiring special equipment .
[0028]
In particular, by forming a thin electrode of gold on the upper surface of the semiconductor layer when forming the reflective film, the manufacturing method can be further simplified as compared with the conventional light emitting diode manufacturing method.
The light-emitting diode manufactured by the method of the present invention includes a V-groove formed around the light-emitting layer to a position deeper than the light-emitting layer of the semiconductor layer, and a reflection made of gold formed on a side surface facing the light-emitting layer of the V-groove. Since the film and the surface of the semiconductor layer are oxidized with an oxidizing solution and then provided with a protective film formed by annealing, the light emitted from the side surface of the light emitting layer is efficiently reflected toward the top surface, The luminance of the light emitting diode can be improved and a light emitting diode having directivity can be obtained. Furthermore, the reflectance can be further improved by using gold as the reflective film. In addition, since the light emitting diode element itself has directivity, complicated steps such as resin mold and cup bottom arrangement, which have been conventionally performed, are not required when a unit such as a photo interrupter or an optical fiber light source is formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a light emitting diode of the present invention.
FIGS. 2A and 2B are cross-sectional views illustrating the manufacturing time of the light emitting diode of FIG.
3A is a cross-sectional view showing the manufacturing time of the light-emitting diode of FIG. 1; (B) is a top view which shows the time of manufacture of the light emitting diode of FIG.
4 (a), (b), (c), and (d) are cross-sectional views showing the manufacturing time of the light emitting diode of FIG.
FIG. 5 is a cross-sectional view of a conventional light emitting diode.
FIG. 6 is a cross-sectional view of a conventional light emitting diode.
FIG. 7 is a cross-sectional view of a conventional light emitting diode.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light emitting diode 2 ... p-type GaAs substrate (substrate)
3 ... p-type GaAlAs cladding layer (semiconductor layer)
4 ... GaAlAs active layer (semiconductor layer, light emitting layer)
5 ... n-type GaAlAs cladding layer (semiconductor layer, light emitting layer)
6 ... n-type GaAlAs contact layer (semiconductor layer)
7 ... p-type electrode 8 ... n-type electrode 9 ... natural oxide film (protective film)
11 ... V-groove 12 ... Reflective film

Claims (2)

基板上に発光層を積層する発光ダイオードの製造方法において、
前記半導体層の発光層より深い位置までメサエッチングを行うことにより前記発光層の周囲にV溝を形成し、
前記V溝の前記発光層と対向する側面に金からなる反射膜を形成し、
前記半導体層の表面を酸化性溶液により酸化した後、アニール処理することにより保護膜を形成することを特徴とする発光ダイオード製造方法。
In a method for manufacturing a light emitting diode in which a light emitting layer is stacked on a substrate,
V-grooves are formed around the light emitting layer by performing mesa etching deeper than the light emitting layer of the semiconductor layer,
Forming a reflective film made of gold on a side surface of the V-groove facing the light emitting layer;
A method for manufacturing a light emitting diode, comprising forming a protective film by oxidizing a surface of the semiconductor layer with an oxidizing solution and then annealing the surface.
前記反射膜形成時に、前記半導体層上面に金からなる電極を薄膜形成することを特徴とする請求項に記載の発光ダイオード製造方法。Light emitting diode manufacturing method according to claim 1, wherein when the reflective film is formed, an electrode made of gold on the upper surface of the semiconductor layer, characterized in that the thin film formation.
JP2002256632A 2002-09-02 2002-09-02 Manufacturing method of light emitting diode Expired - Fee Related JP4147073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002256632A JP4147073B2 (en) 2002-09-02 2002-09-02 Manufacturing method of light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002256632A JP4147073B2 (en) 2002-09-02 2002-09-02 Manufacturing method of light emitting diode

Publications (2)

Publication Number Publication Date
JP2004095944A JP2004095944A (en) 2004-03-25
JP4147073B2 true JP4147073B2 (en) 2008-09-10

Family

ID=32061807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002256632A Expired - Fee Related JP4147073B2 (en) 2002-09-02 2002-09-02 Manufacturing method of light emitting diode

Country Status (1)

Country Link
JP (1) JP4147073B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059970A (en) * 2007-08-31 2009-03-19 Seiwa Electric Mfg Co Ltd Semiconductor light-emitting element and method for fabricating semiconductor light-emitting element
KR100952034B1 (en) 2008-05-08 2010-04-07 엘지이노텍 주식회사 Light emitting device and method for fabricating the same
US8518204B2 (en) 2011-11-18 2013-08-27 LuxVue Technology Corporation Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US8573469B2 (en) 2011-11-18 2013-11-05 LuxVue Technology Corporation Method of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
US9620478B2 (en) 2011-11-18 2017-04-11 Apple Inc. Method of fabricating a micro device transfer head
US8809875B2 (en) 2011-11-18 2014-08-19 LuxVue Technology Corporation Micro light emitting diode
US8349116B1 (en) 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
US9773750B2 (en) 2012-02-09 2017-09-26 Apple Inc. Method of transferring and bonding an array of micro devices
US9548332B2 (en) 2012-04-27 2017-01-17 Apple Inc. Method of forming a micro LED device with self-aligned metallization stack
US9105492B2 (en) 2012-05-08 2015-08-11 LuxVue Technology Corporation Compliant micro device transfer head
US8415768B1 (en) 2012-07-06 2013-04-09 LuxVue Technology Corporation Compliant monopolar micro device transfer head with silicon electrode
US8791530B2 (en) 2012-09-06 2014-07-29 LuxVue Technology Corporation Compliant micro device transfer head with integrated electrode leads
US9162880B2 (en) 2012-09-07 2015-10-20 LuxVue Technology Corporation Mass transfer tool
US9558721B2 (en) 2012-10-15 2017-01-31 Apple Inc. Content-based adaptive refresh schemes for low-power displays
US9236815B2 (en) 2012-12-10 2016-01-12 LuxVue Technology Corporation Compliant micro device transfer head array with metal electrodes
US9484504B2 (en) 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
US9217541B2 (en) 2013-05-14 2015-12-22 LuxVue Technology Corporation Stabilization structure including shear release posts
US9136161B2 (en) 2013-06-04 2015-09-15 LuxVue Technology Corporation Micro pick up array with compliant contact
US8987765B2 (en) 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
US8928021B1 (en) 2013-06-18 2015-01-06 LuxVue Technology Corporation LED light pipe
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9035279B2 (en) 2013-07-08 2015-05-19 LuxVue Technology Corporation Micro device with stabilization post
US9296111B2 (en) 2013-07-22 2016-03-29 LuxVue Technology Corporation Micro pick up array alignment encoder
US9087764B2 (en) 2013-07-26 2015-07-21 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
US9153548B2 (en) 2013-09-16 2015-10-06 Lux Vue Technology Corporation Adhesive wafer bonding with sacrificial spacers for controlled thickness variation
US9367094B2 (en) 2013-12-17 2016-06-14 Apple Inc. Display module and system applications
US9768345B2 (en) 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench
US9583466B2 (en) 2013-12-27 2017-02-28 Apple Inc. Etch removal of current distribution layer for LED current confinement
US9450147B2 (en) 2013-12-27 2016-09-20 Apple Inc. LED with internally confined current injection area
US9542638B2 (en) 2014-02-18 2017-01-10 Apple Inc. RFID tag and micro chip integration design
US9583533B2 (en) 2014-03-13 2017-02-28 Apple Inc. LED device with embedded nanowire LEDs
US9522468B2 (en) 2014-05-08 2016-12-20 Apple Inc. Mass transfer tool manipulator assembly with remote center of compliance
US9318475B2 (en) 2014-05-15 2016-04-19 LuxVue Technology Corporation Flexible display and method of formation with sacrificial release layer
US9741286B2 (en) 2014-06-03 2017-08-22 Apple Inc. Interactive display panel with emitting and sensing diodes
US9624100B2 (en) 2014-06-12 2017-04-18 Apple Inc. Micro pick up array pivot mount with integrated strain sensing elements
US9425151B2 (en) 2014-06-17 2016-08-23 Apple Inc. Compliant electrostatic transfer head with spring support layer
US9570002B2 (en) 2014-06-17 2017-02-14 Apple Inc. Interactive display panel with IR diodes
US9828244B2 (en) 2014-09-30 2017-11-28 Apple Inc. Compliant electrostatic transfer head with defined cavity
US9705432B2 (en) 2014-09-30 2017-07-11 Apple Inc. Micro pick up array pivot mount design for strain amplification
US9478583B2 (en) 2014-12-08 2016-10-25 Apple Inc. Wearable display having an array of LEDs on a conformable silicon substrate
KR102595061B1 (en) * 2018-10-25 2023-10-30 엘지전자 주식회사 Semiconductor light emitting device, manufacturing method thereof, and display device including the same

Also Published As

Publication number Publication date
JP2004095944A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP4147073B2 (en) Manufacturing method of light emitting diode
US6838704B2 (en) Light emitting diode and method of making the same
TWI390759B (en) Method for fabricating group iii nitride devices and devices fabricated using method
US7462869B2 (en) Semiconductor light emitting device and semiconductor light emitting apparatus
US6933160B2 (en) Method for manufacturing of a vertical light emitting device structure
US9786819B2 (en) Semiconductor light emitting device
TWI390757B (en) Light emitting devices having a reflective bond pad and methods of fabricating light emitting devices having reflective bond pads
KR100887139B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
CN1950957A (en) Lift-off process for gan films formed on sic substrates and devices fabricated using the method
US20090294784A1 (en) Nitride Semiconductor Light Emitting Element and Method for Producing Nitride Semiconductor Light Emitting Element
US6794685B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
US20060043399A1 (en) Semiconductor light emitting device
JP2006253298A (en) Semiconductor light emitting element and device therefor
US20070290216A1 (en) Semiconductor light emitting element, manufacturing method therefor, and compound semiconductor light emitting diode
JP2008282930A (en) Light-emitting device
US6552369B2 (en) Light emitting diode and fabricating method thereof
JP2009059969A (en) Semiconductor light-emitting element, light-emitting device, luminaire, display unit, and method for fabricating semiconductor light-emitting element
JPH11177138A (en) Surface-mounting type device and light emitting device or light receiving device using the device
KR100504178B1 (en) Light emitting diode and method of manufacturing the same
JP2006128659A (en) Nitride series semiconductor light emitting element and manufacturing method of the same
JP2011171327A (en) Light emitting element, method for manufacturing the same, and light emitting device
US6809345B2 (en) Semiconductor light emitting element and semiconductor light emitting device
US20030119218A1 (en) Light emitting device and manufacturing method thereof
JP2004228290A (en) Semiconductor light emitting element and its fabricating process
JP2947155B2 (en) Semiconductor light emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080623

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees