JP4146732B2 - Snow and ice heat source supply system - Google Patents

Snow and ice heat source supply system Download PDF

Info

Publication number
JP4146732B2
JP4146732B2 JP2003005470A JP2003005470A JP4146732B2 JP 4146732 B2 JP4146732 B2 JP 4146732B2 JP 2003005470 A JP2003005470 A JP 2003005470A JP 2003005470 A JP2003005470 A JP 2003005470A JP 4146732 B2 JP4146732 B2 JP 4146732B2
Authority
JP
Japan
Prior art keywords
snow
cold
ice
heat
supply container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003005470A
Other languages
Japanese (ja)
Other versions
JP2004218897A (en
Inventor
敏郎 薦田
元 松尾
勉 上ノ町
英徳 岡本
雅仁 国府田
健司 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2003005470A priority Critical patent/JP4146732B2/en
Publication of JP2004218897A publication Critical patent/JP2004218897A/en
Application granted granted Critical
Publication of JP4146732B2 publication Critical patent/JP4146732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、雪の冷熱を、効率的かつ安価に利用可能とした雪氷熱源供給システムに関する。
【0002】
【従来の技術】
近年、雪を利用した環境に優しい未利用エネルギーを有効に活用するための冷熱活用システムが提案されている。都市部では、夏期のビル空調用電力量が著しく増大する季節間需要量の差異がますます大きくなる傾向にあり、寒冷地のオフィスビル等においても、夏期に相当量の冷熱が使用されている。そこで、冬期に雪を効率的に貯雪し、夏期まで保存し、この未利用エネルギーを夏期の冷熱需要に充当することにより、年間を通したエネルギーの平準化を図る雪利用の冷熱蓄熱方法等が提供されている。
【0003】
この出願の発明に関連する先行技術文献情報としては次のものがある。
【特許文献1】
特開2000−230793号公報
【特許文献2】
特開平7−305873号公報
【0004】
上記特許文献1に開示される雪利用の冷熱蓄熱方法およびその装置は、冬期に、地下空間に設けられた蓄熱槽内に雪を蓄えるとともに夏期まで保存し、夏期に、雪に混入する固形物質をフィルタで取り除いた融雪水を、負荷側の熱交換器に送り、冷熱を取り出すことを特徴とする。また、地下空間に設けられ、冬期に雪を蓄えるとともに夏期まで保存する蓄熱槽と、この蓄熱槽に設けられ、負荷側の熱交換器に連絡する融雪水取出管と、この融雪水取出管と蓄熱槽との間に設けたフィルタと、負荷側の熱交換器に連絡する冷水戻り管とを有することを特徴としている。
【0005】
この雪利用の冷熱蓄熱方法およびその装置によれば、冬期に雪を効率的に貯雪し、夏期まで保存し、この未利用エネルギーを夏期の冷熱需要に充当することにより、年間を通したエネルギーの平準化を図るとともにエネルギーコストの増大を抑制できるとされている。
【0006】
また、上記特許文献2に開示される利雪・天然氷結の利用による蓄熱・熱交換システムは、冬期に降った雪を一定規格の容器に収納した上で、外部との伝熱が微小な貯雪室に格納して夏期まで保存する。夏期には、冷房・冷蔵の需要に応じて必要な量の雪を取り出し、蓄熱槽に導入する。蓄熱槽における熱交換は、浮遊している雪に外気を直接吹きつけ、温度を低下させる、直射日光の当たる道路面の直下にパイプを通し、その中に雪と水との混在流体を流通させる、在来のチラーユニットを用いるなどがある。1ヶ所の貯雪室から複数の蓄熱槽に雪を搬送するには、各蓄熱槽内の雪の融解状況をセンサで監視し、その結果に基づいて搬送量を変える。
【0007】
この蓄熱・熱交換システムによれば、電力需要のピーク緩和、省エネルギ、冷房コストの低減等の効果が得られるとされている。
【0008】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に開示される雪利用の冷熱蓄熱方法およびその装置は、多量の雪を夏期まで蓄える蓄熱槽を建物に付設して構築する必要があり、また、上記特許文献2に開示される利雪・天然氷結の利用による蓄熱・熱交換システムにおいても、蓄熱槽に貯雪室を付設して構築しなければならない。このため、冷熱利用施設に対し、断熱構造を有した巨大な蓄熱槽や貯雪室(雪氷庫)を構築しなければならず、その確保が困難な上に、利用者個別に雪氷庫建造の負担を強いることになり、冷熱利用システムのイニシャルコストが大幅に増大する不利があった。そして、冷熱利用施設と雪氷庫とが一体となるため、例えば各種イベント等、緊急な冷熱需要や、一過性の冷熱需要に対しては対応することが困難であった。また、雪氷庫に蓄えられる雪量に限界があるため、気候や需要量の変動により貯雪がなくなることがあり、農産物貯蔵などの施設では致命的な問題となることがあった。このため、雪氷庫の冷熱を使い切った後のバックアップシステムを併設する必要があり、これによってもイニシャルコストが増大した。
本発明は上記状況に鑑みてなされたもので、大規模な雪氷庫を構築せずに雪氷による冷熱が利用可能となるとともに、各種イベント等、緊急な冷熱需要や、一過性の冷熱需要に対しても迅速な対応が可能となり、しかも、バックアップシステムの併設も不要となる雪氷熱源供給システムを提供し、冷熱利用システムのイニシャルコスト低減と、効率的かつ信頼性の高い冷熱利用の実現を図ることを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するための本発明に係る請求項1記載の雪氷熱源供給システムは、堆雪場の雪が雪氷として内部に収容され外部と断熱される冷熱供給容器と、前記堆雪場に構築され複数の該冷熱供給容器を保管する保管設備と、前記冷熱供給容器が接続され該冷熱供給容器に収容された雪氷と熱交換して冷熱を取り出す熱交換ユニットと、前記保管設備から該熱交換ユニットへ、雪氷を収容した前記冷熱供給容器を搬送するとともに、前記熱交換ユニットから前記保管設備へ使用済みの前記冷熱供給容器を回収する搬送手段とを具備したことを特徴とする。
【0010】
この雪氷熱源供給システムでは、冷熱の需要に応じて必要なときに、必要な量の冷熱源(即ち、雪氷)を冷熱供給容器によって熱交換ユニットに供給可能となる。これにより、大規模な雪氷庫を構築せずに雪氷による冷熱が利用可能となり、利用者に個別の雪氷庫建造の負担を生じなくして、冷熱利用システムのイニシャルコストが大幅に低減されるようになる。そして、各種イベント等、緊急な冷熱需要や、一過性の冷熱需要に対しても迅速な対応が可能となる。また、必要量の冷熱が常に供給可能となり、雪氷庫の冷熱を使い切った後のバックアップシステムの併設が不要となり、これによってもイニシャルコストが低減可能となる。さらに、堆雪場に保管設備を構築するので、冷熱源を保冷するための大規模な断熱設備も不要となる。
【0011】
請求項2記載の雪氷熱源供給システムは、請求項1記載の雪氷熱源供給システムにおいて、前記冷熱供給容器が、排水口を有した積載床と、該積載床の下方に形成され雪氷の融解水を貯留する融水ピットとを備え、前記融水ピットには、前記融解水を取り出す融水取出口が設けられていることを特徴とする。
【0012】
この雪氷熱源供給システムでは、冷熱供給容器の融水取出口が冷熱利用施設の熱交換ユニットに接続され、融水ピット内の融解水が熱交換ユニットへ供給される。これにより、雪氷から融解する融解水によって融水ピット内の水を低温に保ちながら、雪氷の冷熱を徐々に引き出すことが可能となる。これに加え、水循環式の場合には、熱交換ユニットの温度・湿度条件に柔軟に対応が可能となる利点が得られる。
【0013】
請求項3記載の雪氷熱源供給システムは、請求項2記載の雪氷熱源供給システムにおいて、前記冷熱供給容器が、冷気取出口を備えていることを特徴とする。
【0014】
この雪氷熱源供給システムでは、冷気取出口から冷熱供給容器の内部空気が取り出せるようになり、雪氷の融解による大きな潜熱によって冷却された低温の冷気が得られることになる。そして、この冷気は、融解雪氷に直接触れて多湿であるため、特に凍結を嫌い低温多湿環境が要求される生鮮野菜類の貯蔵に好適に用いることができる。この他、この冷気は、雪氷に直接的に接触することから脱臭機能(特にアンモニア臭)、除塵機能、マイナスイオン効果等、冷房に有用な効果を有する。
【0015】
請求項4記載の雪氷熱源供給システムは、請求項1又は2記載の雪氷熱源供給システムにおいて、前記保管設備が、前記冷熱供給容器に収容される堆雪場の雪を、高品質な雪氷へ加工する雪加工装置を備えていることを特徴とする。
【0016】
この雪氷熱源供給システムでは、自然に積もった状態の雪が雪加工装置によって例えば所定密度に圧縮され、非圧縮のまま雪を収容する場合に比べ、多量の雪が収容され、冷熱供給容器の容積効率が高められて、冷熱供給容器1台当たりの冷熱容量が増大する。また、雪加工装置の圧縮比を調整することで、冷熱供給容器1台当たりの冷熱容量が増減調整可能となる。
【0017】
請求項5記載の雪氷熱源供給システムは、請求項1〜請求項4のいずれか1項記載の雪氷熱源供給システムにおいて、前記冷熱供給容器が、内部の雪氷量を検出して雪氷量検出信号として送出可能な雪氷量検出手段を備え、それぞれの前記冷熱供給容器からの雪氷量検出信号が入力され該雪氷量検出信号に基づき各冷熱供給容器の交換時期を算出するとともに該交換時期に基づいて前記保管設備から前記熱交換ユニットに対する前記冷熱供給容器の配送指示を策定する集中管理を可能とする機能を備えたことを特徴とする。
【0018】
この雪氷熱源供給システムでは、それぞれの冷熱供給容器からの雪氷量検出信号に基づき各冷熱供給容器の交換時期を算出し、この交換時期に基づいて冷熱供給容器の配送指示を策定する集中管理を可能とする機能が備えられることで、雪氷の残っている状態での冷熱供給容器の交換や、冷熱が取り出せなくなる状態が未然に防止可能となる。また、雪氷量検出手段によって雪氷量が把握できるので、目視確認のために冷熱供給容器の扉を開閉する必要がなく、一度雪氷を収容したなら扉を開く必要がなく、冷熱供給容器の保冷性能を高めることができる。これにより、適切な時期での冷熱供給容器の交換が可能となり、効率的かつ信頼性の高い冷熱利用が実現可能となる。
【0019】
【発明の実施の形態】
以下、本発明に係る雪氷熱源供給システムの好適な実施の形態を図面を参照して詳細に説明する。
図1は本発明に係る雪氷熱源供給システムの構成を概略的に表した構成図、図2は雪氷の搬入例1を表す説明図、図3は雪氷の搬入例2を表す説明図、図4は傾斜床を有した冷熱供給コンテナの説明図、図5は融雪水循環熱交換方式に冷熱供給コンテナが用いられた場合の説明図、図6は融雪水ピット一体構造の冷熱供給コンテナを表した説明図、図7は融雪水非分離構造の冷熱供給コンテナを表した説明図、図8は冷気循環方式に冷熱供給コンテナが用いられた場合の説明図、図9は冷熱供給コンテナの詳細構造を表した斜視図、図10は融雪水の地下水還元状況を表した説明図、図11は太陽光発電パネルを付設した冷熱供給コンテナの側面図である。
【0020】
本実施の形態による雪氷熱源供給システム1は、図1に示すように、堆雪場3の雪が雪氷として内部に収容されこの内部が断熱構造を介して外部と断熱される冷熱供給容器(例えば冷熱供給コンテナ)5と、堆雪場3に構築され複数の冷熱供給コンテナ5を保管する保管設備7と、冷熱供給コンテナ5が接続され冷熱供給コンテナ5に収容された雪氷と熱交換して冷熱を取り出す熱交換ユニット9を備えた冷熱利用施設11A、11B、11C、11D、11E、11F、11Gと、保管設備7から冷熱利用施設11A〜11Gへ、雪氷を収容した冷熱供給コンテナ5を搬送するとともに、冷熱利用施設11A〜11Gから保管設備7へ冷熱使用済みの冷熱供給コンテナ5を回収する搬送手段13とを備えている。
【0021】
なお、本実施の形態では、冷熱供給容器として冷熱供給コンテナ5を用いる場合を例に説明するが、冷熱供給容器は、一般的なコンテナ(container;入れもの・容器の意)であり、特に貨物輸送に用いられる大型容器に限定さるものではない。
【0022】
また、本実施の形態において、雪氷熱源供給システムは、例えば断熱パネル等を用いた断熱構造を介して外部と断熱される冷熱供給コンテナ5を例として説明するが、この他、本発明に係る雪氷熱源供給システムは、冷熱利用施設側に外断熱構造の箱体があって、その中に断熱構造を有しない冷熱供給コンテナを収容する方法としてもよい。このようなシステム構成とすれば、冷熱供給コンテナの重量を軽減でき、搬送性を良好にすることができる。
【0023】
さらに、本実施の形態において、雪氷熱源供給システムは、冷熱利用施設11A〜11Gに熱交換ユニット9を備える場合を例に説明するが、熱交換ユニット9は必ずしも冷熱利用施設11A〜11Gに備えられている必要はなく、冷熱利用施設11A〜11Gと分離して設けられていてもよい。
【0024】
雪の保管は、本実施の形態で採用するように、冷熱供給コンテナ5に詰めた状態でストックする方法の他、堆雪場3において大量にストックしておき搬出の都度、冷熱供給コンテナ5に詰め込む方法等がある。後者の保管方法によれば、使用済みの冷熱供給コンテナ5の保管場所の自由度を高めることができる。
【0025】
保管設備7は、冷熱供給コンテナ5に収容される堆雪場3の雪を、高品質な雪氷へ加工する雪加工装置を備えていることが好ましい。ここで、「高品質な雪氷」とは、高エネルギー(冷熱)密度、冷熱持続性、冷熱安定供給性を有する雪氷をいう。
このような高品質な雪氷を得るための雪加工装置の機能としては、例えば、雪圧縮機能がある。この雪加工装置によって、自然に積もった状態の雪が所定密度に圧縮され、非圧縮のまま雪を収容する場合に比べ、多量の雪が収容可能となる。これにより、冷熱供給コンテナ5の容積効率が高められて、冷熱供給コンテナ1台当たりの冷熱容量が増大する。また、雪加工装置の圧縮比を調整することで、冷熱供給コンテナ1台当たりの冷熱容量が増減調整可能となる。この場合の圧縮動力としては、機械的な圧縮装置のみならず、人力、重力を利用したものとすることができる。
【0026】
また、高品質な雪氷を得るための雪加工装置の機能としては、上記の圧縮機能の他、下記のものが挙げられる。即ち、雪に添加物を加えて持続性又は安定性を高める機能、雪をさらに冷却して持続性を高める機能、直接冷却式のために雪に通気孔をあけるなどの加工をして雪独特の特性(例えば、脱臭性、除塵性、マイナスイオン発生)を向上させる機能、雪に水を加えるなどしてシャーベット状にして安定供給を図る機能などを挙げることができる。
【0027】
このようにして冷熱供給コンテナ5に詰められた雪氷は、搬送手段13を介して冷熱利用施設11A〜11Gに搬送される。この搬送手段13としては、トラック等の車両、鉄道車両の他、船舶を用いることもできる。
【0028】
なお、雪氷の詰められた冷熱供給コンテナ5は、堆雪場3における保管設備7に保管する他、冷熱利用施設11A〜11Gに近接して確保した冷熱供給中継基地15に、搬送手段13によって搬送した後、載置保管し、これを中継基地として利用するものであってもよい。この際、冷熱供給中継基地15は、建設コストを抑止する意味で新たな建造物を建造せずに、例えば高架下等の遊休地を収容空間として有効利用することが望ましい。
【0029】
雪氷熱源供給システム1は、冷房、低温貯蔵、低温熟成、低温滅菌・低温治療等の低温環境の利用、低温水利用、雪直接の利用(娯楽、展示)に供することができる。これらを具体的に利用する冷熱利用施設11A〜11Gを例示すれば、大規模ショッピングモール、食品・雑貨スーパーマーケット、DIY等の商業施設11A、博物館11B、民間工場11C、コミュニティ、レクレーション空間を提供する集客施設11D、農産物や水産物の他、乳製品、花等の貯蔵施設11E、酒類等の低温熟成技術を利用する施設11F、チョウザメ、ニジマス等の養殖施設11G等が挙げられる。この他、図示は省略するが、一般住宅、公共施設の冷房、水族館、動物園等を挙げることができる。
【0030】
冷熱利用施設11A〜11Gに対する雪氷の搬入方法としては、図2に示すように、新たに搬入した冷熱供給コンテナ5aを、コンテナごと使用済みの冷熱供給コンテナ5bと交換し、使用済みの冷熱供給コンテナ5bを搬送手段13によって回収する方法、或いは図3に示すように、搬入した新たな冷熱供給コンテナ5aの雪氷のみを、使用済みの冷熱供給コンテナ5bに供給し、使用済み冷熱供給コンテナ5aを回収する方法等とすることができる。
【0031】
図3に示した雪氷のみを供給する方法の場合には、機械等(流体圧シリンダやラック・ピニオン等の送り機構)の動力によって、図4に示すようにブロックとなった雪氷17をスライドして供給する。また、このようなスライド供給方式を採用する場合には、冷熱供給コンテナ5の床部を、滑りやすい滑面とする。さらに、供給方向に下り勾配となる傾斜床19を形成し、扉18を開放することにより、雪氷17の自重によってスライド移動させるものであってもよい。
【0032】
また、冷熱供給コンテナ5の床部には、雪氷17を滑り易くするため、雪氷17の底面のみを融解させる図示しない温熱ヒータを配設するものであってもよい。なお、この際の電源は、冷熱供給コンテナ5の外壁に付設した後述する太陽光パネルから得られることとしてもよい。このような太陽光パネルを利用した温熱ヒータ融解方式を採用すれば、他の給電設備を不要にして雪氷17の移動を容易にすることができる。
【0033】
冷熱供給コンテナ5からの冷熱の取り出しは、例えば図5に示すように、融雪水を熱交換ユニット9に循環させ、熱交換させる水循環式とすることができる。この場合、融雪水の貯留は、図6に示すように、雪氷17と分離してコンテナ底部に融水ピット21を設ける構造、図7に示すように、少なくともコンテナ底部を防水構造とし、融解水23と雪氷17とを混在させる融雪水非分離構造のいずれかとすることができる。
【0034】
また、冷熱の取り出しは、融解水23のみならず、図8に示すように、冷熱供給コンテナ5内部の冷気を、冷熱利用施設11A〜11Gに送風する冷気循環式とすることができる。この場合、冷熱供給コンテナ5には、冷気取出口25、冷気還気口26を設ける。これにより、冷気取出口25から冷熱供給コンテナ5の内部空気が取り出せるようになり、雪氷17の融解による大きな潜熱によって冷却された低温の冷気が得られることになる。そして、この冷気は、融解雪氷に直接触れて多湿であるため、特に凍結を嫌い低温多湿環境が要求される生鮮野菜類の貯蔵に好適に用いることができる。
【0035】
この他、この冷気は、雪氷に直接的に接触することから脱臭機能(特にアンモニア臭)、除塵機能、マイナスイオン効果等、冷房に有用な効果を有する。特に、脱臭機能は、老人福祉施設などの冷房に好適に用いることができるとの報告がなされている。
【0036】
冷熱供給コンテナ5は、図9に示すように、より具体的には排水口27を有した積載床29と、この積載床29の下方に形成され雪氷17の融解水を貯留する融雪水ピット21とを備え、融水ピット21には、少なくとも融水取出口31が設けられている。また、本実施の形態による冷熱供給コンテナ5は、融水取出口31に加え、融水を回収するための還水取入口33を備えているが、融水を雪への散水等のために使用し、融水ピット21へ戻さない場合には、還水取入口33は設けなくともよい。そして、冷熱供給コンテナ5は、側壁の上部に、冷気取出口25が設けられている。
【0037】
この冷熱供給コンテナ5では、融水取出口31と還水取入口33とが、冷熱利用施設11A〜11Gの熱交換ユニット9に接続され、融水ピット21内の融解水23が熱交換ユニット9へ循環供給される。即ち、水循環式の冷熱利用システムとなる。これにより、雪氷17から融解する融解水23によって融水ピット21内の融解水23を常に低温に保ちながら、雪氷17の冷熱を徐々に引き出すことが可能となる。これに加え、水循環式の場合には、冷熱利用施設11A〜11Gの温度・湿度条件に柔軟に対応が可能となる利点が得られる。
【0038】
また、水循環式の即効性向上策として、雪に散水することが考えられる。即ち、散水を熱伝導媒体として、雪からの冷熱の引き出し効率を高めることができる。この場合の散水は、熱交換ユニット9からの還水、又は水道水等の別系統の水(温度が還水よれも高いもの)が好適となる。
【0039】
また、冷熱供給コンテナ5には冷気取出口25が設けられている。したがって、冷熱供給コンテナ5からの冷熱引き出し方法は、水循環式と冷気循環式を兼用することが可能となる。
【0040】
なお、冷熱取り出し後には、雪氷17は融解水23に状態変化するが、この融解水23は、例えば図10に示すように、地下に浸透させ、地下水へ還元させることで、地下水の枯渇を防止することができる。
【0041】
雪氷熱源供給システム1は、冷熱供給コンテナ5が、内部の雪氷量を検出して雪氷量検出信号として送出可能な雪氷量検出手段41(図9参照)を備えている。また、雪氷熱源供給システム1は、集中管理を可能とする機能が備えられている。この集中管理を可能とする機能は、配送指示策定プログラム等を格納したコンピュータを備えた集中管理センタ43(図1参照)によって実現することができる。即ち、集中管理センタ43は、雪氷量検出手段41からの雪氷量検出信号の入力によって、それぞれの冷熱供給コンテナ5からの雪氷量を把握し、この雪氷量検出信号に基づき各冷熱供給コンテナ5の交換時期を算出するとともに、この交換時期に基づいて保管設備7から冷熱利用施設11A〜11Gに対する冷熱供給コンテナ5の配送指示を策定するよう機能する。
【0042】
この際の雪氷量検出手段41としては、融解水の計測手段、温度計測手段、受圧計測手段、コンテナ総重量計測手段、レーザーによる雪氷量検出手段を挙げることができる。融解水の計測手段では、雪氷17は最終的には融けて水になることを利用する。即ち、融雪水量を測れば残っている雪量が算出できる。そして、雪量変化状況からコンテナ交換時期を予測する。例えば、熱交換ユニット9に繋ぐ配管にデジタルで計測できる流量計を設置し、流量を測定及び融解水総量を算出する。
【0043】
また、温度計測手段による方法では、冷熱供給コンテナ5内の温度変化から過去の実測結果等を踏まえて交換時期を予測する。雪が残っていても必要な冷熱エネルギーを取出せない場合には冷熱供給コンテナ5を交換しなくてはならないため、温度計測手段による方法は、このような状況下で特に有効となる。この場合、温度センサーは比較的安価となる。温度計測手段は、例えばコンテナ内面側に数箇所、外側に1箇所デジタルで計測できる温度センサを設置し、温度を計測する。なお、温度センサの数、設置場所は、冷熱供給コンテナ5の大きさ、形状等により適宜設定されるもので、上記した数、場所に限定されるものではない。
【0044】
受圧計測手段による方法では、冷熱供給コンテナ5の内底面の受圧を計測し残雪量から交換時期を予測する。例えば、電気伝導率より圧力を計算できるシート状の受圧センサを冷熱供給コンテナ5の内底面に設置し計測する。
【0045】
コンテナ総重量計測手段による方法では、例えばトラックスケールを冷熱供給コンテナ5の設置箇所に常設し、コンテナ総重量を計測することで残雪量を算出する。
【0046】
また、雪氷量検出手段41からの雪氷量検出信号は、無線通信システム(PHS利用システム等)で定期的に集中管理センタ43に発信する。これにより、配線施工が不要になるとともに、搬送手段13によって移動中の冷熱供給コンテナ5からも雪氷量検出信号の受信を可能にすることができる。
【0047】
集中管理センタ43は、個々の冷熱供給コンテナ5から発信された雪氷量検出信号を集計し、気象予測、施設の利用予測、過去の実測結果等を参考に分析し、コンテナ取替え時期を予測する。そして、個々のコンテナ取替え時期からコンテナ配送計画を立案し、配送指示を策定する。この策定は、配送指示標を出力するもの、或いは配送業務を行う事業所等へ配送指示信号として送出するもの等が挙げられる。配送業務を受けている配送業者は、このコンテナ配送計画に従って、各冷熱利用施設11A〜11Gヘ冷熱供給コンテナ5の所定数を、所定時期に配送することになる。
【0048】
したがって、この雪氷熱源供給システム1によれば、冷熱の需要に応じて必要なときに、必要な量の冷熱源(即ち、雪氷)を冷熱供給コンテナ5によって冷熱利用施設11A〜11Gに供給可能となる。これにより、冷熱利用施設11A〜11Gに、大規模な雪氷庫を構築せずに雪氷による冷熱が利用可能となり、利用者に個別の雪氷庫建造の負担を生じなくして、冷熱利用システムのイニシャルコストが大幅に低減されるようになる。そして、各種イベント等、緊急な冷熱需要や、一過性の冷熱需要に対しても迅速な対応が可能となる。また、必要量の冷熱が常に供給可能となり、雪氷庫の冷熱を使い切った後のバックアップシステムの併設が不要となり、これによってもイニシャルコストが低減可能となる。さらに、堆雪場に保管設備7を構築するので、冷熱源を保冷するための大規模な断熱設備も不要となる。
【0049】
また、それぞれの冷熱供給コンテナ5からの雪氷量検出信号に基づき各冷熱供給コンテナ5の交換時期を算出し、この交換時期に基づいて冷熱供給コンテナ5の配送指示を策定する集中管理センタ43が備えられることで、雪氷の残っている状態での冷熱供給コンテナ5の交換や、冷熱が取り出せなくなる状態が未然に防止可能となる。また、雪氷量検出手段41によって雪氷量が把握できるので、目視確認のために冷熱供給コンテナ5の扉18を開閉する必要がなく、一度雪氷17を収容したなら扉18を開く必要がなく、冷熱供給コンテナ5の保冷性能を高めることができる。これにより、適切な時期での冷熱供給コンテナ5の交換が可能となり、効率的かつ信頼性の高い冷熱利用が実現可能となる。
【0050】
冷熱供給コンテナ5は、図11に示すように、上面や外壁面に、太陽光パネル51を付設してもよい。これにより、冷熱供給コンテナ5の内部に進入する熱を軽減することができる。つまり、太陽光パネル51が断熱板としての作用を有することになる。また、太陽光パネル51は、非降雪時期に利用されるものであってもよい。このようにして得られた電力は、直接的に、或いは蓄電池等に一旦蓄えることで、例えば冷熱供給コンテナ5の冷気送風ファンや、上記したスライド用の温熱ヒータや、照明、無線通信システム(PHS利用システム等)の電源として用いることができる。
【0051】
また、太陽光パネル51は、冷熱供給コンテナ5の外壁面、或いは冷熱供給コンテナ5を覆う断熱構造物の外壁面(図示せず)と平行となるように垂直に付設することで、積雪時における受光面への積雪を防止できるとともに、太陽光の直接光及び堆雪面から反射した反射光の両方を受光可能にして、発電効率を高めることができる。
【0052】
【発明の効果】
以上詳細に説明したように、本発明に係る請求項1記載の雪氷熱源供給システムによれば、堆雪場の雪を雪氷として収容する冷熱供給コンテナと、堆雪場に構築され複数の冷熱供給コンテナを保管する保管設備と、冷熱供給コンテナの冷熱を取り出す熱交換ユニットと、冷熱供給コンテナを保管設備と熱交換ユニットとの間で搬送する搬送手段とを備えたので、冷熱の需要に応じて必要なときに、必要な量の冷熱源(即ち、雪氷)を冷熱供給コンテナによって熱交換ユニットに供給することができる。これにより、熱交換ユニットに、大規模な雪氷庫を構築せずに雪氷による冷熱を利用できるようにし、利用者に個別の雪氷庫建造の負担を生じなくして、冷熱利用システムのイニシャルコストを大幅に低減することができる。そして、各種イベント等、緊急な冷熱需要や、一過性の冷熱需要に対しても迅速に対応することができる。また、必要量の冷熱が常に供給可能となるので、雪氷庫の冷熱を使い切った後のバックアップシステムを併設する必要がなくなり、これによってもイニシャルコストを低減することができる。さらに、堆雪場に保管設備を構築するので、冷熱源を保冷するための大規模な断熱設備を不要にすることもできる。
【0053】
請求項2記載の雪氷熱源供給システムによれば、冷熱供給コンテナが、排水口を有した積載床と、積載床の下方に形成され雪氷の融解水を貯留する融水ピットとを備え、この融水ピットには融水取出口が設けられているので、冷熱供給コンテナの融水取出口を熱交換ユニットに接続して、融水ピット内の融解水を熱交換ユニットへ供給することができ、雪氷から融解する融解水によって融水ピット内の水を低温に保ちながら、雪氷の冷熱を徐々に引き出すことができる。これに加え、水循環式の場合には、熱交換ユニットの温度・湿度条件に柔軟に対応が可能となる利点が得られる。
【0054】
請求項3記載の雪氷熱源供給システムによれば、冷熱供給コンテナが、冷気取出口を備えているので、この冷気取出口から内部空気を取り出すことで、雪氷の融解により得られる大きな潜熱によって冷却された低温の冷気を得ることができる。そして、この冷気は、融解雪氷に直接触れて多湿であるため、特に凍結を嫌い低温多湿環境が要求される生鮮野菜類の貯蔵に好適に用いることができる。この他、この冷気は、雪氷に直接的に接触することから脱臭機能(特にアンモニア臭)、除塵機能、マイナスイオン効果等、冷房に有用な効果を有する。
【0055】
請求項4記載の雪氷熱源供給システムによれば、保管設備が、冷熱供給コンテナに収容される堆雪場の雪を高品質な雪氷へ加工する雪加工装置を備えているので、例えば非圧縮のまま雪を収容する場合に比べ、所定密度に圧縮して容積効率を高め、冷熱供給コンテナ1台当たりの冷熱容量を増大させることができる。
【0056】
請求項5記載の雪氷熱源供給システムによれば、冷熱供給コンテナが、雪氷量検出手段を備え、それぞれの冷熱供給コンテナからの雪氷量検出信号が入力されこの雪氷量検出信号に基づき各冷熱供給コンテナの交換時期を算出するとともに、この交換時期に基づいて保管設備からの冷熱利用施設に対する冷熱供給コンテナの配送指示を策定する集中管理を可能とする機能を備えたので、雪氷の残っている状態での冷熱供給コンテナの交換や、雪氷が無くなり冷熱が取り出せなくなる状態を防止でき、適切な時期での冷熱供給コンテナの交換が可能となって、効率的かつ信頼性の高い冷熱利用を実現することができる。
【図面の簡単な説明】
【図1】本発明に係る雪氷熱源供給システムの構成を概略的に表した構成図である。
【図2】雪氷の搬入例1を表す説明図である。
【図3】雪氷の搬入例2を表す説明図である。
【図4】傾斜床を有した冷熱供給コンテナの説明図である。
【図5】融雪水循環熱交換方式に冷熱供給コンテナが用いられた場合の説明図である。
【図6】融雪水ピット一体構造の冷熱供給コンテナを表した説明図である。
【図7】融雪水非分離構造の冷熱供給コンテナを表した説明図である。
【図8】冷気循環方式に冷熱供給コンテナが用いられた場合の説明図である。
【図9】冷熱供給コンテナの詳細構造を表した斜視図である。
【図10】融雪水の地下水還元状況を表した説明図である。
【図11】太陽光発電パネルを付設した冷熱供給コンテナの側面図である。
【符号の説明】
1…雪氷熱源供給システム、3…堆雪場、5…冷熱供給コンテナ(冷熱供給容器)、7…保管設備、9…熱交換ユニット、13…搬送手段、17…雪氷、21…融水ピット、23…融解水、25…冷気取出口、27…排水口、29…積載床、31融水取出口、41…雪氷量検出手段、43…集中管理センタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a snow and ice heat source supply system that can efficiently and inexpensively use the cold heat of snow.
[0002]
[Prior art]
In recent years, a cold energy utilization system has been proposed for effectively utilizing environmentally friendly unused energy using snow. In urban areas, the difference in seasonal demand, which significantly increases the amount of electricity used for building air conditioning in the summer, tends to become larger, and office buildings in cold districts also use a considerable amount of cold in the summer. . Therefore, there is a cold heat storage method that uses snow to level the energy throughout the year by storing snow efficiently in the winter, storing it until the summer, and allocating this unused energy to the cold demand in the summer. Is provided.
[0003]
Prior art document information related to the invention of this application includes the following.
[Patent Document 1]
JP 2000-230793 A
[Patent Document 2]
JP-A-7-305873
[0004]
The snow-based cold heat storage method and apparatus disclosed in Patent Document 1 store a snow in a heat storage tank provided in an underground space in winter and store it until summer, and in the summer, a solid substance mixed into snow The feature is characterized in that the snowmelt water from which the water is removed with a filter is sent to a heat exchanger on the load side to take out cold heat. Also, a heat storage tank that is installed in the underground space and stores snow in the winter and stores it until the summer, a snowmelt water extraction pipe that is provided in the heat storage tank and communicates with the heat exchanger on the load side, and this snowmelt water extraction pipe It is characterized by having a filter provided between the heat storage tank and a cold water return pipe connected to the load-side heat exchanger.
[0005]
According to this snow-use cold heat storage method and its device, snow is efficiently stored in the winter, stored until summer, and this unused energy is used for summer cold demand. It is said that leveling can be achieved and increase in energy costs can be suppressed.
[0006]
In addition, the heat storage / heat exchange system using snow utilization and natural icing disclosed in Patent Document 2 described above stores snow that has fallen in winter in a container of a certain standard and has a small amount of heat transfer with the outside. Store in room and store until summer. In summer, the necessary amount of snow is taken out according to the demand for cooling and refrigeration and introduced into the heat storage tank. Heat exchange in the heat storage tank blows outside air directly to the floating snow, lowers the temperature, passes a pipe directly under the road surface exposed to direct sunlight, and distributes a mixed fluid of snow and water inside it , Using a conventional chiller unit. In order to transport snow from one snow storage chamber to a plurality of heat storage tanks, the melting state of snow in each heat storage tank is monitored by a sensor, and the transport amount is changed based on the result.
[0007]
According to this heat storage / heat exchange system, effects such as peak demand reduction, energy saving, and cooling cost reduction are obtained.
[0008]
[Problems to be solved by the invention]
However, the snow-based cold heat storage method and apparatus disclosed in Patent Document 1 need to be constructed by attaching a heat storage tank that stores a large amount of snow until the summer, and is disclosed in Patent Document 2 described above. Even in the heat storage and heat exchange system that uses snow and natural icing, a snow storage room must be installed in the heat storage tank. For this reason, a huge heat storage tank or snow storage room (snow ice storage) with a heat insulation structure must be built for the cold heat utilization facility, and it is difficult to secure it, and the burden of building a snow ice storage for each user is difficult. There was a disadvantage that the initial cost of the cold energy utilization system increased significantly. And since the cold energy utilization facility and the snow and ice storage are integrated, it has been difficult to respond to urgent cold heat demand and transient cold heat demand such as various events. In addition, there is a limit to the amount of snow that can be stored in the snow ice warehouse, so snow storage may be lost due to changes in the climate and demand, which may be a fatal problem in facilities such as agricultural product storage. For this reason, it is necessary to add a backup system after exhausting the cold heat of the snow ice store, which also increases the initial cost.
The present invention has been made in view of the above circumstances, and it is possible to use cold heat from snow and ice without constructing a large-scale snow ice warehouse, and for urgent cold heat demand and temporary cold heat demand such as various events. In addition, we will provide a snow and ice heat source supply system that can respond quickly and eliminate the need for a backup system, reducing the initial cost of the cold energy utilization system, and realizing efficient and reliable cold energy utilization. For the purpose.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the snow and ice heat source supply system according to claim 1 of the present invention is constructed in the snow storage area, a cold supply container in which the snow in the snow storage area is housed as snow ice and insulated from the outside, and the snow storage area. A storage facility for storing a plurality of the cold heat supply containers, a heat exchange unit to which the cold heat supply containers are connected and heat-exchanging with the snow and ice contained in the cold heat supply containers to extract cold heat, and the heat exchange units from the storage facilities And a transport means for transporting the cold supply container containing snow and ice and collecting the used cold supply container from the heat exchange unit to the storage facility.
[0010]
In this snow and ice heat source supply system, a necessary amount of the cold heat source (that is, snow and ice) can be supplied to the heat exchange unit by the cold heat supply container when necessary according to the demand for cold heat. This makes it possible to use cold heat from snow and ice without constructing a large-scale snow and ice warehouse, so that the burden of individual snow and ice storage construction is not imposed on the user, and the initial cost of the cold energy utilization system is greatly reduced. Become. And it becomes possible to respond promptly to urgent cold / hot demand such as various events. In addition, the required amount of cold energy can always be supplied, and it is not necessary to provide a backup system after exhausting the cold heat of the snow ice store, which also reduces the initial cost. Furthermore, since a storage facility is constructed in the snow yard, a large-scale heat insulation facility for keeping the cold heat source cold becomes unnecessary.
[0011]
The snow and ice heat source supply system according to claim 2 is the snow and ice heat source supply system according to claim 1, wherein the cold heat supply container is provided with a loading floor having a drain outlet, and melted water of snow and ice formed below the loading floor. A melt pit for storage, wherein the melt pit is provided with a melt outlet for taking out the melt water.
[0012]
In this snow and ice heat source supply system, the melt water outlet of the cold heat supply container is connected to the heat exchange unit of the cold heat utilization facility, and the molten water in the melt water pit is supplied to the heat exchange unit. Accordingly, it is possible to gradually draw out the cold heat of the snow ice while keeping the water in the melt pit at a low temperature by the melt water melted from the snow ice. In addition, in the case of the water circulation type, there is an advantage that it is possible to flexibly cope with the temperature and humidity conditions of the heat exchange unit.
[0013]
The snow and ice heat source supply system according to claim 3 is the snow and ice heat source supply system according to claim 2, wherein the cold heat supply container includes a cold air outlet.
[0014]
In this snow and ice heat source supply system, the internal air of the cold heat supply container can be taken out from the cold air outlet, and low-temperature cold air cooled by large latent heat due to melting of snow and ice can be obtained. And since this cold air is in direct contact with the melted snow and ice and is humid, it can be suitably used for storing fresh vegetables that are particularly resistant to freezing and require a low temperature and high humidity environment. In addition, since this cold air is in direct contact with snow and ice, it has useful effects for cooling such as a deodorizing function (particularly ammonia odor), a dust removing function, and a negative ion effect.
[0015]
The snow and ice heat source supply system according to claim 4 is the snow and ice heat source supply system according to claim 1 or 2, wherein the storage facility processes the snow in the snow yard stored in the cold heat supply container into high-quality snow and ice. A snow processing device is provided.
[0016]
In this snow and ice heat source supply system, the snow in a naturally accumulated state is compressed to a predetermined density, for example, by a snow processing device, and a larger amount of snow is stored than in the case of storing snow without compression, and the volume efficiency of the cold heat supply container is reduced. Increased, the cold capacity per cold supply container increases. Further, by adjusting the compression ratio of the snow processing apparatus, the cooling / heating capacity per one cooling / heating supply container can be adjusted.
[0017]
The snow and ice heat source supply system according to claim 5 is the snow and ice heat source supply system according to any one of claims 1 to 4, wherein the cold heat supply container detects the amount of snow and ice in the interior thereof as a snow and ice amount detection signal. Snow ice quantity detection means capable of being sent out, the snow ice quantity detection signal from each of the cold and cold supply containers is input, and the replacement time of each cold and cold supply container is calculated based on the snow and ice quantity detection signal and based on the replacement time It is provided with a function that enables centralized management to formulate a delivery instruction of the cold supply container from the storage facility to the heat exchange unit.
[0018]
In this snow and ice heat source supply system, it is possible to perform centralized management by calculating the replacement time of each cold heat supply container based on the detection signal of the amount of snow and ice from each cold heat supply container and formulating the delivery instruction of the cold heat supply container based on this replacement time By providing the function as described above, it is possible to prevent the cold heat supply container from being exchanged in a state where snow and ice remain, and the state where the cold heat cannot be taken out. In addition, since the amount of snow and ice can be ascertained by means of detecting the amount of snow and ice, there is no need to open and close the door of the cooling / heating supply container for visual confirmation. Can be increased. As a result, the cold supply container can be replaced at an appropriate time, and efficient and highly reliable use of cold heat can be realized.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of a snow and ice heat source supply system according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a configuration diagram schematically showing the configuration of a snow and ice heat source supply system according to the present invention, FIG. 2 is an explanatory diagram showing a snow ice carry-in example 1, FIG. 3 is an explanatory diagram showing a snow and ice carry-in example 2, FIG. Is an explanatory diagram of a cold heat supply container having an inclined floor, FIG. 5 is an explanatory diagram when the cold heat supply container is used in the snowmelt water circulation heat exchange system, and FIG. 6 is an explanatory diagram showing a cold heat supply container with a snowmelt water pit integrated structure FIG. 7 is an explanatory diagram showing a cold supply container having a snowmelt water non-separation structure, FIG. 8 is an explanatory view when the cold supply container is used in a cold air circulation system, and FIG. 9 shows a detailed structure of the cold supply container. FIG. 10 is an explanatory diagram showing the groundwater reduction status of snowmelt water, and FIG. 11 is a side view of a cold / heat supply container provided with a photovoltaic power generation panel.
[0020]
As shown in FIG. 1, a snow and ice heat source supply system 1 according to the present embodiment includes a cold heat supply container (for example, cold heat) in which the snow in the snow yard 3 is housed as snow ice and the inside is insulated from the outside through a heat insulating structure. Supply container) 5, a storage facility 7 that is constructed in the snow yard 3 and stores a plurality of cold supply containers 5, and a cold supply container 5 is connected to the snow ice contained in the cold supply container 5 to exchange heat. While transporting the cold energy supply facility 5 containing snow and ice from the storage facility 7 to the cold energy utilization facilities 11A to 11G, and the cold energy utilization facilities 11A, 11B, 11C, 11D, 11E, 11F, and 11G having the heat exchange unit 9 to be taken out , And transporting means 13 for recovering the cold heat supply container 5 used for cold heat from the cold heat utilization facilities 11A to 11G to the storage facility 7.
[0021]
In the present embodiment, the case where the cold energy supply container 5 is used as the cold energy supply container will be described as an example. However, the cold energy supply container is a general container (container), and particularly cargo. It is not limited to large containers used for transportation.
[0022]
Further, in the present embodiment, the snow and ice heat source supply system will be described by taking, as an example, the cold / heat supply container 5 that is thermally insulated from the outside through a heat insulation structure using a heat insulation panel or the like. The heat source supply system may be a method in which a cold heat supply container having an outer heat insulation structure on the cold heat utilization facility side and having no heat insulation structure therein is accommodated. With such a system configuration, the weight of the cold supply container can be reduced, and the transportability can be improved.
[0023]
Furthermore, in the present embodiment, the snow and ice heat source supply system will be described as an example in which the cold heat utilization facilities 11A to 11G include the heat exchange unit 9, but the heat exchange unit 9 is not necessarily included in the cold heat utilization facilities 11A to 11G. It is not necessary to be provided and may be provided separately from the cold energy utilization facilities 11A to 11G.
[0024]
In addition to the method of storing snow in a state where it is packed in the cold energy supply container 5 as used in the present embodiment, the storage of snow is stocked in a large amount in the snow yard 3 and stored in the cold energy supply container 5 every time it is carried out. There is a method of stuffing. According to the latter storage method, the freedom degree of the storage place of the used cold-heat supply container 5 can be raised.
[0025]
The storage facility 7 is preferably provided with a snow processing device that processes the snow in the snow storage 3 accommodated in the cold heat supply container 5 into high-quality snow ice. Here, “high quality snow and ice” refers to snow and ice having high energy (cold heat) density, cold sustainability, and stable cold supply capability.
As a function of the snow processing apparatus for obtaining such high-quality snow ice, there is, for example, a snow compression function. This snow processing device compresses the snow in a naturally accumulated state to a predetermined density, and can store a larger amount of snow than when storing snow without compression. Thereby, the volumetric efficiency of the cold energy supply container 5 is enhanced, and the cold energy capacity per one cold energy supply container is increased. Further, by adjusting the compression ratio of the snow processing device, the cooling / heating capacity per cooling / heating container can be adjusted. As the compression power in this case, not only a mechanical compression device but also human power and gravity can be used.
[0026]
Moreover, as a function of the snow processing apparatus for obtaining high quality snow and ice, the following can be mentioned in addition to the above compression function. In other words, it has a function to add sustainability to snow to enhance sustainability or stability, a function to further cool the snow to increase sustainability, and a process to open a vent hole in the snow for direct cooling type. And the like (for example, deodorizing property, dust removing property, generation of negative ions), a function of adding water to snow to form a sherbet for stable supply, and the like.
[0027]
The snow ice packed in the cold energy supply container 5 in this way is conveyed to the cold energy utilization facilities 11 </ b> A to 11 </ b> G via the conveying means 13. As the transport means 13, a ship such as a truck or the like, a railway vehicle, or the like can be used.
[0028]
The cold supply container 5 packed with snow and ice is stored in the storage facility 7 in the snow yard 3 and is transported by the transport means 13 to the cold heat supply relay base 15 secured in the vicinity of the cold heat utilization facilities 11A to 11G. After that, it may be placed and stored and used as a relay base. At this time, it is desirable that the cold supply relay base 15 effectively uses an idle land such as an underpass as an accommodation space without constructing a new structure in order to suppress the construction cost.
[0029]
The snow and ice heat source supply system 1 can be used for cooling, low-temperature storage, low-temperature aging, use of a low-temperature environment such as low-temperature sterilization / low-temperature treatment, use of low-temperature water, and direct use of snow (entertainment, exhibition). For example, the cold-use facilities 11A to 11G that specifically use these facilities will attract large-scale shopping malls, food / grocery supermarkets, DIY commercial facilities 11A, museums 11B, private factories 11C, communities, and recreation spaces In addition to the facility 11D, agricultural products and marine products, there are a storage facility 11E for dairy products and flowers, a facility 11F that uses low-temperature aging techniques such as liquor, and a culture facility 11G such as sturgeon and rainbow trout. In addition, although illustration is abbreviate | omitted, a common house, the cooling of a public facility, an aquarium, a zoo, etc. can be mentioned.
[0030]
As shown in FIG. 2, as a method of carrying snow and ice to the cold energy utilization facilities 11 </ b> A to 11 </ b> G, the cold heat supply container 5 a newly carried in is replaced with a used cold heat supply container 5 b, and the used cold heat supply container 5 a is used. As shown in FIG. 3, only the snow and ice of the new cold heat supply container 5a that has been carried in is supplied to the used cold heat supply container 5b, and the used cold heat supply container 5a is recovered. Or the like.
[0031]
In the case of the method of supplying only snow and ice as shown in FIG. 3, the snow and ice 17 that has become a block as shown in FIG. 4 is slid by the power of a machine or the like (feed mechanism such as a fluid pressure cylinder or rack and pinion). And supply. Moreover, when employ | adopting such a slide supply system, let the floor part of the cold-heat supply container 5 be a slippery smooth surface. Furthermore, it is also possible to form a sloping floor 19 having a downward slope in the supply direction and open the door 18 so as to slide by the dead weight of the snow and ice 17.
[0032]
In addition, a thermal heater (not shown) that melts only the bottom surface of the snow ice 17 may be disposed on the floor portion of the cold heat supply container 5 in order to make the snow ice 17 easy to slide. In addition, the power supply in this case is good also as obtaining from the solar panel mentioned later attached to the outer wall of the cold-heat supply container 5. FIG. If such a heating heater melting method using a solar panel is adopted, it is possible to make the movement of the snow and ice 17 easier without using another power supply facility.
[0033]
The extraction of the cold heat from the cold heat supply container 5 may be a water circulation type in which snowmelt water is circulated through the heat exchange unit 9 to exchange heat as shown in FIG. In this case, as shown in FIG. 6, the melted water is stored separately from the snow ice 17 and provided with a melt pit 21 at the bottom of the container. As shown in FIG. 23 and the snow and ice 17 can be mixed, and any one of the snowmelt water non-separation structures can be used.
[0034]
Moreover, taking out cold heat can be not only the melted water 23 but also a cold air circulation type in which cold air inside the cold heat supply container 5 is blown to the cold heat utilization facilities 11A to 11G as shown in FIG. In this case, the cold supply container 5 is provided with a cold air outlet 25 and a cold air return port 26. As a result, the internal air of the cold supply container 5 can be taken out from the cold air outlet 25, and low-temperature cold air cooled by the large latent heat due to melting of the snow ice 17 can be obtained. And since this cold air is in direct contact with the melted snow and ice and is humid, it can be suitably used for storing fresh vegetables that are particularly resistant to freezing and require a low temperature and high humidity environment.
[0035]
In addition, since this cold air is in direct contact with snow and ice, it has useful effects for cooling such as a deodorizing function (particularly ammonia odor), a dust removing function, and a negative ion effect. In particular, it has been reported that the deodorizing function can be suitably used for cooling a welfare facility for the elderly.
[0036]
As shown in FIG. 9, the cold heat supply container 5 is more specifically a loading floor 29 having a drainage port 27, and a snow melting water pit 21 that is formed below the loading floor 29 and stores molten water of the snow ice 17. The melt pit 21 is provided with at least a melt outlet 31. Moreover, although the cold-power supply container 5 by this Embodiment is provided with the return water inlet 33 for collect | recovering molten water in addition to the molten water inlet 31, it is used for sprinkling molten water to snow etc. When used and not returned to the molten water pit 21, the return water intake 33 may not be provided. The cold heat supply container 5 is provided with a cold air outlet 25 at the upper part of the side wall.
[0037]
In the cold heat supply container 5, the molten water outlet 31 and the return water inlet 33 are connected to the heat exchange unit 9 of the cold heat utilization facilities 11 </ b> A to 11 </ b> G, and the molten water 23 in the molten water pit 21 is replaced with the heat exchange unit 9. Circulated to That is, it becomes a water circulation type cold heat utilization system. Thereby, it is possible to gradually draw out the cold heat of the snow ice 17 while keeping the melt water 23 in the melt pit 21 at a low temperature by the melt water 23 melted from the snow ice 17. In addition, in the case of the water circulation type, there is an advantage that it is possible to flexibly cope with the temperature / humidity conditions of the cold energy utilization facilities 11A to 11G.
[0038]
In addition, it is conceivable to sprinkle the snow as a measure to improve the water circulation type immediate effect. That is, the efficiency of extracting cold heat from snow can be increased by using water spray as a heat conduction medium. The water spray in this case is preferably returned water from the heat exchange unit 9 or water of another system such as tap water (having a higher temperature than the returned water).
[0039]
Further, the cold heat supply container 5 is provided with a cold air outlet 25. Therefore, the method for drawing out heat from the cold heat supply container 5 can be used both as a water circulation type and a cold air circulation type.
[0040]
In addition, after taking out cold heat, the snow and ice 17 changes in state to the melted water 23. As shown in FIG. 10, for example, the melted water 23 penetrates into the ground and is reduced to the groundwater to prevent the groundwater from being depleted. can do.
[0041]
The snow and ice heat source supply system 1 includes a snow and ice amount detection means 41 (see FIG. 9) in which the cold and heat supply container 5 can detect the amount of snow and ice in the interior and send it as a snow and ice amount detection signal. In addition, the snow and ice heat source supply system 1 has a function that enables centralized management. The function enabling this centralized management can be realized by the centralized management center 43 (see FIG. 1) having a computer storing a delivery instruction formulation program and the like. That is, the central management center 43 grasps the amount of snow and ice from each cold / heat supply container 5 based on the input of the snow and ice amount detection signal from the snow and ice amount detection means 41, and based on this snow and ice amount detection signal, In addition to calculating the replacement time, the storage device 7 functions to formulate a delivery instruction of the cold heat supply container 5 from the storage facility 7 to the cold heat utilization facilities 11A to 11G based on the replacement time.
[0042]
Examples of the snow / ice amount detecting means 41 at this time include a melting water measuring means, a temperature measuring means, a pressure receiving measuring means, a container total weight measuring means, and a snow / ice amount detecting means using a laser. The melt water measurement means uses the fact that the snow and ice 17 eventually melts into water. That is, the remaining amount of snow can be calculated by measuring the amount of snowmelt water. Then, the container replacement time is predicted from the amount of snow change. For example, a flow meter that can be digitally measured is installed in a pipe connected to the heat exchange unit 9, and the flow rate is measured and the total amount of molten water is calculated.
[0043]
Further, in the method using the temperature measuring means, the replacement time is predicted from the temperature change in the cold energy supply container 5 based on the past measurement results. If the necessary cold energy cannot be taken out even if snow remains, the cold heat supply container 5 must be replaced. Therefore, the method using the temperature measuring means is particularly effective under such circumstances. In this case, the temperature sensor is relatively inexpensive. The temperature measuring means, for example, installs temperature sensors that can be measured digitally at several locations on the inner surface side of the container and one location on the outer side, and measures the temperature. In addition, the number of temperature sensors and an installation location are suitably set by the magnitude | size, shape, etc. of the cold-heat supply container 5, and are not limited to an above-described number and location.
[0044]
In the method using the pressure receiving measuring means, the pressure receiving pressure on the inner bottom surface of the cold energy supply container 5 is measured, and the replacement time is predicted from the amount of remaining snow. For example, a sheet-like pressure sensor capable of calculating pressure from electric conductivity is installed on the inner bottom surface of the cold heat supply container 5 and measured.
[0045]
In the method using the total container weight measuring means, for example, a truck scale is permanently installed at the installation location of the cold heat supply container 5, and the remaining snow amount is calculated by measuring the total container weight.
[0046]
Further, the snow / ice amount detection signal from the snow / ice amount detecting means 41 is periodically transmitted to the central management center 43 by a wireless communication system (PHS use system or the like). Thereby, wiring construction becomes unnecessary and reception of the snow / ice amount detection signal from the cold / heat supply container 5 that is moving by the transport means 13 can be enabled.
[0047]
The central management center 43 aggregates the snow / ice amount detection signals transmitted from the individual cold / heat supply containers 5 and analyzes them with reference to weather prediction, facility use prediction, past measurement results, etc., and predicts the container replacement time. Then, a container delivery plan is prepared from each container replacement time, and a delivery instruction is formulated. This formulation includes one that outputs a delivery instruction mark or one that is sent as a delivery instruction signal to a business establishment that performs delivery work. The delivery company receiving the delivery work delivers a predetermined number of the cold energy supply containers 5 to each of the cold energy utilization facilities 11A to 11G at a predetermined time according to this container distribution plan.
[0048]
Therefore, according to the snow and ice heat source supply system 1, a necessary amount of the cold heat source (ie, snow and ice) can be supplied to the cold heat utilization facilities 11A to 11G by the cold heat supply container 5 when necessary according to the cold demand. Become. As a result, it becomes possible to use the cold heat from snow and ice without constructing a large-scale snow ice storage in the cold heat utilization facilities 11A to 11G, and the burden of individual snow ice storage construction on the user does not occur, and the initial cost of the cold heat utilization system Is greatly reduced. And it becomes possible to respond promptly to urgent cold / hot demand such as various events. In addition, the required amount of cold energy can always be supplied, and it is not necessary to provide a backup system after exhausting the cold heat of the snow ice store, which also reduces the initial cost. Furthermore, since the storage facility 7 is constructed in the snow yard, a large-scale heat insulation facility for keeping the cold heat source cold is also unnecessary.
[0049]
Further, the central management center 43 that calculates the replacement time of each cold / heat supply container 5 based on the snow / ice amount detection signal from each cold / heat supply container 5 and formulates a delivery instruction for the cold supply container 5 based on the replacement time is provided. As a result, it is possible to prevent the cold heat supply container 5 from being replaced in a state where snow and ice remain, and the state in which cold heat cannot be taken out. Further, since the amount of snow and ice can be grasped by the snow and ice amount detecting means 41, it is not necessary to open and close the door 18 of the cold / hot supply container 5 for visual confirmation, and once the snow and ice 17 is accommodated, it is not necessary to open the door 18 and The cooling performance of the supply container 5 can be enhanced. Thereby, the cold supply container 5 can be replaced at an appropriate time, and efficient and highly reliable use of cold heat can be realized.
[0050]
As shown in FIG. 11, the cold heat supply container 5 may be provided with a solar panel 51 on an upper surface or an outer wall surface. Thereby, the heat which approachs the inside of the cold heat supply container 5 can be reduced. That is, the solar panel 51 has an action as a heat insulating plate. Moreover, the solar panel 51 may be used during a non-snowfall period. The electric power obtained in this manner is stored directly or directly in a storage battery or the like, for example, a cold air blower fan of the cold supply container 5, a thermal heater for sliding, lighting, a wireless communication system (PHS), or the like. It can be used as a power source for use systems and the like.
[0051]
Moreover, the solar panel 51 is attached vertically so as to be parallel to the outer wall surface of the cold heat supply container 5 or the outer wall surface (not shown) of the heat insulation structure covering the cold heat supply container 5, so that it can be used during snow accumulation. Snow accumulation on the light receiving surface can be prevented, and both direct light of sunlight and reflected light reflected from the snow accumulation surface can be received, thereby improving power generation efficiency.
[0052]
【The invention's effect】
As described above in detail, according to the snow and ice heat source supply system according to claim 1 of the present invention, a cold heat supply container that houses the snow in the snow yard as snow ice, and a plurality of cold heat supplies constructed in the snow yard. Since it has a storage facility for storing containers, a heat exchange unit that extracts the cold energy of the cold energy supply container, and a conveying means for conveying the cold energy supply container between the storage facility and the heat exchange unit, according to the demand for cold energy When needed, the required amount of cold source (ie, snow and ice) can be supplied to the heat exchange unit by the cold supply container. As a result, the heat exchange unit can use the heat generated by snow and ice without constructing a large-scale snow and ice warehouse, so that the burden on individual snow and ice storage construction is not imposed on the user, and the initial cost of the cold energy utilization system is greatly increased. Can be reduced. And it can respond quickly to urgent cold / hot demands such as various events and transient cold / hot demands. In addition, since the required amount of cold energy can always be supplied, there is no need to provide a backup system after the cold ice in the snow ice warehouse has been used up, thereby reducing the initial cost. Furthermore, since the storage facility is constructed in the snow yard, it is possible to eliminate the need for a large-scale heat insulation facility for keeping the cold heat source cold.
[0053]
According to the snow and ice heat source supply system according to claim 2, the cold heat supply container includes a loading floor having a drainage port and a melt pit formed below the loading floor and storing melted water of snow and ice. Since the water pit is provided with a melt outlet, the melt outlet of the cold supply container can be connected to the heat exchange unit to supply the melt water in the melt pit to the heat exchange unit. While keeping the water in the melt pit at a low temperature by the melted water that melts from the snow and ice, the cold heat of the snow and ice can be gradually drawn out. In addition, in the case of the water circulation type, there is an advantage that it is possible to flexibly cope with the temperature and humidity conditions of the heat exchange unit.
[0054]
According to the snow and ice heat source supply system of the third aspect, since the cold heat supply container includes the cold air outlet, the internal air is taken out from the cold air outlet and is cooled by the large latent heat obtained by melting the snow and ice. A low temperature cold can be obtained. And since this cold air is in direct contact with the melted snow and ice and is humid, it can be suitably used for storing fresh vegetables that are particularly resistant to freezing and require a low temperature and high humidity environment. In addition, since this cold air is in direct contact with snow and ice, it has useful effects for cooling such as a deodorizing function (particularly ammonia odor), a dust removing function, and a negative ion effect.
[0055]
According to the snow and ice heat source supply system of claim 4, the storage facility includes a snow processing device that processes the snow in the snow storage area accommodated in the cold heat supply container into high-quality snow and ice. Compared to storing snow as it is, it is possible to increase the volumetric efficiency by compressing to a predetermined density, and to increase the cooling capacity per cooling supply container.
[0056]
According to the snow and ice heat source supply system of claim 5, the cold / heat supply container includes snow / ice amount detection means, and the snow / ice amount detection signal from each of the cold / heat supply containers is inputted, and each of the cold / heat supply containers is based on the snow / ice amount detection signal. It has a function that enables centralized management to calculate the delivery instruction of the cold supply container from the storage facility to the cold use facility based on this exchange time, so that snow and ice remain It is possible to prevent the exchange of cold heat supply containers and the situation where snow and ice are lost and cold heat cannot be taken out, and it is possible to replace the cold heat supply containers at an appropriate time, realizing efficient and reliable use of cold heat it can.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing the configuration of a snow and ice heat source supply system according to the present invention.
FIG. 2 is an explanatory diagram showing a snow ice delivery example 1;
FIG. 3 is an explanatory diagram illustrating a second example of carrying snow and ice.
FIG. 4 is an explanatory diagram of a cold heat supply container having an inclined floor.
FIG. 5 is an explanatory diagram when a cold supply container is used in the snowmelt water circulation heat exchange method.
FIG. 6 is an explanatory view showing a cold supply container having a snowmelt water pit integrated structure.
FIG. 7 is an explanatory view showing a cold supply container having a snowmelt water non-separation structure.
FIG. 8 is an explanatory diagram when a cold supply container is used in the cold air circulation method.
FIG. 9 is a perspective view showing a detailed structure of a cold energy supply container.
FIG. 10 is an explanatory diagram showing the groundwater reduction status of snowmelt water.
FIG. 11 is a side view of a cold supply container provided with a photovoltaic power generation panel.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Snow and ice heat source supply system, 3 ... Snow deposit field, 5 ... Cold-heat supply container (cold-heat supply container), 7 ... Storage equipment, 9 ... Heat exchange unit, 13 ... Conveyance means, 17 ... Snow ice, 21 ... Melt water pit, DESCRIPTION OF SYMBOLS 23 ... Molten water, 25 ... Cold air outlet, 27 ... Drain outlet, 29 ... Loading floor, 31 Molten water outlet, 41 ... Snow ice amount detection means, 43 ... Central control center

Claims (5)

堆雪場の雪が雪氷として内部に収容され外部と断熱される冷熱供給容器と、
前記堆雪場に構築され複数の該冷熱供給容器を保管する保管設備と、
前記冷熱供給容器が接続され該冷熱供給容器に収容された雪氷と熱交換して冷熱を取り出す熱交換ユニットと、
前記保管設備から該熱交換ユニットへ、雪氷を収容した前記冷熱供給容器を搬送するとともに、前記熱交換ユニットから前記保管設備へ使用済みの前記冷熱供給容器を回収する搬送手段と
を具備したことを特徴とする雪氷熱源供給システム。
A cold supply container in which the snow in the snow yard is housed as snow ice and insulated from the outside;
A storage facility that is constructed in the snow yard and stores a plurality of the cold supply containers;
A heat exchange unit to which the cold supply container is connected and heat exchange with snow and ice contained in the cold supply container to take out the cold heat;
Transporting the cold supply container containing snow and ice from the storage facility to the heat exchange unit, and transporting means for collecting the used cold supply container from the heat exchange unit to the storage facility. Features a snow and ice heat source supply system.
請求項1記載の雪氷熱源供給システムにおいて、
前記冷熱供給容器が、排水口を有した積載床と、該積載床の下方に形成され雪氷の融解水を貯留する融水ピットとを備え、
前記融水ピットには、前記融解水を取り出す融水取出口が設けられていることを特徴とする雪氷熱源供給システム。
The snow and ice heat source supply system according to claim 1,
The cold heat supply container includes a loading floor having a drain outlet, and a melt pit that is formed below the loading floor and stores melted water of snow and ice,
A snow and ice heat source supply system, wherein the melt pit is provided with a melt outlet for taking out the melt.
請求項2記載の雪氷熱源供給システムにおいて、
前記冷熱供給容器が、冷気取出口を備えていることを特徴とする雪氷熱源供給システム。
The snow and ice heat source supply system according to claim 2,
The snow and ice heat source supply system, wherein the cold heat supply container includes a cold air outlet.
請求項1又は2記載の雪氷熱源供給システムにおいて、
前記保管設備が、前記冷熱供給容器に収容される堆雪場の雪を、高品質な雪氷へ加工する雪加工装置を備えていることを特徴とする雪氷熱源供給システム。
In the snow and ice heat source supply system according to claim 1 or 2,
The snow and ice heat source supply system, wherein the storage facility includes a snow processing device that processes the snow in the snow yard stored in the cold heat supply container into high-quality snow and ice.
請求項1〜請求項4のいずれか1項記載の雪氷熱源供給システムにおいて、
前記冷熱供給容器が、内部の雪氷量を検出して雪氷量検出信号として送出可能な雪氷量検出手段を備え、
それぞれの前記冷熱供給容器からの雪氷量検出信号が入力され該雪氷量検出信号に基づき各冷熱供給容器の交換時期を算出するとともに該交換時期に基づいて前記保管設備から前記熱交換ユニットに対する前記冷熱供給容器の配送指示を策定する集中管理を可能とする機能を備えたことを特徴とする雪氷熱源供給システム。
In the snow and ice heat source supply system according to any one of claims 1 to 4,
The cold heat supply container includes a snow ice amount detection means capable of detecting the amount of snow and ice inside and sending it as a snow ice amount detection signal,
A snow / ice amount detection signal from each of the cold / heat supply containers is input, and a replacement time of each of the cold / heat supply containers is calculated based on the snow / ice amount detection signal, and the cold heat from the storage facility to the heat exchange unit is calculated based on the replacement time. A snow and ice heat source supply system having a function capable of centralized management for formulating delivery instructions for supply containers.
JP2003005470A 2003-01-14 2003-01-14 Snow and ice heat source supply system Expired - Fee Related JP4146732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005470A JP4146732B2 (en) 2003-01-14 2003-01-14 Snow and ice heat source supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005470A JP4146732B2 (en) 2003-01-14 2003-01-14 Snow and ice heat source supply system

Publications (2)

Publication Number Publication Date
JP2004218897A JP2004218897A (en) 2004-08-05
JP4146732B2 true JP4146732B2 (en) 2008-09-10

Family

ID=32896118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005470A Expired - Fee Related JP4146732B2 (en) 2003-01-14 2003-01-14 Snow and ice heat source supply system

Country Status (1)

Country Link
JP (1) JP4146732B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957114A (en) * 2009-07-16 2011-01-26 陈瑾瑜 Application of snow in cooling and heat dissipation
KR20140003695A (en) * 2012-06-22 2014-01-10 한국에너지기술연구원 An air-conditioning system based on seasonal cooling power storage

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329172A (en) * 1986-07-23 1988-02-06 橋本 弥信 Portable container for cold-insulating agricultural product
JPS6332276A (en) * 1986-07-24 1988-02-10 橋本 弥信 Portable container for cold-insulating agricultural product
JP3172985B2 (en) * 1994-04-11 2001-06-04 株式会社佐竹製作所 Cool storage of agricultural products
JPH07305873A (en) * 1994-05-10 1995-11-21 Hitachi Ltd Heat-accumulating and heat-exchanging system operated by utilizing snow and natural ice
JP2001059666A (en) * 1999-08-20 2001-03-06 Takao Yokoe Refrigerator and refrigerator/cooler filling inside of convenient mobile structure with snow
JP2002147912A (en) * 2000-11-06 2002-05-22 Hisao Matsumoto Heat exchange by water flowing on floor face
JP2002211407A (en) * 2001-01-18 2002-07-31 Takenaka Komuten Co Ltd Carrying method for cooked food and container for cooked food using this method
KR100694551B1 (en) * 2001-02-16 2007-03-13 가부시끼가이샤 마에가와 세이사꾸쇼 Inter-region thermal complementary system by distributed cryogenic and thermal devices

Also Published As

Publication number Publication date
JP2004218897A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
CN101523119B (en) System and method for providing cooling air to electronic device
US6945063B2 (en) Apparatus and method for harvesting atmospheric moisture
JP2015511700A (en) Heat pump system using latent heat
CN207279933U (en) A kind of air conditioner condensation water collecting device, condensation water collection processing equipment and air-conditioning
CN106274630A (en) Phase change cold-storage and the electronic refrigerator car of green of electricity refrigeration cooperation
CN211372845U (en) Fresh-keeping refrigerator of flow state ice
CN105843291B (en) A kind of one-storey house silo heat dissipation temperature control system based on hot pipe technique
CN101578487B (en) System for accumulation and supply of heat energy with modular heating and cooling apparatus
JP4146732B2 (en) Snow and ice heat source supply system
JPH07305873A (en) Heat-accumulating and heat-exchanging system operated by utilizing snow and natural ice
US20240123369A1 (en) Atmospheric Water Generating Apparatus and System for Producing Water from Moisture-Laden Air
CN106931600A (en) A kind of method for determining building air-conditioning pump energy saving operating scheme
CN201218574Y (en) Heat pipe cold recovery type evaporation-cooling high temperature water chilling unit
JP2012054340A (en) Rainwater utilization sprinkler device
US20040069003A1 (en) Air conditioner
JP3525246B2 (en) Ice thermal storage system with natural ice making
JP3336385B2 (en) Agricultural product refrigeration equipment
Taylor Ice ponds
JP2000230793A (en) Cold heat storing method and device for utilizing snow
Skogsberg The Sundsvall Regional Hospital snow cooling plant—results from the first year of operation
KR101065388B1 (en) A device to store ice and food with the aid of nature.
JP2651726B2 (en) Underwater ice thermal storage device equipped with mixed means of ice chips and water
CN204254955U (en) A kind of refrigerating chamber with cold accumulation function
CN215057582U (en) Artificial stratum integrated freezing system with leakage alarm function
CN213205731U (en) Underground coal mine heat damage treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080620

R150 Certificate of patent or registration of utility model

Ref document number: 4146732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees