JP4146280B2 - Cleaning method for contaminated soil - Google Patents

Cleaning method for contaminated soil Download PDF

Info

Publication number
JP4146280B2
JP4146280B2 JP2003141953A JP2003141953A JP4146280B2 JP 4146280 B2 JP4146280 B2 JP 4146280B2 JP 2003141953 A JP2003141953 A JP 2003141953A JP 2003141953 A JP2003141953 A JP 2003141953A JP 4146280 B2 JP4146280 B2 JP 4146280B2
Authority
JP
Japan
Prior art keywords
contaminated soil
pile
ground
water
casing tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003141953A
Other languages
Japanese (ja)
Other versions
JP2004344711A (en
Inventor
茂吉 高橋
辰雄 森本
俊明 高野
照義 及川
修一 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Techno Corp
Astec Co Ltd
Japan Conservation Engineers Co Ltd
Original Assignee
Asahi Techno Corp
Astec Co Ltd
Japan Conservation Engineers Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Techno Corp, Astec Co Ltd, Japan Conservation Engineers Co Ltd filed Critical Asahi Techno Corp
Priority to JP2003141953A priority Critical patent/JP4146280B2/en
Publication of JP2004344711A publication Critical patent/JP2004344711A/en
Application granted granted Critical
Publication of JP4146280B2 publication Critical patent/JP4146280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚染土壌の洗浄方法に関する。
【0002】
【従来の技術】
汚染土壌を浄化する方法としては、汚染土壌を掘り起こして汚染物質を除去した後に埋め戻す方法が多く用いられている。
【0003】
また、地盤の地下深い部分が汚染されている場合等、掘り起こすことが困難な場合には、地下水等を介して汚染物質を回収し、汚染土壌を現地盤のまま浄化する方法がある。地下水の回収方法としては、ディープウェル工法やバキュームディープウェル工法による回収方法がある。
【0004】
また、汚染土壌の上部からボーリングし、汚染土壌に到達したら高圧噴流で汚染土壌を攪拌、洗浄し浄化する方法もある(例えば、特許文献1参照)。
【0005】
【特許文献1】
特開平11−647号公報
【0006】
【発明が解決しようとする課題】
しかし高圧噴流により汚染土壌を攪拌、洗浄する場合には、油脂分等の汚染物質の終濃度が1000ppm程度であり、さらに濃度を低下するためには工期を長くする必要があった。
【0007】
またディープウェル工法やバキュームディープウェル工法等を利用して洗浄水を汚染土壌の周囲から回収する場合には、周囲の汚染されていない土壌に汚染物質を含む洗浄水を通さなくてはならない。特に回収口付近に汚染物質が集中する恐れがあり、回収口付近をさらに洗浄しなくてはならなかった。
【0008】
本発明の課題は、より効率よい汚染土壌の洗浄方法を提供することである。
【0009】
【課題を解決するための手段】
以上の課題を解決するため、本発明の請求項1に記載の発明は、汚染土壌の洗浄方法であって、例えば図1に示すように、汚染土壌11の周囲を囲む遮水壁12を地盤10に埋設し、次に、汚染土壌11に至るまで地盤10にケーシング管20及び杭40を打ち込み、次に、ノズル24から洗浄水を高圧で噴射する高圧パイプ21を前記ケーシング管20内に挿入するとともに、前記杭40の上端にバイブロハンマー42を取り付け、その後、前記ケーシング管20の下端よりも下部まで挿入された前記ノズル24から噴射される洗浄水の高圧噴流により汚染土壌11を攪拌すると同時に、前記バイブロハンマー42により前記杭40を介して汚染土壌11に高周波の振動を加え、その後、前記ケーシング管20の周囲に沿って洗浄水を上昇させることを特徴とする。
【0010】
請求項1に記載の発明によれば、汚染土壌11の周囲を囲む遮水壁12を地盤10に埋設し、次に、汚染土壌11に至るまで地盤10にケーシング管20及び杭40を打ち込み、次に、ノズル24から洗浄水を高圧で噴射する高圧パイプ21を前記ケーシング管20内に挿入するとともに、前記杭40の上端にバイブロハンマー42を取り付け、その後、前記ケーシング管20の下端よりも下部まで挿入された前記ノズル24から噴射される洗浄水の高圧噴流により汚染土壌11を攪拌すると同時に、前記バイブロハンマー42により前記杭40を介して汚染土壌11に高周波の振動を加えることで、汚染土壌11中の土粒子から汚染物質を剥離して洗浄水中に除去することができる。その後、前記ケーシング管20の周囲に沿って洗浄水を上昇させることで、汚染物質を除去することができる。
【0011】
請求項2に記載の発明は、請求項1に記載の汚染土壌の洗浄方法において、前記ケーシング管20の周囲に沿って上昇した洗浄水を地盤10上に形成された沈殿槽13に貯め、その水面に浮かぶ汚染物質を吸引することを特徴とする。
【0012】
請求項2に記載の発明によれば、前記ケーシング管20の周囲に沿って上昇した洗浄水を地盤10上に形成された沈殿槽13に溜めることで、砂分、酸化鉄や不溶化したコロイド等を沈殿槽13に沈殿させることができる。これにより、砂分、酸化鉄や不溶化したコロイド等をフィルター等で除去する手間を軽減することができる。また、沈殿槽13の水面に層状に浮かぶ汚染物質14を吸引することにより、油脂分、エマルジョン等の汚染物質を効率よく吸引し、処理排水の量を減らすことができる。
【0013】
【発明の実施の形態】
以下に、本発明の第1の実施の形態について詳細に述べる。本発明の汚染土壌の洗浄方法は、特に汚染物質が油脂分、エマルジョン等の水より軽い物質である場合に有効である。
図1において、汚染土壌11の周囲を囲むように地盤に矢板等を打ち込み、不透水層に至る遮水壁12が形成されている。この地盤面と遮水壁12とに囲まれた部分が、洗浄水の溜まる沈殿槽13となる。
汚染土壌11直上の地盤には、バックホー30に支持されたケーシング管20が汚染土壌11に至るまで打ち込まれている。
【0014】
バックホー30は、例えばブーム31の先端に、上下2対のアーム33a、33bを有する支柱32を取り付けたものを使用することができる。支柱32はバックホー30本体により地盤10上に固定されている。上側のアーム33aは油圧ジャッキにより上下に動かすことができる。下側のアーム33bは支柱32に固定されている。上下2対のアーム33a、33bはそれぞれケーシング管20や後述する杭40を挟んで支持することができる。
【0015】
ケーシング管20の地盤への打ち込み方法は以下のとおりである。まず上側のアーム33aをその稼動範囲の一番上に位置させた状態でケーシング管20を支持する。このとき下側のアーム33bは給水管20を支持せず、緩めておく。
次に、ケーシング管20を支持した上側のアーム33aをその稼動範囲の一番下まで動かす。このときケーシング管20が上側のアーム33aの稼動距離だけ地盤10中に挿入される。
次に下側のアーム33bでケーシング管20を支持するとともに、上側のアーム33aを緩め、その稼動範囲の一番上まで動かす。以上を繰り返して地盤10中にケーシング管20を挿入することができる。
【0016】
ケーシング管内には、高圧パイプ21が挿入される。高圧パイプの上端はホース22を介して高圧洗浄車23と連結されている。なお高圧洗浄車23の送水量は毎分約200〜500リットル、送水圧は約490〜3920N/cm2である。
また、高圧パイプ21の下端にはノズル24が取り付けられている。ノズル24からは送水圧相当の高圧噴流が噴射される。なおノズル24としては、横墳回転のノズル((株)カンツール、RGS)や、後墳回転のノズル((株)カンツール、HRH)等を用いることができる。
【0017】
また、汚染土壌11直上の地盤には、ケーシング管20と同様に、バックホー30に支持された杭40が汚染土壌11に至るまで打ち込まれている。杭40はケーシング管20と同様にして打ち込むことができる。
【0018】
ここで杭40としては、例えば図2に示すように、下端に回動自在な1対の板材41、41が設けられたH形鋼を用いることができる。板材41、41は杭40の打ち込み時には、図2(b)に示すように板面がH形鋼の側面に沿って固定され、打ち込む際の抵抗にならないようにされている。杭41の下端が汚染土壌11に届いたら、まず杭40を少し持ち上げてから再び下ろすと、図2(c)に示すように板材41、41が回動し、杭40の下端面に位置する。
【0019】
杭40の上端には、クレーン43で吊り下げた高周波バイブロハンマー42が取り付けられる。高周波バイブロハンマー42は、200〜240Hzまたはそれ以上の高周波で振動し、杭40を介して汚染土壌11に振動を加える。この際、板材41、41が杭40の下端面に位置するので、板材41、41から汚染土壌11に効率よく振動を伝達することができる。
【0020】
次に、本発明の汚染土壌の洗浄方法について説明する。まず汚染土壌11の周囲の地盤10に矢板等を打ち込んで遮水壁12を形成する。次に、汚染土壌11上の地盤にケーシング管20及び杭40をバックホー30により上述した方法で打ち込む。
次いで、ケーシング管20に高圧パイプ21を挿入するとともに、杭40の上端に高周波バイブロハンマー42を取り付ける。
【0021】
高圧パイプ21上端をホース22を介して高圧洗浄車23と連結したら、高圧パイプ21下端のノズル24から汚染土壌11中に高圧噴流を噴射する。同時に、杭40により汚染土壌11に高周波の振動を加える。すると汚染土壌11が高圧噴流により攪拌されるとともに、杭40により振動を加えられ、土粒子から汚染物質が剥離して洗浄水中に除去される。
【0022】
洗浄水はケーシング管20の周囲に沿って上昇し、沈殿槽13に溜まる。攪拌された汚染土壌11中の土粒子は洗浄水とともに上昇し、沈殿槽13に沈殿する。
土粒子から剥離した油脂分、エマルジョン等の汚染物質は、洗浄水とともに上昇し、沈殿槽13の水面に層状に浮かぶ。沈殿槽13に浮上した汚染物質14は、吸引ポンプ51が設けられた吸引管50によって吸引される。
【0023】
本発明の汚染土壌の洗浄方法によれば、高圧噴流で汚染土壌11を攪拌するとともに、高周波振動を汚染土壌11に加えることにより、汚染物質の濃度を10ppm程度まで下げることができる。
【0024】
ここで、吸引管50の吸引口構造について説明する。図3(a)に示すように、吸引管50の吸引口52付近には、フレーム60と、内側フロート71と、外側フロート72とが設けられている。
フレーム60は、取付部材61と、小枠部材62と、大枠部材63とからなり、内側フロート71及び外側フロート72を吸引管50の吸引口52付近に取り付ける。取付部材61は、吸引管50の吸引口52付近から軸方向に放射状に取り付けられている。各取付部材61の吸引管50よりも遠端には、大枠部材63の各辺が垂直に取り付けられ、その遠端よりも吸引管50寄りの部分には、小枠部材62の各辺が垂直に取り付けられる。
【0025】
小枠部材62、大枠部材63は相似形であり、図では正三角形状であるが、吸引管50を水面上に安定して保持するのであれば、他の多角形状等、あるいは円形状等、任意の形状とすることができる。
内側フロート71は、小枠部材62の各角部にそれぞれ取り付けられる。外側フロート72は、大枠部材63の各角部にそれぞれ取り付けられる。このように二重枠状のフロートとすることで、波の影響を最小限にして、吸引管50を保持することができる。
【0026】
沈殿槽13に内側フロート71及び外側フロート72を浮かべると、図3(b)に示すように、吸引管50はフレーム60によって支持され、吸引口52が下に向いて沈殿槽13の水面と近接して平行になるよう配置される。吸引ポンプ51を駆動すると、沈殿槽13の水面に層状に浮かぶ油脂分、エマルジョン等の汚染物質14が吸引口52から吸引される。
【0027】
あるいは、図4に示すように、吸引口52に切欠き部53を設け、切欠き部53が沈殿槽13の水面に配置されるようにしてもよい。この場合、汚染物質14は切欠き部53から吸引管50に吸引される。
【0028】
上記の吸引口構造によれば、沈殿槽13の水面付近を吸引することにより、油脂分、エマルジョン等の汚染物質14を効率よく吸引するとともに、砂分、酸化鉄や不溶化したコロイド等は沈殿槽13に沈殿させることができる。これにより、砂分、酸化鉄や不溶化したコロイド等を、後述するフィルター等で除去する手間を軽減することができる。また沈殿槽13の水面付近を吸引することにより、油脂分、エマルジョン等の汚染物質14を効率よく吸引し、処理排水の量を減らすことができる。
【0029】
吸引された泥水は、まず泥水をろ過精度0.5〜1mm、0.22mm、2μmのフィルターで順番にろ過し、砂分、コロイド、酸化鉄を除去する。フィルターを透過した水は安定処理を施して汚染物質を回収し、再び洗浄水として利用する。
除去された砂分、コロイド、酸化鉄は産廃処理が行われて汚染物質を回収し、安定処理を施して埋め戻される。回収された汚染物質は適宜処理する。
【0030】
沈殿槽13に沈殿した土砂は、バイオを混合し、ブルドーザーショベル等で埋め戻し、バイブロハンマーや上述の杭等を用いて振動締め固めする。
【0031】
【発明の効果】
以上説明したように、請求項1に記載の発明によれば、汚染土壌の周囲を囲む遮水壁を地盤に埋設し、次に、汚染土壌に至るまで地盤にケーシング管及び杭を打ち込み、次に、洗浄水を高圧で噴射するノズルが設けられた高圧パイプを前記ケーシング管内に挿入するとともに、前記杭の上端にバイブロハンマーを取り付け、その後、前記ケーシング管の下端よりも下部まで挿入された前記ノズルから噴射される洗浄水の高圧噴流により汚染土壌を攪拌すると同時に、前記バイブロハンマーにより前記杭を介して汚染土壌に高周波の振動を加えることで、汚染土壌中の土粒子から汚染物質を剥離して洗浄水中に除去することができる。その後、前記ケーシング管の周囲に沿って洗浄水を上昇させることで、汚染物質を除去することができる。
【0032】
請求項2に記載の発明によれば、請求項1に記載の発明と同様の効果が得られるとともに、前記ケーシング管の周囲に沿って上昇した洗浄水を地盤上に形成された沈殿槽に貯めることで、砂分、酸化鉄や不溶化したコロイド等を沈殿槽に沈殿させることができる。これにより、砂分、酸化鉄や不溶化したコロイド等をフィルター等で除去する手間を軽減することができる。また、沈殿槽の水面に層状に浮かぶ汚染物質を吸引することにより、油脂分、エマルジョン等の汚染物質を効率よく吸引し、処理排水の量を減らすことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態例を示す断面図である。
【図2】本発明に用いる杭の下端部分を示す模式図であり、(a)は水平断面図、(b)は打ち込み時の垂直断面図、(c)は打ち込み後の垂直断面図である。
【図3】本発明に用いる吸引管の吸引口構造を示す図であり、(a)は平面図、(b)は立面図である。
【図4】本発明に用いる吸引管の他の吸引口構造を示す立面図である。
【符号の説明】
10 地盤
11 汚染土壌
12 遮水壁
13 沈殿槽
14 汚染物質
20 ケーシング管
21 高圧パイプ
22 ホース
23 高圧洗浄車
24 ノズル
30 バックホー
31 ブーム
32 支柱
33a、33b アーム
40 杭
41 板材
42 バイブロハンマー
43 クレーン
50 吸引管
51 吸引ポンプ
52 吸引口
53 切欠き
60 フレーム
61 取付部材
62 小枠部材
63 大枠部材
71 内側フロート
72 外側フロート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cleaning contaminated soil.
[0002]
[Prior art]
As a method for purifying the contaminated soil, a method of digging up the contaminated soil to remove the pollutant and then backfilling is often used.
[0003]
In addition, when it is difficult to excavate, such as when the deep underground part of the ground is contaminated, there is a method of collecting the pollutant via ground water and purifying the contaminated soil as it is. As a method for collecting groundwater, there are a deep well method and a vacuum deep well method.
[0004]
In addition, there is a method of boring from the upper part of the contaminated soil and, when reaching the contaminated soil, stirring, washing and purifying the contaminated soil with a high-pressure jet (for example, see Patent Document 1).
[0005]
[Patent Document 1]
JP-A-11-647 [0006]
[Problems to be solved by the invention]
However, when the contaminated soil is stirred and washed with a high-pressure jet, the final concentration of contaminants such as fats and oils is about 1000 ppm, and it was necessary to lengthen the construction period in order to further reduce the concentration.
[0007]
In addition, when the cleaning water is collected from around the contaminated soil using the deep well method or the vacuum deep well method, the cleaning water containing the pollutant must be passed through the surrounding uncontaminated soil. In particular, there was a risk that contaminants might concentrate near the recovery port, and the vicinity of the recovery port had to be further cleaned.
[0008]
An object of the present invention is to provide a more efficient method for cleaning contaminated soil.
[0009]
[Means for Solving the Problems]
To solve the above problems, the invention according to claim 1 of the present invention is a method of cleaning contaminated soil, for example, as shown in FIG. 1, the impervious wall 12 surrounding the contaminated soil 11 Ground Next, the casing pipe 20 and the pile 40 are driven into the ground 10 until reaching the contaminated soil 11, and then the high-pressure pipe 21 for injecting cleaning water from the nozzle 24 at a high pressure is inserted into the casing pipe 20. At the same time, a vibro hammer 42 is attached to the upper end of the pile 40, and then the contaminated soil 11 is agitated by a high-pressure jet of washing water injected from the nozzle 24 inserted to a position below the lower end of the casing tube 20. The high-frequency vibration is applied to the contaminated soil 11 through the pile 40 by the vibro hammer 42, and then the washing water is raised along the periphery of the casing tube 20 It was characterized by Rukoto.
[0010]
According to the invention described in claim 1, the impermeable wall 12 surrounding the periphery of the contaminated soil 11 is embedded in the ground 10, and then the casing tube 20 and the pile 40 are driven into the ground 10 until reaching the contaminated soil 11, Next, a high-pressure pipe 21 for injecting cleaning water from the nozzle 24 at a high pressure is inserted into the casing tube 20, and a vibro hammer 42 is attached to the upper end of the pile 40, and then lower than the lower end of the casing tube 20. The contaminated soil 11 is agitated by the high-pressure jet of washing water injected from the nozzle 24 inserted up to the same time, and at the same time, high-frequency vibration is applied to the contaminated soil 11 via the pile 40 by the vibro hammer 42, thereby contaminating soil. 11 can remove the contaminants from the soil particles and remove them in the wash water. Thereafter, the contaminants can be removed by raising the wash water along the periphery of the casing tube 20.
[0011]
The invention according to claim 2 is the method for cleaning contaminated soil according to claim 1, wherein the wash water rising along the periphery of the casing tube 20 is stored in a settling tank 13 formed on the ground 10 , It is characterized by sucking contaminants floating on the water surface.
[0012]
According to the second aspect of the present invention, the washing water rising along the periphery of the casing tube 20 is accumulated in the sedimentation tank 13 formed on the ground 10, so that sand, iron oxide, insolubilized colloid, etc. Can be precipitated in the settling tank 13. Thereby, the trouble of removing sand, iron oxide, insolubilized colloid, and the like with a filter or the like can be reduced. Further, by sucking the pollutant 14 floating in layers on the water surface of the settling tank 13, it is possible to efficiently suck pollutants such as fats and oils and emulsions and reduce the amount of treated waste water.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The first embodiment of the present invention will be described in detail below. The method for cleaning contaminated soil of the present invention is particularly effective when the pollutant is a substance that is lighter than water, such as fats and oils and emulsions.
In FIG. 1, a sheet impervious wall 12 is formed in the ground so as to surround the periphery of the contaminated soil 11, and the impermeable wall 12 reaching the impermeable layer is formed. A portion surrounded by the ground surface and the impermeable wall 12 becomes a settling tank 13 in which cleaning water is accumulated.
A casing tube 20 supported by the backhoe 30 is driven into the ground directly above the contaminated soil 11 until reaching the contaminated soil 11.
[0014]
As the backhoe 30, for example, a boom 31 in which a column 32 having two pairs of upper and lower arms 33a and 33b is attached to the tip of a boom 31 can be used. The support column 32 is fixed on the ground 10 by the backhoe 30 body. The upper arm 33a can be moved up and down by a hydraulic jack. The lower arm 33 b is fixed to the support column 32. The upper and lower two pairs of arms 33a and 33b can be supported by sandwiching the casing tube 20 and a pile 40 described later.
[0015]
The method for driving the casing tube 20 into the ground is as follows. First, the casing tube 20 is supported with the upper arm 33a positioned at the top of its operating range. At this time, the lower arm 33b does not support the water supply pipe 20, but is loosened.
Next, the upper arm 33a supporting the casing tube 20 is moved to the bottom of its operating range. At this time, the casing tube 20 is inserted into the ground 10 by the working distance of the upper arm 33a.
Next, while supporting the casing pipe 20 with the lower arm 33b, the upper arm 33a is loosened and moved to the top of its operating range. The casing tube 20 can be inserted into the ground 10 by repeating the above.
[0016]
A high pressure pipe 21 is inserted into the casing tube. The upper end of the high-pressure pipe is connected to a high-pressure washing wheel 23 via a hose 22. The high-pressure washing vehicle 23 has a water supply amount of about 200 to 500 liters per minute and a water supply pressure of about 490 to 3920 N / cm 2 .
A nozzle 24 is attached to the lower end of the high-pressure pipe 21. A high pressure jet corresponding to the water supply pressure is ejected from the nozzle 24. In addition, as the nozzle 24, a nozzle that rotates on the side (Kantool, RGS), a nozzle that rotates on the rear (Kantool, HRH), or the like can be used.
[0017]
Further, like the casing pipe 20, the pile 40 supported by the backhoe 30 is driven into the ground directly above the contaminated soil 11 until reaching the contaminated soil 11. The pile 40 can be driven in the same manner as the casing tube 20.
[0018]
Here, as the pile 40, for example, as shown in FIG. 2, an H-section steel provided with a pair of freely rotatable plate members 41, 41 at the lower end can be used. When the piles 40 are driven, the plate members 41 and 41 are fixed along the side surfaces of the H-shaped steel as shown in FIG. 2 (b) so that they do not become resistance when driven. When the lower end of the pile 41 reaches the contaminated soil 11, when the pile 40 is first lifted a little and then lowered again, the plate members 41 and 41 are rotated and positioned at the lower end surface of the pile 40 as shown in FIG. .
[0019]
A high frequency vibro hammer 42 suspended by a crane 43 is attached to the upper end of the pile 40. The high-frequency vibro hammer 42 vibrates at a high frequency of 200 to 240 Hz or higher and applies vibration to the contaminated soil 11 via the pile 40. At this time, since the plate members 41 and 41 are located on the lower end surface of the pile 40, vibration can be efficiently transmitted from the plate members 41 and 41 to the contaminated soil 11.
[0020]
Next, the method for cleaning contaminated soil of the present invention will be described. First, a sheet pile or the like is driven into the ground 10 around the contaminated soil 11 to form the impermeable wall 12. Next, the casing pipe 20 and the pile 40 are driven into the ground on the contaminated soil 11 by the backhoe 30 as described above.
Next, the high-pressure pipe 21 is inserted into the casing tube 20, and a high-frequency vibro hammer 42 is attached to the upper end of the pile 40.
[0021]
When the upper end of the high-pressure pipe 21 is connected to the high-pressure washing wheel 23 via the hose 22, a high-pressure jet is injected into the contaminated soil 11 from the nozzle 24 at the lower end of the high-pressure pipe 21. At the same time, the pile 40 applies high-frequency vibrations to the contaminated soil 11. Then, the contaminated soil 11 is agitated by the high-pressure jet and is vibrated by the pile 40, so that the contaminants are separated from the soil particles and removed in the washing water.
[0022]
The washing water rises along the circumference of the casing tube 20 and accumulates in the settling tank 13. The agitated soil particles in the contaminated soil 11 rise with the washing water and settle in the settling tank 13.
Contaminants such as fats and oils separated from the soil particles rise together with the washing water and float in layers on the water surface of the settling tank 13. The pollutant 14 that has floated to the settling tank 13 is sucked by the suction pipe 50 provided with the suction pump 51.
[0023]
According to the method for cleaning contaminated soil of the present invention, the contaminated soil 11 is stirred with a high-pressure jet and high-frequency vibration is applied to the contaminated soil 11 to reduce the concentration of the contaminant to about 10 ppm.
[0024]
Here, the suction port structure of the suction tube 50 will be described. As shown in FIG. 3A, a frame 60, an inner float 71, and an outer float 72 are provided near the suction port 52 of the suction pipe 50.
The frame 60 includes an attachment member 61, a small frame member 62, and a large frame member 63, and attaches the inner float 71 and the outer float 72 near the suction port 52 of the suction pipe 50. The attachment member 61 is attached radially from the vicinity of the suction port 52 of the suction tube 50 in the axial direction. Each side of the large frame member 63 is vertically attached to the far end of each attachment member 61 from the suction tube 50, and each side of the small frame member 62 is perpendicular to a portion closer to the suction tube 50 than the far end. Attached to.
[0025]
The small frame member 62 and the large frame member 63 are similar in shape and are equilateral triangles in the figure, but if the suction pipe 50 is stably held on the water surface, other polygonal shapes, circular shapes, etc. It can be of any shape.
The inner float 71 is attached to each corner of the small frame member 62. The outer float 72 is attached to each corner of the large frame member 63. By using a double frame-like float in this way, the suction tube 50 can be held while minimizing the influence of waves.
[0026]
When the inner float 71 and the outer float 72 are floated on the settling tank 13, as shown in FIG. 3B, the suction pipe 50 is supported by the frame 60, and the suction port 52 faces downward and is close to the water surface of the settling tank 13. To be parallel. When the suction pump 51 is driven, the contaminants 14 such as oil and fat and emulsion floating in a layer on the water surface of the settling tank 13 are sucked from the suction port 52.
[0027]
Alternatively, as shown in FIG. 4, a notch 53 may be provided in the suction port 52, and the notch 53 may be disposed on the water surface of the sedimentation tank 13. In this case, the contaminant 14 is sucked into the suction pipe 50 from the notch 53.
[0028]
According to the above suction port structure, by sucking the vicinity of the water surface of the precipitation tank 13, the contaminants 14 such as oil and fat and emulsion are efficiently sucked, and sand, iron oxide, insolubilized colloids and the like are removed from the precipitation tank. 13 can be precipitated. Thereby, the trouble of removing sand, iron oxide, insolubilized colloid, and the like with a filter or the like described later can be reduced. Further, by sucking the vicinity of the water surface of the settling tank 13, the contaminants 14 such as oil and fat and emulsion can be sucked efficiently, and the amount of treated waste water can be reduced.
[0029]
The sucked muddy water is first filtered through a filter having a filtration accuracy of 0.5 to 1 mm, 0.22 mm, and 2 μm in order to remove sand, colloid, and iron oxide. The water that has passed through the filter is subjected to stabilization treatment to recover the pollutants and reused as washing water.
The removed sand, colloid, and iron oxide are subjected to industrial waste treatment to recover the pollutants, and then subjected to stabilization treatment and backfilled. Treat collected contaminants as appropriate.
[0030]
The sediment deposited in the sedimentation tank 13 is mixed with bio, backfilled with a bulldozer excavator or the like, and compacted by vibration using a vibro hammer or the above-mentioned pile or the like.
[0031]
【The invention's effect】
As described above, according to the first aspect of the present invention, the impermeable wall surrounding the contaminated soil is embedded in the ground, and then the casing pipe and the pile are driven into the ground until the contaminated soil is reached. In addition, a high-pressure pipe provided with a nozzle for injecting cleaning water at a high pressure is inserted into the casing pipe, a vibro hammer is attached to the upper end of the pile, and then inserted to a lower part than the lower end of the casing pipe. The contaminated soil is agitated by the high-pressure jet of washing water sprayed from the nozzle, and at the same time, the high-frequency vibration is applied to the contaminated soil through the pile by the vibro hammer, thereby removing the contaminant from the soil particles in the contaminated soil. Can be removed in the wash water. Thereafter, the contaminants can be removed by raising the wash water along the periphery of the casing tube.
[0032]
According to the second aspect of the invention, the same effect as that of the first aspect of the invention can be obtained, and the wash water that has risen along the periphery of the casing tube is stored in a sedimentation tank formed on the ground. Thus, sand, iron oxide, insolubilized colloid, and the like can be precipitated in the precipitation tank. Thereby, the trouble of removing sand, iron oxide, insolubilized colloid, and the like with a filter or the like can be reduced. In addition, by sucking contaminants floating in layers on the water surface of the precipitation tank, contaminants such as fats and oils and emulsions can be efficiently sucked and the amount of treated waste water can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a first embodiment of the present invention.
FIG. 2 is a schematic view showing a lower end portion of a pile used in the present invention, where (a) is a horizontal sectional view, (b) is a vertical sectional view at the time of driving, and (c) is a vertical sectional view after driving. .
3A and 3B are diagrams showing a suction port structure of a suction tube used in the present invention, wherein FIG. 3A is a plan view and FIG. 3B is an elevation view.
FIG. 4 is an elevational view showing another suction port structure of the suction tube used in the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Ground 11 Contaminated soil 12 Impermeable wall 13 Precipitation tank 14 Pollutant 20 Casing pipe 21 High pressure pipe 22 Hose 23 High pressure washing car 24 Nozzle 30 Backhoe 31 Boom 32 Post 33a, 33b Arm 40 Pile 41 Plate material 42 Vibro hammer 43 Crane 50 Suction Pipe 51 Suction pump 52 Suction port 53 Notch 60 Frame 61 Mounting member 62 Small frame member 63 Large frame member 71 Inner float 72 Outer float

Claims (2)

汚染土壌の周囲を囲む遮水壁を地盤に埋設し、
次に、汚染土壌に至るまで地盤にケーシング管及び杭を打ち込み、
次に、ノズルから洗浄水を高圧で噴射する高圧パイプを前記ケーシング管内に挿入するとともに、前記杭の上端にバイブロハンマーを取り付け、
その後、前記ケーシング管の下端よりも下部まで挿入された前記ノズルから噴射される洗浄水の高圧噴流により汚染土壌を攪拌すると同時に、前記バイブロハンマーにより前記杭を介して汚染土壌に高周波の振動を加え、
その後、前記ケーシング管の周囲に沿って洗浄水を上昇させることを特徴とする汚染土壌の洗浄方法。
The impermeable wall that surrounds the contaminated soil is buried in the ground,
Next, drive the casing pipe and pile into the ground until it reaches the contaminated soil,
Next, a high-pressure pipe for injecting cleaning water from the nozzle at high pressure is inserted into the casing pipe, and a vibro hammer is attached to the upper end of the pile.
Thereafter, the contaminated soil is agitated by a high-pressure jet of washing water injected from the nozzle inserted below the lower end of the casing tube, and at the same time, high-frequency vibration is applied to the contaminated soil via the pile by the vibro hammer. ,
Thereafter, the method of cleaning contaminated soil, characterized in Rukoto raise the wash water along the periphery of the casing tube.
前記ケーシング管の周囲に沿って上昇した洗浄水を地盤上に形成された沈殿槽に貯め、
その水面に浮かぶ汚染物質を吸引することを特徴とする請求項1に記載の汚染土壌の洗浄方法。
The wash water that has risen along the circumference of the casing tube is stored in a settling tank formed on the ground,
The method for cleaning contaminated soil according to claim 1, wherein the contaminant floating on the water surface is sucked.
JP2003141953A 2003-05-20 2003-05-20 Cleaning method for contaminated soil Expired - Fee Related JP4146280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141953A JP4146280B2 (en) 2003-05-20 2003-05-20 Cleaning method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141953A JP4146280B2 (en) 2003-05-20 2003-05-20 Cleaning method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2004344711A JP2004344711A (en) 2004-12-09
JP4146280B2 true JP4146280B2 (en) 2008-09-10

Family

ID=33530173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141953A Expired - Fee Related JP4146280B2 (en) 2003-05-20 2003-05-20 Cleaning method for contaminated soil

Country Status (1)

Country Link
JP (1) JP4146280B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392562B (en) * 2008-11-10 2011-03-23 机械工业第四设计研究院 Grouting pile sandwich panel wave barrier
CN103624078B (en) * 2013-12-02 2015-06-03 安徽理工大学 In-situ vibration wash restoration method for polluted soil body

Also Published As

Publication number Publication date
JP2004344711A (en) 2004-12-09

Similar Documents

Publication Publication Date Title
JP4146280B2 (en) Cleaning method for contaminated soil
JP6870969B2 (en) How to extubate an existing well
KR100954151B1 (en) Bottomset bed removal equipment and the dredging method
JP3508997B2 (en) How to clean contaminated soil
JP2007303270A (en) Ground improvement construction method
US20140338233A1 (en) Methods, apparatus and systems for pond remediation
JP4551788B2 (en) Lotus root excavation equipment
JP4238307B2 (en) How to clean contaminated soil
JP2007303095A (en) Ground improvement construction method
JP2001214879A (en) Bottom sampling strainer for submergible pump having excavating function
JP6267672B2 (en) Dredge apparatus and dredge method
JP4374951B2 (en) Purification method and system for hardly air permeable and contaminated soil
CN217734141U (en) Milling and excavating machine not easy to cause large-area collapse
JP3446186B2 (en) Pollution control caisson for dredging and dredging method
CN211898389U (en) Cleaning device for underwater bored concrete pile formed by drilling machine
CN114960714B (en) Near-water foundation pit drainage seepage-proofing structure and construction method
RU2797754C1 (en) Modular needle filter assembly of the dewatering unit
CN217710928U (en) Subway deep basal pit precipitation well dredging device
CN219080334U (en) Foundation pit with be favorable to drainage structures
CN219863268U (en) Dredging vehicle for drainage groove
JP7126401B2 (en) slime processing system
JP3738028B1 (en) Floating oil purification device and contaminated formation purification method using the same
JP3133995U (en) Precipitation tank supernatant recovery device equipped with a liquid-permeable stretchable drainage pipe
JPH0352848Y2 (en)
JP2005279552A (en) Method for decontaminating contaminated ground water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Ref document number: 4146280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees