JP4144132B2 - MR head playback amplifier - Google Patents

MR head playback amplifier Download PDF

Info

Publication number
JP4144132B2
JP4144132B2 JP32305099A JP32305099A JP4144132B2 JP 4144132 B2 JP4144132 B2 JP 4144132B2 JP 32305099 A JP32305099 A JP 32305099A JP 32305099 A JP32305099 A JP 32305099A JP 4144132 B2 JP4144132 B2 JP 4144132B2
Authority
JP
Japan
Prior art keywords
head
voltage
current
node voltage
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32305099A
Other languages
Japanese (ja)
Other versions
JP2001143224A (en
Inventor
美智也 迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32305099A priority Critical patent/JP4144132B2/en
Priority to US09/711,265 priority patent/US6633446B1/en
Publication of JP2001143224A publication Critical patent/JP2001143224A/en
Application granted granted Critical
Publication of JP4144132B2 publication Critical patent/JP4144132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Amplifiers (AREA)
  • Magnetic Heads (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はMRヘッドの再生アンプに関する。より詳しくは、ボルテージバイアスボルテージセンス(Voltage Bias Voltage Sense)方式のMRヘッドの再生アンプに関するものである。
【0002】
【従来の技術】
HDD(ハードディスク)などの磁気記録再生装置には、記録したデータを再生するためにMRヘッドが使われている。このMRヘッドは、磁界の変化に応じて抵抗値が変化する特性を有している。
【0003】
このようなMRヘッドの再生方式の一つとして、MRヘッドに所定の電圧を印加し、記録データに応じた抵抗変化を電圧として取り出すボルテージバイアスボルテージセンス方式が用いられている。
【0004】
図2はこのような従来のMRヘッドの回路図である。
基準電圧V1がMRヘッドRMRに発生するように、電圧電流変換回路Gm2で帰還をかけている。すなわち、MRヘッドの一方のノード電圧端子ND1に定電圧印加用アンプ回路AMP1が接続され、他方の端子はGNDに接地される。この定電圧印加用アンプ回路AMP1は、電圧電流変換回路Gm2(帰還アンプ)を含み、その一方の入力端子は基準電圧V1の電源に接続され、他方の入力端子は出力側を帰還させて接続している。この電圧電流変換回路Gm2の出力側にはMRヘッドRMRからの検出信号を通過させて取り出すためのトランジスタQ4が接続される。これにより、MRヘッドRMRのノード電圧端子ND1の電圧はV1で固定され、MRヘッドRMRの抵抗変化はトランジスタQ4のコレクタ電流として伝達される。このMRヘッドRMRに流れる電流をバイアス電流IBと呼び、IB=V1/RMRで表わされる。
【0005】
トランジスタQ4を通して取り出されたMRヘッドRMRの抵抗変化に対応したコレクタ電流は、R9に発生した信号成分をコンデンサC5で周波数に応じて直流カットし、差動アンプA2で増幅して記録したデータを再生する。V3は、差動アンプA2のバイアス点を決めるための基準電圧源である。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の電圧バイアス方式の再生アンプにおいては、MRヘッドの片方の端部を接地して使用するため、外部ノイズその他により静電気が印加されたときに、その電圧をMRヘッドの抵抗値で割った値の電流がMRヘッドに流れる。通常、MRヘッドの抵抗値は30〜80Ω程度であるので、静電気によって大電流が流れ、MRヘッドが破壊され使用できない状態となる問題が生じる。
【0007】
また、トランジスタQ4のコレクタ電流として取り出された信号は、抵抗R9で電圧変換され、差動アンプA2の非反転入力端子に入力される。一方、差動アンプA2の反転入力端子は、V3により直流バイアスされているのみである。つまりR9およびC5を通してシングルとして取り出された信号成分を差動に変換する回路が存在することになる。
【0008】
このような構成においては、差動アンプA2の入力部分は完全に対称とはならず、したがって電源ラインVccのリップル成分は差動成分として2つの入力端子からそれぞれ差動アンプA2に入力される。このため、この電源ラインVccのリップル成分を除去しきれずに、HDDでの高周波特性の低下につながる。
【0009】
本発明は上記従来技術を考慮したものであって、MRヘッドに静電気が印加された場合に大電流が流れて破壊されることを防止し、かつ電源ライン等にリップルがあった場合に、再生出力の高周波特性に悪影響を及ぼさないMRヘッドの再生アンプの提供を目的とする。
【0010】
【課題を解決するための手段】
前記目的を達成するため、本発明では、MRヘッドの一方のノード電圧端子を第1電流源を介して第1電源ラインに接続し、前記MRヘッドの他方のノード電圧端子を前記第1電流源と同じ電流値の第2電流源を介して第2電源ラインに接続して、前記MRヘッドのノード電圧端子を接地することなく、前記MRヘッドに一定電流を供給すると共に、前記MRヘッドの各ノード電圧端子の電圧変化を直流カット用のコンデンサを介して、差動アンプで増幅後に出力するMRヘッドの再生アンプであって前記MRヘッドのノード電圧端子間の電圧に基づいて前記第1及び第2の電流源の電流値を制御する帰還アンプを備え、記録データよる前記MRヘッドの磁気抵抗変化よりも低い周波数をカットオフ周波数として有しており、前記カットオフ周波数以下の周波数に対しては、前記MRヘッドの両ノード電圧端子間の電圧を一定に固定し、前記カットオフ周波数よりも高い周波数に対しては前記2つの電流源から同じ一定電流を前記MRヘッドに通電して前記MRヘッドの抵抗変化を電圧変化として取り出すことを特徴とするMRヘッドの再生アンプを提供する。
【0011】
この構成によれば、MRヘッドのノード電圧端子が2つの電流源の間に接続されるため、静電気が印加された場合に、従来のように一方のノード電圧端子が接地されて一定のGNDレベルとなる構成と異なり、MRヘッドのノード電圧端子間に電位差が発生せず、MRヘッドが大電流で破壊されることを防止できる。
【0012】
また、電源ラインにリップルが発生した場合に、MRヘッドの両ノード電圧端子の電圧は同相で変化し、且つMRヘッドの両ノード電圧端子を差動アンプに接続して出力を取り出すときに差動アンプの入力を対称にすることができ、出力の高周波数特性の低下を来すことはない。
【0014】
しかも、カットオフ周波数として記録データによる磁気抵抗変化の周波数より低い周波数を設定しておくことにより、このような周波数の低い抵抗変化に対しては帰還アンプが作用してMRヘッドのノード電圧端子間の電圧が一定に維持されるため、再生作用は行われない。一方、カットオフ周波数より高い周波数の抵抗変化に対しては、一定電圧を印加するための帰還アンプが作用せず、MRヘッドのノード電圧端子間の電圧はMRヘッドの抵抗変化と電流源からの電流値に基づく電圧変化としてMRヘッドのノード電圧端子間に発生する。この電圧変化を再生出力信号として取り出す。
【0015】
さらに好ましい構成例では、前記MRヘッドの抵抗値に比べ充分大きい抵抗を、該MRヘッドの各ノード電圧端子に接続し、該抵抗を介してMRヘッドのノード電圧端子を接地したことを特徴としている。
【0016】
この構成によれば、製造上のバラツキ等により2つの電流源からの直流電流に誤差成分が生じたとき、MRヘッドの抵抗値に対して充分大きい2個の同じ抵抗をMRヘッドの各ノード電圧端子に接続し、これらの抵抗を介してMRヘッドのノード電圧端子が接地されるため、MRヘッドの中点電圧は、2つの電流源の誤差量と2個の抵抗の並列値の積で定まり、常にほぼ一定のGNDレベルに保つことができる。
【0017】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態について説明する。
図1は、本発明の実施の形態に係るMRヘッド再生アンプの回路図である。
【0018】
本実施形態においては、MRヘッドRMRの両端のノード電圧端子ND2,ND3にそれぞれ電流源となるトランジスタP2,Q2が接続され、MRヘッドRMRの両端電圧を定めるための電圧電流変換回路Gm1(帰還アンプ)が備る。MRヘッドの高い方のノード電圧端子ND2を電圧電流変換回路Gm1の反転入力に接続し、低い方のノード電圧端子ND3を基準電圧V1を介して電圧電流変換回路Gm1の非反転入力に接続する。
【0019】
ここで、R1=R2、R3=R4、トランジスタQ1とQ2のエミッタ面積を同じにし、トランジスタP1とP2の面積を同じに設定する。これにより、トランジスタP1とP2は1:1のカレントミラーとなり、トランジスタP2のコレクタ電流値とP1のコレクタ電流値は等しくなる。したがって、両トランジスタP2およびQ2のコレクタ電流は同一となる。
さらに、設定された所定の帰還アンプ(電圧電流変換回路Gm1)のカットオフ周波数に応じて、MRヘッドの両端電圧(ND2−ND3間の電圧)がV1となるように電圧電流変換回路Gm1により帰還がかかる。
【0020】
この場合、帰還アンプ(電圧電流変換回路Gm1)のカットオフ周波数fcl2は、
fcl2=(1/2π)*(gm1/C1)*(RMR/R2)
で定まる。ただし、gm1は、電圧電流変換回路Gm1の伝達コンダクタンスである。
【0021】
このカットオフ周波数以下の周波数に対しては、帰還アンプが動作するため、MRヘッドRMRの抵抗変化に応じてトランジスタP2,Q2のコレクタ電流が変化するので、MRヘッドの両端電圧(ND2−ND3間の電圧)はV1のままで電圧変動は起きない。
【0022】
一方、カットオフ周波数より高い周波数に対しては、MRヘッドの両端電圧を一定値V1に保持するための電圧電流変換回路Gm1を含む帰還ループは無効となる。このため、MRヘッドの両端電圧はMRヘッドの抵抗変化に応じて変化する。このとき、前述のように、トランジスタP2,Q2のコレクタ電流は同一で変化せず、一定のバイアス電流IBが流れる。MRヘッドの抵抗変化は、この抵抗変化量と一定のバイアス電流IBとの積の電圧信号としてMRヘッドの両端に発生する。この電圧信号は、直流カット用のコンデンサC2,C3を介して差動アンプA1で増幅され再生信号として取り出される。
【0023】
抵抗R5,R6は、IC製造上のバラツキ等により、トランジスタP2,Q2の直流電流に誤差成分が生じたとき、MRヘッドの中点電圧をほぼGNDレベルに保つことを目的とするものである。このため、各抵抗R5,R6は、MRヘッドの抵抗値に対して十分大きく且つ等しく設定され、これらの抵抗R5,R6を介して、MRヘッドの両端の端子ND2,ND3が接地される。この場合、トランジスタP2,Q2の直流電流の誤差成分とR5およびR6の並列抵抗値の積がMRヘッドの中点電圧となる。
【0024】
また、V2は、抵抗R7,R8を介して差動アンプA1のバイアス電圧を定めるための基準電圧電源である。
電源ラインVccおよびVeeとしては、例えば+3Vおよび−3Vの電位とする。基準電圧V1の電源は、図の例では電圧電流変換回路Gm1の非反転入力側(+側)に接続しているが、反転入力側(−側)に接続してもよい。この場合、極性を逆にして電源の+側を端子ND2側に、−側を電圧電流変換回路Gm1側に接続する。
【0025】
【発明の効果】
以上説明したように、本発明では、MRヘッドが2つの電流源の間に接続されるため、MRヘッドの片方の端子が接地された従来例と異なり、両方の端子がそれぞれ電流源に接続されるため、静電気が印加されたとき、MRヘッドの両端子間には差電圧は発生せず、したがって、MRヘッドに大電流が流れて破壊されることはない。
【0026】
また、HDD等が搭載されるパソコンや電子機器内部の電源は、高周波のクロック成分などのノイズが重畳されるが、そのような電源リップルがあった場合でも、信号成分を完全に対称となる同相の差動入力として再生出力用差動アンプに入力できるため、この同相のノイズ成分は差動アンプを通して完全に除去される。したがって、高周波記録が必要とされるHDD等の高周波特性に悪影響を及ぼすことはない。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係るMRヘッド用再生アンプの回路図。
【図2】 従来のMRヘッド用再生アンプの回路図。
【符号の説明】
ND1,ND2,ND3:ノード電圧端子
P1,P2,Q1,Q2,Q4:トランジスタ
A1,A2:差動アンプ
Gm1,Gm2:電圧電流変換回路(帰還アンプ)
RMR:MRヘッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reproduction amplifier for an MR head. More particularly, the present invention relates to an MR head reproducing amplifier of a voltage bias voltage sense type.
[0002]
[Prior art]
An MR head is used for reproducing recorded data in a magnetic recording / reproducing apparatus such as an HDD (hard disk). This MR head has a characteristic that the resistance value changes according to the change of the magnetic field.
[0003]
As one of such MR head reproducing methods, a voltage bias voltage sensing method is used in which a predetermined voltage is applied to the MR head and a resistance change corresponding to recording data is taken out as a voltage.
[0004]
FIG. 2 is a circuit diagram of such a conventional MR head.
Feedback is applied by the voltage-current conversion circuit Gm2 so that the reference voltage V1 is generated in the MR head RMR. That is, the constant voltage application amplifier circuit AMP1 is connected to one node voltage terminal ND1 of the MR head, and the other terminal is grounded to GND. This constant voltage application amplifier circuit AMP1 includes a voltage / current conversion circuit Gm2 (feedback amplifier), one input terminal of which is connected to the power source of the reference voltage V1, and the other input terminal is connected by feeding back the output side. ing. A transistor Q4 is connected to the output side of the voltage-current conversion circuit Gm2 for passing the detection signal from the MR head RMR and extracting it. Thereby, the voltage of the node voltage terminal ND1 of the MR head RMR is fixed at V1, and the resistance change of the MR head RMR is transmitted as the collector current of the transistor Q4. The current flowing through the MR head RMR is called a bias current IB, and is represented by IB = V1 / RMR.
[0005]
The collector current corresponding to the resistance change of the MR head RMR taken out through the transistor Q4 cuts the signal component generated in R9 according to the frequency by the capacitor C5 and amplifies it by the differential amplifier A2 to reproduce the recorded data. To do. V3 is a reference voltage source for determining the bias point of the differential amplifier A2.
[0006]
[Problems to be solved by the invention]
However, in the conventional voltage bias type reproducing amplifier, since one end of the MR head is used while being grounded, when static electricity is applied due to external noise or the like, the voltage is determined by the resistance value of the MR head. The divided current flows through the MR head. Usually, since the resistance value of the MR head is about 30 to 80Ω, a large current flows due to static electricity, causing a problem that the MR head is broken and cannot be used.
[0007]
The signal extracted as the collector current of the transistor Q4 is converted into a voltage by the resistor R9 and input to the non-inverting input terminal of the differential amplifier A2. On the other hand, the inverting input terminal of the differential amplifier A2 is only DC biased by V3. That is, there is a circuit that converts the signal component extracted as a single signal through R9 and C5 into differential.
[0008]
In such a configuration, the input portion of the differential amplifier A2 is not completely symmetric. Therefore, the ripple component of the power supply line Vcc is input to the differential amplifier A2 from the two input terminals as a differential component. For this reason, the ripple component of the power supply line Vcc cannot be completely removed, leading to deterioration of high frequency characteristics in the HDD.
[0009]
The present invention is based on the above prior art, and prevents damage when a large current flows when static electricity is applied to the MR head, and when there is a ripple in the power supply line, etc. An object of the present invention is to provide an MR head reproducing amplifier that does not adversely affect the high frequency characteristics of the output.
[0010]
[Means for Solving the Problems]
To achieve the above object, according to the present invention, one node voltage terminal of the MR head is connected to a first power supply line via a first current source, and the other node voltage terminal of the MR head is connected to the first current source. A constant current is supplied to the MR head without grounding the node voltage terminal of the MR head through a second current source having the same current value as that of the MR head. A reproduction amplifier for an MR head that outputs a voltage change at a node voltage terminal after being amplified by a differential amplifier via a DC cut capacitor, wherein the first and second amplifiers are based on the voltage between the node voltage terminals of the MR head. A feedback amplifier for controlling the current value of the second current source, and having a frequency lower than the magnetoresistive change of the MR head by recorded data as a cutoff frequency; For frequencies below the frequency, the voltage between both node voltage terminals of the MR head is fixed, and for frequencies higher than the cut-off frequency, the same constant current is supplied from the two current sources to the MR. Provided is an MR head reproduction amplifier characterized in that a current change is taken out as a voltage change by energizing the head.
[0011]
According to this configuration, since the node voltage terminal of the MR head is connected between the two current sources, when static electricity is applied, one of the node voltage terminals is grounded as in the prior art, and a certain GND level is obtained. Unlike the configuration described above, no potential difference is generated between the node voltage terminals of the MR head, and the MR head can be prevented from being destroyed by a large current.
[0012]
Also, when ripples occur in the power supply line, the voltages at both node voltage terminals of the MR head change in phase, and when the output is taken out by connecting both node voltage terminals of the MR head to a differential amplifier. The amplifier input can be made symmetric, and the high frequency characteristics of the output are not degraded.
[0014]
In addition, by setting a frequency lower than the frequency of the magnetoresistive change due to the recording data as the cut-off frequency, the feedback amplifier acts on such a low frequency change of resistance and the node voltage terminal between the MR heads. Is maintained constant, so no regenerative action is performed. On the other hand, for a resistance change at a frequency higher than the cut-off frequency, the feedback amplifier for applying a constant voltage does not act, and the voltage between the MR head node voltage terminals is affected by the MR head resistance change and the current source. A voltage change based on the current value occurs between the node voltage terminals of the MR head. This voltage change is taken out as a reproduction output signal.
[0015]
In a further preferred configuration example, a resistance sufficiently larger than the resistance value of the MR head is connected to each node voltage terminal of the MR head , and the node voltage terminal of the MR head is grounded through the resistance. .
[0016]
According to this configuration, when an error component occurs in the direct current from the two current sources due to manufacturing variations or the like, the two same resistances that are sufficiently larger than the resistance value of the MR head are connected to each node voltage of the MR head. Since the node voltage terminal of the MR head is grounded through these resistors, the midpoint voltage of the MR head is determined by the product of the error amount of the two current sources and the parallel value of the two resistors. , It can always be kept at a substantially constant GND level.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a circuit diagram of an MR head reproducing amplifier according to an embodiment of the present invention.
[0018]
In this embodiment, transistors P2 and Q2 serving as current sources are connected to node voltage terminals ND2 and ND3 at both ends of the MR head RMR, respectively, and a voltage-current conversion circuit Gm1 (feedback amplifier) for determining the voltages at both ends of the MR head RMR. ). The higher node voltage terminal ND2 of the MR head is connected to the inverting input of the voltage / current conversion circuit Gm1, and the lower node voltage terminal ND3 is connected to the non-inverting input of the voltage / current conversion circuit Gm1 via the reference voltage V1.
[0019]
Here, R1 = R2, R3 = R4, the emitter areas of the transistors Q1 and Q2 are made the same, and the areas of the transistors P1 and P2 are made the same. Thereby, the transistors P1 and P2 become a 1: 1 current mirror, and the collector current value of the transistor P2 is equal to the collector current value of P1. Therefore, the collector currents of both transistors P2 and Q2 are the same.
Further, the voltage / current conversion circuit Gm1 feeds back the voltage across the MR head (voltage between ND2 and ND3) to V1 in accordance with the set cutoff frequency of the predetermined feedback amplifier (voltage / current conversion circuit Gm1). It takes.
[0020]
In this case, the cutoff frequency fcl2 of the feedback amplifier (voltage-current conversion circuit Gm1) is
fcl2 = (1 / 2π) * (gm1 / C1) * (RMR / R2)
Determined by However, gm1 is the transfer conductance of the voltage-current conversion circuit Gm1.
[0021]
Since the feedback amplifier operates for frequencies below this cut-off frequency, the collector currents of the transistors P2 and Q2 change according to the resistance change of the MR head RMR, so the voltage across the MR head (between ND2 and ND3) Voltage) remains at V1 and no voltage fluctuation occurs.
[0022]
On the other hand, for a frequency higher than the cut-off frequency, the feedback loop including the voltage-current conversion circuit Gm1 for holding the voltage across the MR head at the constant value V1 becomes invalid. Therefore, the voltage across the MR head changes according to the resistance change of the MR head. At this time, as described above, the collector currents of the transistors P2 and Q2 are the same and do not change, and a constant bias current IB flows. The resistance change of the MR head is generated at both ends of the MR head as a voltage signal of the product of this resistance change amount and a constant bias current IB. This voltage signal is amplified by the differential amplifier A1 via the DC cut capacitors C2 and C3, and is taken out as a reproduction signal.
[0023]
The resistors R5 and R6 are intended to maintain the midpoint voltage of the MR head at approximately the GND level when an error component occurs in the DC current of the transistors P2 and Q2 due to variations in IC manufacturing. Therefore, the resistors R5 and R6 are set sufficiently large and equal to the resistance value of the MR head, and the terminals ND2 and ND3 at both ends of the MR head are grounded through the resistors R5 and R6. In this case, the product of the DC current error component of the transistors P2 and Q2 and the parallel resistance values of R5 and R6 is the midpoint voltage of the MR head.
[0024]
V2 is a reference voltage power source for determining the bias voltage of the differential amplifier A1 via the resistors R7 and R8.
The power supply lines Vcc and Vee are set to potentials of +3 V and −3 V, for example. The power source of the reference voltage V1 is connected to the non-inverting input side (+ side) of the voltage-current conversion circuit Gm1 in the example of the figure, but may be connected to the inverting input side (− side). In this case, the polarity is reversed and the + side of the power supply is connected to the terminal ND2 side and the-side is connected to the voltage-current conversion circuit Gm1 side.
[0025]
【The invention's effect】
As described above, in the present invention, since the MR head is connected between two current sources, both terminals are respectively connected to the current source, unlike the conventional example in which one terminal of the MR head is grounded. Therefore, when static electricity is applied, no differential voltage is generated between the two terminals of the MR head, so that a large current does not flow through the MR head and it is not destroyed.
[0026]
In addition, the power supply inside a personal computer or electronic device on which an HDD or the like is mounted is superimposed with noise such as a high-frequency clock component, but even when there is such a power supply ripple, the in-phase signal components are completely symmetrical. Therefore, this in-phase noise component is completely removed through the differential amplifier. Therefore, it does not adversely affect the high frequency characteristics of HDDs and the like that require high frequency recording.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an MR head reproducing amplifier according to an embodiment of the present invention.
FIG. 2 is a circuit diagram of a conventional MR head reproducing amplifier.
[Explanation of symbols]
ND1, ND2, ND3: node voltage terminals P1, P2, Q1, Q2, Q4: transistors A1, A2: differential amplifiers Gm1, Gm2: voltage-current conversion circuits (feedback amplifiers)
RMR: MR head

Claims (2)

MRヘッドの一方のノード電圧端子を第1電流源を介して第1電源ラインに接続し、前記MRヘッドの他方のノード電圧端子を前記第1電流源と同じ電流値の第2電流源を介して第2電源ラインに接続して、前記MRヘッドのノード電圧端子を接地することなく、前記MRヘッドに一定電流を供給すると共に、前記MRヘッドの各ノード電圧端子の電圧変化を直流カット用のコンデンサを介して、差動アンプで増幅後に出力するMRヘッドの再生アンプであって、
前記MRヘッドのノード電圧端子間の電圧に基づいて前記第1及び第2の電流源の電流値を制御する帰還アンプを備え、
前記帰還アンプは、記録データよる前記MRヘッドの磁気抵抗変化よりも低い周波数をカットオフ周波数として有しており、前記カットオフ周波数以下の周波数に対しては、前記MRヘッドのノード電圧端子間の電圧を一定に固定し、前記カットオフ周波数よりも高い周波数に対しては前記2つの電流源から同じ一定電流を前記MRヘッドに通電して前記MRヘッドの抵抗変化を電圧変化として取り出すMRヘッドの再生アンプ。
One node voltage terminal of the MR head is connected to the first power supply line via the first current source, and the other node voltage terminal of the MR head is connected via the second current source having the same current value as the first current source. To the second power supply line to supply a constant current to the MR head without grounding the node voltage terminal of the MR head, and to change the voltage at each node voltage terminal of the MR head for DC cutting. An MR head reproduction amplifier that outputs after amplification by a differential amplifier via a capacitor ,
A feedback amplifier that controls current values of the first and second current sources based on a voltage between node voltage terminals of the MR head;
The feedback amplifier has a cut-off frequency that is lower than the MR resistance change of the MR head due to recording data, and between the node voltage terminals of the MR head for frequencies below the cut-off frequency. In the MR head, the voltage is fixed and the MR head is supplied with the same constant current from the two current sources for a frequency higher than the cut-off frequency, and the resistance change of the MR head is taken out as a voltage change. Playback amplifier.
前記MRヘッドの抵抗値に比べ充分大きい抵抗を、該MRヘッドの各ノード電圧端子に接続し、該抵抗を介して前記MRヘッドのノード電圧端子を接地したことを特徴とする請求項1に記載のMRヘッドの再生アンプ。 2. A resistance sufficiently larger than the resistance value of the MR head is connected to each node voltage terminal of the MR head, and the node voltage terminal of the MR head is grounded through the resistance. MR head playback amplifier.
JP32305099A 1999-11-12 1999-11-12 MR head playback amplifier Expired - Fee Related JP4144132B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP32305099A JP4144132B2 (en) 1999-11-12 1999-11-12 MR head playback amplifier
US09/711,265 US6633446B1 (en) 1999-11-12 2000-11-09 Magnetic reproducing apparatus and reproducing circuit to be applied to the apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32305099A JP4144132B2 (en) 1999-11-12 1999-11-12 MR head playback amplifier

Publications (2)

Publication Number Publication Date
JP2001143224A JP2001143224A (en) 2001-05-25
JP4144132B2 true JP4144132B2 (en) 2008-09-03

Family

ID=18150554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32305099A Expired - Fee Related JP4144132B2 (en) 1999-11-12 1999-11-12 MR head playback amplifier

Country Status (1)

Country Link
JP (1) JP4144132B2 (en)

Also Published As

Publication number Publication date
JP2001143224A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
JP3175415B2 (en) Magnetic recording / reproducing device
JPH06139525A (en) Reproducing device for magneto-resistance effect type head
CN1079560C (en) Single-ended supply preamplifier with high power supply rejection ratio
JP2994522B2 (en) Preamplifier for magnetoresistive element
JP4144132B2 (en) MR head playback amplifier
US6909569B2 (en) Low impedance semiconductor integrated circuit
US6349007B1 (en) Magneto-resistive head open and short fault detection independent of head bias for voltage bias preamplifier
KR100566050B1 (en) Arrangement for reading information from a magnetic record carrier and hard disk drive
JP3420169B2 (en) Magnetoresistive head read amplifier with improved write-read recovery time
US7564638B2 (en) Preamplifier circuit and method for a disk drive device
US6107873A (en) Low noise common-emitter preamplifier for magneto-resistive heads
JP3516178B2 (en) Preamplifier circuit device
JPH11203611A (en) Amplifier circuit
US5953173A (en) High CMRR and sensor-disk short-circuit protection device for dual element magnetoresistive heads
JP2002304701A (en) Playback amplifier and magnetic recording/reproducing device using the same
JP2002135059A (en) Amplifier
JP2001084502A (en) Reproducing circuit and magnetic reproducing device using the same
JP2770292B2 (en) Circuit for detecting change in resistance of magnetoresistive element
JP2008054075A (en) Semiconductor integrated circuit, and magnetic storage device using the same
US20030231419A1 (en) Differential magneto-resistive head pre-amplifiers for single polarity power supply applications
JP3868707B2 (en) Head bias circuit and magnetic disk apparatus using the same
JP3678923B2 (en) Magnetic disk unit
JPH1131302A (en) Reed amplifier circuit and semiconductor integrated circuit
JP3816002B2 (en) Magnetic disk unit
JP3362513B2 (en) Magnetic recording / reproducing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130627

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees