JP4143026B2 - テスト用端末及びその制御方法 - Google Patents

テスト用端末及びその制御方法 Download PDF

Info

Publication number
JP4143026B2
JP4143026B2 JP2003412366A JP2003412366A JP4143026B2 JP 4143026 B2 JP4143026 B2 JP 4143026B2 JP 2003412366 A JP2003412366 A JP 2003412366A JP 2003412366 A JP2003412366 A JP 2003412366A JP 4143026 B2 JP4143026 B2 JP 4143026B2
Authority
JP
Japan
Prior art keywords
gps
test terminal
data
operation mode
lbs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003412366A
Other languages
English (en)
Other versions
JP2004254293A (ja
Inventor
圭永 韓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Telecom Co Ltd
Original Assignee
SK Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-2003-0053222A external-priority patent/KR100514635B1/ko
Application filed by SK Telecom Co Ltd filed Critical SK Telecom Co Ltd
Publication of JP2004254293A publication Critical patent/JP2004254293A/ja
Application granted granted Critical
Publication of JP4143026B2 publication Critical patent/JP4143026B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/04Traffic adaptive resource partitioning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • G01S19/06Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Description

本発明は基地局アンテナの最大範囲値を調節し,ロケーションベースのサービスを最適化するシステムの性能を最適化するのに用いるためのテスト用端末及びその制御方法に関する。
最近,場所に左右されず,インターネットなどの通信サービスを提供するために数多くの企業が無線インターネットという新技術の開発に拍車をかけている。無線インターネットとは,ユーザーが移動中,無線ネット(無線通信)を通じてインターネット・サービスを利用できる環境と技術をいう。携帯電話関連技術の発達と携帯電話普及率の飛躍的な増加に伴って,そのような無線インターネット環境の発展はより一層進められている。
一方,携帯電話,PDA(携帯情報端末),またはノート型パソコンなどの移動体通信端末を用いた多様な無線インターネット・サービスのうち,特に,LBS(Location Baseband Service)は,その多岐に渡る活用性及び利便性によって大きく脚光を浴びている。
詳述すると,LBSは救助要請,犯罪申告への対応,隣接地域情報提供の地理情報システム(GIS;Geographic Information System),位置に応じる移動体通信料金の差別化,交通情報,車両航法,物流管制,位置基盤CRM(Customer Relationship Management)等,多様な分野や状況に用いられている。
このようなLBSを用いるためには,移動体通信端末の位置を把握することが必須である。現在,移動体通信端末の位置を把握する方法としては,GPS(Global Positioning System)を用いる方法が一般的である。
GPSは,高度約20000キロメートルの上空で地球の軌距離を回る24個のGPS衛星を用いて,全世界どこでも位置の把握ができるシステムである。GPSは,1.5GHz帯域の電波を使用し,地上にはコントロール・ステーションという調整センターがあり,GPS衛星から送られてきた情報を収集して伝送時刻を同期させ,ユーザーはGPS受信機によって自身の現在位置を把握することができる。GPSシステムを用いる位置把握方法として,一般に三角測量法が使われている。この三角測量には,3個の衛星と,これに加えて時間誤りの補正のための1個の観測用衛星とからなって総4個のGPS衛星が必要である。
ただ高層ビルの多い都心では,多重経路または可視衛星の不足により位置を測定するための能力が制限され,トンネルや建物地下のように衛星が見えない所(電波が到達しない所)では正確な側位が殆ど不可能である。また,GPS受信機が最初に自身の位置を決定するために要求する実際時間であるTTFF(Time To First Fix)が,略数分〜数十分以上を要する場合が時々発生し,位置基盤無線インターネットのサービス利用者に対して大きい不便を与えるという不都合がある。
このようなGPS方式の短所を補完するために,GPS方式に無線通信網の資源を組み合わせて移動体通信端末の位置を決定するA−GPS(Assisted−Global Positioning System)方式が開発されて使われている。このA−GPS方式において,移動体通信端末はGPS人工衛星及び無線通信網から同時に位置決めに必要な情報を収集するので,緯度,経度及び高度の座標を用いて3次元的に位置決めが可能で,無線通信網と移動体通信端末とはIS(Interim Standard)−801−1規格に定義されたパラメータを用いてデータやメッセージを送受信する。つまり,GPS人工衛星に対して位置測定の負荷を軽減することが可能となり,双方が補完して処理している。
一方,現在CDMA(Code Division Multiple Access)方式の通信網においては,一つの無線基地局BSは基地局アンテナのMAR(Maximum Antenna Range:MAR)に該当するエリアをカバーする。ここで,MARとは基地局アンテナから送出された電波が到達する最大距離を半径とするエリアをいう。
MARを基準として無線基地局を設けて全国のあらゆる地域をカバーする方法では,無線基地局の設置費用が増大する等の短所がある。つまり,現在移動体通信網に設置されている無線基地局のMAR値は,3Kmまたは5Kmに一律的に設定されている。したがって,現在の移動体通信網において良質のLBSを提供するためには,MAR値のカバーするエリア単位ごとに,無線基地局を設置する必要がある。
しかしながら,現在移動体通信網は,無線基地局の設置に相当な費用を要する関係で,無線基地局と光ケーブルを通じて連結する一つ以上の光中継器を用いて無線基地局の音声呼やデータ呼のカバレッジ(サービス範囲)を広める構造になっている。ここで,光中継器は光ケーブルを通じて連結する無線基地局と同じ識別コードを使用するため,移動体通信端末が光中継器の管轄エリア内に位置している場合,無線基地局の識別コードを位置決めサーバーへ伝送するようになる。
したがって,現在の移動体通信網において移動体通信端末が光中継器のカバーするエリアにある場合,A−GPS方式を用いて移動体通信端末の位置を決定するのが非常に困難になる問題点が生じる。上記問題点について詳述すると,A−GPS方式では,移動体通信端末が別のGPS受信機を組み込まなくて,自身の位置している地域の無線基地局の識別コード(Address)を獲得して移動体通信網を通じて位置決めサーバーへ伝送する。この位置決めサーバーは,移動体通信網を通じて受信した無線基地局の識別コードを確認し,該当無線基地局に設定されているMAR値を確認する。
その次に,確認したMAR値を基準として該当無線基地局のエリア内において,GPS信号の受信が可能なGPS人工衛星の座標情報を抽出して補助データとして移動体通信網を通じて移動体通信端末へ伝送する。移動体通信網を通じて補助データを受信した移動体通信端末は,該補助データに含まれているGPS人工衛星の座標情報を用いてGPS信号を検索する。
したがって,A−GPS方式において,移動体通信端末が受信するGPS人工衛星の座標情報は,移動体通信端末が該当無線基地局に設定されたMAR値を半径とするエリア内に位置している場合のみに,有効な情報として利用されることができる。つまり,移動体通信端末の位置が無線基地局のカバーするエリアの外郭の境界地域であったり,無線基地局と同じ識別コードを用いる光中継器の管轄エリア内に位置している場合には,受信する補助データが適切でなくなる。このような場合,移動体通信端末は適切でないGPS人工衛星の座標情報を用いてGPS信号を検索するため,GPS信号の検索が優れず,位置決めが正確に行われないという不都合が生じていた。
本発明は,上記問題点に鑑みてなされたものであり,本発明の目的は,GPS信号を探索してMAR値を調節するのに使われる,A−GPSデータ及びC−GPS位置情報を獲得し,該獲得したA−GPSデータ及びC−GPS位置情報を移動体通信網を通じて位置決めサーバーに伝送することの可能な,新規かつ改良されたテスト用端末及びその制御方法を提供することである。
上記課題を解決するため,本発明の第1の観点によれば,基地局アンテナのカバーする最大範囲を調節してロケーションベースサービス(Location−Based Service:LBS,位置情報サービス)を最適化するシステムに使用するためのテスト用端末であって,前記テスト用端末をC(Conventional)−GPS動作モードまたはA(Assisted)−GPS動作モードに設定または変更するためのデータ入力手段として機能するキー入力部と,一つ以上のGPS人工衛星から送出される第1のGPS信号及び第2のGPS信号を受信して伝達するGPSアンテナと,前記第1のGPS信号を受取って第1の航法データを抽出し,該第1の航法データを用いてC−GPS(Convnetional―GPS)位置情報を生成するC−GPS受信機と,前記第2のGPS信号を受取って第2航法データを抽出し,該第2航法データを用いてA−GPSデータを生成するA−GPS受信チップと,前記キー入力部から受信するモードキー値に応じて前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定し,前記C−GPS動作モードでは,前記C−GPS受信機が前記C−GPS位置情報を生成するように制御し,前記A−GPS動作モードでは,前記A−GPS受信チップが前記A−GPSデータを生成するように制御する,中央演算処理装置が搭載された内臓ボードとを含むことを特徴とする。
本発明の他の好適実施例によれば,基地局アンテナのカバーする最大範囲を調節してロケーションベースのサービス(LBS)を最適化するシステムに使用するためのテスト用端末であって,前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定したり変更するためのデータ入力手段として機能するキー入力部と,一つ以上のGPS人工衛星から送出される第1のGPS信号及び第2のGPS信号を受信して伝達するGPSアンテナと,前記第1のGPS信号を受取って第1の航法データを抽出し,該第1の航法データを用いてC−GPS位置情報を生成するC−GPS受信機と,前記第2のGPS信号を受取って第2航法データを抽出し,該第2航法データを用いてA−GPSデータを生成するA−GPS受信チップと,前記キー入力部から受信するモードキー値に応じて前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定し,前記C−GPS動作モードでは前記C−GPS受信機が前記C−GPS位置情報を生成するように制御し,前記A−GPS動作モードでは前記A−GPS受信チップが前記A−GPSデータを生成するように制御する,中央演算処理装置が搭載された内臓ボードと,前記中央演算処理装置の制御により,前記C−GPS位置情報及び前記A−GPSデータを格納するメモリ素子とを含むことを特徴とする。
本発明のさらに他の好適実施例によれば,基地局アンテナのカバーする最大範囲を調節してロケーションベースのサービス(LBS)を最適化するシステムに使用するためのテスト用端末であって,前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定したり変更するためのデータ入力手段として機能するキー入力部と,一つ以上のGPS人工衛星から送出される第1のGPS信号及び第2のGPS信号を受信して伝達するGPSアンテナと,前記第1のGPS信号を受取って第1の航法データを抽出し,該第1の航法データを用いてC−GPS位置情報を生成するC−GPS受信機と,前記第2のGPS信号を受取って第2航法データを抽出し,該第2航法データを用いてA−GPSデータを生成するA−GPS受信チップと,前記キー入力部から受信するモードキー値に応じて前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定し,前記C−GPS動作モードでは前記C−GPS受信機が前記C−GPS位置情報を生成するように制御し,前記A−GPS動作モードでは前記A−GPS受信チップが前記A−GPSデータを生成するように制御する,中央演算処理装置が搭載された内臓ボードと,前記中央演算処理装置の制御により,前記C−GPS位置情報及び前記A−GPSデータを格納するメモリ素子と,前記中央演算処理装置の制御により,前記C−GPS位置情報及び前記A−GPSデータを変調してMAR値最適化用データ信号を生成して伝達する無線モデムと,前記MAR値最適化用データ信号を受信して電波空間へ送出するRFアンテナとを含むことを特徴とする。
上記課題を解決するために,本発明の別の観点によれば,基地局アンテナのカバーする最大範囲を調節してロケーションベースのサービス(LBS)を最適化するシステムに使用するためのテスト用端末の制御方法であって,測定地点ごとにA−GPS動作モードに切換えて,前記測定地点を管轄したり隣接する無線基地局の識別コードを送出する第1のステップと,移動体通信網を通じて補助データを受信し分析して,GPS信号を探索し受信する第2のステップと,A−GPSデータを生成し格納し,C−GPS動作モードに切換える第3のステップと,GPS信号を探索し受信する第4のステップと,C−GPS位置情報を生成し,これを前記A−GPSデータと集合して前記移動体通信網を通じて位置決めサーバーへ伝送する第5のステップとを含むことを特徴とする。
以上説明したように,本発明によれば,従来移動体通信網のA−GPS方式では無線基地局のMAR値が一律的に決まり,MAR値を半径とするエリア外の移動体通信端末機の位置決めが時々失敗したが,本発明によるテスト用端末を利用すれば,A−GPS方式の位置決めが失敗する地域を捜し出して,ロケーションベースのサービスの最適化を期することができる効果を奏する。
以下,本発明の好適な実施の形態について,添付図面を参照しながら詳細に説明する。なお,以下の説明及び添付図面において,略同一の機能及び構成を有する構成要素については,同一符号を付することにより,重複説明を省略する。
図1は,本実施の形態にかかるLBS最適化システム100の概略を示すブロック図である。
図1に示すように,本実施の形態にかかるLBS最適化システム100は,複数のGPS人工衛星102,テスト用端末110,基地局(BTS)120,光中継器122,基地局制御器(BSC)130,移動交換局(MSC)140,信号伝送点150及び基準GPSアンテナ170と接続した位置決めサーバー(PDE:Positioning Determination Entity)160,MAR値データベース162,MAR値最適化用データベース164及び基準GPSアンテナ170から少なくとも構成される。なお,LBS(位置情報サービス)は,移動体の位置を検索したり,通知したり,登録したりする機能を提供します。その利便性の高さから,次第にビジネスや生活のなかのさまざまなシーンで,位置情報を使ったアプリケーションサービスが利用されるようになってきました。位置情報サービスは,機能別に大きく分けると,移動体端末と,移動体の位置を特定するもの,そして管理センター機能を持つところの3つのパートで構成されます。移動体端末として利用されるのは,PHS,GPS携帯電話,PDA,GPSレシーバー,特定の用途向けに開発された専用端末などがあり,ユーザが持ち運んだり,車や荷物などのモノに取り付けたりして使われます。
テスト用端末110は,一つ以上のGPS人工衛星102からGPS電波を受信して該GPS電波に含まれている航法(ナビゲーション)データを抽出し,該抽出した航法データを,移動体通信網を通じて位置決めサーバー160に伝送するGPSアンテナ,GPS受信機などが取り付けられたものである。本実施の形態によるテスト用端末110は,移動体通信システムでのMAR値を最適化するためのもので,車両などの移動手段により移動しながら,MAR値の最適化処理に必要なデータを収集して後述する位置決めサーバー160へ伝送する機能を果たす。なお,本実施の形態にかかるテスト用端末110は,少なくともGPS電波を受信し,移動可能な端末であれば,例えば,携帯電話,ノート型PC(パーソナル・コンピュータ),PDA,デジタルカメラなど,いかなる端末でも実施可能である。
ここで,本実施の形態によるテスト用端末110は,A−GPS及びC−GPS(Conventional−GPS)を用いて位置決めが可能な移動体通信端末である。即ち,テスト用端末110はC−GPS方式のためのC−GPS受信機とA−GPSのためのA−GPS受信モジュールとを共に組み込んでいる。
参考として,C−GPS方式とA−GPS方式の長短に対して説明すると,C−GPS方式は通信網の助けを受けないで自主的に比較的正確な位置決めが可能で,主に開放的な環境で正常に位置決めが可能な反面,端末の電力消耗が大きくて,TIFFが最大10分以上かかり,別のC−GPS受信機が必要であるという短所がある。
これに反し,A−GPS方式は,GPS人工衛星を用いるC−GPS方式と,CDMA通信網を用いるネットワーク基盤方式とを組み合わせた位置追跡方式として,A−GPS方式は建物内のようにGPS衛星信号が充分に届かない所でも,CDMA通信網による補助的な助けで位置決めが可能で,C−GPS方式に比べて位置精度が高いという長所がある。また,端末の電力消耗が小さく,TIFFが数秒以内として短く,A−GPS受信チップとモデムチップが一体になって別のGPS受信機が必要でなく,端末の製作費用が軽減するという長所がある。
テスト用端末110はA−GPS方式を用いて周期的に獲得する人工衛星識別コード,衛星の数,時刻,衛星信号の強さ,擬似距離(Pseudorange),NID(ネットID),BSID(Bsae Station ID)などを含むA−GPSデータと,C−GPS方式を用いて周期的に獲得するC−GPS位置情報(緯度,経度,衛星数等)を移動体通信網を通じて位置決めサーバー160へ伝送する。なお,擬似距離は,GPS衛星とGPSの距離の計測は補正無し時間の比較によって測られるもので,衛星からのコードと受信機のリファレンスコードを比較している。
本実施の形態によってテスト用端末110が,C−GPS位置情報及びA−GPSデータを獲得する過程について,説明する。テスト用端末110は一定な地点ごとに測定者によってC−GPS動作モードに設定されると,C−GPS受信機を用いてGPS信号を探索し,該探索したGPS信号を用いてC−GPS位置情報を演算し,該演算した
C−GPS位置情報を内部メモリに一時格納する。
また,A−GPS方式を用いて位置データを獲得するために,テスト用端末110は概略位置情報(無線基地局の識別コード)を,移動体通信網を通じて位置決めサーバー160へ伝送する。この位置決めサーバー160は,テスト用端末110から受信した概略位置情報を用いて適切な補助データを検索し,該検索した補助データを移動体通信網を通じてテスト用端末110へ伝送する。ここで,位置決めサーバー160の伝送する補助データとは,テスト用端末110の伝送した無線基地局の識別コードを用いて抽出した一つ以上のGPS人工衛星の座標情報をいう。また,一つ以上のGPS人工衛星の座標情報とは,テスト用端末110の位置した地点で観測可能であると判断されたGPS人工衛星の座標情報をいう。
位置決めサーバー160から所定の補助データを受信するテスト用端末110は,受信した補助データを用いて該当GPS人工衛星102のGPS電波を探索・受信する。テスト用端末110はC−GPS方式でC−GPS位置情報を獲得した同じ場所ごとに,A−GPS受信チップを用いてGPS電波を検索し,該検索結果としてのA−GPSデータを内部メモリに一時格納する。テスト用端末110はC−GPS方式及びA−GPS方式を用いて獲得したC−GPS位置情報及びA−GPSデータ(以下,「MAR値最適化用データ」と称する。)を組み込まれた無線モデムを用いて位置決めサーバー160へ周期的に伝送する。
次に,図2を参照しながら,本実施の形態にかかるテスト用端末110について説明する。図2は,本実施の形態にかかるテスト用端末110の概略的な構成を示す説明図である。
基地局伝送器120は,信号チャンネルの中,トラフィック・チャンネルを通じてテスト用端末に用いられるテスト用端末110から呼接続要請信号を受信して基地局制御器130へ伝送する。この基地局制御器130は基地局伝送器120を制御し,テスト用端末110への無線チャンネルの割当て及び解除,テスト用端末110及び基地局伝送器120の送信出力制御,セル間ソフト・ハンドオフ及びハード・ハンドオフの決定,トランスコーディング及びボーコーディング(Vocoding),無線基地局の運用及びメインテナンスなどを行う。
一方,本実施の形態による基地局伝送器120及び基地局制御器130は,同期式移動体通信システム及び非同期式移動体通信システムを共に支援できる構成を有する。同期式移動体通信システムの場合,基地局伝送器120はBTSであり,基地局制御器130はBSCであり,非同期式移動体通信システムの場合には,基地局伝送器120はRTS(Radio Transceiver Subsystem)であり,基地局制御器130はRNC(Radio Network Controller)である。勿論,本実施の形態にかかる基地局伝送器130及び基地局制御器130はこれに限定されるのではなく,CDMA網以外の例えば,GSM網及び今後具現される第4世代移動体通信システムの接続網を含んでもよい。
一方,基地局伝送器120のアンテナから送出される電波は,図1に示すように,MAR値を半径とするエリアA内に位置しているテスト用端末110によって受信可能で,該エリアA内に位置しているテスト用端末110の呼処理に用いられる。また,各々の基地局伝送器120ごとに設定されるMAR値は,位置決めサーバー160にセットされて格納され,現在MAR値は一般に都心地域でも田舎地域でも3
Kmまたは5Kmに一律的にセットされる。
図1に示すように,光中継器122は,基地局伝送器120と光ケーブル121によって接続され,エリアB地域の移動体通信サービスをカバーする。上記光中継器122は,光ケーブル121を通じて接続している基地局伝送器120が含まれた無線基地局と同じ擬似雑音(PN)コードを有する。CDMA通信網は,光中継器122を光ケーブル121によって接続した無線基地局と同じ無線基地局として認識する。
このように光中継器122を用いると,5千万以上の費用がかかる基地局伝送器120の設置費用を節減すると共に,基地局伝送器120のカバレッジを光中継器122のカバーエリア程度に広めることができるという長所がある。したがって,現在移動体通信網には,一つの無線基地局に多数の光中継器が連結していることが一般的である。
移動交換局(MSC)140は,各無線基地局の効率的な運用ができるような統制機能と公衆電話網に取り付けられた電子式交換機との連動機能を有する。この移動交換局140は,テスト用端末110から伝送されるデータやメッセージを基地局制御器130を通じて受信し,該受信データをSTP150を通じて位置決めサーバー160へ伝送する。移動交換局140は,基本及び付加サービス処理,加入者の着信呼及び発信呼処理,位置登録手順及びハンドオフ手順処理,他の網との連動機能などを行う。本実施の形態による移動交換局140は,IS−95A,IS-95B,IS-95Cシステムと,3世代及び4世代移動体通信網を全て支援することができる。
信号伝送点(STP)150は,ITU−Tの共通線信号方式において信号メッセージの中継及び交換を行う信号中継局である。このSTP150を用いて構成した信号網は通話回線と信号回線を対応付けない非対応モードによって運用され,各種信号は通話回線を有する交換局以外のSTPを介して伝送されるので,経済性及び信頼性を共に向上することができる。また,STP150は信号メッセージを変換し,信号中継が不可能な時,該信号メッセージを他の交換局に通知する機能も有する。
位置決めサーバー160は,テスト用端末110から伝送されるMAR最適化用データを受信分析し,MAR最適化の処理が必要な無線基地局を把握してMAR最適化の処理を行う。位置決めサーバー160のMAR最適化処理を行った無線基地局のMAR値は,新たな値に更新され,MAR値データベース162に格納される。位置決めサーバー160により行われるMAR最適化処理については,図2と共に説明する。
一方,位置決めサーバー160は,A−GPS方式を用いた位置決め過程において一連の機能を果たす。説明すると,位置決めサーバー160はテスト用端末110から移動体通信網を介して伝送されるA−GPSデータを用いて,テスト用端末110の経度及び緯度の座標を演算する。より詳細に説明すると,位置決めサーバー160はテスト用端末110から無線基地局の識別コードのような概略位置情報を受信すると,当該無線基地局にセットされているMAR値を,MAR値データベース162を検索して読み出す。
当該無線基地局の位置情報及びMAR値を確認した位置決めサーバー160は,無線基地局によってGPS電波を受信することができるGPS人工衛星102の情報(座標情報,識別コード情報等)が含まれた,IS−801−1規格に定義されている「Provide GPS Acquistion Assistance」メッセージを,移動体通信網を通じてテスト用端末110へ伝送する。詳述すると,位置決めサーバー160はあらゆるGPS人工衛星102をリアルタイムにモニタする基準GPSアンテナ170からGPS人工衛星102の軌距離情報を受信する。
その次に,テスト用端末110の位置した無線基地局の緯経度座標及びMAR値を用いて,テスト用端末110がGPS電波の受信状況が良好なGPS人工衛星102の情報を抽出する。位置決めサーバー160は,該抽出したGPS人工衛星102の情報を「
Provide GPS Acquistion Assistance」メッセージに含めてテスト用端末110へ伝送する。
このメッセージを受信したテスト用端末110は,該メッセージに含まれているGPS人工衛星102の情報を抽出し,該当GPS人工衛星102から送出されるGPS電波を探索して受信する。
一つ以上のGPS人工衛星102からGPS電波を受信したテスト用端末110は,該受信GPS電波を用いて,GPS電波を受信した衛星の識別コード及び個数と,衛星信号の強さ及び擬似距離などを演算する。その次に,IS−801−1規格に定義されている「Provide Pseudorange Measurement」メッセージを用いて,A−GPSデータを移動体通信網を通じて位置決めサーバー160へ伝送する。テスト用端末110から該メッセージを受信した位置決めサーバー160は,そのメッセージに含まれているデータを取捨選択してテスト用端末110の緯度及び経度座標を演算する。
MAR値データベース162は,多数の無線基地局の識別コード別にセットされているMAR値テーブルを格納している。したがって,位置決めサーバー160はテスト用端末110から無線基地局の識別コードが含まれたA−GPS位置決め要請信号を受信すると,MAR値データベース162に格納されたMAR値テーブルを検索し,該当無線基地局のエリア内で良好に観測可能なGPS人工衛星の情報が含まれた補助データをテスト用端末110へ伝送する。
また,MAR値データベース162は,位置決めサーバー160によりMAR値最適化処理が行われた無線基地局の新たなMAR値を受信し,MAR値テーブルを更新して格納する機能も有する。
MAR値最適化用データベース164は,位置決めサーバー160のテスト用端末110から受信したMAR値最適化用データを格納する。MAR値最適化用データベース164は,測定日時別,測定時間別,測定装備別,無線基地局別等でMAR値最適化用データを分類して格納する。したがって,位置決めサーバー160はMAR値最適化用データベース164を検索してMAR値最適化処理を行うようになる。
一方,本実施の形態によってLBSサービスを最適化するためにMAR値を調節する一連の仕組みは,次の通りである。
図1で説明したLBSシステム100において,テスト用端末110が基地局伝送器120のカバーするエリアA内に位置する場合には,位置決めサーバー160から伝送されるGPS人工衛星102の情報が正確なことであるので,多数のGPS人工衛星102からGPS信号を受信して位置決めを正確にすることができる。しかしながら,テスト用端末110がエリアAの範囲外の光中継器122のカバーするエリアB内に位置する場合には,A−GPS方式では位置決めを正しくしない場合が発生する。
上記の場合,エリアB内に位置しているテスト用端末110から位置決め要請信号が発生すれば,光中継器122と光ケーブル121によって連結したエリアA内の基地局伝送器120が,自身のPNコードを移動体通信網を通じて位置決めサーバー160へ伝送する。次に,位置決めサーバー160は基地局伝送器120のMAR値と位置座標を用いて,GPS信号の受信が可能なGPS人工衛星102の情報を伝送する。このGPS人工衛星102の情報は,基地局伝送器120のMAR値を用いて抽出した情報であるため,エリアA内のみで有効な情報として活用することができる。
しかしながら,テスト用端末110はエリアB内に位置しているため,エリアAで有効なGPS人工衛星102の情報としてGPS信号を受信しようとする場合,充分な個数のGPS信号(4ケ以上)を受信することができない場合が発生する。このため,テスト用端末110から充分な個数のGPSデータを受信することができない位置決めサーバー160は,テスト用端末110の位置決めを正しく行うことができなくなる。
このような短所を補完するために,テスト用端末110は基地局伝送器及び/または光中継器が設置された一つ以上のエリアを,車両などを用いて移動しながら,A−GPSデータ及びC−GPS位置情報を受信して移動体通信網を通じて位置決めサーバー160へ伝送する。この位置決めサーバー160は,テスト用端末110からA−GPSデータ及びC−GPS位置情報を同時に受信し,該受信したA−GPSデータ及びC−GPS位置情報を分析する。
位置決めサーバー160は,A−GPSデータ及びC−GPS位置情報を分析した結果,C−GPS動作モードではGPS信号を4ケ以上良好に受信する反面,A−GPS動作モードでは2ケ以下のGPS信号を受信したと判断すると,自身の伝送した補助データが有効でなかったと判断する。すなわち,A−GPSデータ及びC−GPS位置情報を伝送したテスト用端末が位置している測定地点を,MAR値最適化が必要な地点として判断する。
位置決めサーバー160やMAR値最適化用データベース164は,C−GPS位置情報を分析して得たGPS人工衛星の識別コード,個数,測定地点の緯経度座標などと,A−GPSデータから得たNID,BSIDとを用いて,A−GPS受信チップのサービング基地局の緯経度座標と,C−GPS位置情報から獲得した測定地点の緯経度座標との間の距離を計算する。位置決めサーバー160やMAR値最適化用データベース164は,計算した距離値のうち,最大の距離値を新たなMAR値として修正する過程によって,MAR値最適化処理を行う。
次に,図2を参照しながら,本実施の形態にかかるテスト用端末110について説明する。図2は,本実施の形態にかかるテスト用端末110の概略的な構成を示すブロック図である。
本実施の形態にかかるテスト用端末110は,プログラムメモリ部210,パラメータ格納部211,キー入力部212,LCD表示部213,データ格納部214,モード状態格納部215,LED点滅部216,バッテリー217,内臓ボード220,RS-232Cカード240を備える。また,テスト用端末110はA−GPS受信チップ250,C−GPS受信機260,フラッシュメモリカード270,無線モデム280,スイッチ290,GPSアンテナ292及びRFアンテナ294を含む。
プログラムメモリ部210には,移動体通信網に対して送受信されるメッセージを処理するためのプロトコルソフトウェアが格納されており,本実施の形態にかかるGPS測定プログラムが格納されている。GPS測定プログラムは,テスト用端末110の動作モードを設定または変更する機能,GPSデータを測定した回数,時刻,測定地点の座標及び測定結果をログファイルとして格納するログファイル生成機能,動作モードの設定や変更のための作業画面及び測定結果をディスプレイするためのユーザーインターフェース機能などを提供する。
ここで,テスト用端末110の動作モードとは,GPSデータを獲得するためのC−GPS動作モード及びA−GPS動作モードをいう。一方,本実施の形態にかかるGPS測定プログラムは,オブジェクト指向言語のC++やJAVA(ジャバ:商標登録)などのプログラム言語を用いてコーディングすることができる。
パラメータ格納部211には,テスト用端末110が音声通話及び/またはデータ通信を行うことができるように,3GPP(The 3rd Generation Partnership),3GPP2,国際電気通信連合(ITU),OHG(Operator Harmonization Group)などで定義した同期式,非同期式及び第4世代通信システムで使われる各種パラメータを格納し,または格納することができる。したがって,プログラムメモリ部110に格納されているプロトコルソフトウェアは,パラメータ格納部211に格納されているパラメータを用いて音声及び/またはデータを変調及び復調する。
キー入力部212には,電話番号などの数字及び文字を入力するための多数のキーボタンが設けられている。このキーボタンは通常,12個の数字キー(0〜9,*,#),多数のファンクションキー,多数のカーソル移動キー,スクロールキーなどを含んでもよい。また,キー入力部212には本発明の実施例によってテスト用端末110の動作モードを設定,または変更するための一つ以上のモード設定用キーボタンが設けられてもよい。したがって,測定者は,プログラムメモリ部210に記憶されたGPS測定プログラムを活用,またはキー入力部212に設けられているモード設定用キーボタンを操作して,テスト用端末110をC−GPS動作モードまたはA−GPS動作モードに設定することができる。
LCD表示部213は,一般にバッテリーの使用状態,電波の受信強度,日字及び時刻を表示してテスト用端末110の動作状態を示す。また,本実施の形態によれば,LCD表示部213は実行されたGPS測定プログラムの実行画面をディスプレイし,テスト用端末110が受信,演算したC−GPS位置情報及びA−GPSデータをディスプレイする。
モード状態格納部215は,キー入力部212により選択されたテスト用端末110の現在動作モードを状態フラグ(例えば,0,1,2,…)を割り当てて格納する。さらに詳細に説明すると,内臓ボード220に搭載された中央演算処理装置(CPU)221は,テスト用端末110の待機モード,C−GPS動作モード,A−GPS動作モード及びデータ伝送モードを区分するために,それぞれのモードごとに固有な状態フラグを割り当ててモード状態格納部215を更新する。
LED点滅部216はテスト用端末110の動作可否,障害発生可否,GPSデータの受信可否,MAR値最適化用データの伝送可否などをLEDの点滅によって示す機能を果たす。また,バッテリー217は,テスト用端末110の駆動のための電源を供給するもので,再充電可能な携帯用装置である。
内臓ボード220は,一般に中央演算処理装置221,ランダムアクセスメモリ222,LANポート(図示せず。),USBポート223,シリアルポート224などをまとめて備えるボードをいう。この内臓ボード220を用いて多数の電子部品を統合すれば,別のケーブルや導電線を用いて該ボードに電子部品を接続する時発生するデータバッファリング,隣のケーブルや導電線間での電磁気的干渉現状による障害発生などの問題点を改善することができる。
内臓ボード220に搭載された中央演算処理装置221は,RS-232Cカード240を通じてA−GPSデータを受信し,該受信したA−GPSデータを内臓ボード220に搭載されたランダムアクセスメモリ222に,一時的に臨時に格納する。また,中央演算処理装置221はC−GPS受信機260から受信したC−GPS位置情報もランダムアクセスメモリ222に臨時に格納したがA−GPSデータと共に送出されるように制御する。
内臓ボード220に搭載されたランダムアクセスメモリ222は,前述のように,A−GPSデータ及びC−GPS位置情報を臨時に格納,削除する機能を果たす。また,ランダムアクセスメモリ222はテスト用端末110にインストールされた各種プログラムが実行される場合,データバッファとしての機能を果たし,キー入力部212から入力されたデータを臨時に格納する機能も行う。
USBポート223及びシリアルポート224は,テスト用端末110の外部に設けられる通信インターフェース用ポートであって,USBケーブル及びシリアルケーブルを通じてコンピュータなどのような通信装置とテスト用端末110の通信を可能にする。したがって,測定者がテスト用端末110で測定したMAR値最適化用データを通信環境の不良などの理由で位置決めサーバー160へ伝送できなかったり正常に伝送をできない場合などに,USBポート223またはシリアルポート224を用いてテスト用端末110に格納されたMAR値最適化用データをコンピュータなどに複写したり移動させることができる。また,コンピュータに複写され,または移動したMAR値最適化用データは,有線通信網を通じて位置決めサーバー160へ伝送されることができることである。
UART(Universal Asynchronou Receiver/Transmitter)チップ225及び226は,内臓ボード220と外部の装置との間のデータ送受信のために並列ビット列をシリアルビット列に変換または,その逆の変換処理を行う。UARTチップ225,226について説明すると,テスト用端末110に組み込まれた電子部品でのデータは,並列ビット列構造に送受信される。しかしながら,並列ビット列は短距離の送受信には適合であるが,長距離の送受信には不適合である。したがって,UARTチップはテスト用端末110で生成された並列ビット列を長距離の伝送に適合したシリアルビット列に変換し,モデムなどのような通信装置へ伝達する。また,通信網を通じて受信したシリアルビット列のデータをテスト用端末110で用いるために,並列ビット列のデータに変換する機能も行う。
したがって,UARTチップ225はRS-232Cカード240を通じて受信したシリアルビット列のMAR値最適化用データを並列ビット列のMAR値最適化用データに変換して中央演算処理装置221へ伝達する。これに対して,UARTチップ226は中央演算処理装置221により利用される並列ビット列のMAR値最適化用データをシリアルビット列のMAR値最適化用データに変換して無線モデム280へ伝達する。
RS-232Cカード240は一般に,コンピュータのような装置がモデムのようなシリアル装置とデータを送受信するために使用する最も普遍的な通信インターフェースである,RS-232C規格を支援する通信カードである。RS-232Cカード240はUARTチップ225とA−GPS受信チップ250との間のデータインターフェース装置として機能する。
A−GPS受信チップ250は,テスト用端末110がA−GPS方式で位置決めを行うことができるように受信するGPS信号から航法データを抽出する。また,該抽出した航法データを用いて,GPS人工衛星の識別コード,個数,衛星信号の強さ,擬似距離などを演算し,RS-232Cカード240及びUARTチップ225を通じて中央演算処理装置221へ伝達する。
C−GPS受信機260は,A−GPS受信チップ250と同様に,テスト用端末110がC−GPS方式で位置決めを行うことができるように受信するGPS信号から航法データを抽出する。しかしながら,C−GPS受信機260は,該抽出した航法データを用いてGPS人工衛星の識別コード及び個数だけでなく,テスト用端末110の緯経度座標を直接演算して位置決めを自ら行う機能も行う。C−GPS受信機260はテスト用端末110の緯経度座標を直接演算するために,航法データを用いて緯経度座標を演算する座標演算アルゴリズムを組み込んでいる。
フラッシュメモリカード270は,EEPROMの一種であって,一般的なEEPROMとは異なり,ブロック単位で再プログラム可能で,RAM及びROMの機能を共に受容する長所を有する。また,一度記録されたデータの保存状態を維持するためにこれ以上の電力消耗を要しないために,低電力が必須な携帯電話,PDA等のような装置に主に使われている。フラッシュメモリカード270のデータは,テスト用端末110が毎測定地点で測定してランダムアクセスメモリ222に臨時に格納されている。MAR値最適化用データをリアルタイムで伝送できない場合,MAR値最適化用データをランダムアクセスメモリ222から受取って格納する。すなわち,フラッシュメモリカード270はランダムアクセスメモリ222の動作を補助するために,テスト用端末110でコンピュータのハードディスクのような機能を果たすと見ることができる。
本実施の形態にかかるフラッシュメモリカード270は,かかる例に限定されず,例えば,フラッシュメモリカード270は,PCMCIAカード,コンパクトフラッシュ(登録商標)カード,スマートメディアカード,マルチメディアカード,
セキュアデジタルカードなどを例示することができる。
無線モデム280は,ランダムアクセスメモリ222やフラッシュメモリカード270に格納されたMAR値最適化用データを,UARTチップ226を介して受信する。また,受信したMAR値最適化用データを高周波信号にのせる所定の変調処理を行い,MAR甲最適化用データ信号を生成してRFアンテナ294を通じて送出する。
スイッチ290は,中央演算処理装置221の制御により,GPSアンテナ292をA−GPS受信チップ250またはC−GPS受信機260に交互に切換える機能を果たす。詳細に説明すると,中央演算処理装置221はキー入力部212からA−GPS動作モードの設定キー値が入力されると,スイッチ290をA−GPS受信チップ250に切換え,C−GPS動作モードの設定キー値が入力されると,スイッチ290をC−GPS受信機260に切換える。
GPSアンテナ292はC−GPS動作モードまたはA−GPS動作モード状態で,中央演算処理装置221の制御によりGPS信号を探索して受信する機能を果たす。
RFアンテナ294は,無線モデム280から受信した変調されたMAR値最適化用データを電波空間へ送出する機能を果たす。
図3は,本実施の形態にかかるテスト用端末110が動作する過程を簡略に示すフローチャートである。
図2及び図3に示すように,テスト用端末110を用いてMAR値最適化用データの生成処理をする測定者は,テスト用端末110のキー入力部212に設けられた一つ以上のモード設定用キーボタンを操作し,C−GPSモードキー値またはA−GPSモードキー値を入力する(S300)。勿論,図1で説明したように,プログラムメモリ部210に設けられたGPS測定プログラムを用いてA−GPS動作モードまたはC−GPS動作モードに切換えてもよい。
中央演算処理装置221は,ステップS300にて入力されたキー値を分析し,あるモードキー値が入力されたかを判断する(S302)。中央演算処理装置221はステップS302の判断結果,C−GPSモードキー値が入力されたと判断されると,テスト用端末110をC−GPS動作モードに切換える(S304)。また,中央演算処理装置221は切換え信号を生成し,スイッチ290をC−GPS受信機260に切換える(S306)。C−GPS動作モードに切換えられたテスト用端末110は,GPSアンテナ292を用いてGPS信号を探索して受信する(S308)。
テスト用端末110のC−GPS受信機260は,ステップS308にて受信したGPS信号を分析して航法データを抽出し(S310),該抽出した航法データを用いてC−GPS位置情報を生成する(S312)。中央演算処理装置221はステップS312にてC−GPS受信機260の生成したC−GPS位置情報をランダムアクセスメモリ222に一時格納する(S314)。
一方,中央演算処理装置221はステップS302における判断の結果,A−GPSモードキー値が入力されたと判断されると,テスト用端末110をA−GPS動作モードに切換える(S316)。また,中央演算処理装置221は切換え信号を生成してスイッチ290をA−GPS受信チップ250に切換える(S318)。
A−GPS動作モードに切換えられたテスト用端末110は,獲得して格納している無線基地局の識別コードを,A−GPS移動体通信網を介して位置決めサーバー160へ伝送する(S320)。無線基地局の識別コードを受信した位置決めサーバー160は,補助データを生成して移動体通信網を通じてテスト用端末110へ伝送し,テスト用端末110は該補助データを受信して分析する(S322)。
テスト用端末110は,ステップS322にて分析した補助データを用いてGPS信号を探索して受信する(S324)。ここで,A−GPS動作モードはC−GPS動作モードで使用したことと同じGPSアンテナ292を用いてGPS信号を探索・受信する。したがって,テスト用端末110は固定測定地点で同じGPSアンテナ292を用いてGPS信号を受信するので,C−GPS動作モードとA−GPS動作モードでGPS信号の受信位置誤差が発生しない。
テスト用端末110は受信したGPS信号を分析して航法データを抽出し(S326),該抽出した航法データを用いてA−GPSデータを生成する(S328)。中央演算処理装置221はステップS328にてA−GPS受信チップ250の生成したA−GPSデータをランダムアクセスメモリ222に一時格納する(S328)。
中央演算処理装置221はC−GPS位置情報及びA−GPSデータの受信処理が完了すると,ランダムアクセスメモリ222に一時格納されているC−GPS位置情報及びA−GPSデータを用いてMAR値最適化用データとして,無線モデム280及びRFアンテナ294を通じて位置決めサーバー160へ伝送する(S332)。
一方,テスト用端末110は自体故障や通信環境の障害などの理由によって,ステップS332でMAR値最適化用データの伝送が不可能な場合,ランダムアクセスメモリ222に格納されたMAR値最適化用データをフラッシュメモリカード270に格納する。したがって,テスト用端末110は自体故障が復旧または通信環境が良好な状態に転換する場合に,MAR値最適化用データを位置決めサーバー160へ伝送することができる。
また,本実施の形態によれば,テスト用端末110がC−GPS方式と
A−GPS方式を交互に切換えながら,測定をするようになる。したがって,テスト用端末110において,C−GPS方式とA−GPS方式とでGPS信号の受信時刻の同期化が不可能になるという短所が生じる恐れがある。このため,GPS信号の受信時刻を同期化させる方法によって,A−GPS動作モードでは周期的な時間単位(例えば,1分単位)ごとに測定地点を指定してA−GPSデータを獲得する。
反面,C−GPS動作モードでは,整数単位のGPS時刻に測定地点を指定してC−GPS位置情報を獲得する。その次に,A−GPS動作モードを用いてGPS信号を受信した時刻を基準として,C−GPS位置情報を獲得した測定地点の位置座標を補正し,A−GPS動作モードとC−GPS動作モードとでの測定地点を指定した時刻の同期化を成し遂げられるようになる。
以上,添付図面を参照しながら本発明の好適な実施形態について説明したが,本発明はかかる例に限定されない。当業者であれば,特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例を想定し得ることは明らかであり,それらについても当然に本発明の技術的範囲に属するものと了解される。
本発明は,基地局アンテナの最大範囲値を調節し,ロケーションベースのサービスを最適化するシステムの性能を最適化するのに用いるためのテスト用端末及びその制御方法に適用可能である。
本実施の形態にかかるLBS最適化システムの概略的な構成を示すブロック図である。 本実施の形態にかかるテスト用端末の概略的な構成を示すブロック図である。 本実施の形態にかかるテスト用端末に適用された動作の概略を示すフローチャートである。
符号の説明
110 テスト用端末110
120 基地局
122 光中継器
130 基地局制御器
140 移動交換局
150 信号伝送点
160 位置決めサーバー
162 MAR値データベース
164 MAR値最適化用データベース
170 基準GPSアンテナ

Claims (25)

  1. 位置決めサーバーを含むロケーションベースシステムの基地局に設定されている基地局アンテナのカバーする最大範囲(MAR)を更新してロケーションベースサービスを最適化するシステムに使用するためのテスト用端末であって:
    前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定または変更するためのデータ入力手段として機能するキー入力部と;
    一つ以上のGPS人工衛星から送出されるGPS信号を受信して伝達するGPSアンテナと;
    RF信号を受信するRFアンテナと;
    前記GPSアンテナから第1のGPS信号群を受信し、前記第1のGPS信号群から第1の航法データを抽出し、前記第1の航法データから、測定位置の緯度及び経度情報と前記第1のGPS信号群を送信した前記GPS人工衛星の個数が含まれるC−GPS位置情報を生成するC−GPS受信機と;
    前記位置決めサーバーから受信した補助データを用いて第2のGPS信号群を受信し、前記第2のGPS信号群から第2航法データを抽出し、前記第2航法データおよび前記RF信号から、前記第2のGPS信号群を送信した前記GPS人工衛星の個数並びに前記RF信号のNID(ネットID)及びBSID(Base Station ID)が含まれるA−GPSデータを生成するA−GPS受信チップと;
    前記キー入力部により送出するモードキー値に応じて前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定し,前記C−GPS動作モードでは,前記C−GPS受信機が前記C−GPS位置情報を生成するように制御し,前記A−GPS動作モードでは,前記A−GPS受信チップが前記A−GPSデータを生成するように制御する,中央演算処理装置が少なくとも備わる内臓ボードと;
    前記C−GPS位置情報及び前記A−GPSデータを変調し、C−GPS動作モードで得られる前記C−GPS位置情報及びA−GPS動作モードで得られる前記A−GPSデータを含むMAR値最適化用データ信号を生成して伝達する無線モデムと;
    を含むことを特徴とする,LBS最適化システム用テスト用端末。
  2. 前記テスト用端末は,前記中央演算処理装置の制御により切換えて前記C−GPS受信機及び前記A−GPS受信チップを前記GPSアンテナと交互に連結させるスイッチを,更に含むことを特徴とする,請求項1に記載のLBS最適化システム用テスト用端末。
  3. 前記テスト用端末は,前記A−GPS受信チップと前記内臓ボード間のデータ通信インターフェース機能を提供するRS-232Cカードをさらに含むことを特徴とする,請求項1または2に記載のLBS最適化システム用テスト用端末。
  4. 前記キー入力部の外部面には,前記テスト用端末を前記C−GPS動作モードまたは前記A−GPS動作モードに設定又は変更する機能を有する,少なくとも一つのモード設定用キーボタンが設けられていることを特徴とする,請求項1,2,または3項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  5. 前記テスト用端末は,自身の動作モードを前記C−GPS動作モードまたは前記A−GPS動作モードに設定又は変更する機能を有する,GPS測定プログラムが少なくとも格納されたプログラムメモリ部を,さらに含むことを特徴とする請求項1,2,3,または4項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  6. 前記GPS測定プログラムは,GPSデータを測定した回数,時刻,測定地点の座標及び測定結果をログファイルとして格納するログファイル生成機能と前記動作モードの設定や変更のための作業画面及び測定結果をディスプレイするためのユーザーインターフェース機能とをさらに有することを特徴とする,請求項1,2,3,4,または5項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  7. 前記テスト用端末は,自身の動作モードを待機モード,前記C−GPS動作モード及び前記A−GPS動作モードに各々固有なフラグを割当てて,格納して前記動作モードを管理するモード状態格納部を,さらに含むことを特徴とする請求項1,2,3,4,5,または6項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  8. 前記テスト用端末は,動作可否,障害発生可否及び前記第1のGPS信号または前記第2のGPS信号の受信可否を示すためのLED点滅部を,さらに含むことを特徴とする請求項1,2,3,4,5,6,または7項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  9. 前記テスト用端末は,駆動のための電源の供給を行う携帯用バッテリーを,さらに含むことを特徴とする,請求項1,2,3,4,5,6,7,または8項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  10. 前記内臓ボードには,
    前記テスト用端末の内部通信装置に対してデータの送受信を行うためのインターフェースとして機能する一つ以上のUARTチップと;
    前記C−GPS位置情報及び前記A−GPSデータを臨時に格納するランダムアクセスメモリと;
    USBケーブルまたはシリアルケーブルを通じて,外部の通信装置に対してデータの送受信を行うためのUSBポートやシリアルポートと;
    を,さらに搭載することを特徴とする,請求項1,2,3,4,5,6,7,8,または9項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  11. 前記A−GPSデータには,前記第2のGPS信号群を送出した一つ以上のGPS人工衛星の識別コード,測定時刻,前記第2のGPS信号群の強さおよび擬似距離が含まれていることを特徴とする,請求項1,2,3,4,5,6,7,8,9または10項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  12. 位置決めサーバーを含むロケーションベースシステムの基地局に設定されている基地局アンテナのカバーする最大範囲(MAR)を調節してロケーションベースのサービスを最適化するシステムに使用するためのテスト用端末であって:
    前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定又は変更するためのデータ入力手段として機能するキー入力部と;
    一つ以上のGPS人工衛星から送出されるGPS信号を受信して伝達するGPSアンテナと;
    RF信号を受信するRFアンテナと;
    前記GPSアンテナから第1のGPS信号群を受信し、前記第1のGPS信号群から第1の航法データを抽出し、前記第1の航法データから、測定位置の緯度及び経度情報と前記第1のGPS信号群を送信した前記GPS人工衛星の個数が含まれるC−GPS位置情報を生成するC−GPS受信機と;
    前記位置決めサーバーから受信した補助データを用いて第2のGPS信号群を受信し、前記第2のGPS信号群から第2航法データを抽出し、前記第2航法データおよび前記RF信号から、前記第2のGPS信号群を送信した前記GPS人工衛星の個数並びに前記RF信号のNID(ネットID)及びBSID(Base Station ID)が含まれるA−GPSデータを生成するA−GPS受信チップと;
    前記キー入力部から受信するモードキー値に応じて前記テスト用端末をC−GPS動作モードまたはA−GPS動作モードに設定し,前記C−GPS動作モードでは前記C−GPS受信機が前記C−GPS位置情報を生成するように制御し,前記A−GPS動作モードでは前記A−GPS受信チップが前記A−GPSデータを生成するように制御する,中央演算処理装置が搭載された内臓ボードと;
    前記中央演算処理装置の制御により,前記C−GPS位置情報及び前記A−GPSデータを格納するメモリ素子と;
    前記C−GPS位置情報及び前記A−GPSデータを変調し、C−GPS動作モードで得られる前記C−GPS位置情報及びA−GPS動作モードで得られる前記A−GPSデータを含むMAR値最適化用データ信号を生成して伝達する無線モデムと;
    を含むことを特徴とする,LBS最適化システム用テスト用端末。
  13. 前記メモリ素子が,不揮発性を有することを特徴とする,請求項12に記載のLBS最適化システム用テスト用端末。
  14. 前記メモリ素子が,フラッシュメモリカードを含むことを特徴とする請求項13に記載のLBS最適化システム用テスト用端末。
  15. 前記フラッシュメモリカードが,PCMCIAカード,コンパクトフラッシュ(登録商標)カード,スマートメディアカード,マルチメディアカード及びセキュアデジタルカードの中の一つ以上であることを特徴とする,請求項14に記載のLBS最適化システム用テスト用端末。
  16. 前記内臓ボードには,
    前記テスト用端末の内部通信装置に対してデータの送受信を行うためのインターフェースとして機能する一つ以上のUARTチップと;
    前記C−GPS位置情報及び前記A−GPSデータを臨時に格納するランダムアクセスメモリと;
    USBケーブルまたはシリアルケーブルを通じて,外部通信装置に対してデータの送受信を行うためのUSBポートやシリアルポートとが,さらに搭載されていることを特徴とする,請求項12に記載のLBS最適化システム用テスト用端末。
  17. 前記中央演算処理装置が,前記ランダムアクセスメモリに臨時に格納されている前記C−GPS位置情報及び前記A−GPSデータのリアルタイムの伝送が失敗する場合,前記C−GPS位置情報及び前記A−GPSデータを前記メモリ素子へ移動させて格納することを特徴とする,請求項12または16に記載のLBS最適化システム用テスト用端末。
  18. 前記A−GPSデータには,前記第2のGPS信号群を送出した一つ以上のGPS人工衛星の識別コード,測定時刻,前記第2のGPS信号群の強さ及び擬似距離が含まれていることを特徴とする,請求項12,13,14,15,16または17項のうちいずれか1項に記載のLBS最適化システム用テスト用端末。
  19. 基地局に設定されている基地局アンテナのカバーする最大範囲(MAR)を更新してロケーションベースサービスを最適化するシステムに使用するためのテスト用端末の制御方法であって:
    測定位置ごとにA−GPS動作モードに切換えて,前記測定位置を管轄または隣接する無線基地局の識別コードを、前記テスト端末によって前記無線基地局から受信して位置決めサーバーに送出する第1のステップと;
    前記位置決めサーバーから補助データを受信し分析して,第1のGPS信号群を探索し受信する第2のステップと;
    前記第1のGPS信号群を送信したGPS人工衛星の個数並びに移動体通信網のRF信号を通じて得られるNID(ネットID)及びBSID(Base Station ID)が含まれるA−GPSデータを生成し格納し,C−GPS動作モードに切換える第3のステップと,
    第2のGPS信号群を探索し受信する第4のステップと;
    前記測定位置の緯度及び経度情報並びに前記第2のGPS信号群を送信したGPS人工衛星の個数が含まれるC−GPS位置情報を生成する第5のステップと;
    前記C−GPS位置情報と前記A−GPSデータとを集して、前記C−GPS位置情報と前記A−GPSデータとをMAR値最適化用データ信号として前記移動体通信網を通じて位置決めサーバーへ伝送する第6のステップと;
    を含むことを特徴とする,LBS最適化システム用テスト用端末の制御方法。
  20. 前記第1のステップまたは前記第3のステップにて,
    前記A−GPS動作モードまたは前記C−GPS動作モードは,前記テスト用端末の外部面に備わっている一つ以上のモード設定用キーボタンを操作し設定することを特徴とする,請求項19に記載のLBS最適化システム用テスト用端末の制御方法。
  21. 前記第1のステップまたは前記第3のステップにて,
    前記A−GPS動作モードまたは前記C−GPS動作モードは,前記テスト用端末に設置されているGPS測定プログラムを駆動し設定することを特徴とする,請求項33または20に記載のLBS最適化システム用テスト用端末の制御方法。
  22. 前記第2のステップにて,
    前記テスト用端末は,前記補助データに含まれた一つ以上のGPS人工衛星の位置座標情報を用いて前記第1のGPS信号群を探索することを特徴とする,請求項19,20,または21項のうちいずれか1項に記載のLBS最適化システム用テスト用端末の制御方法。
  23. 前記第6のステップにて,
    前記テスト用端末は,前記C−GPS位置情報及び前記A−GPSデータのリアルタイムの伝送が失敗する場合,前記C−GPS位置情報及び前記A−GPSデータを内蔵メモリ素子に格納した後,所定の時間の経過後に,再伝送を試みることを特徴とする,請求項19,20,21,または22項のうちいずれか1項に記載のLBS最適化システム用テスト用端末の制御方法。
  24. 前記テスト用端末に有線ケーブルを連結して前記メモリ素子に格納されている前記C−GPS位置情報及び前記A−GPSデータを複写または移動させて別途の格納部に格納することを特徴とする,請求項19,20,21,22,または23項のうちいずれか1項に記載のLBS最適化システム用テスト用端末の制御方法。
  25. 前記テスト用端末が前記測定地点で前記C−GPS動作モードに,まず設定された後,前記A−GPS動作モードに設定されることを特徴とする,請求項19,20,21,22,または23項のうちいずれか1項に記載のLBS最適化システム用テスト用端末の制御方法。
JP2003412366A 2003-02-19 2003-12-10 テスト用端末及びその制御方法 Expired - Fee Related JP4143026B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20030010501 2003-02-19
KR10-2003-0053222A KR100514635B1 (ko) 2003-02-19 2003-07-31 기지국 안테나가 커버하는 최대 반경을 조절하여 위치기반 서비스를 최적화하는 시스템에 사용하기 위한 테스트장치 및 그 제어 방법

Publications (2)

Publication Number Publication Date
JP2004254293A JP2004254293A (ja) 2004-09-09
JP4143026B2 true JP4143026B2 (ja) 2008-09-03

Family

ID=32737769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003412366A Expired - Fee Related JP4143026B2 (ja) 2003-02-19 2003-12-10 テスト用端末及びその制御方法

Country Status (5)

Country Link
US (1) US7218275B2 (ja)
EP (1) EP1450179B1 (ja)
JP (1) JP4143026B2 (ja)
CN (1) CN100555918C (ja)
TW (1) TWI229564B (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE463093T1 (de) 2001-11-20 2010-04-15 Qualcomm Inc Rückwärtsverbindungsleistungsgesteuerte verstärkereinheit
US7831263B2 (en) * 2002-11-08 2010-11-09 Qualcomm Incorporated Apparatus and method for determining the location of a repeater
TWI280807B (en) * 2003-02-19 2007-05-01 Sk Telecom Co Ltd Method and system for optimizing location-based service by adjusting maximum antenna range
EP1569483A3 (de) * 2004-02-26 2006-07-05 Siemens Aktiengesellschaft Verfahren und Anordnung zur Positionsbestimmung eines Endgerätes in einem Zellularen Mobilfunknetz
US9118380B2 (en) * 2004-04-05 2015-08-25 Qualcomm Incorporated Repeater with positioning capabilities
CA2562045A1 (en) * 2004-04-05 2005-11-03 Qualcomm Incorporated Repeater that reports detected neighbors
US7778596B2 (en) 2004-07-29 2010-08-17 Qualcomm Incorporated Airlink sensing watermarking repeater
US7256733B2 (en) * 2004-10-21 2007-08-14 Qualcomm Incorporated Method and system for positioning signal acquisition assistance window evaluation
US20060116131A1 (en) * 2004-11-30 2006-06-01 Morgan Scott D Reporting satellite positioning system assistance integrity information in wireless communication networks
CN1306850C (zh) * 2005-06-10 2007-03-21 重庆邮电学院 基于手持中继的移动终端跟踪定位系统及定位方法
FR2893466B1 (fr) * 2005-11-17 2008-01-04 Tdf Sa Systemes d'antennes d'emission adaptatives aux conditions de propagation pour diffusion radioelectrique
JP4772556B2 (ja) * 2006-03-29 2011-09-14 富士通コンポーネント株式会社 電子装置の製造方法
US7840214B2 (en) * 2006-04-21 2010-11-23 Alcatel-Lucent Usa Inc. Method of providing access information to an access terminal
US7466266B2 (en) * 2006-06-22 2008-12-16 Rosum Corporation Psuedo television transmitters for position location
US8345658B2 (en) * 2006-10-18 2013-01-01 Nec Corporation Mobile communication terminal with GPS function, positioning system, operation control method, and program
US20080119203A1 (en) * 2006-11-17 2008-05-22 Yoram Shalmon Method and system for providing location based services
US20080180322A1 (en) * 2007-01-26 2008-07-31 Mohammad Mojahedul Islam Method and system for wireless tracking of utility assets
US20080209294A1 (en) * 2007-02-26 2008-08-28 Hakan Brink Built-in self testing of a flash memory
CN101227746B (zh) * 2008-02-19 2012-07-04 汪健辉 一种基于移动通信网络的a-gps定位系统和方法
CN102196467B (zh) * 2008-09-24 2013-12-11 西安方诚通讯技术服务有限公司 一种无线信号导航测试实现方法
KR101571564B1 (ko) * 2008-11-12 2015-11-25 엘지전자 주식회사 데이터 전송 방법
US8160501B1 (en) 2009-03-10 2012-04-17 Sprint Communications Company L.P. Test device for gain level determination of wireless repeater systems
JP5500619B2 (ja) * 2009-03-30 2014-05-21 日本電気株式会社 Gps端末、測位方法、通信システム及びプログラム
US20110039578A1 (en) * 2009-08-14 2011-02-17 Qualcomm Incorporated Assistance data for positioning in multiple radio access technologies
US8548495B2 (en) * 2010-09-08 2013-10-01 Texas Instruments Incorporated System and method for determining a position of a mobile wireless device by accessing access points alamanacs database
US8547932B2 (en) * 2010-11-01 2013-10-01 Intel Corporation Handover architecture for non-integrated radio access technologies
CN102695271B (zh) * 2011-03-25 2015-10-07 中国电信股份有限公司 第三方定位方法与系统
US9157953B2 (en) 2011-05-13 2015-10-13 Apple Inc. Test systems with cables that support multiple communications buses
TWI486613B (zh) * 2012-02-14 2015-06-01 Htc Corp 定位資訊處理方法、電子裝置與電腦可讀記錄媒體
US20130277422A1 (en) * 2012-04-22 2013-10-24 Abb Inc. System and method for requesting and delivering targeted information
US8761781B2 (en) 2012-05-30 2014-06-24 At&T Mobility Ii Llc Facilitation of determination of antenna location
CN103778057B (zh) * 2012-10-25 2017-09-12 腾讯科技(深圳)有限公司 Lbs测试方法及装置
CN104053162A (zh) * 2013-03-11 2014-09-17 株式会社日立制作所 可再生能源基站及其覆盖调整方法、无线蜂窝系统
US9853676B2 (en) * 2014-09-30 2017-12-26 Apple Inc. Alternative routing of wireless data onto power supply
CN104469672A (zh) * 2014-10-27 2015-03-25 中国联合网络通信集团有限公司 定位方法和平台
CN104994526B (zh) * 2015-06-23 2018-12-07 上海方库信息科技有限公司 一种测算移动通信基站天线方位角的方法
US10966055B1 (en) 2019-01-02 2021-03-30 Locationdas Inc. Positioning using distributed antenna system with service and location information availability monitoring and dynamic recovery
CN115856942B (zh) * 2022-11-21 2024-01-30 国网思极位置服务有限公司 一种基于虚拟站的地基增强网网型优化方法及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5884214A (en) * 1996-09-06 1999-03-16 Snaptrack, Inc. GPS receiver and method for processing GPS signals
DE19619205A1 (de) 1996-05-11 1997-11-13 Alcatel Mobile Comm Deutsch Verfahren und Vorrichtung zum Optimieren eines Mobilfunknetzes
US6204808B1 (en) 1998-08-13 2001-03-20 Ericsson Inc. Method and system for aiding GPS receivers via a cellular or PCS network
JP2000155163A (ja) * 1998-11-20 2000-06-06 Sony Computer Entertainment Inc 測位システム、測位方法、測位装置
US6522888B1 (en) * 1999-08-31 2003-02-18 Lucent Technologies Inc. System for determining wireless coverage using location information for a wireless unit
US6462708B1 (en) * 2001-04-05 2002-10-08 Sirf Technology, Inc. GPS-based positioning system for mobile GPS terminals
DE10061550A1 (de) * 2000-12-11 2002-06-20 Gta Geoinformatik Gmbh Vorrichtung und Verfahren zur mikrozellularen Funknetzplanung mittels einer Orientierungsplattform
JP2002195846A (ja) 2000-12-25 2002-07-10 Matsushita Electric Works Ltd Gpsアシスト情報の提供方法、および、この提供方法を実行するためのネットワークサービスシステム
JP2002196063A (ja) 2000-12-25 2002-07-10 Matsushita Electric Works Ltd Gps位置検出装置、およびこの装置を用いたネットワークアシスト対応gps位置検出システム
KR100828226B1 (ko) 2000-12-26 2008-05-07 엘지전자 주식회사 이동 단말기의 위치 측정 시스템 및 방법
JP4178756B2 (ja) 2001-01-29 2008-11-12 株式会社デンソー Gps受信機およびgps受信システム
US6570529B2 (en) * 2001-05-24 2003-05-27 Lucent Technologies Inc. Autonomous calibration of a wireless-global positioning system
KR100448574B1 (ko) * 2001-06-05 2004-09-13 주식회사 네비콤 지피에스 단말기 및 무선통신 단말기에 대한 측위 방법
JP3656601B2 (ja) * 2001-12-27 2005-06-08 株式会社デンソー Gps受信システム
US6885336B2 (en) * 2002-01-14 2005-04-26 Kyocera Wireless Corp. Systems and methods for providing position information using a wireless communication device

Also Published As

Publication number Publication date
JP2004254293A (ja) 2004-09-09
US20040162086A1 (en) 2004-08-19
TWI229564B (en) 2005-03-11
CN100555918C (zh) 2009-10-28
EP1450179A1 (en) 2004-08-25
TW200417263A (en) 2004-09-01
EP1450179B1 (en) 2006-11-02
US7218275B2 (en) 2007-05-15
CN1543099A (zh) 2004-11-03

Similar Documents

Publication Publication Date Title
JP4143026B2 (ja) テスト用端末及びその制御方法
JP3799351B2 (ja) ロケーションベースサービスの最適化システム、ロケーションベースサービスの最適化方法
KR100723680B1 (ko) 실내외 환경에서 gps를 이용한 위치 측정 방법 및 이를이용한 위치 기반 서비스 제공 방법, 시스템 및 장치
US20060079248A1 (en) Mobile communication terminal and position information using method
CN101518119A (zh) 基于无线装置的传感器网络
KR20040048146A (ko) 무선랜 액세스 포인트 자동 탐색 기능을 가지는 접속 장치및 그 접속 방법
US20070232345A1 (en) Portable Terminal, and Radio Quality Display Method, Program, and System
JP2007529947A (ja) Gps電波陰影地域で位置探索器を用いて端末機の位置を測位する方法及びシステム
CN102036324B (zh) 定位信息处理方法及装置
KR100514635B1 (ko) 기지국 안테나가 커버하는 최대 반경을 조절하여 위치기반 서비스를 최적화하는 시스템에 사용하기 위한 테스트장치 및 그 제어 방법
KR100573197B1 (ko) 기지국 안테나가 커버하는 최대 반경을 조절하여 위치기반 서비스를 최적화하는 방법 및 시스템
KR20050014564A (ko) Gps 위성 전파 음영 지역에서 이동 통신 단말기의위치를 측정하기 위한 방법 및 시스템
CN101388740B (zh) 在td-scdma无线通讯系统中获得与传递gps标准时间的方法与系统
KR100626225B1 (ko) 단말기 기반 지피에스를 이용한 네비게이션 서비스 제공방법 및 시스템
KR100625165B1 (ko) Cdma2000 시스템에서 위치 기반 서비스를 위한 인접목록 갱신 메시지의 운용 방법 및 시스템
KR100339988B1 (ko) 부호분할 다중접속방식의 서킷 방식 무선 데이터 통신을이용한 알티케이 지피에스 측위를 위한 데이터 전송연동장치
KR100682281B1 (ko) 이동 속도에 따른 서비스 품질 레벨 제어를 통해 위치 측위정확성을 확보하는 모바일 스테이션 기반의 지피에스단말기 및 그 방법
JP2008157658A (ja) 無線通信端末及び測位方法
TW200522749A (en) Calculating method of positioning coordinates for the mobile communication network
KR20030060196A (ko) 차량을 이용한 긴급 구조 요청 기능을 갖는 이동 통신시스템
KR20110006190A (ko) 무선 환경 화면을 통해 기지국 정보를 제공하는 이동 단말 및 그 제공 방법
KR20070038718A (ko) 통화 품질 개선 맵 구축 방법 및 시스템

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees