JP4142305B2 - Zoom lens - Google Patents

Zoom lens Download PDF

Info

Publication number
JP4142305B2
JP4142305B2 JP2002039424A JP2002039424A JP4142305B2 JP 4142305 B2 JP4142305 B2 JP 4142305B2 JP 2002039424 A JP2002039424 A JP 2002039424A JP 2002039424 A JP2002039424 A JP 2002039424A JP 4142305 B2 JP4142305 B2 JP 4142305B2
Authority
JP
Japan
Prior art keywords
lens group
lens
refractive power
group
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002039424A
Other languages
Japanese (ja)
Other versions
JP2003241095A (en
Inventor
武久 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sigma Inc
Original Assignee
Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sigma Inc filed Critical Sigma Inc
Priority to JP2002039424A priority Critical patent/JP4142305B2/en
Publication of JP2003241095A publication Critical patent/JP2003241095A/en
Application granted granted Critical
Publication of JP4142305B2 publication Critical patent/JP4142305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/163Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group
    • G02B15/167Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses
    • G02B15/17Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a first movable lens or lens group and a second movable lens or lens group, both in front of a fixed lens or lens group having an additional fixed front lens or group of lenses arranged +--

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は防振機能を備えたズームレンズに関し、特にフイルム写真用カメラ、デジタルカメラや、ビデオカメラなどに使用されるズームレンズの防振機能に関するものである。
【0002】
【従来の技術】
従来より、防振機能を備えたズームレンズにおいては、たとえば特開平11−316342号公報に開示されるように、変倍の際には、変倍に用いるレンズ群を多群で構成してレンズ全長を移動させ、手振れなどに起因する像位置の変動を補正する際には、一部のレンズ群を光軸と直行方向に移動させて補正していた。
【0003】
【発明が解決しようとする課題】
しかしながら、上述のような防振機能を備えたズームレンズでは、ズームレンズ群が多群で構成されるため、機構が複雑になる問題点があった。さらに防振機構や手振れ検出機構などの像位置の変動を補正するための各機構部品の配置に制限を課せなければならなかった。
【0004】
本発明は、前述の課題に鑑みてなされたものであり、簡易な機構の防振ズームレンズを提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上述の課題を解決するために、物体側から順に正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正または負の屈折力を有する第5レンズ群G5とを備え、広角端から望遠端への変倍時には、該第1レンズ群G1と該第5レンズ群G5は像面に対し固定であり、該第1レンズ群G1と該第2レンズ群G2との間隔は変化し、該第2レンズ群G2と該第3レンズ群G3の間隔は変化し、該第3レンズ群G3と該第4レンズ群G4の間隔は減少し、該第4レンズ群G4と該第5レンズ群G5の間隔は変化する構成とした。
【0006】
また、防振をするための変位手段として、前記第4レンズ群G4を光軸とほぼ直交する方向に移動さる構成とし、前記第1レンズ群G1は、物体側から順に、正の屈折力を有する第1レンズ群前部GL1と、正の屈折力を有する第1レンズ群後部GL2を有し、該第1レンズ群後部GL2でフォーカスをする構成とした。
【0007】
さらに、前記第4レンズ群G4の焦点距離をf4、望遠端の焦点距離をftとした時、
0.15<f4/ft<0.3 ・・・・・ (1)
の条件を満足する。
【0008】
前記第4レンズ群G4は、負レンズと正レンズからなり、平均屈折率をnG4とした時、
1.6>nG4 ・・・・・ (2)
の条件を満足する。
【0009】
前記第1レンズ群後部GL2は、負レンズと正レンズからなり、平均屈折率をnG2とした時、
1.6>nG2 ・・・・・ (3)
の条件を満足する。
【0010】
前記第1レンズ群後部GL2の焦点距離をfL2、前記第1レンズ群G1の焦点距離をf1とした時の比が、
2.2<fL2/f1<4 ・・・・・ (4)
の条件を満足する。
【0011】
【発明の実施の形態】
本発明では、フイルム写真用カメラ、デジタルカメラやビデオカメラ用のズームレンズに適するように、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正または負の屈折力を有する第5レンズ群G5とを備え、広角端から望遠端への変倍時には、該第1レンズ群G1と該第5レンズ群G5は像面に対し固定であり、該第1レンズ群G1と該第2レンズ群G2との間隔は変化し、該第2レンズ群G2と該第3レンズ群G3の間隔は変化し、該第3レンズ群G3と該第4レンズ群G4の間隔は減少し、該第4レンズ群G4と該第5レンズ群G5の間隔は変化するという基本構成を採用している。
【0012】
まず、上述の基本構成を有するズームレンズの特徴および利点について説明をする。
【0013】
ズームレンズ群を多群で構成し、変倍の際にレンズ全長を移動させる光学系は、短焦点側でレンズ全長を、大幅に短くできる利点を有しているが、古典的4群ズームのような全長固定型ズームレンズと比べ、機構的に複雑になるなどの欠点を有する。さらに、本発明のように、手振れなどに起因する像位置の変動を補正する光学系を内蔵させる場合、補正光学系を駆動する機構、手振れ検出機構などの付加要素があるためさらに機構的レイアウトの制限が必要となる。コストダウンや信頼性を確保するにはズーム光学系がシンプルであることが望ましい。本発明は、第1レンズ群G1と最終レンズ群が、ズームによらず像面に対して固定の構成を採用することにより、機構的に簡素化を行った。また、絞りが固定群である第5レンズ群G5内に位置するため、絞り駆動も容易になる。さらに、前述の第1レンズ群G1内の正の屈折力を有する第1レンズ群後部GL2でフォーカスをすることにより、複雑なカムを用いることなくインナーフォーカスが可能となり、さらにフォーカス群の重量軽減をはかることができる。
【0014】
以下、本発明の条件式について詳述する。一般的に、防振補正光学系は、小型軽量であることが望ましく、全ズーム域で防振時の光学性能の低下を極力押さえなければならなく、特に軸外光線は光軸近傍を通過することが望ましい。従って、絞り近傍の光学系を防振補正光学系にすれば良いのである。本発明では、絞り近傍の第4レンズ群G4を防振レンズ群とするため上述した条件を満足できる。
【0015】
条件式(1)は、防振レンズ群と望遠端の焦点距離の比を規定するための条件である。条件式(1)の下限を超え、防振レンズ群のパワーが強くなると、偏芯敏感度が大きくなり防振レンズ群の移動量が小さくなるが、防振時の光学性能の低下が大きくなり好ましくない。更に光学性能の低下を防ぐためには、防振レンズ群の構成枚数が増えるため、重量が重くなり防振駆動ができなくなる。条件式(1)の上限を超え、防振レンズ群のパワーが弱くなると、防振駆動量を大きくしなければ防振効果が得られなくなるため、防振レンズ系の外径が大きくなり、全体の光学系が大型化する。
【0016】
条件式(2)は、防振光学系の重量を軽量化するための条件である。撮影系の振動に対する防振レンズ群の追従性をよくするためには、防振レンズ群の軽量化が必須である。現存する光学ガラスは屈折率が高いほど比重が大きい傾向にあり、古典的硝子は比重が小さい。この境界が屈折率1.6近辺にあるため、軽量化するためには、比重の小さい古典的ガラスを使用しなければならない。また、防振レンズ群は、ダブレット以上の構成でなければならない。単レンズであると偏芯による色コマ等が発生し、光学性能の低下を防げない。これらの理由から、防振レンズ群はダブレットからなり、平均屈折率が1.6以下でないといけない。
【0017】
また、本発明は、前記第1レンズ群G1内に正の屈折力を有する第1レンズ群後部GL2でフォーカスをすることにより、複雑なカムを使うことなくインナーフォーカスが可能となり、フォーカス群の重量軽減をはかることができる。
【0018】
条件式(3)は、このインナーフォーカス部の平均屈折率を規定するための条件である。条件式(2)で説明したように、硝材の屈折率と比重は略比例関係にあり、従って軽量な硝材を用いるためには、屈折率の制約が必要となる。また、超望遠ズームのためには、フォーカシングによる色収差の変動を押さえなければならないのでインナーフォーカス部はダブレットが必要であり、さらに平均屈折率が1.6以下でないと軽量化がはかれない。
【0019】
条件式(4)は、インナーフォーカス部の焦点距離と前記第1レンズ群G1の焦点距離の比を規定するための条件である。条件式(4)の下限を超え、インナーフォーカス群のパワーが相対的に強くなるとフォーカス群の繰り出し量は少なくなるが、球面収差と色収差の変動が大きくなり、補正が困難となる。条件式(4)の上限を超え、インナーフォーカス群のパワーが相対的に弱くなると、フォーカシング量が大きくなるためフォーカシング群の径も大きくなりレンズ重量が増えるので好ましくない。
【0020】
【実施例】
以下、本発明の各実施例を図面を用いて説明をする。本発明のズームレンズは、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正または負の屈折力を有する第5レンズ群G5とを備え、広角端から望遠端への変倍時には、該第1レンズ群G1と該第5レンズ群G5は像面に対し固定であり、該第1レンズ群G1と該第2レンズ群G2との間隔は変化し、該第2レンズ群G2と該第3レンズ群G3の間隔は変化し、該第3レンズ群G3と該第4レンズ群G4の間隔は減少し、該第4レンズ群G4と該第5レンズ群G5の間隔は変化する。
【0021】
また、前記第1レンズ群G1は、物体側から順に、正の屈折力を有する第1レンズ群前部GL1と、正の屈折力を有する第1レンズ群後部GL2を有し、該第1レンズ群後部GL2でフォーカスをする。前記第4レンズ群G4は、光軸とほぼ直交する方向に移動さることで、像位置の変動を補正する変位手段である。なお、前記第5レンズ群G5内に絞りを配置する。
【0022】
本発明の各実施例の諸元値は、以下の通りである。fは焦点距離、FNOはFナンバー、2ωは画角、番号は面番号で物体側からのレンズ面の順番、R(I)はレンズ面の曲率半径、D(I)はレンズ面の間隔、NDはd線の屈折率、Vdはアッベ数を表している。
【0023】
実施例1
f=138.5〜387.2
FNO=5.87
2ω=17.6°〜6.2°
番号 R(I) D(I) ND Vd
[ 1] 136.7027 3.2468 1.72342 38.0
[ 2] 77.7391 0.1000
[ 3] 75.6236 11.6305 1.49700 81.6
[ 4] −783.2980 0.1000
[ 5] 144.3549 5.4965 1.49700 81.6
[ 6] 823.7759 18.0164 可変間隔
[ 7] 107.4880 2.4997 1.62004 36.3
[ 8] 67.0585 8.2840 1.48749 70.4
[ 9] 686.6027 6.0587 可変間隔
[10] −4182.6005 1.8975 1.77250 49.6
[11] 36.0489 5.2908 1.83400 37.3
[12] 100.5149 4.0425 可変間隔
[13] 130.7419 1.4217 1.80610 40.7
[14] 55.1088 3.8822
[15] −59.0834 1.3725 1.77250 49.6
[16] 65.6068 3.6265 1.84666 23.8
[17] −326.4323 63.2043 可変間隔
[18] 62.7711 1.5405 1.62004 36.3
[19] 30.8271 8.5058 1.48749 70.4
[20] −90.5788 12.4290 可変間隔
[21] −63.2920 1.3089 1.78590 43.9
[22] 206.9558 3.3693 1.54814 45.8
[23] −67.5334 1.5000
[24] 0.0 1.6000 絞り
[25] 39.2783 4.3451 1.49700 81.6
[26] 416.0399 56.1724
[27] −22.3433 1.3751 1.77250 49.6
[28] −91.8863 0.6980
[29] 249.3307 3.4814 1.62004 36.3
[30] −59.5431 4.9982
[31] 0.0
焦点距離 138.5848 289.2258 387.2197
バックフォーカス 48.5059 48.5850 48.8957
FNO 5.8730 5.87 5.87
D( 6) 18.0164 18.0164 18.0164
D( 9) 6.0587 16.3972 11.8961
D(12) 4.0425 19.3441 47.3668
D(17) 63.2043 22.1381 4.2500
D(20) 12.4290 27.9110 21.4830
f1 : 115.78
fL2: 320.43
f2 : −148.35
f3 : −56.08
f4 : 92.79
f5 : −1000.00
f4/ft=0.24
fL2/f1=2.77
防振レンズ群の移動量(mm)0.7
【0024】
実施例2
f=137.9〜386.1
FNO=5.87
2ω=17.8°〜6.2°
番号 R(I) D(I) ND Vd
[ 1] 142.0371 3.2468 1.72342 38.0
[ 2] 78.9709 0.1000
[ 3] 76.8159 11.7976 1.49700 81.6
[ 4] −564.8824 0.1000
[ 5] 150.2047 5.6265 1.49700 81.6
[ 6] 1418.0726 17.9922 可変間隔
[ 7] 113.3466 2.4997 1.62004 36.3
[ 8] 72.5338 7.5577 1.48749 70.4
[ 9] 794.7210 2.0943 可変間隔
[10] −1324.8834 2.2809 1.77250 49.6
[11] 38.5570 6.4963 1.83400 37.3
[12] 106.7858 2.6980 可変間隔
[13] 123.6498 1.4217 1.80610 40.7
[14] 59.7825 4.1259
[15] −67.8972 1.5676 1.77250 49.6
[16] 59.9532 4.0517 1.84666 23.8
[17] −1414.3864 67.1430 可変間隔
[18] 65.7865 1.5499 1.62004 36.3
[19] 31.7920 8.7817 1.48749 70.4
[20] −86.2339 5.5127 可変間隔
[21] −61.2733 1.4557 1.78590 43.9
[22] 157.2314 4.0803 1.54814 45.8
[23] −64.3498 1.5000
[24] 0.0 1.6000 絞り
[25] 39.2783 4.8217 1.49700 81.6
[26] 388.7399 57.5996
[27] −22.0959 1.3328 1.77250 49.6
[28] −129.2669 1.0442
[29] 305.7365 3.8234 1.62004 36.3
[30] −49.8686 7.7942
[31] 0.0
焦点距離 137.9283 299.0804 386.1451
バックフォーカス 48.3100 48.0162 48.5913
FNO 5.8696 5.8593 5.8863
D( 6) 17.9922 17.9922 17.9922
D( 9) 2.0943 7.9715 6.5387
D(12) 2.6980 41.5447 55.0914
D(17) 67.1430 23.2207 4.2500
D(20) 5.5127 4.9802 11.3456
f1 : 114.03
fL2: 326.64
f2 : −147.61
f3 : −60.22
f4 : 93.29
f5 : −500.13
f4/ft=0.24
fL2/f1=2.86
防振レンズ群の移動量(mm)0.7
【0025】
実施例3
f=139.8〜388.1
FNO=5.83
2ω=17.6°〜6.2°
番号 R(I) D(I) ND Vd
[ 1] 109.2620 3.2468 1.72342 38.0
[ 2] 70.2508 0.1000
[ 3] 69.1700 11.6270 1.49700 81.6
[ 4] 9410.4495 0.1000
[ 5] 134.7214 5.8208 1.49700 81.6
[ 6] 895.1680 17.6448 可変間隔
[ 7] 96.8656 2.4997 1.62004 36.3
[ 8] 57.9851 8.7405 1.48749 70.4
[ 9] 417.5120 9.1734 可変間隔
[10] −958.3380 1.8526 1.77250 49.6
[11] 31.3337 8.1424 1.83400 37.3
[12] 79.2256 3.3315 可変間隔
[13] 107.3454 1.4217 1.80610 40.7
[14] 45.2915 3.7821
[15] −50.1418 1.3789 1.77250 49.6
[16] 50.1453 3.7529 1.84666 23.8
[17] −334.1180 46.8922 可変間隔
[18] 62.1409 2.4084 1.62004 36.3
[19] 29.3501 9.0551 1.48749 70.4
[20] −72.4664 12.5285 可変間隔
[21] −54.1107 1.3315 1.78590 43.9
[22] 271.9739 3.1690 1.54814 45.8
[23] −67.8245 1.5000
[24] 0.0 1.6000 絞り
[25] 39.2783 4.7867 1.49700 81.6
[26] −651.9249 49.4312
[27] −23.0048 1.3631 1.77250 49.6
[28] −44.4602 0.1000
[29] 1942.7156 2.8006 1.62004 36.3
[30] −75.7080 21.9910
[31] 0.0
焦点距離 139.7805 284.2072 388.1634
バックフォーカス 48.4234 47.9760 48.6400
FNO 5.8289 5.8103 5.8383
D( 6) 17.6448 17.6448 17.6448
D( 9) 9.1734 20.7182 20.2920
D(12) 3.3315 17.1069 30.9196
D(17) 46.8922 19.6142 4.2500
D(20) 12.5285 14.9770 16.4484
f1 : 110.34
fL2: 332.23
f2 : −107.26
f3 : −46.00
f4 : 83.82
f5 : 420.74
f4/ft=0.22
fL2/f1=3.01
防振レンズ群の移動量(mm)0.7
【0026】
【発明の効果】
以上のように本発明によれば、簡易なレンズ構成で、防振機構や手振れ検出機構などの部品配置にゆとりのある防振機構を有したズームレンズを実現することができる。
【図面の簡単な説明】
【図1】実施例1のレンズ構成図
【図2】実施例1の非防振時における広角端の収差図
【図3】実施例1の非防振時における中間焦点距離の収差図
【図4】実施例1の非防振時における望遠端の収差図
【図5】実施例1の防振時における広角端のコマ収差図
【図6】実施例1の防振時における中間焦点距離のコマ収差図
【図7】実施例1の防振時における望遠端のコマ収差図
【図8】実施例2のレンズ構成図
【図9】実施例2の非防振時における広角端の収差図
【図10】実施例2の非防振時における中間焦点距離の収差図
【図11】実施例2の非防振時における望遠端の収差図
【図12】実施例2の防振時における広角端のコマ収差図
【図13】実施例2の防振時における中間焦点距離のコマ収差図
【図14】実施例2の防振時における望遠端のコマ収差図
【図15】実施例3のレンズ構成図
【図16】実施例3の非防振時における広角端の収差図
【図17】実施例3の非防振時における中間焦点距離の収差図
【図18】実施例3の非防振時における望遠端の収差図
【図19】実施例3の防振時における広角端のコマ収差図
【図20】実施例3の防振時における中間焦点距離のコマ収差図
【図21】実施例3の防振時における望遠端のコマ収差図
【符号の説明】
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
GL1 第1レンズ群前部
GL2 第1レンズ群後部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a zoom lens having an anti-vibration function, and more particularly to an anti-vibration function of a zoom lens used in a film photographic camera, a digital camera, a video camera, and the like.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a zoom lens having an image stabilization function, as disclosed in, for example, Japanese Patent Application Laid-Open No. 11-316342, when zooming, a lens group used for zooming is configured in multiple groups. When correcting the fluctuation of the image position caused by camera shake or the like by moving the entire length, correction is performed by moving a part of the lens unit in a direction perpendicular to the optical axis.
[0003]
[Problems to be solved by the invention]
However, the zoom lens having the above-described image stabilization function has a problem in that the mechanism is complicated because the zoom lens group is composed of multiple groups. Furthermore, it has been necessary to place restrictions on the arrangement of each mechanical component for correcting fluctuations in the image position, such as an image stabilization mechanism and a camera shake detection mechanism.
[0004]
The present invention has been made in view of the above-described problems, and an object thereof is to provide a vibration-proof zoom lens having a simple mechanism.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention sequentially includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a first lens group having a negative refractive power in order from the object side. A third lens group G3, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive or negative refractive power, and at the time of zooming from the wide-angle end to the telephoto end, The lens group G1 and the fifth lens group G5 are fixed with respect to the image plane, the distance between the first lens group G1 and the second lens group G2 changes, and the second lens group G2 and the third lens The interval between the group G3 changes, the interval between the third lens group G3 and the fourth lens group G4 decreases, and the interval between the fourth lens group G4 and the fifth lens group G5 changes.
[0006]
Further, as a displacement means for anti-vibration, the fourth lens group G4 is moved in a direction substantially orthogonal to the optical axis, and the first lens group G1 has a positive refractive power in order from the object side. The first lens group front portion GL1 and the first lens group rear portion GL2 having a positive refractive power, and the first lens group rear portion GL2 is focused.
[0007]
Further, when the focal length of the fourth lens group G4 is f4 and the focal length of the telephoto end is ft,
0.15 <f4 / ft <0.3 (1)
Satisfy the conditions.
[0008]
The fourth lens group G4 includes a negative lens and a positive lens, and when the average refractive index is nG4,
1.6> nG4 (2)
Satisfy the conditions.
[0009]
The first lens group rear part GL2 includes a negative lens and a positive lens, and when the average refractive index is nG2,
1.6> nG2 (3)
Satisfy the conditions.
[0010]
The ratio when the focal length of the rear portion GL2 of the first lens group is fL2 and the focal length of the first lens group G1 is f1,
2.2 <fL2 / f1 <4 (4)
Satisfy the conditions.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a first lens group G1 having a positive refractive power and a second lens having a negative refractive power in order from the object side so as to be suitable for a zoom lens for a film photographic camera, a digital camera or a video camera. A group G2, a third lens group G3 having a negative refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a positive or negative refractive power, from the wide-angle end. At the time of zooming to the telephoto end, the first lens group G1 and the fifth lens group G5 are fixed with respect to the image plane, and the distance between the first lens group G1 and the second lens group G2 changes. The distance between the second lens group G2 and the third lens group G3 changes, the distance between the third lens group G3 and the fourth lens group G4 decreases, and the fourth lens group G4 and the fifth lens group. A basic configuration is adopted in which the interval of G5 changes.
[0012]
First, features and advantages of the zoom lens having the above basic configuration will be described.
[0013]
An optical system in which the zoom lens group is composed of multiple groups and moves the entire lens length at the time of zooming has the advantage that the entire lens length can be greatly shortened on the short focus side. Compared with such a full length fixed zoom lens, it has a drawback that it is mechanically complicated. Furthermore, as in the present invention, when an optical system that corrects fluctuations in the image position due to camera shake or the like is incorporated, there are additional elements such as a mechanism for driving the correction optical system and a camera shake detection mechanism. Restrictions are required. In order to ensure cost reduction and reliability, it is desirable that the zoom optical system is simple. In the present invention, the first lens group G1 and the final lens group are mechanically simplified by adopting a configuration in which the first lens group G1 and the final lens group are fixed with respect to the image plane regardless of the zoom. Further, since the aperture is located in the fifth lens group G5, which is a fixed group, the aperture driving is also facilitated. Further, by focusing with the first lens group rear portion GL2 having positive refractive power in the first lens group G1, the inner focus can be achieved without using a complicated cam, and the weight of the focus group is further reduced. Can measure.
[0014]
Hereinafter, the conditional expressions of the present invention will be described in detail. In general, it is desirable that the image stabilization optical system is small and light, and it is necessary to suppress a decrease in optical performance during image stabilization as much as possible in the entire zoom range. In particular, off-axis rays pass near the optical axis. It is desirable. Accordingly, the optical system in the vicinity of the stop may be replaced with an image stabilization optical system. In the present invention, since the fourth lens group G4 in the vicinity of the stop is set as an anti-vibration lens group, the above-described conditions can be satisfied.
[0015]
Conditional expression (1) is a condition for defining the ratio of the focal length between the image stabilizing lens group and the telephoto end. If the lower limit of Conditional Expression (1) is exceeded and the power of the image stabilizing lens group is increased, the decentering sensitivity increases and the amount of movement of the image stabilizing lens group decreases, but the optical performance during image stabilization decreases greatly. It is not preferable. Further, in order to prevent the optical performance from deteriorating, the number of components of the anti-vibration lens group increases, so that the weight increases and the anti-vibration driving cannot be performed. If the upper limit of conditional expression (1) is exceeded and the power of the image stabilizing lens group becomes weak, the image stabilizing effect cannot be obtained unless the image stabilizing drive amount is increased. The optical system becomes larger.
[0016]
Conditional expression (2) is a condition for reducing the weight of the image stabilizing optical system. In order to improve the followability of the image stabilizing lens group to the vibration of the photographing system, it is essential to reduce the weight of the image stabilizing lens group. Existing optical glass tends to have a higher specific gravity as the refractive index is higher, and classical glass has a lower specific gravity. Since this boundary is in the vicinity of a refractive index of 1.6, classic glass having a small specific gravity must be used in order to reduce the weight. In addition, the anti-vibration lens group must have a doublet structure or more. If it is a single lens, color frames and the like due to eccentricity occur, and the optical performance cannot be prevented from deteriorating. For these reasons, the anti-vibration lens group is composed of doublets, and the average refractive index must be 1.6 or less.
[0017]
Further, according to the present invention, by focusing with the first lens group rear portion GL2 having a positive refractive power in the first lens group G1, inner focusing can be performed without using a complicated cam, and the weight of the focus group is increased. Mitigation can be done.
[0018]
Conditional expression (3) is a condition for defining the average refractive index of the inner focus portion. As described in the conditional expression (2), the refractive index of the glass material and the specific gravity are in a substantially proportional relationship. Therefore, in order to use a light glass material, it is necessary to restrict the refractive index. For super telephoto zoom, it is necessary to suppress fluctuations in chromatic aberration due to focusing. Therefore, the inner focus portion needs a doublet, and if the average refractive index is not less than 1.6, the weight cannot be reduced.
[0019]
Conditional expression (4) is a condition for defining the ratio between the focal length of the inner focus portion and the focal length of the first lens group G1. When the lower limit of conditional expression (4) is exceeded and the power of the inner focus group becomes relatively strong, the amount of extension of the focus group decreases, but the variation in spherical aberration and chromatic aberration increases, making correction difficult. If the upper limit of conditional expression (4) is exceeded and the power of the inner focus group becomes relatively weak, the amount of focusing increases, so the diameter of the focusing group increases and the lens weight increases.
[0020]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. The zoom lens of the present invention includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a negative refractive power. A fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a positive or negative refractive power, and at the time of zooming from the wide-angle end to the telephoto end, the first lens group G1 and the The fifth lens group G5 is fixed with respect to the image plane, the distance between the first lens group G1 and the second lens group G2 changes, and the distance between the second lens group G2 and the third lens group G3 is As a result, the distance between the third lens group G3 and the fourth lens group G4 decreases, and the distance between the fourth lens group G4 and the fifth lens group G5 changes.
[0021]
The first lens group G1 includes, in order from the object side, a first lens group front part GL1 having a positive refractive power and a first lens group rear part GL2 having a positive refractive power. Focus on the rear group GL2. The fourth lens group G4 is a displacing unit that corrects fluctuations in the image position by moving in a direction substantially orthogonal to the optical axis. A diaphragm is disposed in the fifth lens group G5.
[0022]
The specification value of each Example of this invention is as follows. f is the focal length, FNO is the F number, 2ω is the angle of view, the number is the surface number, the order of the lens surface from the object side, R (I) is the radius of curvature of the lens surface, D (I) is the distance between the lens surfaces, ND represents the refractive index of the d line, and Vd represents the Abbe number.
[0023]
Example 1
f = 138.5-387.2
FNO = 5.87
2ω = 17.6 ° ~ 6.2 °
Number R (I) D (I) ND Vd
[1] 136.7027 3.2468 1.723342 38.0
[2] 77.7391 0.1000
[3] 75.6236 11.6305 1.49700 81.6
[4] -783.2980 0.1000
[5] 144.3549 5.4965 1.49700 81.6
[6] 823.759 18.0164 Variable interval
[7] 107.4880 2.4997 1.62004 36.3
[8] 67.0585 8.2840 1.48749 70.4
[9] 686.6027 6.0588 Variable interval
[10] −418.6005 1.8975 1.77250 49.6
[11] 36.0489 5.2908 1.83400 37.3
[12] 100.5149 4.0425 Variable interval
[13] 130.7419 1.4217 1.80610 40.7
[14] 55.1088 3.8822
[15] -59.0834 1.3725 1.77250 49.6
[16] 65.6068 3.6265 1.84666 23.8
[17] -326.323 63.2043 Variable interval
[18] 62.7711 1.5405 1.62004 36.3
[19] 30.8271 8.5058 1.48749 70.4
[20] −90.5788 12.4290 Variable interval
[21] −63.2920 1.3089 1.78590 43.9
[22] 206.9558 3.36693 1.54814 45.8
[23] −67.5334 1.5000
[24] 0.0 1.6000 aperture
[25] 39.2783 4.3451 1.49700 81.6
[26] 416.0399 56.1724
[27] -22.3433 1.3751 1.77250 49.6
[28] -91.8863 63980
[29] 249.33307 3.4814 1.62004 36.3
[30] -59.5431 4.9982
[31] 0.0
Focal length 138.5848 289.2258 387.2197
Back focus 48.5059 48.5850 48.8957
FNO 5.8730 5.87 5.87
D (6) 18.0164 18.0164 18.016
D (9) 6.087 16.6.372 11.8961
D (12) 4.0425 19.3441 47.3668
D (17) 63.2043 22.1381 4.2500
D (20) 12.4290 27.9110 21.4830
f1: 115.78
fL2: 320.43
f2: 148.35
f3: −56.08
f4: 92.79
f5: −1000.00
f4 / ft = 0.24
fL2 / f1 = 2.77
Movement amount of anti-vibration lens group (mm) 0.7
[0024]
Example 2
f = 137.9-386.1
FNO = 5.87
2ω = 17.8 ° ~ 6.2 °
Number R (I) D (I) ND Vd
[1] 142.0371 3.2468 1.732342 38.0
[2] 78.9709 0.1000
[3] 76.8159 11.7976 1.49700 81.6
[4] -564.8824 0.1000
[5] 150.2047 5.5265 1.49700 81.6
[6] 1418.0726 17.9922 Variable interval
[7] 113.466 2.4997 1.62004 36.3
[8] 72.5338 7.5577 1.48749 70.4
[9] 794.7210 2.0943 variable interval
[10] -1324.88834 2.2809 1.77250 49.6
[11] 38.5570 6.4963 1.83400 37.3
[12] 106.7858 2.6980 Variable spacing
[13] 123.6498 1.4217 1.80610 40.7
[14] 59.82525 4.1259
[15] −67.8972 1.5676 1.77250 49.6
[16] 59.9532 4.0517 1.84666 23.8
[17] -1414.3864 67.1430 Variable interval
[18] 65.7865 1.5499 1.62004 36.3
[19] 31.7920 8.7817 1.48749 70.4
[20] -86.2339 5.5127 Variable interval
[21] -61.2733 1.4557 5785590 43.9
[22] 157.2314 4.0803 1.54814 45.8
[23] -64.3498 1.5000
[24] 0.0 1.6000 aperture
[25] 39.2783 4.8217 1.49700 81.6
[26] 388.7399 57.5996
[27] -22.0959 1.3328 1.77250 49.6
[28] -129.2669 1.0442
[29] 305.7365 3.8234 1.62004 36.3
[30] -49.8686 7.7942
[31] 0.0
Focal length 137.92833 299.0804 386.451
Back focus 48.3100 48.0162 48.5913
FNO 5.8696 5.8593 5.8863
D (6) 17.9922 17.9922 17.9922
D (9) 2.0943 7.9715 6.5387
D (12) 2.6980 41.5447 55.0914
D (17) 67.1430 23.2207 4.2500
D (20) 5.5127 4.9802 11.3456
f1: 114.03
fL2: 326.64
f2: -147.61
f3: -60.22
f4: 93.29
f5: −500.13
f4 / ft = 0.24
fL2 / f1 = 2.86
Movement amount of anti-vibration lens group (mm) 0.7
[0025]
Example 3
f = 139.8-388.1
FNO = 5.83
2ω = 17.6 ° ~ 6.2 °
Number R (I) D (I) ND Vd
[1] 109.62020 3.2468 1.732342 38.0
[2] 70.2508 0.1000
[3] 69.1700 11.6270 1.49700 81.6
[4] 94104495 0.1000
[5] 134.7214 5.8208 1.49700 81.6
[6] 895.1680 17.64448 Variable interval
[7] 96.8656 2.4997 1.62004 36.3
[8] 57.9851 8.7405 1.48749 70.4
[9] 417.5120 9.1734 Variable interval
[10] -958.3380 1.8526 1.77250 49.6
[11] 31.3337 8.1424 1.83400 37.3
[12] 79.2256 3.3315 Variable interval
[13] 107.3454 1.4217 1.80610 40.7
[14] 45.2915 3.7821
[15] −50.1418 1.3789 1.77250 49.6
[16] 50.1453 3.7529 1.84666 23.8
[17] -334.1180 46.8922 Variable interval
[18] 62.1409 2.4084 1.62004 36.3
[19] 29.3501 9.0551 1.48749 70.4
[20] −72.4664 12.5285 Variable interval
[21] -54.1107 1.3315 1.78590 43.9
[22] 271.99739 3.1690 1.54814 45.8
[23] −67.8245 1.5000
[24] 0.0 1.6000 aperture
[25] 39.2783 4.7867 1.49700 81.6
[26] −651.9249 49.4312
[27] -23.0048 1.3631 1.77250 49.6
[28] −44.4602 0.1000
[29] 1942.7156 2.8006 1.62004 36.3
[30] −75.7080 21.9910
[31] 0.0
Focal length 139.7805 284.2072 388.1634
Back focus 48.4234 47.9760 48.6400
FNO 5.8289 5.8103 5.8383
D (6) 17.6448 17.6448 17.6448
D (9) 9.1734 20.7182 29.2920
D (12) 3.3315 17.1069 39.9196
D (17) 46.8922 19.6142 4.2500
D (20) 12.5285 14.9770 16.4484
f1: 110.34
fL2: 332.23
f2: −107.26
f3: −46.00
f4: 83.82
f5: 420.74
f4 / ft = 0.22
fL2 / f1 = 3.01
Movement amount of anti-vibration lens group (mm) 0.7
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a zoom lens having an anti-vibration mechanism with a sufficient arrangement of components such as an anti-vibration mechanism and a camera shake detection mechanism with a simple lens configuration.
[Brief description of the drawings]
FIG. 1 is a lens configuration diagram of Example 1. FIG. 2 is an aberration diagram at the wide-angle end during non-vibration prevention according to Example 1. FIG. 3 is an aberration diagram of intermediate focal length during non-vibration prevention according to Example 1. 4 is a diagram showing aberrations at the telephoto end during non-vibration according to Example 1. FIG. 5 is a diagram showing coma aberration at the wide-angle end during anti-vibration according to Example 1. FIG. FIG. 7 is a coma aberration diagram at the telephoto end during image stabilization of Example 1. FIG. 8 is a lens configuration diagram of Example 2. FIG. 9 is an aberration diagram at the wide angle end during non-image stabilization of Example 2. FIG. 10 is an aberration diagram of the intermediate focal length when the image stabilization is not performed according to the second embodiment. FIG. 11 is an aberration diagram at the telephoto end when the image stabilization is not performed according to the second embodiment. FIG. 13 is a graph showing coma aberration at an intermediate focal length during vibration isolation in Example 2. FIG. FIG. 15 is a lens configuration diagram of Example 3. FIG. 16 is an aberration diagram at the wide-angle end during non-vibration prevention according to Example 3. FIG. 17 is an intermediate focal length during non-vibration prevention according to Example 3. FIG. 18 is an aberration diagram at the telephoto end during non-vibration prevention in Example 3. FIG. 19 is a coma aberration diagram at the wide-angle end during vibration isolation in Example 3. FIG. 20 is during vibration isolation in Example 3. Fig. 21 shows the coma aberration at the intermediate focal length in Fig. 21. Fig. 21 shows the coma aberration at the telephoto end during image stabilization in Example 3.
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group GL1 1st lens group front part GL2 1st lens group rear part

Claims (3)

防振機能を備えたズームレンズにおいて、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正または負の屈折力を有する第5レンズ群G5とからなり、広角端から望遠端への変倍時には、該第1レンズ群G1と第5レンズ群G5は像面に対し固定であり、該第1レンズ群G1と該第2レンズ群G2との間隔は変化し、該第2レンズ群G2と該第3レンズ群G3の間隔は変化し、該第3レンズ群G3と該第4レンズ群G4の間隔は減少し、該第4レンズ群G4と該第5レンズ群G5の間隔は変化することを特徴とするズームレンズにおいて、
前記第4レンズ群G4を光軸とほぼ直交する方向に移動させて防振するための変位手段を備え、前記第4レンズ群G4の焦点距離をf4、望遠端の焦点距離をftとした時、
. 15<f4/ft<0 . 3 ・・・・・ (1)
の条件式を満足するズームレンズ。
In a zoom lens having an image stabilization function, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a negative refractive power a group G3, the fourth lens group G4 having positive refractive power, and a fifth lens group G5 having positive or negative refractive power, upon zooming from the wide-angle end to the telephoto end, the first lens group G1 and the fifth lens group G5 are fixed with respect to the image plane, the distance between the first lens group G1 and the second lens group G2 changes, and the second lens group G2 and the third lens group G3 In the zoom lens, the interval changes, the interval between the third lens group G3 and the fourth lens group G4 decreases, and the interval between the fourth lens group G4 and the fifth lens group G5 changes . ,
Displacement means for moving the fourth lens group G4 in a direction substantially perpendicular to the optical axis to provide vibration isolation, when the focal length of the fourth lens group G4 is f4 and the focal length of the telephoto end is ft. ,
0. 15 <f4 / ft < 0. 3 ····· (1)
Zoom lens that satisfies the conditional expression
前記第4レンズ群G4は、負レンズと正レンズからなり、平均屈折率をnG4とした時、
1.6>nG4 ・・・・・ (2)
の条件を満足する請求項に記載のズームレンズ。
The fourth lens group G4 includes a negative lens and a positive lens, and when the average refractive index is nG4,
1.6> nG4 (2)
The zoom lens according to claim 1 , wherein the following conditional expression is satisfied.
前記第1レンズ群G1は、物体側から順に、正の屈折力を有する第1レンズ群前部GL1と、正の屈折力を有する第1レンズ群後部GL2を有し、該第1レンズ群後部GL2でフォーカスすることを特徴とし、前記第 1 レンズ群後部GL2は、負レンズと正レンズからなり平均屈折率をnG2とした時、
. 6>nG2 ・・・・・ (3)
の条件式を満足し、
かつ、前記第1レンズ群後部GL2の焦点距離をfL2、前記第1レンズ群G1の焦点距離をf1とした時の比が、
. 2<fL2/f1<4 ・・・・・ (4)
の条件式を満足する請求項 1 または請求項 2 に記載のズームレンズ。
The first lens group G1 includes, in order from the object side, a first lens group front part GL1 having a positive refractive power and a first lens group rear part GL2 having a positive refractive power, and the first lens group rear part. The first lens group rear portion GL2 is composed of a negative lens and a positive lens, and the average refractive index is nG2.
1. 6> nG2 (3)
Is satisfied,
And the ratio when the focal length of the rear part GL2 of the first lens group is fL2 and the focal length of the first lens group G1 is f1,
2. 2 <fL2 / f1 < 4 ····· (4)
The zoom lens according to claim 1 or claim 2 satisfies the conditional expression.
JP2002039424A 2002-02-18 2002-02-18 Zoom lens Expired - Fee Related JP4142305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002039424A JP4142305B2 (en) 2002-02-18 2002-02-18 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002039424A JP4142305B2 (en) 2002-02-18 2002-02-18 Zoom lens

Publications (2)

Publication Number Publication Date
JP2003241095A JP2003241095A (en) 2003-08-27
JP4142305B2 true JP4142305B2 (en) 2008-09-03

Family

ID=27780444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002039424A Expired - Fee Related JP4142305B2 (en) 2002-02-18 2002-02-18 Zoom lens

Country Status (1)

Country Link
JP (1) JP4142305B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012081251A1 (en) * 2010-12-16 2012-06-21 富士フイルム株式会社 Projection zoom lens and projection device
JP5959872B2 (en) * 2012-02-15 2016-08-02 キヤノン株式会社 Zoom lens and imaging apparatus having the same
WO2014076961A1 (en) * 2012-11-19 2014-05-22 富士フイルム株式会社 Zoom lens for projection, and projection-type display device

Also Published As

Publication number Publication date
JP2003241095A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP5064837B2 (en) Zoom lens with anti-vibration function
JP3371917B2 (en) Zoom lens with anti-vibration function
JP4898408B2 (en) Optical system and imaging apparatus having the same
JP5332169B2 (en) Zoom lens and optical apparatus having the same
JP5292756B2 (en) Zoom lens and optical apparatus having the same
JP4789530B2 (en) Zoom lens and imaging apparatus having the same
JPH07199124A (en) Zoom lens with oscillation-proof function
JP4356040B2 (en) Long zoom lens with anti-vibration function
JP3541283B2 (en) Inner focus telephoto lens
JPH11119092A (en) Inner focusing optical system provided with vibration-proof
JP2008185782A (en) Zoom lens and imaging apparatus having same
JPH0792431A (en) Zoom lens equipped with vibration-proof function
JP2001356381A (en) Zoom lens with vibration-proof function and optical equipment using the same
JP4146134B2 (en) Zoom lens
JP3716418B2 (en) Variable magnification optical system
JPH1152245A (en) Zoom lens having vibration compensating function
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JP2003043348A (en) Optical system having vibration-proof function
JP3745104B2 (en) Inner focus optical system with anti-vibration function
JP4588416B2 (en) Zoom lens with anti-vibration function
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JPH06265827A (en) Zoom lens equipped with vibration proofing correction optical system
US8218238B2 (en) Zoom lens system and image taking apparatus including the same
JP3536128B2 (en) Zoom lens with anti-vibration function
JP5959894B2 (en) Optical system and imaging apparatus having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080612

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4142305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees