JP4140557B2 - Laser light emitting device. - Google Patents

Laser light emitting device. Download PDF

Info

Publication number
JP4140557B2
JP4140557B2 JP2004175908A JP2004175908A JP4140557B2 JP 4140557 B2 JP4140557 B2 JP 4140557B2 JP 2004175908 A JP2004175908 A JP 2004175908A JP 2004175908 A JP2004175908 A JP 2004175908A JP 4140557 B2 JP4140557 B2 JP 4140557B2
Authority
JP
Japan
Prior art keywords
laser
force
traveling direction
side lever
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004175908A
Other languages
Japanese (ja)
Other versions
JP2005354004A (en
Inventor
康生 新野
喜紳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2004175908A priority Critical patent/JP4140557B2/en
Publication of JP2005354004A publication Critical patent/JP2005354004A/en
Application granted granted Critical
Publication of JP4140557B2 publication Critical patent/JP4140557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、互い直交するスロー軸方向とファースト軸方向に拡散しながら進行するレーザ光を射出する複数の半導体レーザを並列に配置したレーザアレイと、前記レーザアレイの発光部に対向して配置され前記半導体レーザから照射されたレーザ光を通過させる光路装置とを備えたレーザ発光装置に関する。   The present invention is arranged so as to face a laser array in which a plurality of semiconductor lasers that emit laser light traveling while diffusing in a slow axis direction and a fast axis direction orthogonal to each other are arranged in parallel, and a light emitting portion of the laser array. The present invention relates to a laser light emitting device including an optical path device that allows laser light emitted from the semiconductor laser to pass therethrough.

従来から、この種のレーザ発光装置として、レーザ光を放射する半導体レーザの発光部をスロー軸方向に直線的に配置してレーザバーを形成し、このレーザバーをファースト軸方向に積層したレーザスタックを形成し、このレーザスタックを構成する各半導体レーザの発光部から照射されるスロー軸方向およびファースト軸方向に拡散するレーザ光をレーザスタックの前方にレンズを配置してコリメートした後、光ファイバに入射させるようにした装置が知られている。   Conventionally, as this type of laser light emitting device, a laser bar is formed by linearly arranging the light emitting part of a semiconductor laser that emits laser light in the slow axis direction, and a laser stack is formed by laminating this laser bar in the first axis direction Then, a laser beam diffused in the slow axis direction and the fast axis direction irradiated from the light emitting portion of each semiconductor laser constituting the laser stack is collimated by arranging a lens in front of the laser stack, and then incident on the optical fiber. Such a device is known.

このように構成されたレーザ発光装置には、例えば特許文献1に記載されるような装置がある。この特許文献1に記載されたレーザ発光装置は、図6に示すように、レーザスタック10を構成する各半導体レーザの発光部14から照射され、スロー軸(x軸)方向およびファースト軸(y軸)方向に所定の発散角にて進行するレーザ光を板レンズ11aによってファースト軸方向に並ぶ発光部14のレーザ光毎に一度に集光し、これら板レンズ11aをスロー軸(x軸)方向に並べて形成される複合レンズ11により、レーザスタック10の発光部14に近い位置でレーザ光を効率よく集光して小型化することができるようにしたものである。
特開2004−29570号公報(段落番号[0017]から段落番号[0023]、図1、図2)
Examples of the laser light emitting device configured as described above include a device described in Patent Document 1. As shown in FIG. 6, the laser light emitting device described in Patent Document 1 is irradiated from the light emitting portion 14 of each semiconductor laser constituting the laser stack 10, and is in the slow axis (x axis) direction and the fast axis (y axis). ) Laser light traveling in a direction at a predetermined divergence angle is condensed at once for each laser light of the light emitting section 14 arranged in the fast axis direction by the plate lens 11a, and these plate lenses 11a are moved in the slow axis (x-axis) direction. The composite lens 11 formed side by side can efficiently condense the laser beam at a position close to the light emitting portion 14 of the laser stack 10 and can be downsized.
JP 2004-29570 A (paragraph number [0017] to paragraph number [0023], FIGS. 1 and 2)

ところで、特許文献1に記載されるような複合レンズ11を製作した場合においても、レーザスタック10の発光部14から照射されるレーザ光を所定の入射角でレンズに入射させなければ、効率よく集光することはできない。また、これらレーザスタック10と集光レンズの位置調整は、数μm単位で調整する必要がある。このため、従来では、レーザスタックおよび複合レンズ11を実際にレーザ発光装置として組付ける以前に、電子顕微鏡や光度計(パワーメータ)を用いて両者の位置関係を調整し、接着剤等を用いて位置関係を不変な状態に固定してから組付けを行うようにしていた。   By the way, even when the compound lens 11 as described in Patent Document 1 is manufactured, if the laser light emitted from the light emitting portion 14 of the laser stack 10 is not incident on the lens at a predetermined incident angle, it is efficiently collected. I can't shine. Further, the position adjustment of the laser stack 10 and the condenser lens needs to be adjusted in units of several μm. For this reason, conventionally, before the laser stack and the compound lens 11 are actually assembled as a laser light emitting device, the positional relationship between the two is adjusted using an electron microscope or a photometer (power meter), and an adhesive or the like is used. Assembly was performed after fixing the positional relationship in an invariable state.

しかしながら、このように接着剤を用いて固定をする場合、一度固定してしまうと再調整することができず、このため、経年変化などにより誤差が発生した場合に再調整することができない問題があった。また、組付け以前に予め別の場所で位置調整をしておかなければならず、組付け工程を複雑にする問題があった。   However, when fixing using an adhesive in this way, once it is fixed, it cannot be readjusted. For this reason, there is a problem that it cannot be readjusted if an error occurs due to secular change or the like. there were. In addition, the position must be adjusted in advance at a different location before assembly, and there is a problem that complicates the assembly process.

本発明は、上記課題を解決するために成されるものであって、レーザ光を通過させる集光レンズや光導波路等の光路装置とレーザアレイの位置関係を組付け後でも調整できるようにすることを目的とする。   The present invention has been made to solve the above-described problems, and enables adjustment of the positional relationship between a laser array and an optical path device such as a condenser lens or an optical waveguide that allows laser light to pass therethrough. For the purpose.

上記の課題を解決するため、請求項1に記載の発明の構成上の特徴は、互い直交するスロー軸方向とファースト軸方向に拡散しながら進行するレーザ光を射出する複数の半導体レーザの発光部を並列に配置したレーザアレイと、前記レーザアレイの発光部に対向して配置され前記半導体レーザから照射されたレーザ光を通過させる光路装置とを備えたレーザ発光装置において、前記レーザアレイまたは光路装置のいずれか一方を固定する基台と、前記レーザアレイまたは光路装置のいずれか他方を保持する保持部材と、前記保持部材をレーザ進行方向に離間して整列した2箇所で支持する一側方支持手段と、前記保持部材を前記一側方からスロー軸方向に離間した他側方の少なくとも1箇所で支持する他側方支持手段と、前記一側方支持手段に前記レーザ進行方向に離間した一側方2箇所で夫々各一端がファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結された一対の一側方梃子部材と、前記各一側方梃子部材の他端をファースト軸方向に変位させ前記一端をファースト軸方向に梃子作用により縮小して変位させる一対の一側方変位装置と、前記他側方支持手段に一端がファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結された他側方梃子部材と、前記他側方梃子部材の他端をファースト軸方向に変位させ前記一端をファースト軸方向に梃子作用により縮小して変位させる他側方変位装置とを備えたことである。 In order to solve the above problems, the structural feature of the invention according to claim 1 is that the light emitting portions of a plurality of semiconductor lasers that emit laser light that travels while diffusing in the slow axis direction and the fast axis direction orthogonal to each other A laser light emitting device comprising: a laser array arranged in parallel; and an optical path device arranged to face a light emitting portion of the laser array and allowing laser light emitted from the semiconductor laser to pass therethrough, wherein the laser array or the optical path device A base for fixing any one of the above, a holding member for holding either the laser array or the optical path device, and one side support for supporting the holding member at two positions spaced apart and aligned in the laser traveling direction Means, and other side support means for supporting the holding member at at least one place on the other side spaced apart from the one side in the slow axis direction, and the one side support means Wherein a respective each one laser traveling direction spaced one side two places the stiffness to the force in the first axis direction, a pair of one side lever member which is elastically deformable connecting the laser traveling direction of the force A pair of one side displacement devices for displacing the other end of each one side lever member in the fast axis direction and displacing the one end by a lever action in the first axis direction, and the other side support means One end is rigid to the force in the first axial direction, and the other side lever member connected to be elastically deformable to the force in the laser traveling direction and the other end of the other side lever member are displaced in the first axis direction And the other side displacement device for reducing and displacing the one end in the first axial direction by lever action.

請求項2に記載の発明の構成上の特徴は、請求項1において、前記一側方支持手段は、レーザ進行方向に延在する一側方支持部材とし、該一側方支持部材の各端部が前記一対の一側方梃子部材の各一端に夫々ファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形する弾性変形部により連結され、前記他側方支持手段は、レーザ進行方向に延在する他側方支持部材とし、該他側方支持部材の一端部が前記他側方梃子部材の一端にファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形する弾性変形部により弾性的に連結されていることである。 The structural feature of the invention described in claim 2 is that, in claim 1, the one side support means is a one side support member extending in the laser traveling direction, and each end of the one side support member. The other side support means is connected to each end of the pair of one side lever members by an elastic deformation portion that has rigidity in the force in the first axial direction and elastically deforms in the force in the laser traveling direction. Is the other side support member extending in the laser traveling direction, and one end portion of the other side support member is rigid to the first axial force at one end of the other side lever member , and the laser traveling direction This force is elastically connected by an elastically deforming portion that is elastically deformed .

請求項3に記載の発明の構成上の特徴は、請求項2において、前記一対の一側方梃子部材は、前記一側方支持部材と整列して前記レーザ進行方向に延在し、前記各一側方梃子部材および該一側方梃子部材と平行に延在する各補強部材の一端部とを前記基台にファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結し、前記各補強部材の他端部および前記各一側方梃子部材の他端を連結部材の両端部に夫々ファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結して一対の一側方平行リンク機構を構成し、前記他側方梃子部材は、前記他側方支持部材と整列して前記レーザ進行方向に延在し、前記他側方梃子部材および該他側方梃子部材と平行に延在する補強部材の一端とを前記基台にファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結し、前記補強部材の他端部および前記他側方梃子部材の他端を連結部材の両端部に夫々ファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結して他側方平行リンク機構を構成したことである。

The structural feature of the invention described in claim 3 is that, in claim 2, the pair of one side lever members are aligned with the one side support member and extend in the laser traveling direction. One side lever member and one end of each reinforcing member extending in parallel with the one side lever member are rigid to the force in the first axial direction and elastic to the force in the laser traveling direction. deformably connected, said has a second end portion and the stiffness to the force of the respective fast axis direction at both end portions of the other end of the connecting member of each one side lever member of the reinforcing member, the laser traveling direction force Are connected in an elastically deformable manner to form a pair of one side parallel link mechanisms, and the other side lever member extends in the laser traveling direction in alignment with the other side support member. the one end of the side lever member and said other side lever member and extending parallel to reinforcing member to the base Rigid to Asuto axial force, the force of the laser traveling direction is connected to be elastically deformable, at both ends of the other end of the connecting member of the other end portion and the other side lever member of said reinforcing member Each of the forces in the first axial direction has rigidity, and the force in the laser traveling direction is connected to be elastically deformable to form the other side parallel link mechanism.

請求項4に記載の発明の構成上の特徴は、請求項3において、レーザアレイおよび光路装置の両側面にそれぞれ配置され基台に固定された一側方および他側方側板を備え、一側方側板を切り欠いて前記一側方支持部材、前記一対の一側方梃子部材、一対の一側方補強部材、および各弾性変形部を一体的に形成し、他側方側板を切り欠いて他側方支持部材、他側方梃子部材、他側方補強部材、および各弾性変形部を一体的に形成したことである。   According to a fourth aspect of the present invention, there is provided a structural feature of the third aspect, comprising: one side and another side plate disposed on both sides of the laser array and the optical path device and fixed to the base; The side plate is cut out to integrally form the one side support member, the pair of one side lever members, the pair of one side reinforcing members, and the elastic deformation portions, and the other side plate is cut out. The other side support member, the other side lever member, the other side reinforcement member, and each elastic deformation portion are integrally formed.

請求項5に記載の発明の構成上の特徴は、請求項1乃至4のいすれか1項において、一対の一側方梃子部材の各一端を一対の一側方変位装置に押し付ける一対の一側方押付力付与手段を設け、他側方梃子部材の一端を前記他側方変位装置に押し付ける他側方押付力付与手段を設けたことである。   According to a fifth aspect of the present invention, there is provided a structural feature of any one of the first to fourth aspects, wherein one end of the pair of one side lever members is pressed against the pair of one side displacement devices. Side pressing force applying means is provided, and other side pressing force applying means for pressing one end of the other side lever member against the other side displacement device is provided.

請求項6に記載の発明の構成上の特徴は、請求項1乃至4のいすれか1項において、保持部材の一側方を一側方支持部材にボールを介して支持し、保持部材の他側方を他側方支持部材にボールを介してフローチング可能に支持したことである。   According to a sixth aspect of the present invention, in any one of the first to fourth aspects, the one side of the holding member is supported by the one side supporting member via a ball, and the holding member is The other side is supported by the other side support member via a ball so as to be floatable.

上記のように構成した請求項1に係る発明においては、一側方変位装置および他側方変位装置での変位量を一側方梃子部材および他側方梃子部材の梃子作用によって縮小して支持部材に伝達し、レーザアレイもしくは光路装置をファースト方向に移動するので、レーザアレイもしくは光路装置を組付け後に精密に位置調整できるうえ、再調整も行うことができる。   In the invention according to claim 1 configured as described above, the displacement amount in the one side displacement device and the other side displacement device is reduced and supported by the lever action of the one side lever member and the other side lever member. Since the laser array or the optical path device is moved in the first direction by transmitting to the member, the position can be precisely adjusted after the laser array or the optical path device is assembled, and readjustment can also be performed.

また、一対の一側方変位装置および他側方変位装置の3つの変位装置を組み合わせて操作することにより、以下の(1)から(3)の調整を実現できる。
(1) 保持部材をファースト軸方向に平行移動できる。
(2) 保持部材のピッチング角度を調整できる。
(3) 保持部材のローリング角度を調整できる。
Further, the following adjustments (1) to (3) can be realized by combining and operating the three displacement devices of the pair of one side displacement device and the other side displacement device.
(1) The holding member can be translated in the fast axis direction.
(2) The pitching angle of the holding member can be adjusted.
(3) The rolling angle of the holding member can be adjusted.

上記のように構成した請求項2に係る発明においては、弾性変形部がファースト軸方向で剛性を保持し、他のレーザ進行方向およびスロー軸方向には弾性変形することから、各梃子部材の移動によるファースト軸方向以外のずれが弾性変形部に吸収されて各部の動作を円滑にすることができる。   In the invention according to claim 2 configured as described above, the elastic deformation portion maintains rigidity in the fast axis direction and elastically deforms in the other laser traveling direction and slow axis direction. Deviations other than in the first axis direction due to the above are absorbed by the elastically deforming portion, and the operation of each portion can be made smooth.

上記のように構成した請求項3に係る発明においては、平行リンク機構により各梃子部材の剛性が向上し、各変位装置による各梃子部材への変位量の伝達が厳密になり、位置調整の精度を向上させることができる。   In the invention according to claim 3 configured as described above, the rigidity of each lever member is improved by the parallel link mechanism, the transmission of the displacement amount to each lever member by each displacement device becomes strict, and the accuracy of position adjustment Can be improved.

上記のように構成した請求項4に係る発明においては、各部材が一側方および他側方側板をそれぞれ切り欠いて一体的に形成されていることから、装置全体の剛性が向上するとともに、一体的に組み立てられることから組付け性が向上する。   In the invention according to claim 4 configured as described above, each member is integrally formed by cutting out one side plate and the other side plate, so that the rigidity of the entire apparatus is improved, Since it is assembled integrally, the assemblability is improved.

上記のように構成した請求項5に係る発明においては、一側方押付力付与手段が一側方梃子部材の一端を一側方変位装置に押し付けることにより、一側方変位装置の移動量が誤差なく一側方梃子部材に伝達される。また、同様に、他側方押付力付与手段が他側方梃子部材の一端を他側方変位装置に押し付けることにより、他側方変位装置の移動量が誤差なく他側方梃子部材に伝達される。この結果、一側方変位装置および他側方変位装置の移動量が誤差なく保持部材に伝達され、レーザアレイと光路装置の位置調整をより厳密に行うことができる。   In the invention according to claim 5 configured as described above, the one side pressing force applying means presses one end of the one side lever member against the one side displacement device, whereby the movement amount of the one side displacement device is increased. It is transmitted to the one side lever member without error. Similarly, when the other side pressing force applying means presses one end of the other side lever member against the other side displacement device, the movement amount of the other side displacement device is transmitted to the other side lever member without error. The As a result, the movement amounts of the one side displacement device and the other side displacement device are transmitted to the holding member without error, and the position adjustment of the laser array and the optical path device can be performed more strictly.

上記のように構成した請求項6に係る発明においては、保持部材と一側方支持部材間の摺動および保持部材と他側方支持部材間の摺動をボールが転動して許容することから保持部材の移動が円滑になり、位置調整の精度を向上させることができる。   In the invention according to claim 6 configured as described above, the ball rolls and allows sliding between the holding member and the one side support member and sliding between the holding member and the other side support member. Therefore, the movement of the holding member becomes smooth, and the accuracy of position adjustment can be improved.

以下、本発明による半導体レーザ発光装置の実施の形態について図面を参照して説明する。図1はこの発光装置を示す平面図であり、図2は図1のA−A線断面図、図3は図1のB−B線断面図、図4は図1のC−C線断面図、図5は図2のD−D線断面図である。半導体レーザ発光装置は、レーザスタック10、光路装置である複合レンズ11、光ファイバ12を備えている。なお、図1においてレーザスタック10に対して複合レンズ11が対向する前面(発光部)に向かって右方向および上方向をそれぞれスロー軸方向(x軸方向)およびファースト軸方向(y軸方向)とし、レーザスタック 10の前側面のレーザ進行方向をz軸方向とする。   Embodiments of a semiconductor laser light emitting device according to the present invention will be described below with reference to the drawings. 1 is a plan view showing the light emitting device, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIG. 3 is a sectional view taken along line BB in FIG. 1, and FIG. FIG. 5 and FIG. 5 are sectional views taken along the line DD of FIG. The semiconductor laser light emitting device includes a laser stack 10, a compound lens 11 that is an optical path device, and an optical fiber 12. In FIG. 1, the right direction and the upward direction toward the front surface (light emitting portion) where the compound lens 11 faces the laser stack 10 are a slow axis direction (x axis direction) and a fast axis direction (y axis direction), respectively. The laser traveling direction on the front side surface of the laser stack 10 is defined as the z-axis direction.

ここで、レーザスタック10、光路装置である複合レンズ11および光ファイバ12の構成について説明する。レーザスタック10は、図6に示すように、複数の発光部14を有し、単一の発光部14を有する半導体レーザを2次元的に配列し、あるいは一列に複数の発光部を有するバー型半導体レーザを積層または配列して、あるいは2次元配列されたスタック型半導体レーザで、構成されている。   Here, the configuration of the laser stack 10, the compound lens 11 which is an optical path device, and the optical fiber 12 will be described. As shown in FIG. 6, the laser stack 10 has a plurality of light emitting units 14, two-dimensionally arraying semiconductor lasers having a single light emitting unit 14, or a bar type having a plurality of light emitting units in a row. The semiconductor laser is composed of stacked semiconductor lasers stacked or arrayed or arranged two-dimensionally.

なお、スロー軸またはファースト軸方向に複数の発光部を一列に有するバー型半導体レーザ、およびバー型半導体レーザを積層または配列して、あるいは2次元配列されたスタック型半導体レーザをレーザアレイと称する。   A bar type semiconductor laser having a plurality of light emitting portions in a row in the slow axis direction or the fast axis direction and a stack type semiconductor laser in which bar type semiconductor lasers are stacked or arranged, or two-dimensionally arranged, are referred to as a laser array.

本実施の形態では、スロー軸(x軸)方向に一列に複数の発光部(エミッタ)14を並列配置したレーザバー10aをファースト軸(y軸)方向に12枚積層してレーザスタック10 を構成している。このレーザバー10aは、外形寸法が10mm×0.2mm×1mm(x軸方向×y軸方向×z軸方向)の板状であり、複合レンズ11が対向する前面には、150μm×1μm(x軸方向×y軸方向)に形成された発光部14が500μmのピッチでx軸方向に複数設けられている。これら発光部14からはそれぞれスロー軸(x軸)方向およびファースト軸方向(y軸方向)に所定の発散角度をもって拡散するレーザ光が照射される。   In the present embodiment, a laser stack 10 is constructed by laminating twelve laser bars 10a having a plurality of light emitting portions (emitters) 14 arranged in parallel in the slow axis (x axis) direction in the first axis (y axis) direction. ing. The laser bar 10a has a plate shape with an outer dimension of 10 mm × 0.2 mm × 1 mm (x-axis direction × y-axis direction × z-axis direction), and 150 μm × 1 μm (x-axis) on the front surface facing the compound lens 11. A plurality of light emitting portions 14 formed in the direction x y-axis direction are provided in the x-axis direction at a pitch of 500 μm. The light emitting units 14 irradiate laser beams that diffuse with a predetermined divergence angle in the slow axis (x-axis) direction and the fast axis direction (y-axis direction), respectively.

レーザスタック10の前方には、発光部14前面に対向して複合レンズ11が配置されている。複合レンズ11は、複数の板状の板レンズ11aをスロー軸(x軸)方向に並列に配置して構成される。本実施の形態では、積層されたレーザバー10aの発光部14のファースト軸(y軸)方向の各列毎に厚さ350μm(x軸方向)板レンズ11aが配置されている。複合レンズ11は、各発光部14から照射される複数のレーザ光を、ファースト軸(y軸)方向に収束して各板レンズ11aに接着された複数の光ファイバ12に入射させる。各板レンズ11aは、図3に示すように長方形(図6では三角形で示す)の一辺に複数のシリンドリカルレンズ15を形成して成形されている。   A compound lens 11 is disposed in front of the laser stack 10 so as to face the front surface of the light emitting unit 14. The compound lens 11 is configured by arranging a plurality of plate-like plate lenses 11a in parallel in the slow axis (x-axis) direction. In the present embodiment, a plate lens 11a having a thickness of 350 μm (x-axis direction) is arranged for each column in the first axis (y-axis) direction of the light emitting section 14 of the stacked laser bar 10a. The compound lens 11 converges the plurality of laser beams emitted from the light emitting units 14 in the first axis (y-axis) direction and enters the plurality of optical fibers 12 bonded to the plate lenses 11a. As shown in FIG. 3, each plate lens 11a is formed by forming a plurality of cylindrical lenses 15 on one side of a rectangle (shown by a triangle in FIG. 6).

この各板レンズ11aは各レーザアレイ10aの発光部14から照射されるファースト軸(y軸)方向のレーザ光を収束し、スロー軸(x軸)方向のレーザ光を外部に漏らすことなく通過させて複数の光ファイバ12に入射させる。すなわち、積層されたレーザバー10aの発光部14から照射されるレーザ光をファースト軸(Y軸)方向のみ収束させ、スロー軸(x軸)方向に一列に配列されるレーザ光として各光ファイバ12に入射される。 Each plate lens 11a converges the laser light in the fast axis (y-axis) direction irradiated from the light emitting portion 14 of each laser array 10a and allows the laser light in the slow axis (x-axis) direction to pass through without leaking outside. To be incident on a plurality of optical fibers 12. That is, the laser light emitted from the light emitting portion 14 of the stacked laser bar 10a is converged only in the first axis (Y axis) direction, and is applied to each optical fiber 12 as laser light arranged in a line in the slow axis (x axis) direction. Incident.

スロー軸(X軸)方向に配置された光ファイバ12にロスなくレーザ光を入射させるには、発光部14から照射させるレーザ光をシリンドリカルレンズ15に入射させることが必要となる。このためには、レーザスタック10と複合レンズ11の位置関係を調整する必要がある。以下、積層レーザアレイ10と複合レンズ11の位置関係を調整する機構について説明する。   In order for laser light to be incident on the optical fiber 12 arranged in the slow axis (X-axis) direction without loss, it is necessary to cause the laser light irradiated from the light emitting unit 14 to be incident on the cylindrical lens 15. For this purpose, it is necessary to adjust the positional relationship between the laser stack 10 and the compound lens 11. Hereinafter, a mechanism for adjusting the positional relationship between the laminated laser array 10 and the compound lens 11 will be described.

なお、発光部14から照射されるレーザ光がロスなく光ファイバ12に入射されているかの測定には、公知のパワーメータが使用される。   A known power meter is used to measure whether the laser light emitted from the light emitting unit 14 is incident on the optical fiber 12 without loss.

図1乃至図5において、20は基台であり、この基台20は方形状の底面板21より形成され、この底面板21の両長辺には一側方側板22および他側方側板23が対向して立設されている。   In FIG. 1 to FIG. 5, reference numeral 20 denotes a base. The base 20 is formed from a rectangular bottom plate 21, and one long side plate 22 and another lateral side plate 23 are formed on both long sides of the bottom plate 21. Are standing upright.

底面板21の上面には、ハウジング24に拘束されたレーザスタック10が配置されている。ハウジング24は底板21に固定されている。レーザスタック10は、底面板21の長手方向に発光部14を向けて拘束され、この底面板21の長手方向をレーザ光の進行方向(Z軸方向)としている。   On the upper surface of the bottom plate 21, the laser stack 10 restrained by the housing 24 is disposed. The housing 24 is fixed to the bottom plate 21. The laser stack 10 is constrained with the light emitting portion 14 facing the longitudinal direction of the bottom plate 21, and the longitudinal direction of the bottom plate 21 is set as the traveling direction of the laser light (Z-axis direction).

レーザスタック10の発光部14の進行方向(Z軸方向)には複合レンズ11が配置されている。複合レンズ11は上述した板レンズ11aを接着して形成され、図3に示すように板レンズ11aのシリンドリカルレンズ15がレーザスタック10に対向して配置されている。複合レンズ11は、保持部材25に保持されている。保持部材25は、中央に複合レンズ11を保持するための凹部25aが形成され、スロー軸方向の両端にフランジ部25b、25cが形成されている。複合レンズ11は、凹部25aの底面および他側方側板23側の側面に接着固定されている。保持部材25には光ファイバ12が複合レンズ11とともに支持されている。   A compound lens 11 is disposed in the traveling direction (Z-axis direction) of the light emitting unit 14 of the laser stack 10. The compound lens 11 is formed by adhering the plate lens 11a described above, and a cylindrical lens 15 of the plate lens 11a is disposed to face the laser stack 10 as shown in FIG. The compound lens 11 is held by the holding member 25. The holding member 25 has a recess 25a for holding the compound lens 11 at the center, and flanges 25b and 25c at both ends in the slow axis direction. The compound lens 11 is bonded and fixed to the bottom surface of the recess 25a and the side surface on the other side plate 23 side. The optical fiber 12 is supported on the holding member 25 together with the composite lens 11.

一側方側板22には、主に図2に示すように、外周に枠体26が形成され、この枠体26内のほぼ中央位置には、一側方支持部材29がレーザ進行方向(z軸方向)に延在し、断面方形の梁状に形成されている。一側方支持部材29は本発明の一側方支持手段に相当し、この一側方支持部材29の両端には、一対の一側方梃子部材27、28が配置されている。一対の一側方梃子部材27、28は、一側方支持部材29と同様に、断面方形状にレーザ進行方向(z軸方向)に延在して形成され、一側方支持部材29の各端部が一対の一側方梃子部材27、28の各一端27a、28aにそれぞれ弾性変形部30、31により連結されている。弾性変形部30、31は、枠体26の厚み方向、すなわちスロー軸(x軸)方向に所定の幅を有し、レーザ進行方向(z軸方向)に薄肉の形成された板ばねであって、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。   As shown in FIG. 2, a frame 26 is formed on the outer periphery of the one side plate 22, and the one side support member 29 is positioned in the laser traveling direction (z It extends in the axial direction) and is formed in a beam shape with a square cross section. The one side support member 29 corresponds to one side support means of the present invention, and a pair of one side lever members 27 and 28 are disposed at both ends of the one side support member 29. The pair of one side insulator members 27, 28 are formed in a cross-sectional square shape extending in the laser traveling direction (z-axis direction) similarly to the one side support member 29. The end portions are connected to the one ends 27a and 28a of the pair of one side lever members 27 and 28 by elastic deformation portions 30 and 31, respectively. The elastic deformation portions 30 and 31 are leaf springs having a predetermined width in the thickness direction of the frame body 26, that is, in the slow axis (x-axis) direction and thin in the laser traveling direction (z-axis direction). The force in the slow axis (x-axis) direction and the fast axis (y-axis) direction is rigid, and the force in the laser traveling direction (z-axis direction) is elastically deformed.

一側方梃子部材27、28の各他端27b、28bの下面は、枠体26に取り付けられた一側方押付力付与手段であるコイルばね32によって弾性的に支持されている。一側方梃子部材27、28の上面の一端27a、28a寄りの支点部27c、28cは、枠体26から垂下して形成された連結桿26a、26bと弾性変形部33、34を介して連結され、枠体26に支持されている。弾性変形部33、34は、枠体26の厚み方向、すなわちスロー軸(x軸)方向に所定の幅を有し、レーザ進行方向(z軸方向)に薄肉に形成された板ばねであって、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。このため、一側方梃子部材27は、支点部27cを支点として一端27aおよび他端27bがファースト軸(y軸)方向に揺動する。また、同様に一側方梃子部材28は、支点部28cを支点として一端28aおよび他端28bがファースト軸(y軸)方向に揺動する。   The lower surfaces of the other ends 27 b and 28 b of the one side lever members 27 and 28 are elastically supported by a coil spring 32 which is one side pressing force applying means attached to the frame body 26. The fulcrum portions 27c and 28c near the one ends 27a and 28a on the upper surfaces of the one side lever members 27 and 28 are connected to the connecting rods 26a and 26b formed by hanging from the frame body 26 through the elastic deformation portions 33 and 34. And supported by the frame body 26. The elastic deformation portions 33 and 34 are leaf springs having a predetermined width in the thickness direction of the frame body 26, that is, the slow axis (x-axis) direction, and being thin in the laser traveling direction (z-axis direction). The force in the slow axis (x-axis) direction and the fast axis (y-axis) direction is rigid, and the force in the laser traveling direction (z-axis direction) is elastically deformed. For this reason, the one side lever member 27 swings in the first axis (y-axis) direction at one end 27a and the other end 27b with the fulcrum portion 27c as a fulcrum. Similarly, the one side lever member 28 swings in the first axis (y-axis) direction at one end 28a and the other end 28b with the fulcrum portion 28c as a fulcrum.

このとき、一対の一側方梃子部材27、28は他端27b、28bのファースト軸(y軸)方向の移動量を縮小して一端27a、28aに伝達する梃子作用を成す。   At this time, the pair of one-sided lever members 27 and 28 perform the lever action of reducing the amount of movement of the other ends 27b and 28b in the fast axis (y-axis) direction and transmitting them to the one ends 27a and 28a.

一対の一側方梃子部材27、28の上方には、補強部材35、36が設けられている。これら補強部材35、36は、一側方梃子部材27、28と平行に延在している。補強部材35の一端は連結部材37を介して一側方梃子部材27の他端27bと連結され、補強部材35の他端は連結桿26aに弾性変形部35aを介して連結されている。連結部材37は補強部材35の一端および一側方梃子部材27の他端27bに弾性変形部37a、37bによって連結され、これら弾性変形部37a、37bおよび、弾性変形部35aは、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。補強部材35、一側方梃子部材27および、これらを連結する連結部材37、連結桿26aによって一側方平行リンク機構が形成される。   Reinforcing members 35 and 36 are provided above the pair of one side lever members 27 and 28. These reinforcing members 35 and 36 extend in parallel with the one side lever members 27 and 28. One end of the reinforcing member 35 is connected to the other end 27b of the one side lever member 27 via the connecting member 37, and the other end of the reinforcing member 35 is connected to the connecting rod 26a via the elastic deformation portion 35a. The connecting member 37 is connected to one end of the reinforcing member 35 and the other end 27b of the one side lever member 27 by elastic deformation portions 37a and 37b. The elastic deformation portions 37a and 37b and the elastic deformation portion 35a are connected to the slow shaft (x (Axis) direction and first axis (y-axis) direction have rigidity, and elastic deformation occurs in the laser traveling direction (z-axis direction) force. The one side parallel link mechanism is formed by the reinforcing member 35, the one side lever member 27, the connecting member 37 that connects these members, and the connecting rod 26a.

同様に、補強部材36の一端は連結部材38を介して一側方梃子部材28の他端28bと連結され、補強部材36の他端は連結桿26bに弾性変形部36aを介して連結されている。連結部材38は補強部材36の一端および一側方梃子部材28の他端28bに弾性変形部38a、38bによって連結され、これら弾性変形部38a、38bおよび、弾性変形部36aは、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。補強部材36、一側方梃子部材28および、これらを連結する連結部材38、連結桿26bによって一側方平行リンク機構が形成される。   Similarly, one end of the reinforcing member 36 is connected to the other end 28b of the one side lever member 28 via the connecting member 38, and the other end of the reinforcing member 36 is connected to the connecting rod 26b via the elastic deformation portion 36a. Yes. The connecting member 38 is connected to one end of the reinforcing member 36 and the other end 28b of the one side lever member 28 by elastic deformation portions 38a and 38b. The elastic deformation portions 38a and 38b and the elastic deformation portion 36a are connected to the slow shaft (x (Axis) direction and first axis (y-axis) direction have rigidity, and elastic deformation occurs in the laser traveling direction (z-axis direction) force. The one side parallel link mechanism is formed by the reinforcing member 36, the one side lever member 28, the connecting member 38 connecting these members, and the connecting rod 26b.

補強部材35、36の一端の上面と枠体26には一方変位装置であるダイヤル調整機構39a、39bが設けられている。このダイヤル調整機構39a、39bは枠体26に固定されたナット部材40と、このナット部材40に螺合するダイヤルネジ部材41を備えている。ダイヤルネジ部材41は円筒状を成し、ナット部材40と螺合するネジ溝(図示せず)が外周に形成されている。ダイヤルネジ部材41の先端には補強部材35、36の上面に当接する半球状の接触部41aが形成され、後端にはダイヤルヘッド41bが設けられている。ダイヤルヘッド41bの外周には目盛りが刻印され、このダイヤルヘッド41bを回転させることにより、接触部41aはファースト軸(y軸)方向に進退する。例えばダイヤルヘッド41bを時計方向に回転すると、接触部41aが補強部材35、36をそれぞれ押圧する方向に移動する。また、ダイヤルヘッド41bを反時計方向に回転すると、接触部41aが補強部材35、36から離間する方向に移動する。   Dial adjusting mechanisms 39a and 39b, which are one-side displacement devices, are provided on the upper surface of one end of the reinforcing members 35 and 36 and the frame body 26, respectively. The dial adjusting mechanisms 39 a and 39 b include a nut member 40 fixed to the frame body 26 and a dial screw member 41 that is screwed into the nut member 40. The dial screw member 41 has a cylindrical shape, and a screw groove (not shown) that is screwed with the nut member 40 is formed on the outer periphery. A hemispherical contact portion 41 a that abuts the upper surfaces of the reinforcing members 35 and 36 is formed at the tip of the dial screw member 41, and a dial head 41 b is provided at the rear end. A scale is engraved on the outer periphery of the dial head 41b. By rotating the dial head 41b, the contact portion 41a advances and retreats in the fast axis (y-axis) direction. For example, when the dial head 41b is rotated in the clockwise direction, the contact portion 41a moves in a direction in which the reinforcing members 35 and 36 are pressed. Further, when the dial head 41 b is rotated counterclockwise, the contact portion 41 a moves in a direction away from the reinforcing members 35 and 36.

一側方支持部材29の上面にはレーザ進行方向(z軸方向)に離間して整列した2箇所に円錐状の窪みが形成され、この窪みにボール29a、29bが回転可能に保持されている。このボール29a、29bは、保持部材25のフランジ部25bの下面に形成された窪みに保持され、保持部材25のフランジ部25bがボール29a、29bを介して一側方支持部材29に位置決め支持されている。また、ボール29a、29bに支持された保持部材25のフランジ部25bの上面と枠体26の間には、コイルばね42a、42bが介在されている。このコイルばね42a、42bは、保持部材25のフランジ部25bを一側方支持部材29側に押圧している。このため、保持部材25のフランジ部25bは、基台20の一部を成す枠体22に対し、一対の一側方梃子部材27、28を介して一側方支持部材29によって下面側を支持されるとともに、コイルばね42a、42bによって上面側を支持されることになる。   On the upper surface of the one side support member 29, conical depressions are formed at two positions spaced apart and aligned in the laser traveling direction (z-axis direction), and the balls 29a and 29b are rotatably held in the depressions. . The balls 29a and 29b are held in a recess formed in the lower surface of the flange portion 25b of the holding member 25, and the flange portion 25b of the holding member 25 is positioned and supported by the one side support member 29 via the balls 29a and 29b. ing. In addition, coil springs 42 a and 42 b are interposed between the upper surface of the flange portion 25 b of the holding member 25 supported by the balls 29 a and 29 b and the frame body 26. The coil springs 42 a and 42 b press the flange portion 25 b of the holding member 25 toward the one side support member 29. For this reason, the flange portion 25 b of the holding member 25 supports the lower surface side by the one side support member 29 via the pair of one side lever members 27 and 28 with respect to the frame body 22 forming a part of the base 20. At the same time, the upper surface side is supported by the coil springs 42a and 42b.

他側方側板23には、主に図4に示すように、外周に枠体50が形成され、この枠体50内のほぼ中央位置には、他側方支持部材51がレーザ進行方向(z軸方向)に延在し、断面方形の梁状に形成されている。他側方支持部材51は、本発明の他側方支持手段に相当し、この他側方支持部材51のレーザスタック10側の端部には、他側方梃子部材52が配置され、逆側の端部には揺動支持部材53が配置されている。他側方梃子部材52は、他側方支持部材51と同様に、レーザ進行方向(z軸方向)に延在した断面方形状に形成され、他側方支持部材51のレーザスタック10側の端部が他側方梃子部材52の一端52aに弾性変形部54により連結されている。弾性変形部54は、枠体50の厚み方向、すなわちスロー軸(x軸)方向に所定の幅を有し、レーザ進行方向(z軸方向)に薄肉の形成された板ばねであって、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。   As shown mainly in FIG. 4, a frame 50 is formed on the outer periphery of the other side plate 23, and the other side support member 51 is positioned in the laser traveling direction (z) at a substantially central position in the frame 50. It extends in the axial direction) and is formed in a beam shape with a square cross section. The other side support member 51 corresponds to the other side support means of the present invention, and the other side lever member 52 is disposed at the end of the other side support member 51 on the laser stack 10 side. A rocking support member 53 is disposed at the end of each of the two. Similar to the other side support member 51, the other side lever member 52 is formed in a cross-sectional square shape extending in the laser traveling direction (z-axis direction), and the end of the other side support member 51 on the laser stack 10 side. This portion is connected to one end 52 a of the other side lever member 52 by an elastic deformation portion 54. The elastic deformation portion 54 is a leaf spring having a predetermined width in the thickness direction of the frame 50, that is, the slow axis (x-axis) direction, and having a thin wall in the laser traveling direction (z-axis direction). The force in the axial (x-axis) direction and the fast axis (y-axis) direction has rigidity, and the force in the laser traveling direction (z-axis direction) is elastically deformed.

他側方梃子部材52の他端52bの下方は、枠体50に取り付けられた他側方押付力付与手段であるコイルばね55によって弾性的に支持されている。他側方梃子部材52の上面の一端52a寄りの支点部52cは、枠体50から垂下して形成された連結桿50aと弾性変形部56を介して連結され、枠体50に支持されている。弾性変形部56は、枠体50の厚み方向、すなわちスロー軸(x軸)方向に所定の幅を有し、レーザ進行方向(z軸方向)に薄肉の形成された板ばねであって、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。このため、他側方梃子部材52は、支点部52cを支点として一端52aおよび他端52bがファースト軸(y軸)方向に揺動する。   The lower side of the other end 52b of the other side lever member 52 is elastically supported by a coil spring 55 which is an other side pressing force applying means attached to the frame 50. A fulcrum portion 52 c near the one end 52 a on the upper surface of the other side lever member 52 is connected to a connecting rod 50 a formed by hanging from the frame body 50 via an elastic deformation portion 56 and supported by the frame body 50. . The elastic deformation portion 56 is a leaf spring having a predetermined width in the thickness direction of the frame body 50, that is, the slow axis (x-axis) direction and having a thin wall in the laser traveling direction (z-axis direction). The force in the axial (x-axis) direction and the fast axis (y-axis) direction has rigidity, and the force in the laser traveling direction (z-axis direction) is elastically deformed. For this reason, as for the other side lever member 52, one end 52a and the other end 52b are rock | fluctuated to a fast axis (y-axis) direction by using the fulcrum part 52c as a fulcrum.

揺動支持部材53は、レーザ進行方向(z軸方向)に延在した断面方形状に形成され、他側方支持部材51の他端に一端53aが弾性変形部57により連結されている。弾性変形部57は、枠体50の厚み方向、すなわちスロー軸(x軸)方向に所定の幅を有し、レーザ進行方向(z軸方向)に薄肉の形成された板ばねであって、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。   The swing support member 53 is formed in a square cross section extending in the laser traveling direction (z-axis direction), and one end 53 a is connected to the other end of the other side support member 51 by an elastic deformation portion 57. The elastic deformation portion 57 is a leaf spring having a predetermined width in the thickness direction of the frame body 50, that is, in the slow axis (x-axis) direction and having a thin wall in the laser traveling direction (z-axis direction). The force in the axial (x-axis) direction and the fast axis (y-axis) direction has rigidity, and the force in the laser traveling direction (z-axis direction) is elastically deformed.

揺動支持部材53の他端53bの下方は、枠体50に取り付けられたコイルばね58によって弾性的に支持されている。揺動支持部材53の上面の一端53a寄りの支点部53cは、枠体50から垂下して形成された連結桿50bと弾性変形部59を介して連結され、枠体50に支持されている。弾性変形部59は、枠体50の厚み方向、すなわちスロー軸(x軸)方向に所定の幅を有し、レーザ進行方向(z軸方向)に薄肉の形成された板ばねであって、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。このため、揺動支持部材53は、支点部53cを支点として一端53aおよび他端53bがファースト軸(y軸)方向に揺動する。   The lower end of the other end 53 b of the swing support member 53 is elastically supported by a coil spring 58 attached to the frame body 50. A fulcrum portion 53 c near the one end 53 a on the upper surface of the swing support member 53 is connected to a connection rod 50 b formed by hanging from the frame body 50 via an elastic deformation portion 59 and supported by the frame body 50. The elastic deformation portion 59 is a leaf spring having a predetermined width in the thickness direction of the frame 50, that is, the slow axis (x-axis) direction, and having a thin wall in the laser traveling direction (z-axis direction). The force in the axial (x-axis) direction and the fast axis (y-axis) direction has rigidity, and the force in the laser traveling direction (z-axis direction) is elastically deformed. Therefore, the swing support member 53 swings in the first axis (y-axis) direction at one end 53a and the other end 53b with the fulcrum portion 53c as a fulcrum.

他側方梃子部材52および、揺動支持部材53の上方には、補強部材60、70が設けられている。補強部材60は、他側方梃子部材52と平行に延在している。補強部材60の一端は連結部材61を介して一側方梃子部材52の他端52bと連結され、補強部材60の他端は連結桿50aに弾性変形部60aを介して連結されている。連結部材61は補強部材60の一端および他側方梃子部材52の他端52bに弾性変形部61a、61bによって連結され、これら弾性変形部61a、61b、および弾性変形部60aは、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。補強部材60、他側方梃子部材52、および、これらを連結する連結部材61、連結桿50aによって他側方平行リンク機構が形成される。同様に、補強部材70の一端は連結部材71を介して揺動支持部材53の他端53bと連結され、補強部材70の他端は連結桿50bに弾性変形部70aを介して連結されている。連結部材71は補強部材70の一端、および揺動支持部材53の他端53bに弾性変形部71a、71bによって連結され、これら弾性変形部71a、71b、および弾性変形部70aは、スロー軸(x軸)方向およびファースト軸(y軸)方向の力には剛性を有し、レーザ進行方向(z軸方向)の力には弾性変形する。補強部材70、揺動支持部材53、および、これらを連結する連結部材71、連結桿50aによって平行リンク機構が形成される。   Reinforcing members 60 and 70 are provided above the other side lever member 52 and the swing support member 53. The reinforcing member 60 extends in parallel with the other side lever member 52. One end of the reinforcing member 60 is connected to the other end 52b of the one side lever member 52 via the connecting member 61, and the other end of the reinforcing member 60 is connected to the connecting rod 50a via the elastic deformation portion 60a. The connecting member 61 is connected to one end of the reinforcing member 60 and the other end 52b of the other side lever member 52 by elastic deformation portions 61a and 61b. The elastic deformation portions 61a and 61b and the elastic deformation portion 60a are connected to the slow shaft (x (Axis) direction and first axis (y-axis) direction have rigidity, and elastic deformation occurs in the laser traveling direction (z-axis direction) force. The other side parallel link mechanism is formed by the reinforcing member 60, the other side lever member 52, the connecting member 61 that connects them, and the connecting rod 50a. Similarly, one end of the reinforcing member 70 is connected to the other end 53b of the swing support member 53 via the connecting member 71, and the other end of the reinforcing member 70 is connected to the connecting rod 50b via the elastic deformation portion 70a. . The connecting member 71 is connected to one end of the reinforcing member 70 and the other end 53b of the swing support member 53 by elastic deformation portions 71a and 71b. The elastic deformation portions 71a and 71b and the elastic deformation portion 70a are connected to the slow shaft (x (Axis) direction and first axis (y-axis) direction have rigidity, and elastic deformation occurs in the laser traveling direction (z-axis direction) force. A parallel link mechanism is formed by the reinforcing member 70, the swing support member 53, the connecting member 71 that connects these members, and the connecting rod 50a.

補強部材60の一端の上面と枠体50には一方変位装置であるダイヤル調整機構61が設けられている。このダイヤル調整機構61は枠体50に固定されたナット部材62と、このナット部材62に螺合するダイヤルネジ部材63を備えている。ダイヤルネジ部材63は円筒状を成し、ナット部材62と螺合するネジ溝(図示せず)が外周に形成されている。ダイヤルネジ部材63の先端には補強部材60の上面に当接する半球状の接触部63aが形成され、後端にはダイヤルヘッド63bが設けられている。ダイヤルヘッド63bの外周には目盛りが刻印され、このダイヤルヘッド63bを回転させることにより、接触部63aはファースト軸(y軸)方向に進退する。例えばダイヤルヘッド63bを時計方向に回転すると、接触部63aが補強部材60を押圧する方向に移動する。また、ダイヤルヘッド63bを反時計方向に回転すると、接触部63aが補強部材60から離間する方向に移動する。補強部材70の一端上方は、枠体50に取り付けられたコイルばね73によって弾性的に支持されている。   The upper surface of one end of the reinforcing member 60 and the frame body 50 are provided with a dial adjusting mechanism 61 that is a one-way displacement device. The dial adjusting mechanism 61 includes a nut member 62 fixed to the frame body 50 and a dial screw member 63 screwed into the nut member 62. The dial screw member 63 has a cylindrical shape, and a screw groove (not shown) that is screwed with the nut member 62 is formed on the outer periphery. A hemispherical contact portion 63a that contacts the upper surface of the reinforcing member 60 is formed at the tip of the dial screw member 63, and a dial head 63b is provided at the rear end. A scale is engraved on the outer periphery of the dial head 63b. By rotating the dial head 63b, the contact portion 63a advances and retreats in the fast axis (y-axis) direction. For example, when the dial head 63b is rotated clockwise, the contact portion 63a moves in a direction in which the reinforcing member 60 is pressed. Further, when the dial head 63 b is rotated counterclockwise, the contact portion 63 a moves in a direction away from the reinforcing member 60. The upper end of the reinforcing member 70 is elastically supported by a coil spring 73 attached to the frame body 50.

他側方支持部材51の上面には円錐状の窪みが形成され、この窪みにボール51aが回転可能に保持されている。このボール51aには保持部材25のフランジ部25cの下面に当接し、保持部材25のフランジ部25cがボール51aを介して他側方支持部材36に摺動可能に支持される。また、ボール51a、51bに支持された保持部材25のフランジ部25cの上面と枠体50の間には、コイルばね72aが介在されている。このコイルばね72aは、保持部材25のフランジ部25cを他側方支持部材51側に押圧している。このため、保持部材25のフランジ部25cは、基台20の一部を成す枠体50に対し、他側方梃子部材52および揺動支持部材53を介して一側方支持部材29によって下面側を支持されるとともに、コイルばね72aによって上面側を支持されることになる。従って、保持部材25は、上述した枠体26および枠体50に、それぞれフランジ部25bおよび25cを弾性的に保持されることになる。   A conical depression is formed on the upper surface of the other side support member 51, and the ball 51a is rotatably held in the depression. The ball 51a contacts the lower surface of the flange portion 25c of the holding member 25, and the flange portion 25c of the holding member 25 is slidably supported by the other side support member 36 via the ball 51a. A coil spring 72a is interposed between the upper surface of the flange portion 25c of the holding member 25 supported by the balls 51a and 51b and the frame body 50. The coil spring 72 a presses the flange portion 25 c of the holding member 25 toward the other side support member 51. For this reason, the flange portion 25c of the holding member 25 is lower than the frame 50 forming a part of the base 20 by the one side support member 29 via the other side lever member 52 and the swing support member 53. And the upper surface side is supported by the coil spring 72a. Therefore, the holding member 25 elastically holds the flange portions 25b and 25c on the frame body 26 and the frame body 50 described above, respectively.

以上のような構成でレーザスタック10と複合レンズ11の位置調整の動作について説明する。本実施の形態における位置調整は、一対の一側方梃子部材27、28および他側方梃子部材52の梃子作用によって実行される。なお、一対の一側方梃子部材および他側方梃子部材の梃子作用の動作は同じであることから、ここでは一側方梃子部材27の梃子作用について図2を用いて説明する。一側方梃子部材は、支点部27cを支点にし、他端27bが力点となり、一端27aが作用点となる梃子を構成している。また、補強部材35、一側方梃子部材27および、これらを連結する連結部材37、連結桿26aによって一側方平行リンク機構が形成され、この一側方平行リンク機構は一側方梃子部材27がファースト軸方向に撓まないように補強している。一側方梃子部材27の他端27bは、コイルばね32の押圧力により、支点部27cを中心とする回転力を与えられ、補強部材35を介してダイヤル調整機構39a接触部41aに押し付けられている。また、一側方梃子部材27の一端27aは、フランジ部25bを押し下げるコイルばね42aの押圧力により、支点部27cを中心とする回転力を与えられ、補助部材35を介してダイヤル調整機構39aのダイヤルネジ部材41に押し付ける力を付与している。この状態において、ダイヤル調整機構39のダイヤルヘッド41bを目盛りに基づいて所定角度回転させると、接触部41aは、コイルばね32およびコイルばね42aの押圧力に抗して補強部材35の一端を押し下げる。この補強部材35の一端が押し下げられると、連結部材37を介して連結された一側方梃子部材27の他端27bが押し下げられ、一側方梃子部材27は支点27cを中心に旋回する。このとき、上述したように、支点部27cから力点である他端27bまでの距離と、支点部27cから作用点である一端27aまでの距離の比率が5:1であることから、ダイヤルネジ部材41の接触部41aの移動量の1/5の移動量が一側方梃子部材27の一端27aに伝達され、一側方梃子部材27の一端27aが押し上げられる。この一側方梃子部材27の一端27aの押し上げによって一側方支持部材29が押し上げられ、この結果、保持部材25のフランジ部25bは、コイルばね42aの押圧力に抗して押し上げられる。逆にダイヤルネジ部材41が枠体26から離れる方向に回転されて接触部41aが枠体26に近づく方向に戻されると、平行リンク機構を構成する補強部材35がコイルばね32の作用により、接触部41aに追従して押し上げられ、これに伴って一側方梃子部材27の他端27bが上昇し、一端27aが下がる。一端27aが下がると弾性変形部30を介して連結された一方側支持部材29が下がり、保持部材25のフランジ部25bがコイルばね42aによってフランジ25bに追従して下がる。このように、ダイヤル調整機構39aの回転による移動量を一側方梃子部材27の梃子作用によりファースト軸方向に縮小して保持部材25のフランジ部25bに伝達して移動させることができる。同様に、ダイヤル調整機構39bを操作することにより、一側方梃子部材28の梃子作用によりファースト軸方向に縮小して保持部材25のフランジ部25bを移動させることができ、ダイヤル調整機構61を操作することにより、他側方梃子部材52の梃子作用によりファースト軸方向に縮小して保持部材25のフランジ部25cを移動させることができる。そして、これらダイヤル調整機構39a、bおよびダイヤル調整機構61を調整し、保持部材25のファースト軸方向の位置を移動することにより保持部材25の傾斜角度を調整し、複合レンズ11とレーザスタック10の位置関係を調整することができる。例えば、ダイヤル調整機構39a、bおよびダイヤル調整機構61を同時に保持部材25のファースト軸方向に上下させるように操作すれば、複合レンズ11はファースト軸方向に平行移動する。また、ダイヤル調整機構39a、39bを保持部材25が下がるように操作し、ダイヤル調整機構61を保持部材25が上がるように操作すれば、複合レンズ11はレーザ光の進行する軸線(Z軸)回りで回転、すなわちローリング角度を調整することが可能となり、ダイヤル調整機構39aとダイヤル調整機構61を操作することによって複合レンズ11のレーザスタック10側のファースト方向位置、すなわち複合レンズ11のスロー軸(Y軸)回りの回転(ピッチング)角度を調整することができる。   The operation of adjusting the position of the laser stack 10 and the compound lens 11 with the above configuration will be described. The position adjustment in the present embodiment is executed by lever action of the pair of one side lever members 27 and 28 and the other side lever member 52. Since the operation of the lever action of the pair of one side lever member and the other side lever member is the same, the lever action of the one side lever member 27 will be described here with reference to FIG. The one side lever member forms a lever having the fulcrum portion 27c as a fulcrum, the other end 27b serving as a power point, and the one end 27a serving as an action point. Further, the reinforcing member 35, the one side lever member 27, the connecting member 37 for connecting them, and the connecting rod 26a form a one side parallel link mechanism, and this one side parallel link mechanism is the one side lever member 27. Is reinforced so as not to bend in the first axial direction. The other end 27b of the one side lever member 27 is given a rotational force around the fulcrum portion 27c by the pressing force of the coil spring 32, and is pressed against the dial adjustment mechanism 39a contact portion 41a via the reinforcing member 35. Yes. Further, the one end 27a of the one side lever member 27 is given a rotational force around the fulcrum portion 27c by the pressing force of the coil spring 42a that pushes down the flange portion 25b. A force for pressing the dial screw member 41 is applied. In this state, when the dial head 41b of the dial adjustment mechanism 39 is rotated by a predetermined angle based on the scale, the contact portion 41a pushes down one end of the reinforcing member 35 against the pressing force of the coil spring 32 and the coil spring 42a. When one end of the reinforcing member 35 is pushed down, the other end 27b of the one side lever member 27 connected via the connecting member 37 is pushed down, and the one side lever member 27 turns around the fulcrum 27c. At this time, as described above, the ratio of the distance from the fulcrum portion 27c to the other end 27b as the force point and the distance from the fulcrum portion 27c to the one end 27a as the action point is 5: 1. The movement amount of 1/5 of the movement amount of the contact portion 41a of 41 is transmitted to the one end 27a of the one side lever member 27, and the one end 27a of the one side lever member 27 is pushed up. By pushing up one end 27a of the one side lever member 27, the one side support member 29 is pushed up, and as a result, the flange portion 25b of the holding member 25 is pushed up against the pressing force of the coil spring 42a. On the contrary, when the dial screw member 41 is rotated in the direction away from the frame body 26 and the contact portion 41 a is returned in the direction approaching the frame body 26, the reinforcing member 35 constituting the parallel link mechanism is contacted by the action of the coil spring 32. Following up with the portion 41a, the other end 27b of the one side lever member 27 is raised and the one end 27a is lowered. When the one end 27a is lowered, the one-side support member 29 connected via the elastic deformation portion 30 is lowered, and the flange portion 25b of the holding member 25 is lowered following the flange 25b by the coil spring 42a. Thus, the amount of movement due to the rotation of the dial adjusting mechanism 39a can be reduced in the fast axis direction by the lever action of the one side lever member 27 and transmitted to the flange portion 25b of the holding member 25 for movement. Similarly, by operating the dial adjustment mechanism 39b, the flange portion 25b of the holding member 25 can be moved by being contracted by the lever action of the one side lever member 28 to move the flange portion 25b of the holding member 25, and the dial adjustment mechanism 61 is operated. Thus, the flange portion 25c of the holding member 25 can be moved while being reduced in the first axial direction by the lever action of the other side lever member 52. Then, the dial adjusting mechanisms 39a and 39b and the dial adjusting mechanism 61 are adjusted, and the tilt angle of the holding member 25 is adjusted by moving the position of the holding member 25 in the fast axis direction. The positional relationship can be adjusted. For example, if the dial adjusting mechanisms 39a and 39b and the dial adjusting mechanism 61 are operated to move up and down in the fast axis direction of the holding member 25 at the same time, the compound lens 11 is translated in the fast axis direction. Further, when the dial adjusting mechanisms 39a and 39b are operated so that the holding member 25 is lowered and the dial adjusting mechanism 61 is operated so that the holding member 25 is raised, the compound lens 11 is rotated around the axis (Z axis) along which the laser light travels. Thus, the rotation, that is, the rolling angle can be adjusted. By operating the dial adjustment mechanism 39a and the dial adjustment mechanism 61, the first direction position of the compound lens 11 on the laser stack 10 side, that is, the slow axis (Y The rotation (pitching) angle around the axis) can be adjusted.

なお、フランジ部25aは窪みに保持されたボール29a、29bによって一側方支持部材29に位置決めされ、フランジ部25cは、ボール51aを介して摺動可能に、すなわちフローチング可能に他側方支持部材51に支持されている。このため、保持部材25を傾斜させるときの一側方支持部材29および他側方支持部材51と保持部材25の接触位置の移動が円滑になる。   The flange portion 25a is positioned on the one side support member 29 by balls 29a and 29b held in the recesses, and the flange portion 25c is slidable via the ball 51a, that is, supported on the other side so as to be floatable. It is supported by the member 51. For this reason, when the holding member 25 is inclined, the movement of the contact position of the holding member 25 with the one side support member 29 and the other side support member 51 becomes smooth.

以上のように、レーザスタック10から照射されるレーザ光が複合レンズ11に効率的に集光できるように、ダイヤル調整機構39a、39b、61を操作し、この操作による移動量を一対の一側方梃子部材27、28および他側方梃子部材52の梃子作用によって縮小して複合レンズ11の位置を調整するようにしたので、レーザスタック10および複合レンズ11を組付け後に精密に位置調整できるうえ、再調整も行うことができる。   As described above, the dial adjustment mechanisms 39a, 39b, and 61 are operated so that the laser light emitted from the laser stack 10 can be efficiently focused on the compound lens 11, and the movement amount by this operation is set to one side of the pair. Since the position of the compound lens 11 is adjusted by reducing the lever action of the lever members 27 and 28 and the other side lever member 52, the position of the laser stack 10 and the compound lens 11 can be precisely adjusted after assembling. Readjustment can also be performed.

なお、上記実施の形態では、一対の一側方梃子部材27、28が一側方保持部材29に連結されるようにし、また、他側方梃子部材52および揺動支持部材53が1つの他側方保持部材51に連結されるようにして剛性の向上を図っている。しかしながら、特に強固な剛性を必要としないのであれば、これら一側方梃子部材27、28および他側方梃子部材52に対して個々に独立した一側方保持部材29および他側方保持部材51を形成するようにしてもよい。   In the above-described embodiment, the pair of one side lever members 27 and 28 are connected to the one side holding member 29, and the other side lever member 52 and the swing support member 53 are one other. The rigidity is improved by being connected to the side holding member 51. However, if the rigid rigidity is not particularly required, the one side holding member 29 and the other side holding member 51 that are independent of the one side lever members 27 and 28 and the other side lever member 52 are provided. May be formed.

また、上記実施の形態では、集光装置として複合レンズ11を例示したが、複数のレンズの組合せによって集光装置を構成してもよいうえ、レンズに限らず導波路を用いてもよい。レーザスタック10ではなく、レーザバー10a単体でもよい。さらに、集光装置である複合レンズ11を固定し、レーザスタック10の位置を調整可能に移動できるようにしてもよい。   In the above embodiment, the compound lens 11 is exemplified as the light collecting device. However, the light collecting device may be configured by a combination of a plurality of lenses, and a waveguide may be used instead of the lens. The laser bar 10a alone may be used instead of the laser stack 10. Furthermore, the compound lens 11 that is a light condensing device may be fixed so that the position of the laser stack 10 can be adjusted.

また、一側方押付力付与手段および他側方押付力付与手段としてコイルばね32、55を一例として挙げたが、コイルばね32,55の代わりにゴム材等の弾性体を用いるようにしてもよい。   Further, although the coil springs 32 and 55 are given as an example as the one side pressing force applying means and the other side pressing force applying means, an elastic body such as a rubber material may be used instead of the coil springs 32 and 55. Good.

本発明に係る発光装置を示す平面図。The top view which shows the light-emitting device which concerns on this invention. 図1のA−A線断面図。AA sectional view taken on the line AA of FIG. 図1のB−B線断面図。FIG. 3 is a sectional view taken along line BB in FIG. 1. 図1のC−C線断面図。The CC sectional view taken on the line of FIG. 図2のD−D線断面図。The DD sectional view taken on the line of FIG. レーザスタック、複合レンズおよび光ファイバの概略的な構成を示した図。The figure which showed schematic structure of a laser stack, a compound lens, and an optical fiber.

符号の説明Explanation of symbols

10…レーザスタック、11…複合レンズ、12…光ファイバ、14…発光部、15…シリンカドリカルレンズ、20…基台、21…底板、22…一側方側板、23…他側方側板、25…保持部材、25a,25b…フランジ部、26,50…枠体、27,28…一側方梃子部材、29…一側方支持部材、35,36…補強部材、39a、39b、51…他側方支持部材、52…他側方梃子部材、61…ダイヤル調整機構。 DESCRIPTION OF SYMBOLS 10 ... Laser stack, 11 ... Compound lens, 12 ... Optical fiber, 14 ... Light emission part, 15 ... Cylindrical lens, 20 ... Base, 21 ... Bottom plate, 22 ... One side side plate, 23 ... Other side side plate, 25 ... Holding member, 25a, 25b ... Flange, 26, 50 ... Frame, 27, 28 ... One side insulator member, 29 ... One side support member, 35, 36 ... Reinforcing member, 39a, 39b, 51 ... Other side support member, 52... Other side lever member, 61.

Claims (6)

互い直交するスロー軸方向とファースト軸方向に拡散しながら進行するレーザ光を射出する複数の半導体レーザの発光部を並列に配置したレーザアレイと、前記レーザアレイの発光部に対向して配置され前記半導体レーザから照射されたレーザ光を通過させる光路装置とを備えたレーザ発光装置において、前記レーザアレイまたは光路装置のいずれか一方を固定する基台と、前記レーザアレイまたは光路装置のいずれか他方を保持する保持部材と、前記保持部材をレーザ進行方向に離間して整列した2箇所で支持する一側方支持手段と、前記保持部材を前記一側方からスロー軸方向に離間した他側方の少なくとも1箇所で支持する他側方支持手段と、前記一側方支持手段に前記レーザ進行方向に離間した一側方2箇所で夫々各一端がファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結された一対の一側方梃子部材と、前記各一側方梃子部材の他端をファースト軸方向に変位させ前記一端をファースト軸方向に梃子作用により縮小して変位させる一対の一側方変位装置と、前記他側方支持手段に一端がファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結された他側方梃子部材と、前記他側方梃子部材の他端をファースト軸方向に変位させ前記一端をファースト軸方向に梃子作用により縮小して変位させる他側方変位装置と、を備えたことを特徴とするレーザ発光装置。 A laser array in which light emitting portions of a plurality of semiconductor lasers that emit laser light that travels while diffusing in a slow axis direction and a fast axis direction orthogonal to each other are arranged in parallel, and the light emitting portion of the laser array is disposed to face the laser array. In a laser light emitting device comprising an optical path device for passing a laser beam emitted from a semiconductor laser, a base for fixing either the laser array or the optical path device, and either the laser array or the optical path device A holding member for holding, one side support means for supporting the holding member at two positions separated and aligned in the laser traveling direction, and the other side of the holding member spaced from the one side in the slow axis direction. the other side support means, said respective first ends at one side two places spaced in the laser moving direction on one side support means Firth for supporting at least one place Rigid in the axial direction of the force, and a pair of one side lever member in the laser moving direction of the force which is elastically deformable coupling, displacement and the other end of the respective one side lever member in fast axis direction A pair of one-side displacement devices for reducing and displacing the one end in the first axial direction by lever action, and one end of the other side support means having rigidity in the first axial force, and in the laser traveling direction. The other side lever member that is elastically deformed to the force and the other side that displaces the other end of the other side lever member in the fast axis direction and contracts the one end in a fast axis direction by a lever action. And a laser displacement device. 請求項1において、
前記一側方支持手段は、レーザ進行方向に延在する一側方支持部材とし、該一側方支持部材の各端部が前記一対の一側方梃子部材の各一端に夫々ファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形する弾性変形部により連結され、
前記他側方支持手段は、レーザ進行方向に延在する他側方支持部材とし、該他側方支持部材の一端部が前記他側方梃子部材の一端にファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形する弾性変形部により弾性的に連結されていることを特徴とするレーザ発光装置。
In claim 1,
The one side support means is a one side support member extending in the laser traveling direction, and each end portion of the one side support member is connected to each end of the pair of one side lever members in the first axial direction. The force has rigidity, and the force in the laser traveling direction is connected by an elastically deforming portion that elastically deforms,
The other side support means is an other side support member extending in the laser traveling direction, and one end portion of the other side support member is rigid with respect to a first axial force at one end of the other side lever member. And a laser light emitting device characterized in that the laser light emitting device is elastically connected to a force in a laser traveling direction by an elastic deformation portion that elastically deforms.
請求項2において、
前記一対の一側方梃子部材は、前記一側方支持部材と整列して前記レーザ進行方向に延在し、前記各一側方梃子部材および該一側方梃子部材と平行に延在する各補強部材の一端部とを前記基台にファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結し、前記各補強部材の他端部および前記各一側方梃子部材の他端を連結部材の両端部に夫々ファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結して一対の一側方平行リンク機構を構成し、
前記他側方梃子部材は、前記他側方支持部材と整列して前記レーザ進行方向に延在し、前記他側方梃子部材および該他側方梃子部材と平行に延在する補強部材の一端とを前記基台にファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結し、前記補強部材の他端部および前記他側方梃子部材の他端を連結部材の両端部に夫々ファースト軸方向の力には剛性を有し、レーザ進行方向の力には弾性変形可能に連結して他側方平行リンク機構を構成したことを特徴とするレーザ発光装置。
In claim 2,
The pair of one side lever members are aligned with the one side support member and extend in the laser traveling direction, and each one side lever member and each one side lever member extending in parallel with the one side lever member. One end of a reinforcing member is rigidly connected to the base in a force in the first axial direction and elastically deformed to a force in the laser traveling direction, and the other end of each reinforcing member and each one side A pair of one side parallel link mechanism is constructed by connecting the other end of the insulator member to both ends of the connecting member so that the force in the first axial direction is rigid and elastically deformable to the force in the laser traveling direction. And
The other side lever member is aligned with the other side support member and extends in the laser traveling direction, and is one end of the other side lever member and a reinforcing member extending in parallel with the other side lever member. The base is rigid to the force in the first axial direction and is elastically deformed to the force in the laser traveling direction, and the other end of the reinforcing member and the other end of the other side lever member are connected to each other. A laser light emitting device characterized in that the other side parallel link mechanism is constructed by connecting the both ends of the connecting member with rigidity in the force in the first axial direction and elastically deforming the force in the laser traveling direction. .
請求項3において、
前記レーザアレイおよび光路装置の両側面にそれぞれ配置され前記基台に固定された一側方および他側方側板を備え、
前記一側方側板を切り欠いて前記一側方支持部材、前記一対の一側方梃子部材、前記一対の一側方補強部材、および各弾性変形部を一体的に形成し、
前記他側方側板を切り欠いて前記他側方支持部材、前記他側方梃子部材、前記他側方補強部材、および各弾性変形部を一体的に形成したことを特徴とするレーザ発光装置。
In claim 3,
One side plate and the other side plate fixed to the base and disposed on both side surfaces of the laser array and the optical path device,
The one side support member, the pair of one side lever members, the pair of one side reinforcement members, and the elastic deformation portions are integrally formed by cutting out the one side plate,
2. The laser light emitting device according to claim 1, wherein the other side plate is cut out to integrally form the other side support member, the other side lever member, the other side reinforcing member, and each elastic deformation portion.
請求項1乃至4のいずれか1項において、
前記一対の一側方梃子部材の各一端を前記一対の一側方変位装置に押し付ける一対の一側方押付力付与手段を設け、
前記他側方梃子部材の一端を前記他側方変位装置に押し付ける他側方押付力付与手段を設けたことを特徴とするレーザ発光装置。
In any one of Claims 1 thru | or 4,
A pair of one side pressing force applying means for pressing each one end of the pair of one side lever members against the pair of one side displacement devices;
2. A laser emitting apparatus according to claim 1, further comprising an other side pressing force applying means for pressing one end of the other side lever member against the other side displacement device.
請求項1乃至5のいずれか1項において、
前記保持部材の一側方を前記一側方支持部材にボールを介して支持し、前記保持部材の他側方を前記他側方支持部材にボールを介してフローチング可能に支持したことを特徴とするレーザ発光装置。
In any one of Claims 1 thru | or 5,
One side of the holding member is supported on the one side support member via a ball, and the other side of the holding member is supported on the other side support member via a ball so as to be floatable. A laser emitting device.
JP2004175908A 2004-06-14 2004-06-14 Laser light emitting device. Expired - Fee Related JP4140557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175908A JP4140557B2 (en) 2004-06-14 2004-06-14 Laser light emitting device.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175908A JP4140557B2 (en) 2004-06-14 2004-06-14 Laser light emitting device.

Publications (2)

Publication Number Publication Date
JP2005354004A JP2005354004A (en) 2005-12-22
JP4140557B2 true JP4140557B2 (en) 2008-08-27

Family

ID=35588179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175908A Expired - Fee Related JP4140557B2 (en) 2004-06-14 2004-06-14 Laser light emitting device.

Country Status (1)

Country Link
JP (1) JP4140557B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010088631A2 (en) * 2009-01-30 2010-08-05 Kaiam Corp. Micromechanically aligned optical assembly
CN114325645B (en) * 2021-12-17 2022-09-09 湖南阿秒光学科技有限公司 Laser module mounting method
CN116191180B (en) * 2023-04-28 2023-08-04 济南森峰激光科技股份有限公司 Array device for outputting lattice light beams of fiber laser

Also Published As

Publication number Publication date
JP2005354004A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US6639727B2 (en) Optical lens and optical system having inclined columnar optical members
CA2165262C (en) Multiple emitters laser diode assembly with graded-index fiber microlens
US7106925B2 (en) Optical fibre switching assembly
JP6022576B2 (en) Assemblies for providing an aligned stack of two or more modules and lithographic or microscopy systems comprising such assemblies
JP4140557B2 (en) Laser light emitting device.
US7006721B2 (en) Optical switch and beam direction module
JP5475560B2 (en) Light switch
JP2002162547A (en) Adjustment device and method for adjusting the adjustment device
JP3679560B2 (en) Adjusting method of scanning optical system
US20040005111A1 (en) Collimator array and optical switch using the same
JP2012024794A (en) Working head of fiber laser beam machine
JP2009015228A (en) Print head mounted on image forming apparatus
US6678443B2 (en) Apparatus for slewing a light beam
JPH10335755A (en) Semiconductor laser system
KR101076495B1 (en) Ultra-precision linear stage using unified motion amplification and guide mechanism
CN110681991A (en) Multi-reflector laser dynamic focusing system based on optical path variation
JP2007057619A (en) Optical path adjusting apparatus and light source unit
JP2006154028A (en) Optical filter module and optical beam incident angle adjusting method
JP2004212829A (en) Optical switch
JP2006343628A (en) Wavelength selection switch
CN1659463A (en) Flexure arrangements
KR101930793B1 (en) Independently adjustable mount assembly for two optical components
JPH0772398A (en) Optical switch
JP3834486B2 (en) Beam irradiation device
JP2004219478A (en) Optical fiber collimating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees