JP4139900B2 - Damping device for wooden building and damping method for wooden building - Google Patents

Damping device for wooden building and damping method for wooden building Download PDF

Info

Publication number
JP4139900B2
JP4139900B2 JP2005021975A JP2005021975A JP4139900B2 JP 4139900 B2 JP4139900 B2 JP 4139900B2 JP 2005021975 A JP2005021975 A JP 2005021975A JP 2005021975 A JP2005021975 A JP 2005021975A JP 4139900 B2 JP4139900 B2 JP 4139900B2
Authority
JP
Japan
Prior art keywords
column
horizontal
damper body
outer cylinder
inner cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005021975A
Other languages
Japanese (ja)
Other versions
JP2006207290A (en
Inventor
笠井和彦
大木洋司
坂田弘安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2005021975A priority Critical patent/JP4139900B2/en
Publication of JP2006207290A publication Critical patent/JP2006207290A/en
Application granted granted Critical
Publication of JP4139900B2 publication Critical patent/JP4139900B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、木造建物の制振装置及び木造建物の制振方法に関するものである。   The present invention relates to a vibration control device for a wooden building and a vibration control method for a wooden building.

地震や強風等によって木造建物に生じた振動を低減する手段としては一般的に、図12(a)に示すように、建物の骨組を構成する柱材A、B及び横架材C、D間に剛性の筋交いTを設けたり、図12(b)に示すように、柱材A(またはB)と横架材C(またはD)とにダンパーVを架け渡して設置したりすることが知られている。   As a means for reducing the vibration generated in the wooden building due to an earthquake or a strong wind, as shown in FIG. It is known that a rigid bracing T is provided on the door, and, as shown in FIG. It has been.

上記した振動を低減する手段にあっては、次のような問題点がある。
(1)図12(a)に示すように、筋交いTを用いた場合には、剛性は高くなるが、エネルギー吸収性能が低く振動が建物に直に伝わる。このため、建物が損傷しやすく、振動が大きくなると破壊に至る可能性が高い。
(2)図12(b)に示すように、ダンパーVで振動の減衰を図る場合には、柱材Aの剛性が低いと、ダンパーVの力によって柱材Aが変形してしまう。このため、ダンパーVが変形しにくくなり、すなわち、ダンパーVが振動時のエネルギーを吸収しにくくなって十分な制振効果が得られない。
The above-described means for reducing vibration has the following problems.
(1) As shown in FIG. 12A, when the bracing T is used, the rigidity is increased, but the energy absorption performance is low and vibration is directly transmitted to the building. For this reason, a building is easy to be damaged, and when vibration increases, there is a high possibility of destruction.
(2) As shown in FIG. 12 (b), in the case of damping vibration with the damper V, if the rigidity of the pillar material A is low, the pillar material A is deformed by the force of the damper V. For this reason, the damper V is not easily deformed, that is, the damper V hardly absorbs energy during vibration, and a sufficient damping effect cannot be obtained.

本発明は、上記したような従来の問題を解決するためになされたもので、振動の大小に関わらず、優れた制振性能を発揮することが可能な木造建物の制振装置及び木造建物の制振方法を提供することを目的とする。   The present invention has been made to solve the conventional problems as described above, and is a wooden building damping device and a wooden building capable of exhibiting excellent damping performance regardless of the magnitude of vibration. The purpose is to provide a vibration control method.

上記のような課題を解決するために、本願の第1の発明は、並行する2本の柱材と、これらの2本の柱材にそれぞれ接合した、上下に並行する2本の横架材と、に生じた振動を減衰するための木造建物の制振装置であって、
外筒内に内筒を挿入すると共に、内筒と外筒との間に粘弾性材を介在させて構成したダンパー本体と、
内筒及び外筒の自由端部にそれぞれ、ピン接合によって取り付けた柱材取付け部材及び横架材取付け部材と、を有するダンパー体を、
柱材取付け部材を一方の柱材にビスによって取り付け、横架材取付け部材を一方の横架材にビスによって取り付けることにより設置し、
一方の柱材の剛性を高めるために、一方の柱材の奥行き方向軸周りの断面二次モーメントを高めるような形状に形成するとともに、一方の柱材のほぼ高さ方向にわたって設ける帯状に形成した剛性補強材と、
を備えたことを特徴とする。
In order to solve the above-described problems, the first invention of the present application includes two parallel column members and two horizontal members that are connected to the two column members in parallel vertically. And a damping device for a wooden building for dampening the vibration generated in the
A damper body configured by inserting an inner cylinder into the outer cylinder and interposing a viscoelastic material between the inner cylinder and the outer cylinder;
A damper body having a column member attachment member and a horizontal member attachment member attached to the free ends of the inner cylinder and the outer cylinder by pin joining,
A column member mounting member is attached to one column member with a screw, and a horizontal member mounting member is installed to one horizontal member with a screw.
In order to increase the rigidity of one column material, it was formed in a shape that increases the secondary moment of inertia around the depth direction axis of one column material, and it was formed in a strip shape that extends almost in the height direction of one column material A rigid reinforcement,
It is provided with.

また、本願の第2の発明は、前記第1の発明前記において、剛性補強材は、柱材の幅方向に広がるように形成することを特徴とする。   The second invention of the present application is characterized in that, in the first invention, the rigid reinforcing material is formed so as to spread in a width direction of the column material.

また、本願の第3の発明は、並行する2本の柱材と、これらの2本の柱材にそれぞれ接合した、並行する2本の横架材と、に生じた振動を減衰するための木造建物の制振方法であって、
外筒内に内筒を挿入すると共に、内筒と外筒との間に粘弾性材を介在させて構成したダンパー本体と、
内筒及び外筒の自由端部にそれぞれ、ピン接合によって取り付けた柱材取付け部材及び横架材取付け部材と、を有するダンパー体を、
柱材取付け部材を一方の柱材にビスによって取り付け、横架材取付け部材を一方の横架材にビスによって取り付けることにより設置すると共に、
一方の柱材の剛性を高めるために、一方の柱材の奥行き方向軸周りの断面二次モーメントを高めるような形状に形成するとともに、一方の柱材のほぼ高さ方向にわたって、帯状に形成した剛性補強材を設け、
振動時に柱材のエネルギー吸収が阻止されて、
ダンパー体によるエネルギー吸収を行うことを特徴とする、
木造建物の制振方法である。
Further, the third invention of the present application is for damping vibrations generated in two parallel column members and two parallel horizontal members respectively joined to the two column members. A vibration control method for wooden buildings,
A damper body configured by inserting an inner cylinder into the outer cylinder and interposing a viscoelastic material between the inner cylinder and the outer cylinder;
A damper body having a column member attachment member and a horizontal member attachment member attached to the free ends of the inner cylinder and the outer cylinder by pin joining,
A column member mounting member is attached to one column member with a screw, and a horizontal member mounting member is attached to one horizontal member with a screw .
In order to increase the rigidity of one column material, it was formed in a shape that increased the secondary moment of inertia around the depth axis of one column material, and was formed in a strip shape over almost the height direction of one column material. Provide rigid reinforcement,
The energy absorption of the column material is blocked during vibration,
It is characterized by energy absorption by a damper body ,
It is a vibration control method for wooden buildings.

本発明の木造建物の制振装置及び木造建物の制振方法は、上記した課題を解決するための手段により、次のような効果のうちの少なくとも一つを得ることができる。
(1)剛性補強材によって柱材の剛性、特に曲げ剛性が高められるため、振動により柱材と横架材とが相対変位した際には、ダンパー体またはダンパー体の減衰材が効率よく変形することとなる。したがって、ダンパー体のエネルギー吸収性能が高められるため、十分な制振効果を得ることができる。
(2)ダンパー体を、外筒内に内筒を挿入するとともに、外筒と内筒との間に粘弾性材を介在させて構成したダンパー本体と、外筒及び内筒の自由端部にそれぞれ、ピン接合によって取り付けた一対の取付け部材と、から構成することにより、柱材と横架材との相対変位時にダンパー体の追随性が向上するため、エネルギー吸収性能がより高められる。
(3)柱材はダンパー体の力によって変形しやすいため、剛性補強材を、柱材の奥行き方向軸周りの断面二次モーメントを高めるような形状に形成する、より具体的には柱材の幅方向に広がるように形成することにより、柱材の変形を効果的に防止することができる。
(4)柱材取付け部材及び横架材取付け部材の取付け板を、それぞれビスによって取り付けることにより、釘やボルトを用いた場合と比較して、ダンパーの取付けに緩みが生じ難くなる。
(5)剛性補強材を、金属製の帯状に形成し、ほぼ高さ方向にわたって柱材の奥行き方向に取付けることで、建物の施工時の邪魔にならず、かつ、剛性補強材の重量を抑えつつ、柱材の剛性を効果的に高めることができる。
The damping device for a wooden building and the damping method for a wooden building according to the present invention can obtain at least one of the following effects by means for solving the above problems.
(1) Since the rigidity of the column member, particularly the bending rigidity, is enhanced by the rigid reinforcing material, when the column member and the horizontal member are relatively displaced by vibration, the damper body or the damping member of the damper body is efficiently deformed. It will be. Therefore, since the energy absorption performance of the damper body is enhanced, a sufficient vibration damping effect can be obtained.
(2) The damper body is configured by inserting the inner cylinder into the outer cylinder and interposing a viscoelastic material between the outer cylinder and the inner cylinder, and the free ends of the outer cylinder and the inner cylinder. By comprising each of the pair of attachment members attached by pin joining, the followability of the damper body is improved when the column member and the horizontal member are relatively displaced, so that the energy absorption performance is further enhanced.
(3) Since the column material is easily deformed by the force of the damper body, the rigid reinforcing material is formed in a shape that increases the cross-sectional secondary moment around the depth direction axis of the column material. By forming so as to spread in the width direction, deformation of the column material can be effectively prevented.
(4) By attaching the mounting plates of the column member mounting member and the horizontal member mounting member with screws, loosening of the damper is less likely to occur than when nails or bolts are used.
(5) The rigid reinforcement material is formed in a metal strip shape and attached in the depth direction of the pillar material over almost the height direction, so that it does not interfere with the construction of the building and the weight of the rigid reinforcement material is suppressed. However, the rigidity of the pillar material can be effectively increased.

以下、図面を参照しながら本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<1> 制振装置の設置条件
制振装置1は、図1に示すように、木造建物の骨組を構成する、並行する2本の柱材A、Bと、これらの2本の柱材にそれぞれ接合した上下に並行する2本の横架材、例えば梁材C、土台材Dと、に生じた振動を減衰するためのものである。
制振装置1は、振動時の層間変位が比較的大きくなるような柱材と横架材との接合構造である場合、例えば、柱材A、Bと横架材C、Dとが嵌合接合されている場合に特に有効である。
具体例として、柱材A、Bはそれぞれ、高さ方向両端部にほぞA1、B1を有し、このほぞA1、B1を横架材C、Dに設けたほぞ穴(図示せず)に嵌め込むことにより、横架材C、Dと接続されている場合、さらには、柱材AまたはBの幅方向側面と横架材CまたはDの高さ方向側面とにかけて取り付けたL字状の接合具Eによって柱材A、Bがそれぞれ、横架材C、Dと接合されている場合である。
なお、柱材A、B及び横架材C、Dは、ここでは断面四角形状を有しているが、制振装置1の設置にあたって断面形状を特に問わない。
<1> Installation Conditions of Vibration Control Device As shown in FIG. 1, the vibration control device 1 includes two parallel column members A and B that form a framework of a wooden building, and these two column members. This is for attenuating the vibrations generated in the two horizontal members parallel to each other, for example, the beam material C and the base material D.
When the vibration damping device 1 has a joint structure between a column member and a horizontal member that causes a relatively large interlayer displacement during vibration, for example, the column members A and B and the horizontal members C and D are fitted together. This is particularly effective when bonded.
As a specific example, each of the column members A and B has tenons A1 and B1 at both ends in the height direction, and the tenons A1 and B1 are fitted into tenon holes (not shown) provided in the horizontal members C and D, respectively. In addition, when connected to the horizontal members C and D, the L-shaped joint attached to the side surface in the width direction of the column material A or B and the side surface in the height direction of the horizontal member C or D This is a case where the column members A and B are joined to the horizontal members C and D by the tool E, respectively.
The column members A and B and the horizontal members C and D have a square cross section here, but the cross sectional shape is not particularly limited when the vibration damping device 1 is installed.

<2> 制振装置
制振装置1は、一方の柱材AまたはB(横架材C、D間に位置する柱材AまたはB部分)と一方の横架材CまたはD(柱材A、B間に位置する横架材CまたはD部分)とに架け渡して設置するダンパー体2と、このダンパー体2が設置される柱材AまたはBに設ける剛性補強材3と、とから構成する。
<2> Damping device The damping device 1 includes one pillar material A or B (the pillar material A or B portion positioned between the transverse members C and D) and one transverse member C or D (the pillar material A). , A horizontal member C or D part located between B) and a damper body 2 installed over the column member A or B on which the damper body 2 is installed, and a rigid reinforcing member 3 provided on the pillar member A or B. To do.

<3> ダンパー体
ダンパー体2は、図2、3に示すように、振動時に減衰力を発生する減衰材を有し、減衰材が変形して長さ方向に可変する棒状のダンパー本体20と、このダンパー本体20の長さ方向両端部にそれぞれ、ピン接合によって回動可能に取り付けた柱材取付け部材21及び横架材取付け部材22と、を備えた方杖型のダンパーで構成する。
ダンパー本体20は、外筒201内に内筒202を挿入すると共に、外筒201と内筒202との間に、減衰材としての粘弾性材203を介在させて構成する。すなわち、ダンパー体2は粘弾性ダンパーである。
柱材取付け部材21及び横架材取付け部材22はそれぞれ、内筒202及び外筒201(または外筒201及び内筒202)の自由端部にピン接合によって取り付ける。また、柱材取付け部材21及び横架材取付け部材22はそれぞれ、先端側に取付け板210を一体的に有して構成する。
なお、ダンパー本体20は、粘弾性ダンパーの他、減衰材として摩擦材を用いた摩擦ダンパーで構成してもよい。
<3> Damper Body As shown in FIGS. 2 and 3, the damper body 2 includes a rod-shaped damper main body 20 having a damping material that generates a damping force during vibration, and the damping material is deformed to change in the length direction. The damper main body 20 is constituted by a cane-type damper provided with a column member mounting member 21 and a horizontal member mounting member 22 that are rotatably mounted at both ends in the length direction by pin joining.
The damper main body 20 is configured by inserting an inner cylinder 202 into the outer cylinder 201 and interposing a viscoelastic material 203 as a damping material between the outer cylinder 201 and the inner cylinder 202. That is, the damper body 2 is a viscoelastic damper.
The column member attachment member 21 and the horizontal member attachment member 22 are attached to the free ends of the inner cylinder 202 and the outer cylinder 201 (or the outer cylinder 201 and the inner cylinder 202) by pin joining, respectively. Further, each of the column member mounting member 21 and the horizontal member mounting member 22 is configured by integrally including a mounting plate 210 on the distal end side.
The damper main body 20 may be constituted by a friction damper using a friction material as a damping material in addition to the viscoelastic damper.

<4> ダンパー体の設置
ダンパー体2は、一方の柱材、例えば柱材Aと一方の横架材、例えば梁材Cとに架け渡して設置する。ダンパー体2の設置は、柱材取付け部材21を、柱材Bと対向する柱材Aの幅方向側面部A2に取り付け、横架材取付け部材22を、梁材Cの高さ方向側面部、ここでは下面部C1に取り付けて行う。より具体的には、柱材取付け部材21及び横架材取付け部材22の取付け板210をそれぞれ、柱材A及び梁材Cにビス4によって取り付ける。ビス4を用いることにより、釘やボルトを用いた場合と比較して、ダンパー体2の取付けに緩みが生じ難くなる。
柱材取付け部材21及び横架材取付け部材22とダンパー本体20とはピン結合されているため、ダンパー体2は、実質的に柱材A及び梁材Cにそれぞれ、ピン結合によって取り付けられることとなる。
<4> Installation of Damper Body The damper body 2 is installed across one column member, for example, the column member A, and one horizontal member, for example, the beam member C. The damper body 2 is installed by attaching the column member mounting member 21 to the width direction side surface portion A2 of the column material A facing the column material B, and attaching the horizontal member mounting member 22 to the height direction side surface portion of the beam material C. Here, it is performed by attaching to the lower surface portion C1. More specifically, the attachment plates 210 of the column member attachment member 21 and the horizontal member attachment member 22 are attached to the column member A and the beam member C by screws 4, respectively. By using the screws 4, it becomes difficult to loosen the attachment of the damper body 2 as compared with the case where nails or bolts are used.
Since the column member mounting member 21 and the horizontal member mounting member 22 and the damper main body 20 are pin-coupled, the damper body 2 is substantially attached to the column member A and the beam member C by pin coupling, respectively. Become.

ダンパー体2の設置にあたっては、振動時の減衰作用を高めるために、すなわち、振動時に内筒202が外筒に対して進退して粘弾性材203が変形しやすくなるように、柱材取付け部材21及び横架材取付け部材22のうちのいずれか一方を、柱材Aの土台材D寄りまたは梁材Cの柱材B寄りに取り付けることが好ましい。この場合には、柱材取付け部材21及び横架材取付け部材22のうちのいずれか他方を、柱材Aの梁材C寄り(図4(a)参照)または梁材Cの柱材A寄り(図4(b)参照)に取り付けることにより、柱材A、Bと横架材C、Dとで構成される枠内空間は十分に確保される。
柱材A、Bと横架材C、Dとで構成される枠内空間を犠牲にしてもよい場合には、柱材取付け部材21を柱材Aの土台材D寄りに取り付け、かつ、横架材取付け部材22を梁材Cの柱材B寄りに取り付けることができる(図4(c)参照)。
あるいは、ダンパー体2は、柱材A、B間(図4(d)参照)、または横架材C、D間(図4(e)参照)に架け渡して設置してもよい。
なお、ダンパー体2のダンパー本体20は、柱材及び横架材への取付け位置に応じてあらかじめ長さを設定しておく。
In installing the damper body 2, in order to enhance the damping action during vibration, that is, the column member mounting member so that the viscoelastic material 203 is easily deformed by the inner cylinder 202 moving forward and backward with respect to the outer cylinder during vibration. It is preferable to attach one of the horizontal member 21 and the horizontal member attaching member 22 to the base material D of the column material A or the column material B of the beam material C. In this case, either one of the column member mounting member 21 and the horizontal member mounting member 22 is moved closer to the beam member C of the column member A (see FIG. 4A) or closer to the column member A of the beam member C. By attaching to (refer FIG.4 (b)), the space in the frame comprised with the column materials A and B and the horizontal members C and D is fully ensured.
When the space in the frame composed of the column members A and B and the horizontal members C and D may be sacrificed, the column member mounting member 21 is mounted near the base material D of the column member A, and The frame mounting member 22 can be mounted near the column material B of the beam material C (see FIG. 4C).
Alternatively, the damper body 2 may be installed across the pillars A and B (see FIG. 4D) or between the horizontal members C and D (see FIG. 4E).
The length of the damper main body 20 of the damper body 2 is set in advance according to the mounting position of the damper body 2 on the column member and the horizontal member.

<5> 剛性補強材
剛性補強材3は、ダンパー体2が設置される柱材、例えば柱材Aの剛性を高めるために、この柱材Aに設ける(図1参照)。
柱材Aは、振動時にダンパー体2の引張力または圧縮力を受けるため、幅方向に撓みまたは湾曲変形しやすい。したがって、このような変形を防止または抑制するためには、剛性補強材3を、柱材Aの奥行き方向軸周りの断面二次モーメントを高めるような形状に形成することが好ましい。すなわち、剛性補強材3を柱材Aの幅方向に広がるように形成することが効果的である。その一方で、柱材Aの剛性を高めるためには、剛性補強材3を柱材Aのほぼ高さ方向にわたって設けることが好ましい。そこで、より具体的にここでは、剛性補強材3を、金属製の帯状に形成し、ほぼ高さ方向にわたって柱材Aの奥行き方向側面部A3に取り付ける。
このような構成により、建物の施工時の邪魔にならず、かつ、剛性補強材3自体の重量を抑えつつ、柱材Aの剛性を効果的に高めることができる。
剛性補強材3の柱材Aへの取付けにあたっては、ダンパー体2の柱材A及び梁材Cへの取付けと同様に、ビス(図示せず)を用いることができる。ビスは、あまり間隔をあけずに剛性補強材3のほぼ高さ方向わたって複数設けることが効果的である。
<5> Rigid Reinforcement Material The rigid reinforcement material 3 is provided on the column material A in order to increase the rigidity of the column material on which the damper body 2 is installed, for example, the column material A (see FIG. 1).
Since the pillar material A receives the tensile force or the compressive force of the damper body 2 at the time of vibration, it tends to bend or bend in the width direction. Therefore, in order to prevent or suppress such deformation, it is preferable to form the rigid reinforcing member 3 in such a shape as to increase the cross-sectional secondary moment around the depth direction axis of the column A. That is, it is effective to form the rigid reinforcing material 3 so as to spread in the width direction of the pillar material A. On the other hand, in order to increase the rigidity of the columnar material A, it is preferable to provide the rigid reinforcing material 3 over almost the height direction of the columnar material A. Therefore, more specifically, here, the rigid reinforcing material 3 is formed in a metal belt shape and attached to the side surface portion A3 in the depth direction of the columnar material A substantially in the height direction.
With such a configuration, the rigidity of the pillar material A can be effectively increased while not obstructing the construction of the building and suppressing the weight of the rigid reinforcing material 3 itself.
In attaching the rigid reinforcing material 3 to the pillar material A, screws (not shown) can be used in the same manner as the attachment of the damper body 2 to the pillar material A and the beam material C. It is effective to provide a plurality of screws over almost the height direction of the rigid reinforcing member 3 without leaving a gap.

剛性補強材3を柱材Aに設けることにより、この柱材Aの剛性が高められ、図5に示すように、振動時にダンパー体2、より具体的には粘弾性材203を効率よく変形させることができるため、粘弾性材203が大きな減衰力を発生することができる。すなわち、振動時に柱材Aのエネルギー吸収が阻止されて、ダンパー体2のエネルギー吸収性能が向上する。
したがって、ダンパー体2の小型化を図ることができ、柱材A、Bと横架材C、Dとで構成される枠内空間が、建物の出入り口等の開口部に利用される場合であっても、制振装置1を適用することできる。
By providing the stiffener 3 on the column A, the rigidity of the column A is increased, and as shown in FIG. 5, the damper body 2, more specifically, the viscoelastic material 203 is efficiently deformed during vibration. Therefore, the viscoelastic material 203 can generate a large damping force. That is, the energy absorption performance of the damper body 2 is improved by preventing the energy absorption of the pillar material A during vibration.
Accordingly, the damper body 2 can be miniaturized, and the space in the frame composed of the column members A and B and the horizontal members C and D is used for an opening such as an entrance of a building. However, the vibration damping device 1 can be applied.

<6> 剛性補強材の変更例
剛性補強材3は、図6に示すように、合板耐力壁で構成することもできる。この場合には、剛性補強材3を、柱材Aに取り付けると共に、横架材C、Dの隣接スパンにわたって取り付ける。より具体的には、柱材Aの奥行き方向側面部A3、横架材C、Dの奥行き(幅)方向側面部にかけて取り付ける。さらには、横架材C及びDに接合して柱材A、B間に設けた間柱Sに取り付けてもよい。
このような構成により、優れた制振性能を発揮できるため、振動時の層間変形をより小さく抑えることができる。
<6> Modification Example of Rigid Reinforcement Material As shown in FIG. 6, the rigid reinforcement material 3 can also be configured with a plywood bearing wall. In this case, the rigid reinforcing material 3 is attached to the column material A and attached to the adjacent spans of the horizontal members C and D. More specifically, the column material A is attached to the side surface portion A3 in the depth direction and the side surface portions in the depth (width) direction of the horizontal members C and D. Furthermore, you may attach to the horizontal pillar C and D, and may attach to the pillar S provided between the pillar materials A and B. FIG.
With such a configuration, excellent vibration damping performance can be exhibited, so that interlayer deformation during vibration can be further reduced.

<1> 強制変形加振実験
ここで、実施例として、帯状の剛性補強材3を有する制振装置1を設置した試験体(制振構造)を用いて、試験体の層せん断力f−層間変位uの関係を測定する実験を行った。
試験体は、前述したような、並行する2本の柱材A、Bと、柱材A、Bとそれぞれ接合した、上下の横架材C、Dと、から構成した(図1参照)。
実験には、図7に示すように、動的アクチュエータGと可動台Hとを備えた動的載荷装置Iを用い、試験体を可動台Hに固定載置するとともに、梁材Cの中央部に取り付けた治具JをタイロッドKで反力柱Lと接続した。そして、動的アクチュエータGを作動させて可動台Hを揺らし、試験体に幅方向の動的載荷を加えることにより実験を行った。載荷にあたっては、試験体の層間変形角が順に1/480、1/360、1/240、1/180、1/120、1/240、1/90、1/60、1/120、1/45、1/30radとなるように、かつ、各層間変形角で3回ずつの正負交番繰返しとした。試験体に働く層せん断力fは、タイロッドKに生じる軸力から算出した。試験体の層間変位uは、梁材Cと土台材Dとの試験体幅方向の層間変位とした。
また、比較例として、剛性補強材3は設置せずにダンパー体2のみを設置(ダンパー体2の取付け位置は実施例と同様)した試験体を用い、同様の実験を行った。
実施例の測定結果を図8(a)に、比較例の測定結果を図8(b)にそれぞれ示す。
<1> Forced Deformation Excitation Experiment Here, as an example, using a test body (damping structure) provided with a vibration damping device 1 having a band-shaped rigid reinforcing material 3, a layer shear force f-layer of the test body An experiment was conducted to measure the relationship of the displacement u.
The test body was composed of two parallel column members A and B as described above, and upper and lower horizontal members C and D respectively joined to the column members A and B (see FIG. 1).
In the experiment, as shown in FIG. 7, a dynamic loading apparatus I including a dynamic actuator G and a movable base H is used, and the test body is fixedly placed on the movable base H, and the center portion of the beam C The jig J attached to was connected to the reaction force column L with a tie rod K. Then, the dynamic actuator G was operated to shake the movable base H, and an experiment was performed by applying a dynamic load in the width direction to the test body. At the time of loading, the interlaminar deformation angles of the test specimens are in order of 1/480, 1/360, 1/240, 1/180, 1/120, 1/240, 1/90, 1/60, 1/120, 1/120. It was set to 45 and 1/30 rad, and the positive and negative alternating cycles were repeated three times at each interlayer deformation angle. The layer shear force f acting on the test body was calculated from the axial force generated on the tie rod K. The interlaminar displacement u of the test body was the interlaminar displacement between the beam material C and the base material D in the test body width direction.
Further, as a comparative example, a similar experiment was performed using a test body in which only the damper body 2 was installed without installing the rigid reinforcing material 3 (the mounting position of the damper body 2 is the same as in the example).
FIG. 8A shows the measurement results of the example, and FIG. 8B shows the measurement results of the comparative example.

<2> 考察
図8に示すように、実施例は比較例に比べ、幅の広い紡錘型の履歴であることが見てとれることから、制振装置1は、ダンパーのみで構成した従来型の制振手段と比較してエネルギー吸収性能に優れることが確認された。
なお、比較例は、扁平型の履歴であることが見てとれ、エネルギー吸収性能が明らかに悪かったため、試験体の層間変形角が1/120radの場合のみで測定した。
<2> Consideration As shown in FIG. 8, it can be seen that the example is a spindle-type history having a wider width than the comparative example. Therefore, the vibration damping device 1 is a conventional type composed of only a damper. It was confirmed that the energy absorption performance is superior compared to the vibration control means.
In addition, since it can be seen that the comparative example is a flat type history and the energy absorption performance was clearly poor, the measurement was performed only when the interlayer deformation angle of the test specimen was 1/120 rad.

<3> 振動台実験
次に、実施例として、合板耐力壁の剛性補強材3を有する制振装置1を設置した試験体(制振構造)を用いて、層間変位uの時刻歴を測定する実験を行った。
試験体は、図9に示すように、柱材B及び梁材C、土台材Dをほぼ正方形状に組み付けて構成した枠体を、梁材M及び土台材Nによって奥行き方向に3つ連結することによりほぼ立方体状に形成すると共に、奥行き方向中間部の枠体を構成する柱材B、B間をほぼ三等分するように、梁材C及び土台材Dに柱材A、Aを接合して構成した。そして、ダンパー体2を、それぞれの柱材Aと、これらの柱材Aに接合した梁材Cとに架け渡して設け、剛性補強材3を、一対の柱材A、A、梁材C及び土台材Dにかけて取り付けた。なお、柱材AとB、梁材CとM、土台材DとNはそれぞれ、ほぼ等しい断面形状を有している。
このような試験体上に天板Oを介して錘Pを固定載置すると共に、試験体を振動台Q上に固定載置し、動的アクチュエータRによって振動台Qを加速度600cm/s2で試験体の幅方向に揺らして(実際の地震の加振波を再現)、試験体上に錘Pに慣性力を加えることにより実験を行った。層間変位uは、梁材Cと土台材Dとの試験体幅方向の層間変位とした。
また、比較例として、図10に示すように、柱材A、B間に間柱Sを設けると共に、梁材Cの柱材A寄りと土台材Dの柱材B寄りとにかけて木製の筋交いTを架け渡した試験体を用い、同様の実験を行った。
実施例の測定結果を図11(a)に、比較例の測定結果を図11(b)にそれぞれ示す。なお、図11中の破線は、層間変形角1/120rad(層間変位約23mm)を表す。
<3> Shaking table experiment Next, as an example, the time history of the interlayer displacement u is measured using a test body (damping structure) provided with the damping device 1 having the rigid reinforcing material 3 of the plywood bearing wall. The experiment was conducted.
As shown in FIG. 9, the test body is formed by connecting three frame bodies formed by assembling the column material B, the beam material C, and the base material D in a substantially square shape by the beam material M and the base material N in the depth direction. As a result, the column members A and A are joined to the beam member C and the base member D so as to divide the column members B and B constituting the frame at the intermediate portion in the depth direction into approximately three equal parts. And configured. The damper body 2 is provided so as to be bridged between the respective column members A and the beam members C joined to these column members A, and the rigid reinforcing member 3 is provided with a pair of the column members A, A, the beam members C, and It was attached over the base material D. The column members A and B, the beam members C and M, and the base materials D and N each have substantially the same cross-sectional shape.
The weight P is fixedly placed on such a test body via the top plate O, the test body is fixedly placed on the vibration table Q, and the vibration table Q is accelerated by the dynamic actuator R at an acceleration of 600 cm / s 2 . The experiment was performed by swinging in the width direction of the specimen (reproducing an actual earthquake excitation wave) and applying an inertial force to the weight P on the specimen. The interlayer displacement u was the interlayer displacement between the beam material C and the base material D in the width direction of the test body.
Further, as a comparative example, as shown in FIG. 10, an inter-column S is provided between the column members A and B, and a wooden bracing T is provided between the column material A of the beam material C and the column material B of the base material D. A similar experiment was conducted using the test specimens that were installed.
FIG. 11A shows the measurement result of the example, and FIG. 11B shows the measurement result of the comparative example. In addition, the broken line in FIG. 11 represents the interlayer deformation angle 1/120 rad (interlayer displacement about 23 mm).

<4> 考察
図11に示すように、実施例は比較例に比べ、加振直後の最大層間変位が小さく、かつ、層間変位がほぼ23mm内で安定するまでの時間も短い、すなわち振動の減衰が早いことが見てとれる。したがって、制振装置1は、筋交い等で構成した従来型の振動低減手段と比較して、高い制振効果が得られると共に、建物の剛性を向上させることができることが確認された。
<4> Discussion As shown in FIG. 11, the example has a smaller maximum interlayer displacement immediately after the excitation and a shorter time until the interlayer displacement is stabilized within about 23 mm, that is, vibration attenuation, as compared with the comparative example. It can be seen that is early. Therefore, it was confirmed that the vibration damping device 1 can obtain a high vibration damping effect and improve the rigidity of the building as compared with the conventional vibration reducing means configured by bracing.

本発明の制振装置を柱材及び横架材に設置した図The figure which installed the damping device of the present invention in the pillar material and the horizontal member ダンパー体を示す図Diagram showing damper body ダンパー体の要部を示す断面図Sectional drawing which shows the principal part of a damper body ダンパー体の取付け位置を説明するための概略図Schematic for explaining the mounting position of the damper body 制振装置を設置した柱材及び横架材の振動時の状態を示す図The figure which shows the state at the time of vibration of the pillar material and horizontal member which installed the damping device 剛性補強材の変更例を示す図The figure which shows the example of a change of a rigid reinforcement 強制変形加振実験の概略図Schematic diagram of forced deformation excitation experiment 強制変形加振実験による層せん断力−層間変形の測定結果を示す図Figure showing the measurement results of laminar shear force-interlaminar deformation in a forced deformation excitation experiment 振動台実験の概略図Schematic diagram of shaking table experiment 比較例の振動台実験の概略図Schematic of shaking table experiment of comparative example 振動台実験による層間変位の時刻歴の測定結果を示す図Figure showing measurement results of time history of interlayer displacement by shaking table experiment 従来の振動低減手段を示す図The figure which shows the conventional vibration reduction means

符号の説明Explanation of symbols

1 制振装置
2 ダンパー体
3 剛性補強材
20 ダンパー本体
21 柱材取付け部材
22 横架材取付け部材
201 外筒
202 内筒
203 粘弾性材
A 柱材(一方の柱材:他方の柱材)
B 柱材(他方の柱材:一方の柱材)
C 梁材(一方の横架材:他方の横架材)
D 土台材(他方の横架材:一方の横架材)
DESCRIPTION OF SYMBOLS 1 Damping apparatus 2 Damper body 3 Rigid reinforcement material 20 Damper main body 21 Column material attachment member 22 Horizontal member attachment member 201 Outer cylinder 202 Inner tube 203 Viscoelastic material A Column material (one column material: the other column material)
B Column material (the other column material: one column material)
C Beam material (one horizontal member: the other horizontal member)
D Base material (the other horizontal member: one horizontal member)

Claims (3)

並行する2本の柱材と、これらの2本の柱材にそれぞれ接合した、上下に並行する2本の横架材と、に生じた振動を減衰するための木造建物の制振装置であって、
外筒内に内筒を挿入すると共に、内筒と外筒との間に粘弾性材を介在させて構成したダンパー本体と、
内筒及び外筒の自由端部にそれぞれ、ピン接合によって取り付けた柱材取付け部材及び横架材取付け部材と、を有するダンパー体を、
柱材取付け部材を一方の柱材にビスによって取り付け、横架材取付け部材を一方の横架材にビスによって取り付けることにより設置し、
一方の柱材の剛性を高めるために、一方の柱材の奥行き方向軸周りの断面二次モーメントを高めるような形状に形成するとともに、一方の柱材のほぼ高さ方向にわたって設ける帯状に形成した剛性補強材と、
を備えたことを特徴とする、
木造建物の制振装置。
It is a vibration control device for a wooden building to damp vibrations generated by two parallel pillars and two horizontal members joined to these two pillars. And
A damper body configured by inserting an inner cylinder into the outer cylinder and interposing a viscoelastic material between the inner cylinder and the outer cylinder;
A damper body having a column member attachment member and a horizontal member attachment member attached to the free ends of the inner cylinder and the outer cylinder by pin joining,
A column member mounting member is attached to one column member with a screw, and a horizontal member mounting member is installed to one horizontal member with a screw.
In order to increase the rigidity of one column material, it was formed in a shape that increases the secondary moment of inertia about the axis in the depth direction of one column material, and was formed in a strip shape that extends almost in the height direction of one column material. A rigid reinforcement,
Characterized by comprising
Vibration control device for wooden buildings.
前記剛性補強材は、柱材の幅方向に広がるように形成することを特徴とする、請求項1に記載の木造建物の制振装置。   2. The vibration control device for a wooden building according to claim 1, wherein the rigid reinforcing material is formed so as to spread in a width direction of the pillar material. 並行する2本の柱材と、これらの2本の柱材にそれぞれ接合した、並行する2本の横架材と、に生じた振動を減衰するための木造建物の制振方法であって、
外筒内に内筒を挿入すると共に、内筒と外筒との間に粘弾性材を介在させて構成したダンパー本体と、
内筒及び外筒の自由端部にそれぞれ、ピン接合によって取り付けた柱材取付け部材及び横架材取付け部材と、を有するダンパー体を、
柱材取付け部材を一方の柱材にビスによって取り付け、横架材取付け部材を一方の横架材にビスによって取り付けることにより設置すると共に、
一方の柱材の剛性を高めるために、一方の柱材の奥行き方向軸周りの断面二次モーメントを高めるような形状に形成するとともに、一方の柱材のほぼ高さ方向にわたって、帯状に形成した剛性補強材を設け、
振動時に柱材のエネルギー吸収が阻止されて、
ダンパー体によるエネルギー吸収を行うことを特徴とする、
木造建物の制振方法。
A damping method for a wooden building for attenuating vibration generated in two parallel pillars and two parallel horizontal members joined to each of the two pillars,
A damper body configured by inserting an inner cylinder into the outer cylinder and interposing a viscoelastic material between the inner cylinder and the outer cylinder;
A damper body having a column member attachment member and a horizontal member attachment member attached to the free ends of the inner cylinder and the outer cylinder by pin joining,
A column member mounting member is attached to one column member with a screw, and a horizontal member mounting member is attached to one horizontal member with a screw .
In order to increase the rigidity of one column material, it was formed in a shape that increased the secondary moment of inertia around the depth axis of one column material, and was formed in a strip shape over almost the height direction of one column material. Provide rigid reinforcement,
The energy absorption of the column material is blocked during vibration,
It is characterized by energy absorption by a damper body ,
Vibration control method for wooden buildings.
JP2005021975A 2005-01-28 2005-01-28 Damping device for wooden building and damping method for wooden building Active JP4139900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005021975A JP4139900B2 (en) 2005-01-28 2005-01-28 Damping device for wooden building and damping method for wooden building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005021975A JP4139900B2 (en) 2005-01-28 2005-01-28 Damping device for wooden building and damping method for wooden building

Publications (2)

Publication Number Publication Date
JP2006207290A JP2006207290A (en) 2006-08-10
JP4139900B2 true JP4139900B2 (en) 2008-08-27

Family

ID=36964442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005021975A Active JP4139900B2 (en) 2005-01-28 2005-01-28 Damping device for wooden building and damping method for wooden building

Country Status (1)

Country Link
JP (1) JP4139900B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149996A1 (en) * 2007-06-06 2008-12-11 Fukuvi Chemical Industry Co., Ltd. Earthquake damper
JP5046912B2 (en) * 2007-12-26 2012-10-10 株式会社オーティス Seismic damper mounting tool
JP5046913B2 (en) * 2007-12-26 2012-10-10 株式会社オーティス Seismic damper mounting tool
JP4825788B2 (en) * 2007-12-26 2011-11-30 株式会社オーティス Seismic damper mounting tool
JP4825787B2 (en) * 2007-12-26 2011-11-30 株式会社オーティス Seismic damper mounting tool
JP5594863B2 (en) * 2009-09-19 2014-09-24 住友林業株式会社 Reinforcement method of building in traditional construction method
JP2019073917A (en) * 2017-10-17 2019-05-16 飛島建設株式会社 Wooden frame reinforcement
JP2019152301A (en) * 2018-03-06 2019-09-12 三和テッキ株式会社 Vibration resistance reinforcing vibration isolation device of building

Also Published As

Publication number Publication date
JP2006207290A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4139901B2 (en) Damping structure of wooden building and damping method of wooden building
JP4139900B2 (en) Damping device for wooden building and damping method for wooden building
KR101348577B1 (en) Seismic retrofit method using lateral beam-type damper installed in opening space of building structure
JP2003090089A (en) Boundary beam damper
JP4092340B2 (en) Building vibration control structure
JPH03262881A (en) Vibration suppressing device for building
JP4856520B2 (en) Vibration control panel
JP3921144B2 (en) Vibration control device
JP6031283B2 (en) Vibration control device
JP6967997B2 (en) Vibration control equipment and buildings
JP4049120B2 (en) Building seismic control structure
JP6397668B2 (en) Vibration control device
JP4959636B2 (en) Damping member
JP2008121246A (en) Mounting method of vibration control reinforcing member
JP4630140B2 (en) Damping device mounting structure and mounting method
JP3671311B2 (en) Damping and reinforcing structure for existing buildings
JP2020090812A (en) Vibration control structure
JP4796344B2 (en) Damping device and mounting method of damping device
JP2008144581A (en) Vibration control structure of building
JP6178132B2 (en) Vibration control device
JP6379006B2 (en) Vibration control device
JP7429550B2 (en) building
JP4120826B2 (en) Reinforcing wall structure
JP2005282229A (en) Vibration-control structure of building
JP5116335B2 (en) Building damping device, building unit, and unit building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20071126

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20071218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4139900

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533