JP4139885B2 - Precursor composition of mixed conductive oxide - Google Patents

Precursor composition of mixed conductive oxide Download PDF

Info

Publication number
JP4139885B2
JP4139885B2 JP2002100987A JP2002100987A JP4139885B2 JP 4139885 B2 JP4139885 B2 JP 4139885B2 JP 2002100987 A JP2002100987 A JP 2002100987A JP 2002100987 A JP2002100987 A JP 2002100987A JP 4139885 B2 JP4139885 B2 JP 4139885B2
Authority
JP
Japan
Prior art keywords
conductive oxide
mixed
oxygen
oxide
mixed conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002100987A
Other languages
Japanese (ja)
Other versions
JP2003300708A (en
Inventor
達朗 角田
清 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002100987A priority Critical patent/JP4139885B2/en
Publication of JP2003300708A publication Critical patent/JP2003300708A/en
Application granted granted Critical
Publication of JP4139885B2 publication Critical patent/JP4139885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、酸素分離材料や酸素富化材料等として有用な、混合伝導性酸化物の前駆体組成物およびこのものから得られる混合導電性酸化物に関する。
【0002】
【従来の技術】
従来より、たとえばLa1-xSrxCo1-yFeyO3のような複合酸化物からなる、酸素イオン伝導体を用いて酸素を分離し純酸素や酸素富化空気を製造することは知られている。
しかし、これらの複合酸化物は,▲1▼酸素透過速度が低い、▲2▼酸素の透過により脆化現象が起こり耐久性に欠ける、▲3▼試料中に含まれる酸素量(酸素不定比性)が変化しやすく、温度、雰囲気によって試料の膨張、収縮が大きく、試料合成時に機械的な破壊が起こりやすいためその製造が困難である、等といった欠点があり、実使用上大きな制約があった。
【0003】
このため、酸素イオン伝導体と電子伝導体を複合化し、それぞれの材料の性能を十分に発揮できる微細構造を自己組織化的に形成させ、高酸素イオン透過性能と高電子伝導性を両立させた、酸化物イオン伝導体と金属電子伝導体とが混合組織相として存在する複合材料系混合伝導体が検討されている(Keqin Huang et al. Electrochemical and Solid-State Letters, 2(8) (1999) p.375-378;J. E. ten Elshof et al. J. Electrochemical Society, 144(12) (1997) p.4361-4366;C. S. Chen et al. Solid State Ionics, 76 (1995) p.23-28 ;C. S. Chen et al. Solid State Ionics, 99 (1997) p.215-219 )。
【0004】
これらの複合材料系混合伝導体は、例えば安定化ビスマス(Y −Er −Bi ような酸化物イオン伝導体の電子伝導性向上のために、銀などの貴金属を分散させた構造からなるものであるが、その合成法としては、まず安定化ビスマス(Y −Er −Bi の合成・粉砕後に酸化銀を混合し、ついで焼結処理するという方法が採られている。それぞれを固体状態で分散し、ついで焼結処理する、所謂固相法が採られている。
【0005】
しかしながら、この固相プロセスは工程が複雑である上、 −Er −Bi と銀と混合粉末体の焼結性に乏しく、また、添加金属の融点等の制約から高温焼結が難しく、緻密で均一な混合組織相が得られないといった問題点があった。
【0006】
また、共沈法による作製法も考えられるが、この場合にはその共沈の過程で銀鏡反応が生じてしまい、混合伝導体中の銀の分散量を的確に制御することが困難となる。
【0007】
【発明が解決しようとする課題】
本発明は、上記従来技術を克服するためになされたものであり、混合伝導性酸化物組織中のイオン伝導性酸化物と電子伝導性金属の組成を適宜、簡便かつ的確に制御できると共に低温焼結性、成型性、加工性等に優れ、均一で緻密な混合伝導性酸化物を与える前駆体組成物およびこのものから得られる混合伝導性酸化物を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明者等は、混合伝導性酸化物を作製するための有効な前駆体組成物、原料粉末体、並びにその手法などについて鋭意検討した結果、酸素イオン伝導性を示すビスマスの塩と電子伝導性の銀の塩の混合溶液にクエン酸とこのものの固化剤であるエチレングリコールを添加した組成物が混合導電性酸化物の前駆体として極めて有効であり、このものをゲル化処理、加熱処理、焼結処理すると適宜、混合伝導性酸化物中のイオン伝導性酸化物と電子伝導性金属の組成比を簡便かつ的確に制御できると共に低温焼結性、成型性、加工性等に優れ、均一で緻密な混合伝導性酸化物が得られることを見出し、本発明を完成するに至った。
【0009】
すなわち、この出願は以下の発明を提供するものである。
〈1〉(1)酸素イオン伝導性を有するビスマスの塩及び酸素イオン伝導性を賦活するイットリウムの塩、(2)電子伝導性を有する銀の塩、(3)クエン酸及び(4)エチレングリコールからなる混合伝導性酸化物の前駆体組成物。
〈2〉〈1〉に記載の混合伝導性酸化物の前駆体組成物をゲル化処理することにより得られるゲル化物。
〈3〉〈2〉に記載のゲル化物からなる薄膜。
〈4〉〈2〉に記載のゲル化物を焼成処理することにより得られる、ビスマス酸化物と銀を含有する混合伝導性酸化物粉末体。
〈5〉〈3〉に記載の薄膜又は〈4〉に記載の混合導電性酸化物の粉末を焼結して得られ、かつビスマス酸化物と銀とは熱力学的に平衡状態にある混合組織相として存在している混合伝導性酸化物焼結体。
〈6〉(1)酸素イオン伝導性を有するビスマスの塩及び酸素イオン伝導性を賦活するイットリウムの塩、(2)電子伝導性を有する銀の塩、(3)クエン酸及び(4)エチレングリコールからなる混合伝導性酸化物の前駆体組成物を焼結処理することを特徴とする〈5〉に記載の混合伝導性酸化物焼結体の製造方法。
〈7〉〈5〉に記載の混合伝導性酸化物焼結体からなる酸素分離材料。
〈8〉〈5〉に記載の混合伝導性酸化物焼結体からなる酸素富化材料。
【0010】
【発明の実施の形態】
本発明に係る前駆体組成物は、(1)酸素イオン伝導性を有するビスマスの塩及び酸素イオン伝導性を賦活するイットリウムの塩、(2)電子伝導性を有する銀の塩、(3)クエン酸及び(4)エチレングリコールからなることを特徴としており、この前駆体組成物は、混合伝導性酸化物焼結体すなわち、酸素イオン伝導性を有する酸化物と電子伝導性を有する貴金属の組み合わせからなりかつ該酸素イオン伝導性を有する酸化物と該電子伝導性を有する貴金属とは熱力学的に平衡状態にある混合組織相として存在している、混合伝導性酸化物焼結体の出発原料として極めて有用なものである。
【0011】
また本発明に係る前駆体組成物から形成される混合伝導性酸化物焼結体は、上記した混合組織相を形成する、ビスマス酸化物相に酸素イオン伝導性を銀相に電子伝導性を各別に受け持たせたことから、組成比などを制御するにことによりそれぞれの伝導性を等しくまたは近い状態とすることができ、全体として優れた酸素イオン伝導性を与える。
【0012】
本明細書でいう、「酸素イオン伝導性を有する酸化物」とは低価数のビスマスイオンを溶解させることにより、高温で安定な蛍石構造相を低温まで安定化した酸化物)を意味する。なお、ここでいう、蛍石構造相には、立方晶系を有する安定化ビスマス酸化物のみならず、例えば菱面体晶系を有するアルカリ金属酸化物 - 酸化ビスマス化合物のように蛍石構造相に類似する構造をとり得る酸化物も包含される。
本明細書でいう、「酸素イオン伝導性を有する酸化物」とは低価数の金属イオンを溶解させることにより、高温で安定な蛍石構造相を低温まで安定化した酸化物)を意味する。
また、「電子伝導性を有する貴金属」には、銀が包含される。
また、「前記酸化物と前記貴金属とが熱力学的に平衡状態にある混合組織相として存在する」とは、「複数の構成成分を混ぜて反応させ、平衡状態に至ったときに、化学的に種類の異なる少なくとも2つの生成物(相)が安定に混じり合う領域が存在する」と定義される。
【0013】
本発明に係る前駆体組成物の第一成分は、酸素イオン伝導性を有するビスマスの塩であり、例えば、硝酸ビスマス、塩化ビスマスなどが挙げられる。本発明で好ましく使用される上記金属塩は、硝酸ビスマスである。
【0014】
また、本発明においては、第一成分には、酸素イオン伝導性を賦活する金属の塩、例えば、硝酸イットリウム、酢酸イットリウムのようなイットリウム塩を添加しておくことが望ましい。
本発明で好ましく使用される上記イットリウム塩は、硝酸イットリウムである。
【0015】
本発明に係る前駆体組成物の第二成分は、電子伝導性を有する銀の塩であり、ったとえば硝酸銀、酢酸銀、塩化銀などが挙げられる。本発明で好ましく使用される銀塩は、硝酸銀である。
【0016】
本発明に係る前駆体組成物の第三成分は、金属キレート化剤であり、これらのキレート化剤は単独もしくは2種以上の混合物として用いることができる。
本発明で使用される金属キレート化剤は、後記する固化剤と反応しゲル化若しくは樹脂状化する、クエン酸である。
【0017】
本発明に係る前駆体組成物の第四成分は、キレート化剤と反応してこれらのキレート化剤をゲル化若しくは樹脂状化し得る固化剤であり、前記したキレート化剤の官能基例えばカルボキシル基と反応しゲル化若しくは樹脂状化する、エチレングリコールである。
【0018】
本発明の前駆体組成物は前記第一乃至第四成分を必須成分とするものであるが、金属塩の加水分解を抑制するなどの目的で、少量の硝酸、塩酸、ギ酸などの補助成分を添加することもできる。
【0019】
前記第一成分乃至第四成分の使用割合に特別な制約はないが、通常、第三成分(クエン酸)のモル数は第一成分と第二成分の合計のモル数以上とし、第四成分(エチレングリコール)の使用量は、第三成分(クエン酸)と1から3倍程度で生成する金属塩(クエン酸金属塩)を溶解できる量としておくことが好ましい。
【0020】
本発明の前駆体組成物は、例えば、▲1▼所定量比の金属塩を含む溶液にクエン酸を溶解した後にエチレングリコールを加える方法、▲2▼所定量比の金属塩を含む溶液にエチレングリコールに溶解した後、クエン酸を溶解する方法、▲3▼所定量比の金属塩を含む溶液にクエン酸を溶解させたエチレングリコールを溶解させる方法などの手段により適宜調製することができるが、好ましくは、酸素イオン伝導性を有する金属塩と電子伝導性を有する金属塩の所定混合溶液を調製しておき、ついで該混合溶液に所定量の金属キレート化剤と所定量の固化剤を添加する方法が採られる。
【0021】
本発明の前駆体組成物は、加熱処理することによりゲル化し、更に焼成処理することにより、酸素イオン伝導性金属酸化物と電子伝導性金属とが均一に分散され、かつ酸素イオン伝導性を有する酸化物と該電子伝導性を有する貴金属とが熱力学的に平衡状態にある混合組織相として存在している、混合伝導性酸化物粉末を与える。
【0022】
本発明の前駆体組成物が上記のような特性に優れた混合伝導性酸化物粉末体を形成する理由は現時点で定かでないが、以下のような理由が考えられる。
溶液内で均質分散した金属クエン酸塩が固化剤により均質な状態を保ちながら固化する。固化したゲルを熱分解すると図1に示すようにイットリウムを溶解したα-酸化ビスマス(単斜晶)、イットリウムを溶解したδ-酸化ビスマス(立方晶)と銀の混合体となる。イットリウムを溶解したα-酸化ビスマスとイットリウムを溶解したδ-酸化ビスマスのX線回折ピーク強度が低く、ピーク幅が広いことから酸化ビスマス相は完全に結晶化していない状態にある。これらの相からなる粉末の粒径が均質であり、かつイットリウムを溶解した酸化ビスマスが半結晶化した状態であり、昇温による結晶化が焼結性の向上をもたらすと推定される。
【0023】
本発明に係る原料粉末体は、従来の固相分散法とは異なり、酸素イオン伝導性金属酸化物と電子伝導性金属とが均一に分散され、また、混合伝導性酸化物中のイオン伝導性酸化物と電子伝導性金属の組成比を簡便かつ的確に制御できると共に低温焼結性、成型性、加工性等に優れたものであることから、酸素透過材料、酸素富化材料などとして極めて有用な、均一で緻密な混合伝導性酸化物焼結体を与える。また、この混合伝導性酸化物焼結体は、混合組織系であるため、従来既知の単一混合伝導性酸化物や従来の固相分散法で得られる複合材料系混合伝導性酸化物焼結体の如く組成のズレによる性能の低下を防止することが可能となる。
【0024】
更に、本発明に係る前駆体組成物あるいはそのゲル化物は膜形成能を有することから、上記のように焼成粉末体とすることなく、あらかじめこれを基板(たとえば多孔質酸化物イオン伝導性セラミックスや多孔質アルミナ)上に塗布し、薄膜としておき、ついでこの薄膜を焼成することにより上記と同様な所望の混合伝導性酸化物とすることも可能である。この薄膜を利用する方法は、(酸素透過速度の向上、酸素透過モジュールの形状制御が容易である)といった長所を有する。
【0025】
本発明に係る混合伝導性酸化物を酸素透過性材料あるいは酸素富化材料として使用する場合、その形状は特に限定されず、ディスク状、平膜状、管状など種々の形態とすることができる。
また、その表面に酸素分離を促進する触媒を設けておくことが好ましい。このような触媒としては、白金、パラジウム、金、銀、ビスマス、バリウム、バナジウム、モリブデン、セリウム、ルテニウム、マンガン、コバルト、ロジウム、プラセオジウム、亜鉛などの金属または金属酸化物が挙げられる。
【0026】
【実施例】
以下、本発明を実施例により説明する。
【0027】
実施例1
[前駆体組成物の調製]
あらかじめ濃度を測定したBi,Y,Agの各硝酸塩水溶液(84.6369 mg(Bi)/ ml、31.5627 mg(Y)/ ml、207.18 mg(Ag)/ ml)をモル比でBi:Y:Ag=14:1:10となるように量り取って混合した.この混合溶液に総金属量の2倍モル量のクエン酸を加え,更に4倍モル量のエチレングリコールを加え前駆体組成物を調製した。
【0028】
[ゲル化物の調製・原料粉末体の調製]
この前駆体組成物を200℃に加熱し,エステル化反応を起こさせ樹脂状の混合物(ゲル化物)を得た。この樹脂状化物をを大気中350℃にて熱分解し,混合粉末体(酸素イオン伝導性金属酸化物と電子伝導性を有する貴金属からなる混合伝導性酸化物の原料粉末体)を得た。
【0029】
[混合伝導性酸化物焼結体の調製]
この原料粉末体を179MPaの圧力にて20mm径,厚さ2mmの円板状とし,空気中850℃で、昇温速度は10℃/分,降温速度は10℃/分で3時間焼結し、酸素イオン伝導性金属酸化物と電子伝導性を有する貴金属からなる混合伝導性酸化物焼結体を得た。この焼結体は、80mol%Bi −20mol%Y の安定化Bi −Ag化合物相の二相が共存していることをX線回折により確認した(図2)。
【0030】
[混合伝導性酸化物の酸素透過特性]
上記で得た、混合伝導性酸化物からなる焼結体円板の表面を研磨した後,超音波洗浄機を用いて洗浄し、厚さ1.5mmで混合伝導体酸化物試料とした。この試料の酸素透過速度を図3に示す評価装置を用いて評価した。なお、低酸素分圧ガス導入口2から試料6表面に導入したガスをガスクロメーター9に導入し、ヘリウムガス中に含まれる酸素濃度を測定し、試料の酸素透過速度とした。
高酸素分圧酸素ガス導入口1に空気を200 cc/minの速度で導入した。低酸素分圧導入口2側にはヘリウムガスを50 cc/minの速度で導入した。混合伝導体酸化物試料6は銀シール8により、高酸素分圧側と低酸素分圧側に対して気密性を保てるようにした。この試料が緻密体であることは低酸素分圧側に窒素ガスが検出されないことから確認した。電気炉5により試料部分を加熱し,850℃で高酸素分圧側酸素分圧0.21atm、低酸素分圧側10-4atmで測定したところ,酸素透過速度は1.44ml/min・cm2であった.
【0031】
【発明の効果】
(1)本発明の前駆体組成物は、加熱処理することによりゲル化し、更に焼成処理することにより、酸素イオン伝導性金属酸化物と電子伝導性金属とが均一に分散され、かつ酸素イオン伝導性を有する酸化物と該電子伝導性を有する貴金属とが熱力学的に平衡状態にある混合組織相として存在している、混合伝導性酸化物粉末を与える。
(2)この原料粉末体は、酸素イオン伝導性金属酸化物と電子伝導性金属とが均一に分散され、また、混合伝導性酸化物中のイオン伝導性酸化物と電子伝導性金属の組成比を簡便かつ的確に制御できると共に低温焼結性、成型性、加工性等に優れたものであることから、酸素透過材料、酸素富化材料などとして極めて有用な、均一で緻密な混合伝導性酸化物焼結体を与える。
(3)得られた混合伝導性酸化物焼結体は、混合組織系であるため、従来既知の単一混合伝導性酸化物や従来の固相分散法による複合材料系混合伝導酸化物の如く組成のズレによる性能の低下を防止することが可能となり、上記した特異な特性を有することから、酸素透過材料、酸素富化材料などとして極めて有用なものである。
(4)更に、本発明に係る前駆体組成物あるいはそのゲル化物は膜形成能を有することから、上記のように焼成粉末体とすることなく、あらかじめこれを基板(たとえば多孔質酸化物イオン伝導性セラミックスや多孔質アルミナ)上に塗布し、薄膜としておき、ついでこの薄膜を焼成することにより上記と同様な所望の混合伝導性酸化物とすることも可能であり、酸素透過速度の向上、酸素透過モジュールの形状制御が容易である、といった長所を有する。
【図面の簡単な説明】
【図1】混合伝導性酸化物粉末体のX線回折パターン図
【図2】混合伝導性酸化物焼結体のX線回折パターン図
【図3】酸素透過速度の評価装置の説明図
【符号の説明】
1. 高分圧酸素ガス導入口
2. 低酸素分圧ガス導入口
3. 外殻管
4. ガス導入内管
5. 電気炉
6. 試料
7. 熱電対
8. 銀またはガラスシール
9. ガスクロメーター
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mixed conductive oxide precursor composition useful as an oxygen separation material, an oxygen-enriched material, and the like, and a mixed conductive oxide obtained therefrom.
[0002]
[Prior art]
Conventionally, pure oxygen and oxygen-enriched air can be produced by separating oxygen using an oxygen ion conductor made of a complex oxide such as La 1-x Sr x Co 1-y Fe y O 3. Are known.
However, these composite oxides have (1) low oxygen permeation rate, (2) embrittlement due to permeation of oxygen and lack of durability, and (3) oxygen content (oxygen non-stoichiometry) in the sample. ) Is easy to change, the expansion and contraction of the sample is large depending on the temperature and atmosphere, and it is difficult to manufacture the sample because it is prone to mechanical breakdown during sample synthesis. .
[0003]
For this reason, oxygen ion conductors and electron conductors were combined to form a microstructure that can fully demonstrate the performance of each material in a self-organized manner, achieving both high oxygen ion permeability and high electron conductivity. In addition, composite mixed conductors in which oxide ion conductors and metal electron conductors exist as mixed tissue phases have been studied (Keqin Huang et al. Electrochemical and Solid-State Letters, 2 (8) (1999) p.375-378; JE ten Elshof et al. J. Electrochemical Society, 144 (12) (1997) p.4361-4366; CS Chen et al. Solid State Ionics, 76 (1995) p.23-28; CS Chen et al. Solid State Ionics, 99 (1997) p.215-219).
[0004]
These composite material-based mixed conductors are used for the purpose of improving the electronic conductivity of oxide ion conductors such as stabilized bismuth (Y 2 O 3 —Er 2 O 3 —Bi 2 O 3 ). As a synthesis method, firstly, silver oxide is mixed after the synthesis and pulverization of stabilized bismuth (Y 2 O 3 —Er 2 O 3 —Bi 2 O 3 ). A method of sintering is employed. A so-called solid phase method is adopted in which each is dispersed in a solid state and then sintered.
[0005]
However, this solid-phase process is complicated, and Y 2 O 3 —Er 2 O 3 —Bi 2 O 3 and silver and a mixed powder are poor in sinterability, and the melting point of the added metal is limited. Therefore, there is a problem that high temperature sintering is difficult and a dense and uniform mixed structure phase cannot be obtained.
[0006]
Further, a preparation method by coprecipitation is also conceivable, but in this case, a silver mirror reaction occurs in the coprecipitation process, and it is difficult to accurately control the amount of silver dispersion in the mixed conductor.
[0007]
[Problems to be solved by the invention]
The present invention has been made in order to overcome the above-described conventional technology. The composition of the ion conductive oxide and the electron conductive metal in the mixed conductive oxide structure can be controlled appropriately, simply and accurately, and at low temperature. An object of the present invention is to provide a precursor composition which is excellent in binding property, moldability, workability and the like and gives a uniform and dense mixed conductive oxide, and a mixed conductive oxide obtained therefrom.
[0008]
[Means for Solving the Problems]
As a result of intensive studies on effective precursor compositions, raw material powder bodies, and methods for producing mixed conductive oxides, the present inventors have found that bismuth salts exhibiting oxygen ion conductivity and electronic conductivity. A composition obtained by adding citric acid and ethylene glycol, which is a solidifying agent, to a mixed solution of silver salt is extremely effective as a precursor of a mixed conductive oxide. This composition is gelled, heated, and baked. When the sintering treatment is performed, the composition ratio of the ion conductive oxide and the electron conductive metal in the mixed conductive oxide can be controlled easily and accurately, and it is excellent in low temperature sinterability, moldability, workability, etc., and is uniform and dense. The present inventors have found that a mixed conductive oxide can be obtained, and have completed the present invention.
[0009]
That is, this application provides the following inventions.
<1> (1) A salt of bismuth having oxygen ion conductivity and a salt of yttrium that activates oxygen ion conductivity, (2) a silver salt having electron conductivity, (3) citric acid, and (4) ethylene glycol A mixed conductive oxide precursor composition comprising:
<2> A gelled product obtained by gelling the precursor composition of the mixed conductive oxide according to <1>.
<3> A thin film comprising the gelled product according to <2>.
<4> A mixed conductive oxide powder containing bismuth oxide and silver, which is obtained by baking the gelled product according to <2>.
<5> A mixed structure obtained by sintering the thin film according to <3> or the mixed conductive oxide powder according to <4>, wherein bismuth oxide and silver are in a thermodynamic equilibrium state. A mixed conductive oxide sintered body existing as a phase.
<6> (1) Bismuth salt having oxygen ion conductivity and yttrium salt for activating oxygen ion conductivity, (2) Silver salt having electron conductivity, (3) Citric acid and (4) Ethylene glycol The method for producing a mixed conductive oxide sintered body according to <5>, wherein the mixed conductive oxide precursor composition is sintered.
<7> An oxygen separation material comprising the mixed conductive oxide sintered body according to <5>.
<8> An oxygen-enriched material comprising the mixed conductive oxide sintered body according to <5>.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The precursor composition according to the present invention includes (1) a salt of bismuth having oxygen ion conductivity, a salt of yttrium that activates oxygen ion conductivity, (2) a silver salt having electron conductivity, and (3) a quencher. The precursor composition is composed of a mixed conductive oxide sintered body, that is, a combination of an oxide having oxygen ion conductivity and a noble metal having electronic conductivity. As a starting material of the mixed conductive oxide sintered body, the oxide having oxygen ion conductivity and the noble metal having electron conductivity exist as a mixed structure phase in a thermodynamic equilibrium state. It is extremely useful.
[0011]
In addition, the mixed conductive oxide sintered body formed from the precursor composition according to the present invention forms the above-described mixed texture phase, oxygen ion conductivity in the bismuth oxide phase, and electron conductivity in the silver phase. Since they are separately handled, the conductivity can be made equal or close by controlling the composition ratio and the like, and excellent oxygen ion conductivity is given as a whole.
[0012]
As used herein, the term “oxide having oxygen ion conductivity” means an oxide in which a low-valent bismuth ion is dissolved to stabilize a fluorite structure phase that is stable at high temperature to a low temperature). . Incidentally, here, the fluorite structure phase, not only stabilizing the bismuth oxide having a cubic system, such as alkali metal oxide having a rhombohedral system - the fluorite structure phase as bismuth oxide compound Oxides that can have a similar structure are also included.
As used herein, the term “oxide having oxygen ion conductivity” means an oxide in which a low-valent metal ion is dissolved to stabilize a fluorite structure phase stable at a high temperature to a low temperature). .
The “noble metal having electron conductivity” includes silver.
In addition, “the oxide and the noble metal exist as a mixed tissue phase in a thermodynamic equilibrium state” means that “when a plurality of components are mixed and reacted to reach an equilibrium state, In other words, there is a region where at least two products (phases) of different types are stably mixed.
[0013]
The first component of the precursor composition according to the present invention is a salt of bismuth having oxygen ion conductivity, and examples thereof include bismuth nitrate and bismuth chloride. The metal salt preferably used in the present invention is bismuth nitrate.
[0014]
In the present invention, it is desirable to add a metal salt that activates oxygen ion conductivity, for example, an yttrium salt such as yttrium nitrate or yttrium acetate, to the first component.
The yttrium salt preferably used in the present invention is yttrium nitrate.
[0015]
The second component of the precursor composition according to the present invention is a silver salt having electron conductivity, and examples thereof include silver nitrate, silver acetate and silver chloride. The silver salt preferably used in the present invention is silver nitrate.
[0016]
The third component of the precursor composition according to the present invention is a metal chelating agent, and these chelating agents can be used alone or as a mixture of two or more.
The metal chelating agent used in the present invention is citric acid that reacts with a solidifying agent described later to gel or resinate.
[0017]
The fourth component of the precursor composition according to the present invention is a solidifying agent capable of gelling or resinating these chelating agents by reacting with the chelating agent. It is ethylene glycol that reacts with and gels or resinates.
[0018]
The precursor composition of the present invention contains the first to fourth components as essential components, but for the purpose of suppressing hydrolysis of the metal salt, a small amount of auxiliary components such as nitric acid, hydrochloric acid, and formic acid are added. It can also be added.
[0019]
Although there is no special restriction | limiting in the usage-amount of said 1st component thru | or a 4th component, Usually, the number of moles of a 3rd component (citric acid) shall be more than the total number of moles of a 1st component and a 2nd component, and a 4th component The amount of (ethylene glycol) used is preferably an amount that can dissolve the third component (citric acid) and the metal salt (citric acid metal salt) produced in about 1 to 3 times.
[0020]
The precursor composition of the present invention includes, for example, (1) a method of adding citric acid after dissolving citric acid in a solution containing a predetermined amount of metal salt, and (2) ethylene in a solution containing a predetermined amount of metal salt. It can be suitably prepared by means such as a method of dissolving citric acid after dissolving in glycol, or a method of dissolving ethylene glycol in which citric acid is dissolved in a solution containing a metal salt in a predetermined amount ratio. Preferably, a predetermined mixed solution of a metal salt having oxygen ion conductivity and a metal salt having electron conductivity is prepared, and then a predetermined amount of metal chelating agent and a predetermined amount of solidifying agent are added to the mixed solution. The method is taken.
[0021]
The precursor composition of the present invention is gelled by heat treatment, and further calcined to uniformly disperse the oxygen ion conductive metal oxide and the electron conductive metal, and has oxygen ion conductivity. A mixed conductive oxide powder is provided in which the oxide and the noble metal having electronic conductivity are present as a mixed tissue phase in a thermodynamic equilibrium state.
[0022]
Although the reason why the precursor composition of the present invention forms a mixed conductive oxide powder having excellent properties as described above is not clear at present, the following reasons are conceivable.
The metal citrate uniformly dispersed in the solution is solidified while being kept in a homogeneous state by the solidifying agent. When the solidified gel is pyrolyzed, as shown in FIG. 1, α-bismuth oxide (monoclinic crystal) in which yttrium is dissolved, δ-bismuth oxide (cubic crystal) in which yttrium is dissolved, and a mixture of silver are obtained. The X-ray diffraction peak intensity of α-bismuth oxide in which yttrium is dissolved and δ-bismuth oxide in which yttrium is dissolved is low and the peak width is wide, so that the bismuth oxide phase is not completely crystallized. It is presumed that the particle size of the powder composed of these phases is uniform and bismuth oxide in which yttrium is dissolved is semi-crystallized, and that the crystallization by the temperature rise brings about the improvement of the sinterability.
[0023]
Unlike the conventional solid phase dispersion method, the raw material powder body according to the present invention uniformly disperses the oxygen ion conductive metal oxide and the electron conductive metal, and the ion conductivity in the mixed conductive oxide. It is extremely useful as an oxygen permeable material, oxygen-enriched material, etc. because it can easily and accurately control the composition ratio of oxide and electron conductive metal and is excellent in low-temperature sinterability, moldability, workability, etc. A uniform and dense mixed conductive oxide sintered body. In addition, since this mixed conductive oxide sintered body is a mixed structure system, a conventionally known single mixed conductive oxide or a composite material mixed conductive oxide sintered obtained by a conventional solid phase dispersion method is used. It is possible to prevent the performance from being deteriorated due to the deviation of the composition like the body.
[0024]
Furthermore, since the precursor composition or the gelled product thereof according to the present invention has a film-forming ability, it is prepared in advance as a substrate ( for example, porous oxide ion conductive ceramics or It is also possible to form a desired mixed conductive oxide similar to the above by applying it onto a porous alumina), leaving it as a thin film, and then firing the thin film. The method using this thin film has advantages such as (improvement of oxygen permeation rate and easy shape control of oxygen permeation module).
[0025]
When the mixed conductive oxide according to the present invention is used as an oxygen-permeable material or an oxygen-enriched material, the shape is not particularly limited, and various forms such as a disk shape, a flat film shape, and a tubular shape can be used.
Moreover, it is preferable to provide a catalyst for promoting oxygen separation on the surface. Examples of such a catalyst include metals or metal oxides such as platinum, palladium, gold, silver, bismuth, barium, vanadium, molybdenum, cerium, ruthenium, manganese, cobalt, rhodium, praseodymium, and zinc.
[0026]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0027]
Example 1
[Preparation of precursor composition]
Bi, Y, and Ag nitrate aqueous solutions (84.6369 mg (Bi) / ml, 31.5627 mg (Y) / ml, 207.18 mg (Ag) / ml), whose concentrations were measured in advance, at a molar ratio of Bi: Y: Ag = 14 Weighed out and mixed to 1:10. To this mixed solution, a citric acid having a molar amount of 2 times the total amount of metal was added, and further an ethylene glycol having a molar amount of 4 times was added to prepare a precursor composition.
[0028]
[Preparation of gelled product / Preparation of raw powder]
This precursor composition was heated to 200 ° C. to cause an esterification reaction to obtain a resinous mixture (gelled product). This resinous material was pyrolyzed at 350 ° C. in the atmosphere to obtain a mixed powder (a raw material powder of a mixed conductive oxide composed of an oxygen ion conductive metal oxide and a noble metal having electronic conductivity).
[0029]
[Preparation of mixed conductive oxide sintered body]
This raw material powder was formed into a disk shape having a diameter of 20 mm and a thickness of 2 mm at a pressure of 179 MPa, and sintered in air at 850 ° C. for a heating rate of 10 ° C./min and a cooling rate of 10 ° C./min for 3 hours. A mixed conductive oxide sintered body made of an oxygen ion conductive metal oxide and a noble metal having electronic conductivity was obtained. This sintered body was confirmed by X-ray diffraction that two phases of a stabilized Bi 2 O 3 —Ag compound phase of 80 mol% Bi 2 O 3 -20 mol% Y 2 O 3 coexist (FIG. 2). .
[0030]
[Oxygen permeation characteristics of mixed conductive oxides]
The surface of the sintered disk made of the mixed conductive oxide obtained above was polished and then cleaned using an ultrasonic cleaner to obtain a mixed conductor oxide sample having a thickness of 1.5 mm. The oxygen transmission rate of this sample was evaluated using the evaluation apparatus shown in FIG. A gas introduced from the low oxygen partial pressure gas inlet 2 to the surface of the sample 6 was introduced into the gas chromatometer 9, and the oxygen concentration contained in the helium gas was measured to obtain the oxygen transmission rate of the sample.
Air was introduced into the high oxygen partial pressure oxygen gas inlet 1 at a rate of 200 cc / min. Helium gas was introduced into the low oxygen partial pressure inlet 2 side at a rate of 50 cc / min. The mixed conductor oxide sample 6 was kept airtight on the high oxygen partial pressure side and the low oxygen partial pressure side by the silver seal 8. It was confirmed that this sample was a dense body because nitrogen gas was not detected on the low oxygen partial pressure side. The sample part was heated in an electric furnace 5 and measured at 850 ° C with a high oxygen partial pressure side oxygen partial pressure of 0.21 atm and a low oxygen partial pressure side of 10 -4 atm. The oxygen transmission rate was 1.44 ml / min · cm 2 . .
[0031]
【The invention's effect】
(1) The precursor composition of the present invention is gelled by heat treatment, and further calcined to uniformly disperse the oxygen ion conductive metal oxide and the electron conductive metal, and to conduct oxygen ion conduction. This provides a mixed conductive oxide powder in which the oxide having conductivity and the noble metal having electron conductivity are present as a mixed tissue phase in a thermodynamic equilibrium state.
(2) In this raw material powder body, the oxygen ion conductive metal oxide and the electron conductive metal are uniformly dispersed, and the composition ratio of the ion conductive oxide and the electron conductive metal in the mixed conductive oxide Can be controlled easily and accurately, and has excellent low-temperature sintering, moldability, workability, etc., making it extremely useful as an oxygen-permeable material, oxygen-enriched material, etc. A sintered product is provided.
(3) Since the obtained mixed conductive oxide sintered body is a mixed structure system, such as a conventionally known single mixed conductive oxide or a composite mixed oxide mixed by a conventional solid phase dispersion method Since it is possible to prevent a decrease in performance due to compositional deviation and has the above-mentioned unique characteristics, it is extremely useful as an oxygen-permeable material, an oxygen-enriched material, and the like.
(4) Furthermore, since the precursor composition or the gelled product thereof according to the present invention has a film-forming ability, it is prepared in advance as a substrate (for example, porous oxide ion conduction) without forming a fired powder as described above. It is possible to obtain a desired mixed conductive oxide similar to the above by applying it on a conductive ceramic or porous alumina) and leaving it as a thin film, and then firing this thin film. It has an advantage that the shape control of the transmission module is easy.
[Brief description of the drawings]
1 is an X-ray diffraction pattern of a mixed conductive oxide powder. FIG. 2 is an X-ray diffraction pattern of a mixed conductive oxide sintered body. Explanation of]
1. High partial pressure oxygen gas inlet 2. 2. Low oxygen partial pressure gas inlet Outer shell tube4. 4. Gas introduction inner pipe Electric furnace 6. Sample 7. Thermocouple8. 8. Silver or glass seal Gas chromatograph

Claims (8)

(1)酸素イオン伝導性を有するビスマスの塩及び酸素イオン伝導性を賦活するイットリウムの塩、(2)電子伝導性を有する銀の塩、(3)クエン酸及び(4)エチレングリコールからなる混合伝導性酸化物の前駆体組成物。  (1) A salt of bismuth having oxygen ion conductivity and a salt of yttrium that activates oxygen ion conductivity, (2) a silver salt having electron conductivity, (3) citric acid and (4) a mixture comprising ethylene glycol Conductive oxide precursor composition. 請求項1に記載の混合伝導性酸化物の前駆体組成物をゲル化処理することにより得られるゲル化物。  A gelled product obtained by gelling the precursor composition of the mixed conductive oxide according to claim 1. 請求項2に記載のゲル化物からなる薄膜。  A thin film comprising the gelled product according to claim 2. 請求項2に記載のゲル化物を焼成処理することにより得られる、ビスマス酸化物と銀を含有する混合伝導性酸化物粉末体。  A mixed conductive oxide powder containing bismuth oxide and silver, obtained by firing the gelled product according to claim 2. 請求項3に記載の薄膜又は請求項4に記載の混合導電性酸化物の粉末を焼結して得られ、かつビスマス酸化物と銀とは熱力学的に平衡状態にある混合組織相として存在している混合伝導性酸化物焼結体。  The thin film according to claim 3 or the mixed conductive oxide powder according to claim 4 is obtained by sintering, and bismuth oxide and silver are present as a mixed structure phase in a thermodynamic equilibrium state. The mixed conductive oxide sintered body. (1)酸素イオン伝導性を有するビスマスの塩及び酸素イオン伝導性を賦活するイットリウムの塩、(2)電子伝導性を有する銀の塩、(3)クエン酸及び(4)エチレングリコールからなる混合伝導性酸化物の前駆体組成物を焼結処理することを特徴とする請求項5に記載の混合伝導性酸化物焼結体の製造方法。  (1) A salt of bismuth having oxygen ion conductivity and a salt of yttrium that activates oxygen ion conductivity, (2) a silver salt having electron conductivity, (3) citric acid and (4) a mixture comprising ethylene glycol 6. The method for producing a mixed conductive oxide sintered body according to claim 5, wherein the conductive oxide precursor composition is sintered. 請求項5に記載の混合伝導性酸化物焼結体からなる酸素分離材料。 Oxygen partial release material comprising a mixed conducting oxide sintered body according to claim 5. 請求項5に記載の混合伝導性酸化物焼結体からなる酸素富化材料。An oxygen-enriched material comprising the mixed conductive oxide sintered body according to claim 5.
JP2002100987A 2002-04-03 2002-04-03 Precursor composition of mixed conductive oxide Expired - Lifetime JP4139885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002100987A JP4139885B2 (en) 2002-04-03 2002-04-03 Precursor composition of mixed conductive oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002100987A JP4139885B2 (en) 2002-04-03 2002-04-03 Precursor composition of mixed conductive oxide

Publications (2)

Publication Number Publication Date
JP2003300708A JP2003300708A (en) 2003-10-21
JP4139885B2 true JP4139885B2 (en) 2008-08-27

Family

ID=29388555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002100987A Expired - Lifetime JP4139885B2 (en) 2002-04-03 2002-04-03 Precursor composition of mixed conductive oxide

Country Status (1)

Country Link
JP (1) JP4139885B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006188372A (en) * 2004-12-28 2006-07-20 Japan Fine Ceramics Center Manufacturing method of ceramic powder
JP4925034B2 (en) * 2006-01-26 2012-04-25 独立行政法人物質・材料研究機構 Oxide ion conductive material comprising bismuth / erbium / molybdenum oxide solid solution and method for producing the same
EP3537524B1 (en) * 2016-11-07 2022-01-19 National Institute of Advanced Industrial Science and Technology Composite particle powder, electrode material for solid oxide cell, and electrode for solid oxide cell made thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692103A (en) * 1979-12-27 1981-07-25 Teijin Ltd Separation of oxygen
CA2017243C (en) * 1989-05-25 2003-09-30 Terry J. Mazanec Novel solid multi-component membranes, electrochemical reactor and use of membranes and reactor for oxidation reactions
JPH03115157A (en) * 1989-09-29 1991-05-16 Natl Res Inst For Metals Production of bi-based oxide superconductor
JP3258392B2 (en) * 1992-10-05 2002-02-18 眞人 垣花 Method for producing composite oxide by complex polymerization method
JP2001106532A (en) * 1999-08-04 2001-04-17 Nippon Steel Corp Mixed conductive mutiple oxide, ceramic for oxygen separation or chemical reaction comprising the same, and their producing methods
JP2001058130A (en) * 1999-08-23 2001-03-06 Mitsubishi Heavy Ind Ltd Catalyst for nitrogen oxide decomposition
JP3876306B2 (en) * 2002-03-27 2007-01-31 独立行政法人産業技術総合研究所 Mixed conductive oxide

Also Published As

Publication number Publication date
JP2003300708A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
Athayde et al. Review of perovskite ceramic synthesis and membrane preparation methods
KR20140104019A (en) Process for preparing a sol-gel from at least three metal salts and use of the process for preparing a ceramic membrane
Khani et al. New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
WO2006049137A1 (en) Method for producing noble metal-containing heat-resistant oxide
JP2009061432A (en) Compound oxide, particulate oxidation catalyst, and diesel particulate filter
KR20150133574A (en) Manufacturing method of perovskite-type nickel based catalysts
JPS6121717A (en) Separation of oxygen
JP4139885B2 (en) Precursor composition of mixed conductive oxide
JP2000140635A (en) Heat stable metal oxide catalyst having perovskite crystal structure and its production
JP4993496B2 (en) Oxygen separation membrane and method for producing the same
JP3876306B2 (en) Mixed conductive oxide
JP4149343B2 (en) Oxygen separation membrane element and manufacturing method thereof
CN109012649A (en) Hydrogen-storing material and its manufacturing method
CN113121227B (en) Gadolinium-nickel co-doped magnesium-based lanthanum hexaaluminate ceramic and preparation method thereof
FR2857355A1 (en) New mixed conductive electronic and anionic material of perovskite structure, useful in a catalytic membrane reactor for reforming of methane or natural gas.
CN100441278C (en) Addition of (a) blocking agent(s) in a ceramic membrane for blocking crystalline growth of grains during atmospheric sintering
JP2005507308A (en) Proton and electron conducting membranes in solid multicomponent mixtures.
JPS60226414A (en) Production of lanthanum-alumina based compound oxide
JP4729700B2 (en) Dy-doped nano ceria-based sintered body
JP2006248858A (en) Yttria-stabilized zirconia sintered compact and its manufacturing method
JPS58114730A (en) Catalyst for synthesis of methanol
CN111205079A (en) Lanthanum-doped yttrium aluminum garnet ceramic and preparation method thereof
JP2002097083A (en) Porous material and composite material
Shukla et al. Combustion Synthesis: A Versatile Method for Functional Materials
Liang et al. The preparation and oxygen sensitivity of strontium ferrite thin films

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4139885

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term