JP2000140635A - Heat stable metal oxide catalyst having perovskite crystal structure and its production - Google Patents

Heat stable metal oxide catalyst having perovskite crystal structure and its production

Info

Publication number
JP2000140635A
JP2000140635A JP11248716A JP24871699A JP2000140635A JP 2000140635 A JP2000140635 A JP 2000140635A JP 11248716 A JP11248716 A JP 11248716A JP 24871699 A JP24871699 A JP 24871699A JP 2000140635 A JP2000140635 A JP 2000140635A
Authority
JP
Japan
Prior art keywords
oxide catalyst
metal oxide
metal
cation
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11248716A
Other languages
Japanese (ja)
Inventor
Kirushunerova Jitouka
キルシュネロヴァ ジトゥカ
Kuruvana Danilo
クルヴァナ ダニロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gaz Metro LP
Engie SA
Original Assignee
Gaz Metro LP
Gaz de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gaz Metro LP, Gaz de France SA filed Critical Gaz Metro LP
Publication of JP2000140635A publication Critical patent/JP2000140635A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/70Cobaltates containing rare earth, e.g. LaCoO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/125Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
    • C01G45/1264Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing rare earth, e.g. La1-xCaxMnO3, LaMnO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0054Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/70Nickelates containing rare earth, e.g. LaNiO3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties

Abstract

PROBLEM TO BE SOLVED: To provide a heat stable high performance catalyst having perovskite crystal structure and the producing method. SOLUTION: The heat stable metal oxide catalyst having the perovskite crystal structure and expressed by a formula, AB1-xMxO3-δ, and the producing method and expressed by a formula, each of A and B represents a cation forming a fire resisting oxide, M represents a relatively non-volatile active cation and acts in the quantity of about 0.01-0.30 as a doping for the position B. Each of cations A, B and M is selected so that the quantity of oxygen defect expressed by (5) is at least 0.02. The catalyst exhibits excellent catalytic property after being aged at a temp. exceeding 1300 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、ペロブスカイト結
晶構造を有する熱安定性の金属酸化物触媒及びその製造
方法に関する。特に、本発明は、熱による老化に対する
耐性が高いペロブスカイトタイプ構造の、極めて活性の
高い触媒およびその製造方法に関する。
The present invention relates to a thermally stable metal oxide catalyst having a perovskite crystal structure and a method for producing the same. In particular, the present invention relates to a highly active catalyst having a perovskite type structure having high resistance to heat aging and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】化石燃
料の燃焼による従来の発電では、天然ガスが環境的に最
も許容されるものであり、多量の有害な窒素酸化物(N
x)の発生源となっている。これらの放出量は、希薄
燃焼混合物を使用し、燃焼温度を下げることで実質的に
減らすことが可能である。しかしながら、希薄混合物の
燃焼を持続するためには、極めて活性の高い触媒が必要
である。触媒燃焼は、極めて広範囲にわたる燃料濃度の
燃料/空気混合物の燃焼(完全酸化)を可能にするもの
であり、爆発性の雰囲気下で使用することすらできる。
しかしながら、燃料濃度が低くなればなるほど、一層活
性の高い触媒が必要となる。このような触媒は、高温環
境において触媒特性を維持できるものでなければならな
いのは言うまでもない。
BACKGROUND OF THE INVENTION In conventional power generation by burning fossil fuels, natural gas is the most environmentally acceptable and produces large amounts of harmful nitrogen oxides (N
O x ). These emissions can be substantially reduced by using a lean burn mixture and lowering the combustion temperature. However, a very active catalyst is needed to sustain the lean mixture combustion. Catalytic combustion allows the combustion (complete oxidation) of fuel / air mixtures of a very wide range of fuel concentrations and can even be used in explosive atmospheres.
However, lower fuel concentrations require more active catalysts. Needless to say, such a catalyst must be able to maintain its catalytic properties in a high-temperature environment.

【0003】最も活性の高い触媒は、パラジウムおよび
プラチナなどの貴金属を主成分とするものである。しか
しながら、これらの触媒は高価である上、1000℃を
超える高温では触媒特性が失われてしまう。
The most active catalysts are those based on precious metals such as palladium and platinum. However, these catalysts are expensive and lose their catalytic properties at high temperatures exceeding 1000 ° C.

【0004】β−アルミナ構造を有し、主に、酸化アル
ミニウム、アルカリ土類酸化物および/または酸化ラン
タンならびに、一般にはマンガンである活性元素を含む
多金属酸化物は、高温下であっても良好な触媒活性を示
す。しかしながら、触媒などの材料を用いることによる
主な問題は、自己支持構造の形態とした場合に熱衝撃に
対する耐性が低くなるという点である。これは主に、上
記の材料の熱膨張係数が二次元であることによるもので
ある。また、これらの触媒の製造には複雑な方法が必要
である。
Polymetal oxides having a β-alumina structure and mainly containing aluminum oxide, alkaline earth oxides and / or lanthanum oxide and an active element which is generally manganese can be used even at high temperatures. Shows good catalytic activity. However, a major problem with using a material such as a catalyst is that the resistance to thermal shock is reduced when the self-supporting structure is used. This is mainly due to the two-dimensional thermal expansion coefficient of the above materials. Also, the production of these catalysts requires complicated methods.

【0005】式La1-xxMO3(式中、Aは、Ca、
SrおよびBaなどのアルカリ土類金属であり、Mは、
Co、Mn、FeおよびNiなどの遷移金属である)で
表されるペロブスカイト結晶構造を有する遷移金属を主
成分とする酸化物は、高い触媒活性を呈する。このよう
な触媒の欠点は、活性遷移金属がコバルト、マンガンま
たは鉄である場合に、融点が比較的低いということであ
る。高温環境では、これらの触媒は焼結され、触媒活性
を失ってしまうことが多い。これらの触媒が安定してい
るのは約800℃までである。活性遷移金属としてクロ
ムを使用すると結果が良くなることがあるが、クロム酸
塩は燃焼生成物の環境においてクロムが揮発性になるた
め、やはり1100℃を超える温度には適していない。
同様に、プラチナ群の金属もペロブスカイト構造の遷移
金属の代わりに用いると揮発することがある上に、さら
に高価である。
Formula La 1 -x A x MO 3 (where A is Ca,
Alkaline earth metals such as Sr and Ba;
An oxide mainly composed of a transition metal having a perovskite crystal structure represented by a transition metal such as Co, Mn, Fe, and Ni exhibits high catalytic activity. A disadvantage of such catalysts is that the melting point is relatively low when the active transition metal is cobalt, manganese or iron. In high temperature environments, these catalysts often sinter and lose catalytic activity. These catalysts are stable up to about 800 ° C. Although the use of chromium as the active transition metal may give better results, chromates are also not suitable for temperatures above 1100 ° C. due to the volatility of chromium in the environment of the combustion products.
Similarly, metals in the platinum group may volatilize when used in place of the transition metal having a perovskite structure, and are more expensive.

【0006】高温下でのペロブスカイト相の安定性は、
このような相をZrO3、TiO2、La23、Y23
どの耐火性酸化物を用いて調製することで得られる。生
成される触媒は、一般式ABO3(例 SrZrO3、S
rTiO3、LaAlO3)で表され、融点が高く熱安定
性に優れている。特に、その耐火特性という点では、活
性自体は低めであるこれらのペロブスカイトが提案さ
れ、遷移金属酸化物用の担体材料として試験されてきて
いる。しかしながら、このような材料を用いると、2種
類の成分の間で反応が起こり、非活性相が形成される可
能性がある。非活性相は、材料表面で焼結が起こった場
合にも生じ得る。これらの非活性相の融点は低いのが普
通である。
The stability of the perovskite phase at high temperatures is
Such a phase is obtained by preparing a refractory oxide such as ZrO 3 , TiO 2 , La 2 O 3 , and Y 2 O 3 . The resulting catalyst has the general formula ABO 3 (eg, SrZrO 3 , S
rTiO 3 , LaAlO 3 ), and has a high melting point and excellent thermal stability. In particular, these perovskites, which have lower activity per se in terms of their refractory properties, have been proposed and tested as carrier materials for transition metal oxides. However, when using such materials, a reaction may take place between the two components and an inactive phase may be formed. Inactive phases can also occur when sintering occurs at the material surface. The melting points of these inactive phases are usually low.

【0007】米国特許第4,126,580号には、広
範囲にわたる化学環境中での安定性が改善されたペロブ
スカイト触媒が示されている。これらの触媒の組成物に
含ませる元素は、格子安定指数の高い触媒が得られるよ
うに選択される。これは、第一イオン化ポテンシャルの
低い金属を取り込むことによってなされる。しかしなが
ら、これらの多数の触媒の問題点は、1000℃を超え
ると触媒活性が急激に落ちるように見受けられることで
ある。
US Pat. No. 4,126,580 shows perovskite catalysts having improved stability in a wide range of chemical environments. The elements included in the composition of these catalysts are selected so as to obtain a catalyst having a high lattice stability index. This is done by incorporating a metal with a low first ionization potential. However, a problem with many of these catalysts is that the catalyst activity appears to drop sharply above 1000 ° C.

【0008】米国特許第4,110,251号には、ペ
ロブスカイトタイプの結晶構造を有し、一般式ABO
3-ff(式中、Xはフッ素または塩素であり、fは約
0.1〜1.0である)で表される他の触媒組成物が記
載されている。ここではフッ素または塩素が存在するこ
とで生じる酸素欠乏によって、組成物の還元環境に対す
る耐性が増し、熱安定性が高まる。しかしながら、米国
特許第4,126,580号に記載された組成物と同様
に、米国特許第4,110,251号に記載された組成
物も1000℃を超える温度には適していないように思
われる。
US Pat. No. 4,110,251 discloses a perovskite-type crystal structure of the general formula ABO
3-f X f (wherein, X is fluorine or chlorine, f is about 0.1 to 1.0) Other catalyst composition represented by is described. Here, the oxygen deficiency caused by the presence of fluorine or chlorine increases the resistance of the composition to the reducing environment and increases the thermal stability. However, like the composition described in U.S. Pat. No. 4,126,580, the composition described in U.S. Pat. No. 4,110,251 does not appear to be suitable for temperatures above 1000.degree. It is.

【0009】米国特許第5,712,220号には、固
体状態の酸素分離装置で用いられる成分の製造に使用す
るのに適し、式LnxA’x A”x yB’y B”y
3- z(式中、A’はI族元素であり、A”は、I族、
II族およびIII族から選択され、B、B’および
B”はいずれも遷移金属であり、数字Zは、化合物の電
荷を中和させる数である)で表される化合物が示されて
いる。B部位において耐火性酸化物である成分の定義は
存在しない。さらに、米国特許第5,712,220号
に記載された触媒は、高温での炭化水素の触媒燃焼には
適していない。
[0009] U.S. Patent No. 5,712,220, suitable for use in the manufacture of components used in the oxygen separation device in the solid state, wherein Ln x A 'x' A " x" B y B 'y ' B " y "
O 3 -z wherein A ′ is a Group I element, A ″ is a Group I element,
Selected from Group II and Group III, wherein B, B ′ and B ″ are all transition metals, and the number Z is a number that neutralizes the charge of the compound). There is no definition of a component that is a refractory oxide at site B. Further, the catalysts described in U.S. Patent No. 5,712,220 are not suitable for catalytic combustion of hydrocarbons at high temperatures.

【0010】したがって、本発明の目的は、比較的腐食
性の環境で高温での用途に適した、熱的に安定な高性能
触媒を提供することにある。
Accordingly, it is an object of the present invention to provide a thermally stable, high performance catalyst suitable for high temperature applications in relatively corrosive environments.

【0011】本発明の他の目的はさらに、1200℃を
超える温度に耐えることができ、この温度でも比較的良
好な触媒活性を発揮できる触媒を提供することにある。
It is another object of the present invention to provide a catalyst that can withstand temperatures exceeding 1200 ° C. and can exhibit relatively good catalytic activity even at this temperature.

【0012】本発明の他の目的は、一般式ABO3で表
され、酸素の欠損量が少なくとも約0.02である触媒
を提供することにある。
It is another object of the present invention to provide a catalyst represented by the general formula ABO 3 and having an oxygen deficiency of at least about 0.02.

【0013】本発明のさらに他の目的は、ペロブスカイ
トタイプの構造を有し、自己支持形態に成形または他の
耐火性担体材料上で使用可能な触媒を製造するための単
純な方法を提供することにある。
Yet another object of the present invention is to provide a simple method for producing a catalyst having a perovskite type structure, which can be molded into a self-supporting form or used on other refractory support materials. It is in.

【0014】[0014]

【課題を解決するための手段】具体的には、本発明によ
れば、一般式ABO3(式中、Aはイオン半径が0.0
9nm〜0.15nmである少なくとも1種の金属で占
められたカチオン部位であり、Bはイオン半径が0.0
5nm〜0.10nmである少なくとも1種の金属で占
められたカチオン部位であり、金属カチオンAおよびB
がほぼ同一の理論比率で存在する)で表され、ペロブス
カイト結晶構造を有する熱安定性の金属酸化物触媒であ
って、前記触媒が式ABO3- δ(式中、δは少なくとも
約0.02の酸素欠損量である)で表される改良された
熱安定性の金属酸化物触媒が得られる。
Specifically, according to the present invention, according to the general formula ABO 3 (where A has an ionic radius of 0.0
A cation site occupied by at least one metal of 9 nm to 0.15 nm, and B has an ionic radius of 0.0
A cation site occupied by at least one metal that is between 5 nm and 0.10 nm, wherein the metal cations A and B
Are present in approximately the same theoretical ratios) and have a perovskite crystal structure, wherein the catalyst is of the formula ABO 3- δ wherein δ is at least about 0.02 Which is an amount of oxygen deficiency of the present invention.

【0015】好ましい実施例では、触媒が触媒金属Mを
含み、式AB1-xx3- δの触媒が得られる。
In a preferred embodiment, the catalyst comprises a catalytic metal M, resulting in a catalyst of the formula AB 1-x M x O 3- δ .

【0016】さらに好ましい実施例では、触媒金属が原
子番号25〜28の遷移金属であり、xが約0.3以下
である。
In a further preferred embodiment, the catalytic metal is a transition metal having an atomic number of 25 to 28, and x is about 0.3 or less.

【0017】最も好ましい実施例では、Aが、Ln、C
a、Srおよびこれらの混合物から選択され、Bが、Z
r、Ce、Ti、Y、Alおよびこれらの混合物から選
択される。
In the most preferred embodiment, A is Ln, C
a, Sr and mixtures thereof, wherein B is Z
It is selected from r, Ce, Ti, Y, Al and mixtures thereof.

【0018】元素をこのように選択することで、耐火性
で極めて活性の高い触媒が得られる。
By selecting the elements in this way, a refractory and extremely active catalyst can be obtained.

【0019】本発明の他の態様によれば、一般式AB
1-xx3- δ(式中、Aはイオン半径が0.09nm〜
0.15nmである少なくとも1種の金属で占められた
カチオン部位であり、Bはイオン半径が0.05nm〜
0.10nmである少なくとも1種の金属で占められた
カチオン部位であり、金属カチオンAおよびBがほぼ同
一の理論比率で存在し、δは少なくとも約0.02の酸
素欠損量であり、Mは少なくとも1種の触媒金属によっ
て占められたカチオン部位である)で表され、ペロブス
カイト結晶構造を有する熱安定性の金属酸化物触媒の製
造方法であって、 a) 各金属カチオンA、BおよびMの前駆物質を、酸
化物、水酸化物、炭酸塩、塩またはこれらの任意の混合
物の形で、水を含む溶液と混合し、これらを反応させて
水酸化物粒子の水性懸濁液を形成する(A、BおよびM
は各々、理論比率で混合され、全体でδが約0.02を
超えるようにする)過程と、 b) 前記水性懸濁液を乾燥させることによって、乾燥
粒子を得る過程と、 c) 前記乾燥粒子を焼成する過程と、を含む熱安定性
の金属酸化物触媒の製造方法が得られる。
According to another aspect of the present invention, a compound of general formula AB
1-x M x O 3- δ (where A is an ionic radius of 0.09 nm or more
B is a cation site occupied by at least one metal having a ionic radius of 0.05 nm to 0.15 nm.
0.10 nm is a cation site occupied by at least one metal, metal cations A and B are present in approximately the same stoichiometric ratio, δ is an oxygen deficiency of at least about 0.02, and M is A cation site occupied by at least one catalytic metal), and having a perovskite crystal structure. The precursor is mixed with a solution containing water, in the form of an oxide, hydroxide, carbonate, salt or any mixture thereof, and allowed to react to form an aqueous suspension of hydroxide particles. (A, B and M
Are each mixed in stoichiometric proportions such that δ is greater than about 0.02), b) drying the aqueous suspension to obtain dry particles, c) the drying And a method for producing a heat-stable metal oxide catalyst including a step of calcining the particles.

【0020】本発明の他の目的、利点および特徴は、添
付の表を参照して一例として挙げた、以下の本発明の非
限定的な好ましい実施例の記載を読むことで一層明らか
になろう。
Other objects, advantages and features of the invention will emerge more clearly from a reading of the following description of a non-limiting preferred embodiment of the invention, given by way of example with reference to the accompanying tables. .

【0021】[0021]

【発明の実施の形態】本発明は、ペロブスカイト結晶構
造を有し、一般式ABO3で表される触媒に関する。こ
れらの触媒はさらに、部位AおよびBがいずれも金属カ
チオンを含むことを特徴とする。上記の一般式は、部位
AおよびBが同数のカチオンで占められていることを教
示している。理想的なペロブスカイト構造は、大きいカ
チオンがキューブの隅を占め、小さなカチオンがキュー
ブの中央部を占めている立方体のものである。酸素原子
は、キューブの各面の中心に位置している。このため、
A部位からのカチオンは、12個の酸素原子と配位結合
し、B部位からのカチオンは6個の酸素原子と配位結合
される。上記の構造の変形がベースになった他のペロブ
スカイト構造も周知である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst having a perovskite crystal structure and represented by the general formula ABO 3 . These catalysts are further characterized in that both sites A and B contain a metal cation. The general formula above teaches that sites A and B are occupied by the same number of cations. An ideal perovskite structure is a cube with large cations occupying the corners of the cube and small cations occupying the center of the cube. Oxygen atoms are located at the center of each face of the cube. For this reason,
The cation from site A is coordinated with 12 oxygen atoms and the cation from site B is coordinated with 6 oxygen atoms. Other perovskite structures based on variations of the above structure are well known.

【0022】A部位からのカチオンは一般に、イオン半
径が0.09nm〜0.15nmの金属原子によって占
められており、B部位からのカチオンは一般に、イオン
半径が0.05nm〜0.10nmの金属原子によって
占められている。
Cations from the A site are generally occupied by metal atoms having an ionic radius of 0.09 nm to 0.15 nm, while cations from the B site are generally occupied by metal atoms having an ionic radius of 0.05 nm to 0.10 nm. Occupied by atoms.

【0023】具体的には、本発明の触媒は、ZrO2
TiO2、La23、Y23、CeO 2、Al23、Mg
O、CaOおよびSrOなどの耐火性酸化物から製造さ
れる、耐火性で安定性の高いペロブスカイトを主成分と
している。これらのペロブスカイトは、極めて高い融点
を呈し、極めて安定しているが、炭化水素の完全酸化用
の触媒としては良くない。
More specifically, the catalyst of the present invention comprises ZrOTwo,
TiOTwo, LaTwoOThree, YTwoOThree, CeO Two, AlTwoOThree, Mg
Manufactured from refractory oxides such as O, CaO and SrO
With fire-resistant, highly stable perovskite
are doing. These perovskites have extremely high melting points
And extremely stable, but for complete oxidation of hydrocarbons
It is not good as a catalyst.

【0024】これらの耐火性が高いペロブスカイトは、
B部位を1種以上の遷移金属カチオンMでドーピングす
ることによって触媒的に活性となる。また、部位Aおよ
びBのカチオンは、酸素欠損量が少なくとも約2%にな
るように選択される。本発明のこれら2つの特徴によっ
て、耐火性触媒を単に極めて安定しているだけでなく、
高温暴露後であっても触媒的に活性なものとすることが
できる。
These perovskites having high fire resistance are:
By doping the B site with one or more transition metal cations M, it becomes catalytically active. Also, the cations at sites A and B are selected so that the amount of oxygen deficiency is at least about 2%. These two features of the present invention not only make the refractory catalyst very stable,
Even after high-temperature exposure, it can be made catalytically active.

【0025】これらの耐火性かつ極めて活性の高い、ペ
ロブスカイト構造を有する触媒の一般式はAB1-xx
3- δ(δ≧0.02)である。(尚、説明を明確にする
目的で、本発明の触媒について記述した以下の式ではδ
を省いてあるが、常にδが示唆されているものと解釈す
べきである。)B部位の遷移金属でのドーピングは、維
持したい熱安定性ごとに十分に制御しなければならな
い。熱安定性を維持しつつ触媒特性を最大限にするため
の部位Bにおけるドーピングの推定最大レベルは、理論
比率で約30%である。最低ドーピング量として約1%
が必要であるため、上記の式では、0.008≦x≦
0.32、好ましくは、0.01≦x≦0.30とな
る。
The general formula of these refractory and extremely active catalysts having a perovskite structure is AB 1-x M x O
3- δ (δ ≧ 0.02). (Note that, for the purpose of clarifying the explanation, in the following formula describing the catalyst of the present invention, δ
, But should always be interpreted as suggesting δ. ) The doping of the B site with the transition metal must be well controlled for each thermal stability that one wishes to maintain. The estimated maximum level of doping at site B to maximize catalytic properties while maintaining thermal stability is about 30% in theory. About 1% as the minimum doping amount
Is required, in the above equation, 0.008 ≦ x ≦
0.32, preferably 0.01 ≦ x ≦ 0.30.

【0026】実験を行った結果、十分な酸素欠損量およ
び高温での熱安定性と良好な触媒活性の両方を得るため
には、特定の元素を用いると好ましいことが分かった。
カチオンAは、好ましくは、ランタン、カルシウム、ス
トロンチウムおよびこれらの混合物からなる群から選択
される。本発明の触媒の最適な熱安定性を保証するため
には、カチオンBは、好ましくは、ジルコニウム、セリ
ウム、チタン、イットリウム、アルミニウムおよびこれ
らの混合物からなる群から選択される。上述したよう
に、これらのカチオンは、耐火性かつ不揮発性の酸化物
を形成可能な群から選択される。
As a result of an experiment, it has been found that it is preferable to use a specific element in order to obtain a sufficient amount of oxygen deficiency, thermal stability at a high temperature, and good catalytic activity.
Cation A is preferably selected from the group consisting of lanthanum, calcium, strontium and mixtures thereof. In order to guarantee the optimal thermal stability of the catalyst according to the invention, the cation B is preferably selected from the group consisting of zirconium, cerium, titanium, yttrium, aluminum and mixtures thereof. As mentioned above, these cations are selected from the group capable of forming refractory and non-volatile oxides.

【0027】ドーピング用触媒金属カチオンは、好まし
くは、原子番号25〜28の元素すなわち、マンガン、
鉄、コバルトおよびニッケルからなる群から選択され
る。これらの遷移金属は相応に不揮発性である。
The catalyst metal cation for doping is preferably an element having an atomic number of 25 to 28, that is, manganese,
It is selected from the group consisting of iron, cobalt and nickel. These transition metals are correspondingly nonvolatile.

【0028】本発明の触媒は、まず第1に、特定のペロ
ブスカイト組成物の成分の前駆物質を混合することによ
って製造可能である。カチオンAは、不揮発性酸化物ま
たは炭酸塩として提供されると好ましい。カチオンB
は、揮発性が極めて低い耐火性酸化物由来のものである
と好ましい。部位Bをドーピングする触媒遷移金属は、
好ましくは金属硝酸塩の水溶液の形態で提供されるが、
酸化物、炭酸塩または他の塩も使用可能である。
The catalyst of the present invention can be prepared first by mixing the precursors of the components of the particular perovskite composition. Cation A is preferably provided as a non-volatile oxide or carbonate. Cation B
Is preferably derived from a refractory oxide having extremely low volatility. The catalytic transition metal doping site B is
Preferably provided in the form of an aqueous solution of metal nitrate,
Oxides, carbonates or other salts can also be used.

【0029】全ての成分を厳密に理論比率で混合する。
均質な懸濁液が得られるまで初期前駆物質懸濁液を混合
する。懸濁粒子の粒度は、1μm未満であると好まし
い。混練または高速混合によって懸濁液を均質化しても
よい。
All components are strictly mixed in stoichiometric proportions.
Mix the initial precursor suspension until a homogeneous suspension is obtained. Preferably, the particle size of the suspended particles is less than 1 μm. The suspension may be homogenized by kneading or high-speed mixing.

【0030】このようにして得られる懸濁液を、凍結乾
燥または噴霧乾燥、あるいは従来技術において周知の他
の任意の方法によって乾燥させる。1000℃未満の温
度で焼成することによって、ペロブスカイト相が得られ
る。
The suspension thus obtained is dried by freeze-drying or spray-drying, or any other method known in the art. By firing at a temperature lower than 1000 ° C., a perovskite phase is obtained.

【0031】[0031]

【実施例1】 Ca(Zr0.920.080.9Ni0.13
の製造 炭酸カルシウム20.00gと、イットリア安定化(8
wt%)ジルコニア微粉末(Zircar Inc.)
22.50gとを250mlのポリエチレン製ボトルに
仕込み、強く攪拌することによって、懸濁液を得る。こ
の混合物に、二硝酸ニッケル六水和物5.812gを含
有する溶液65mlを導入する。次に、得られた懸濁液
にジルコニアボール100mlを加える。この懸濁液を
2時間混練した後、練磨用のボールと一緒に液体窒素中
に懸濁液を注いで急速凍結させる。次いで凍結した材料
を市販の凍結乾燥機で真空下にて乾燥させる。ふるいに
かけて乾燥した前駆物質粉末からボールを分離する。こ
のようにして得られた粉末を中間練磨なしで2段階で焼
成する。最後に、得られたペロブスカイト粉末を130
0℃で7時間老化させる。
Example 1 Ca (Zr 0.92 Y 0.08 ) 0.9 Ni 0.1 O 3
Production of calcium carbonate 20.00 g and yttria stabilization (8
wt%) Zirconia fine powder (Zircar Inc.)
22.50 g were charged into a 250 ml polyethylene bottle and stirred vigorously to obtain a suspension. To this mixture is introduced 65 ml of a solution containing 5.812 g of nickel dinitrate hexahydrate. Next, 100 ml of zirconia balls are added to the obtained suspension. After kneading the suspension for 2 hours, the suspension is poured into liquid nitrogen together with a grinding ball and rapidly frozen. The frozen material is then dried in a commercial freeze dryer under vacuum. Separate the balls from the sieved and dried precursor powder. The powder thus obtained is calcined in two stages without intermediate grinding. Finally, the obtained perovskite powder was added to 130
Aging at 0 ° C. for 7 hours.

【0032】[0032]

【実施例2】 Sr(Zr0.920.080.9Mn0.13
の製造 炭酸ストロンチウム29.53gをイットリア安定化ジ
ルコニア粉末(Zircar Inc.)22.50g
と混合する。二硝酸マンガン六水和物5.74gを含有
する溶液65mlを混合物に導入する。得られた懸濁液
を実施例1で説明したようにして処理する。
Example 2 Sr (Zr 0.92 Y 0.08 ) 0.9 Mn 0.1 O 3
Preparation of 29.53 g of strontium carbonate 22.50 g of yttria-stabilized zirconia powder (Zircar Inc.)
Mix with. 65 ml of a solution containing 5.74 g of manganese dinitrate hexahydrate are introduced into the mixture. The suspension obtained is treated as described in Example 1.

【0033】[0033]

【実施例3】 SrTi0.9Fe0.13の製造 炭酸ストロンチウム36.908g、アナターゼ(二酸
化チタン)17.978gおよびγ酸化鉄(γFe
23)1.996gを蒸留水75mlに導入する。得ら
れた懸濁液を上記の実施例と同様にして処理する。
Example 3 Production of SrTi 0.9 Fe 0.1 O 3 36.908 g of strontium carbonate, 17.978 g of anatase (titanium dioxide) and gamma iron oxide (γFe
1.996 g of 2 O 3 ) are introduced into 75 ml of distilled water. The suspension obtained is treated as in the above example.

【0034】[0034]

【実施例4】 SrTi0.8Fe0.23の製造 硝酸鉄九水和物22.171gを蒸留水80mlに溶解
し、溶液を250mlのポリエチレン製ボトルに仕込
む。この溶液に、アナターゼ17.534gおよび炭酸
ストロンチウム40.51gを少量ずつ添加する。Sr
CO3の添加は、二酸化炭素のエボリューションによっ
て達成する。これを停止した時点で、得られた懸濁液を
上記の実施例と同様にして処理する。
Example 4 Production of SrTi 0.8 Fe 0.2 O 3 22.171 g of iron nitrate nonahydrate was dissolved in 80 ml of distilled water, and the solution was charged into a 250 ml polyethylene bottle. 17.534 g of anatase and 40.51 g of strontium carbonate are added to this solution in small portions. Sr
The addition of CO 3 is achieved by an evolution of carbon dioxide. When this is stopped, the suspension obtained is treated in the same manner as in the above example.

【0035】[0035]

【実施例5】 SrTi0.8Fe0.1Mn0.13の製造 SrTi0.8Fe0.23を製造する実施例4と同様に、
炭酸ストロンチウム36.908gと、アナターゼ1
5.980gと、γ酸化鉄1.998gとの混合物を、
硝酸マンガン六水和物7.176gを含有する溶液に少
量ずつ添加した上で、上記の実施例で説明した全ての機
械操作および熱操作を行う。
Example 5 Production of SrTi 0.8 Fe 0.1 Mn 0.1 O 3 As in Example 4 for producing SrTi 0.8 Fe 0.2 O 3 ,
36.908 g of strontium carbonate and anatase 1
A mixture of 5.980 g and 1.998 g of gamma iron oxide is
All the mechanical and thermal operations described in the above examples are carried out after the addition in small portions to a solution containing 7.176 g of manganese nitrate hexahydrate.

【0036】[0036]

【実施例6】 SrTi0.9Co0.13の製造 実施例5と同様に、アナターゼ14.380gと十分に
混合した炭酸ストロンチウム29.526gを、溶解硝
酸コバルト六水和物5.821gを含有する水溶液75
mlに少量ずつ添加する。ここでも得られた懸濁液を上
記の実施例と同様に処理する。
Example 6 Production of SrTi 0.9 Co 0.1 O 3 As in Example 5, 29.526 g of strontium carbonate sufficiently mixed with 14.380 g of anatase, and an aqueous solution containing 5.821 g of dissolved cobalt nitrate hexahydrate 75
Add in small portions to ml. Here too, the suspension obtained is treated in the same way as in the above example.

【0037】[0037]

【実施例7】 LaAl0.9Co0.13の製造 250mLのポリエチレン製ボトルに仕込んだ酸化ラン
タン16.455gを、蒸留水25mLによって湿らせ
た。水酸化ランタンを形成する発熱反応を完了するのに
必要な約2時間後、三硝酸アルミニウム九水和物34.
11gおよび二硝酸コバルト六水和物2.911gを含
有する溶液70mLを強く攪拌しながら添加した。この
急速にゲル化する混合物を、少なくとも15分間ジルコ
ニアボールを用いて混練した後、凍結乾燥によって処理
し、700℃で数時間焼成した。
Example 7 Production of LaAl 0.9 Co 0.1 O 3 16.455 g of lanthanum oxide charged in a 250 mL polyethylene bottle was moistened with 25 mL of distilled water. After about 2 hours required to complete the exothermic reaction to form lanthanum hydroxide, aluminum trinitrate nonahydrate.
70 mL of a solution containing 11 g and 2.911 g of cobalt dinitrate hexahydrate was added with vigorous stirring. The rapidly gelling mixture was kneaded with zirconia balls for at least 15 minutes, then processed by freeze drying and calcined at 700 ° C. for several hours.

【0038】[0038]

【実施例8】 La0.85Sr0.15Al0.88Fe0.123
の製造 硝酸ストロンチウム6.343gを蒸留水25mLに溶
解した。この溶液を用いて酸化ランタン27.97gを
湿らせ、約2時間放置して反応させ、水酸化ランタンを
形成した。三硝酸アルミニウム九水和物66.02gを
蒸留水100mLに溶解し、この溶液を500mLのポ
リエチレン製ボトルに仕込んだ。この溶液に、γ酸化鉄
1.9164gを溶解した。次に、強く攪拌しながら水
酸化ランタンの濃い懸濁液を速やかに導入した。数分で
ゲル化したこの混合物を、加えたジルコニアボール(1
50mL)を用いて3時間混錬した。
Embodiment 8 La 0.85 Sr 0.15 Al 0.88 Fe 0.12 O 3
Production of 6.343 g of strontium nitrate was dissolved in 25 mL of distilled water. Using this solution, 27.97 g of lanthanum oxide was moistened and left to react for about 2 hours to form lanthanum hydroxide. 66.02 g of aluminum trinitrate nonahydrate was dissolved in 100 mL of distilled water, and this solution was charged into a 500 mL polyethylene bottle. In this solution, 1.9164 g of gamma iron oxide was dissolved. Then, a strong suspension of lanthanum hydroxide was quickly introduced with vigorous stirring. The mixture gelled in a few minutes was added to the zirconia ball (1
(50 mL) for 3 hours.

【0039】[0039]

【実施例9】 La0.85Sr0.15Al0.87Fe0.09Co
0.043の製造 実施例8と同様の方法によって、この触媒を製造した。
しかしながら、この例では、硝酸アルミニウムの代わり
にベーマイトを用いた。硝酸ストロンチウム6.343
gを蒸留水25mLに溶解した。この溶液を酸化ランタ
ン27.97g上に注ぎ、これを完全に湿らせた。約2
時間で、酸化ランタンが発熱反応によって水酸化ランタ
ンに変化した。硝酸鉄九水和物7.27gと硝酸コバル
ト六水和物2.328gとを含有し、250mLのポリ
エチレン製ボトルに保持された溶液65mLにベーマイ
ト11.51gを溶解した懸濁液に上記の懸濁液を導入
した。この混合物に、砕磨用ジルコニアボール100m
Lを加え、懸濁液を3時間混練した。最終懸濁液を上述
した実施例と同様にして処理し、ペロブスカイト触媒を
得た。
Embodiment 9 La 0.85 Sr 0.15 Al 0.87 Fe 0.09 Co
Production of 0.04 O 3 This catalyst was produced in the same manner as in Example 8.
However, in this example, boehmite was used instead of aluminum nitrate. Strontium nitrate 6.343
g was dissolved in 25 mL of distilled water. The solution was poured onto 27.97 g of lanthanum oxide, which was completely wetted. About 2
Over time, the lanthanum oxide was converted to lanthanum hydroxide by an exothermic reaction. The suspension was prepared by dissolving 11.51 g of boehmite in 65 mL of a solution containing 7.27 g of iron nitrate nonahydrate and 2.328 g of cobalt nitrate hexahydrate and held in a 250 mL polyethylene bottle. A suspension was introduced. To this mixture, zirconia balls for grinding 100 m
L was added and the suspension was kneaded for 3 hours. The final suspension was treated in the same manner as in the above-mentioned example to obtain a perovskite catalyst.

【0040】[0040]

【比較例1】 Sr0.8La0.2MnAl1119- δの製
造 ポリエチレン製の250mLのボトルにて酸化ランタン
1.645gと十分に混合したベーマイト30.5g
を、硝酸ストロンチウム8.4567gと、硝酸マンガ
ン14.35gと、砕磨用ジルコニアボール100mL
とを含有する溶液70mLに添加した。この混合物を3
時間混錬し、次いで他の実施例と同様にして処理した。
1100℃で12時間の焼成時にβ−アルミナ構造が形
成された。
Comparative Example 1 Production of Sr 0.8 La 0.2 MnAl 11 O 19- δ 30.5 g of boehmite thoroughly mixed with 1.645 g of lanthanum oxide in a 250 mL bottle made of polyethylene
Was added to strontium nitrate (8.4567 g), manganese nitrate (14.35 g), and crushed zirconia balls (100 mL).
Was added to 70 mL of a solution containing This mixture is
The mixture was kneaded for a time, and then processed in the same manner as in the other examples.
Upon firing at 1100 ° C. for 12 hours, a β-alumina structure was formed.

【0041】[0041]

【比較例2〜4】比較の目的で、国際特許出願公開第W
O97/48641号に記載の方法によって、遷移金属
のみを主成分とする3種類のペロブスカイト組成物すな
わち、以下の成分を有する、LaMnO3、La0.8Sr
0.2MnO3、La0.66Sr0.34Ni0.3Co0.73を製
造した。
Comparative Examples 2 to 4 For comparison purposes, International Patent Application Publication No. W
According to the method described in O97 / 48641, three kinds of perovskite compositions containing only a transition metal as a main component, that is, LaMnO 3 and La 0.8 Sr having the following components:
0.2 MnO 3 , La 0.66 Sr 0.34 Ni 0.3 Co 0.7 O 3 were produced.

【0042】La0.8Sr0.2MnO3製造用に、酸化ラ
ンタン(La23)26.4g、硝酸ストロンチウム
8.465gおよび二硝酸マンガン六水和物56.41
gを用い、LaMnO3の製造用に、酸化ランタン(L
23)33gおよび二硝酸マンガン六水和物56.4
1g、を用い、La0.66Sr0.34Ni0.3Co0.73
製造用に、酸化ランタン(La23)10.752g、
硝酸コバルト六水和物20.373g、硝酸ニッケル六
水和物8.724gおよび硝酸ストロンチウム7.19
5gを用いた。
For the production of La 0.8 Sr 0.2 MnO 3, 26.4 g of lanthanum oxide (La 2 O 3 ), 8.465 g of strontium nitrate and 56.41 of manganese dinitrate hexahydrate were used.
using the g, for the production of LaMnO 3, lanthanum oxide (L
a 2 O 3) 33g and secondary manganese nitrate hexahydrate 56.4
1 g of lanthanum oxide (La 2 O 3 ) for the production of La 0.66 Sr 0.34 Ni 0.3 Co 0.7 O 3 .
20.373 g of cobalt nitrate hexahydrate, 8.724 g of nickel nitrate hexahydrate and 7.19 of strontium nitrate
5 g were used.

【0043】590℃で12時間、さらに640℃で4
時間の焼成後、比表面積は10m2/gであり、触媒活
性は極めて高かった。本発明の触媒と比較するために、
この実施例のペロブスカイトを空気中にて1070℃で
26時間老化させた。この老化によって、比表面積が約
0.6m2/gまで落ちた。
12 hours at 590 ° C., and 4 hours at 640 ° C.
After calcining for hours, the specific surface area was 10 m 2 / g, and the catalytic activity was extremely high. For comparison with the catalyst of the present invention,
The perovskite of this example was aged in air at 1070 ° C. for 26 hours. This aging reduced the specific surface area to about 0.6 m 2 / g.

【0044】[0044]

【実施例10】 本発明の触媒のメタンの触媒燃焼での
使用 内径1.3cmのアルミナセラミック管からなる実験室
の管状リアクタにおいて、実施例1〜9の触媒の触媒活
性を試験した。活性は、遷移金属のみを主成分とする
(B部位の耐火性酸化物なし)ペロブスカイト、LaM
nO3、La0.8Sr0.2MnO3、La0.66Sr0.34Ni
0.3Co0.73の活性とβ−アルミナすなわちSr0.8
0.2MnAl1119- δの活性と比較した。
Example 10 Use of the Catalyst of the Invention in Catalytic Combustion of Methane The catalytic activity of the catalysts of Examples 1 to 9 was tested in a laboratory tubular reactor consisting of 1.3 cm inner diameter alumina ceramic tubes. The activity was perovskite mainly composed of a transition metal (no refractory oxide at the B site), LaM
nO 3 , La 0.8 Sr 0.2 MnO 3 , La 0.66 Sr 0.34 Ni
0.3 Co 0.7 O 3 activity and β-alumina ie Sr 0.8 L
The activity was compared with the activity of a 0.2 MnAl 11 O 19- δ .

【0045】軽石(粒度350〜500μmの粒子)1
0mlで稀釈(混合)した触媒粉末1gの触媒床が、リ
アクタ管と中央を通る熱電対アルミナシース(直径0.
64cm)との間の環状の空間を満たした。空気中に2
%のメタンを含有する反応混合物を400ml/分で触
媒上に流した。リアクタを段階的に約50℃まで加熱し
た。温度が安定した時点で、乾燥剤で水分を除去した
後、メタンおよび二酸化炭素の場合にはPorapak
Qカラムを用いたガスクロマトグラフィによって排液
を分析した。
Pumice (particles having a particle size of 350 to 500 μm) 1
A catalyst bed of 1 g of the catalyst powder diluted (mixed) with 0 ml is provided with a thermocouple alumina sheath (diameter of 0. 0) passing through the reactor tube and the center.
64 cm). 2 in the air
% Of methane was passed over the catalyst at 400 ml / min. The reactor was heated stepwise to about 50 ° C. When the temperature stabilizes, water is removed with a desiccant, and in the case of methane and carbon dioxide, Porapak
The effluent was analyzed by gas chromatography using a Q column.

【0046】以下の表1は、空気中の2%のメタンにつ
いて、本発明の触媒およびB部位に耐火性酸化物を含有
しない遷移金属のみを主成分とする他のペロブスカイト
上で特定の転化率(10%、50%および90%)が得
られた時点の温度を示している。触媒は全て1070℃
で26時間老化させたものである。
Table 1 below shows specific conversions for 2% methane in air over the catalysts of the present invention and other perovskites based solely on transition metals containing no refractory oxides at the B site. (10%, 50% and 90%) at which point the temperature was obtained. All catalysts are 1070 ° C
For 26 hours.

【0047】[0047]

【表1】 [Table 1]

【0048】表1から、本発明による5種類の触媒の比
表面積(SSA)および触媒活性は、遷移金属のみを主
成分とした触媒よりも大きいことが分かる。本発明の触
媒では、メタンを90%転化するまでの温度が耐火性酸
化物を含まない触媒よりも低いことが分かるであろう。
10%メタン転化率ですら、本発明の触媒は極めて良好
な触媒活性を示した。
From Table 1, it can be seen that the specific surface area (SSA) and catalytic activity of the five catalysts according to the invention are greater than those of the catalysts based solely on transition metals. It will be appreciated that the catalyst of the present invention has a lower temperature to 90% conversion of methane than the catalyst without refractory oxides.
Even at 10% methane conversion, the catalyst of the present invention showed very good catalytic activity.

【0049】表2は、空気中の2%のメタンについて、
本発明の触媒上で特定の転化率(10%、50%および
90%)が得られた時点の温度を示している。結果をβ
−アルミナ構造を有する触媒で得られた結果と比較す
る。触媒は全て1070℃で4時間、1300℃で7時
間老化させたものである。
Table 2 shows that for 2% methane in air,
Shown are the temperatures at which specific conversions (10%, 50% and 90%) were obtained on the catalyst of the invention. Β
-Compare with results obtained with catalysts having an alumina structure. All catalysts were aged at 1070 ° C. for 4 hours and 1300 ° C. for 7 hours.

【0050】[0050]

【表2】 [Table 2]

【0051】表2の結果から、本発明による触媒の触媒
活性は、従来技術において周知の最も良いβ−アルミナ
の触媒活性と同等以上であることが分かる。本発明によ
る触媒のβ−アルミナと比較した場合の主な利点は、熱
衝撃に対する耐性を高める要因であると思われる熱膨張
の等比体積係数にある。もう1つの利点は、製造方法が
簡単なことにある。
From the results in Table 2, it can be seen that the catalytic activity of the catalyst according to the invention is equal to or better than the best catalytic activity of β-alumina known in the prior art. The main advantage of the catalyst according to the invention compared to β-alumina lies in the isosteric coefficient of thermal expansion, which is believed to be a factor that increases the resistance to thermal shock. Another advantage is that the manufacturing method is simple.

【0052】表3も、空気中の2%のメタンについて、
最後の実施例のいくつかの触媒上で特定の転化率が得ら
れた時点の温度を示している。ここでも、得られた結果
とβ−アルミナ構造を有する同一の触媒で得られた結果
と比較する。これらの触媒を1300℃で7時間、14
50℃で6時間老化させた。
Table 3 also shows that for 2% methane in air,
Figure 3 shows the temperature at which a certain conversion is obtained on some of the catalysts of the last example. Again, the results obtained are compared with those obtained with the same catalyst having a β-alumina structure. These catalysts were treated at 1300 ° C. for 7 hours for 14 hours.
Aged at 50 ° C. for 6 hours.

【0053】[0053]

【表3】 [Table 3]

【0054】表3から、本発明の触媒の中には、130
0℃を超える温度で老化させた後、最も良いβ−アルミ
ナよりも良好な触媒活性を有するものがあることが分か
る。
Table 3 shows that some of the catalysts of the present invention contained 130
It can be seen that after aging at temperatures above 0 ° C., some have better catalytic activity than the best β-alumina.

【0055】以上、本発明の好ましい実施例を参照して
本発明を説明したが、添付の請求の範囲に定義する本発
明の主題の趣旨および本質を逸脱することなく修正が可
能である。
Although the present invention has been described with reference to preferred embodiments of the invention, modifications may be made without departing from the spirit and essence of the inventive subject matter as defined in the appended claims.

【0056】[0056]

【発明の効果】本発明を実施することにより、比較的腐
食性の環境で高温での用途に適した、熱的に安定な高性
能触媒を得ることができ、さらに、1200℃を超える
温度に耐えることができ、この温度でも比較的良好な触
媒活性を発揮できる触媒を得ることができる。
According to the present invention, a thermally stable high-performance catalyst suitable for use at a high temperature in a relatively corrosive environment can be obtained. A catalyst that can withstand and exhibit relatively good catalytic activity even at this temperature can be obtained.

【0057】また、本発明によると、一般式ABO3
表され、酸素の欠損量が少なくとも約0.02である触
媒であり、ペロブスカイトタイプの構造を有し、自己支
持形態に成形または他の耐火性担体材料上で使用可能な
触媒を製造するための単純な方法が提供される。
Further, according to the present invention, there is provided a catalyst represented by the general formula ABO 3 having an oxygen deficiency of at least about 0.02, having a perovskite type structure, and being formed into a self-supporting form or other A simple method is provided for producing a catalyst that can be used on a refractory support material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01G 45/00 C01G 49/00 A 49/00 51/00 A 51/00 53/00 A 53/00 B01J 23/84 311M (71)出願人 599124437 ソシエテ アン コマンディット ガズ メトロポリタン SOCIETE EN COMMANDI TE GAZ METROPOLITAI N カナダ,エイチ2ケイ 2エックス3,ケ ベック,モンレアル,リュ デュ アーヴ ル,1717 (72)発明者 ジトゥカ キルシュネロヴァ カナダ,エイチ3ダブリュー 2エル2, ケベック,モンレアル,ロスリン アヴニ ュ,4808 (72)発明者 ダニロ クルヴァナ カナダ,エイチ3ダブリュー 2エル2, ケベック,モンレアル,ロスリン アヴニ ュ,4808──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01G 45/00 C01G 49/00 A 49/00 51/00 A 51/00 53/00 A 53/00 B01J 23/84 311M (71) Applicant 599124437 Societe en Commandine Gaz Metropolitan SOCIETE EN COMMANDITE GAZMETROPOLITAN Canada, H2K 2EX3, Quebec, Monreal, Rue du Havre, 1717 (72) Nerova Canada, 3H 2L2, Quebec, Montreal, Montreal, Rosslyn Avigne, 4808 Phosphorus Avni Interview, 4808

Claims (28)

【特許請求の範囲】[Claims] 【請求項1】 一般式ABO3(式中、Aはイオン半径
が0.09nm〜0.15nmである少なくとも1種の
金属イオンで占められたカチオン部位であり、Bはイオ
ン半径が0.05nm〜0.10nmである少なくとも
1種の金属イオンで占められたカチオン部位であり、金
属カチオンAおよびBがほぼ同一の理論比率で存在す
る)で表され、ペロブスカイト結晶構造を有する熱安定
性の金属酸化物触媒において、前記触媒が式ABO3- δ
(式中、δは少なくとも0.02の酸素欠損量である)
で表される改良された熱安定性の金属酸化物触媒。
1. The formula ABO 3 wherein A is a cation site occupied by at least one metal ion having an ionic radius of 0.09 nm to 0.15 nm, and B is an ionic site having a ionic radius of 0.05 nm. Cation site occupied by at least one metal ion of about 0.10 nm, wherein metal cations A and B are present in approximately the same stoichiometric ratio) and have a perovskite crystal structure In an oxide catalyst, the catalyst has the formula ABO 3- δ
(Where δ is an oxygen deficiency of at least 0.02)
An improved heat-stable metal oxide catalyst represented by the formula:
【請求項2】 金属カチオンBが、Mで表される少なく
とも1種の触媒金属でドーピングされ、一般式A(B
M)O3- δで表される触媒を提供する、請求項1に記載
の熱安定性の金属酸化物触媒。
2. A method according to claim 1, wherein the metal cation B is doped with at least one catalytic metal represented by M,
2. The thermally stable metal oxide catalyst according to claim 1, which provides a catalyst represented by M) O3 - δ .
【請求項3】 前記少なくとも1種の触媒金属Mが、原
子番号25〜28の元素からなる群から選択される請求
項2に記載の熱安定性の金属酸化物触媒。
3. The heat-stable metal oxide catalyst according to claim 2, wherein the at least one catalyst metal M is selected from the group consisting of elements having atomic numbers of 25 to 28.
【請求項4】 金属カチオンBが、0.01〜0.30
の量でドーピングされ、一般式AB1-xx3- δ(式
中、0.01≦x≦0.30である)で表される触媒を
提供する、請求項3に記載の熱安定性の金属酸化物触
媒。
4. The method according to claim 1, wherein the metal cation B is 0.01 to 0.30.
4. The heat of claim 3 which provides a catalyst doped with an amount of and having the general formula AB 1-x M x O 3- δ wherein 0.01 ≦ x ≦ 0.30. Stable metal oxide catalyst.
【請求項5】 金属カチオンAが、ランタン、カルシウ
ム、ストロンチウムおよびこれらの混合物からなる群か
ら選択される、請求項1に記載の熱安定性の金属酸化物
触媒。
5. The thermostable metal oxide catalyst according to claim 1, wherein the metal cation A is selected from the group consisting of lanthanum, calcium, strontium and mixtures thereof.
【請求項6】 金属カチオンAが、ランタン、カルシウ
ム、ストロンチウムおよびこれらの混合物からなる群か
ら選択される、請求項4に記載の熱安定性の金属酸化物
触媒。
6. The thermally stable metal oxide catalyst according to claim 4, wherein the metal cation A is selected from the group consisting of lanthanum, calcium, strontium and mixtures thereof.
【請求項7】 金属カチオンBが、ジルコニウム、セリ
ウム、チタン、イットリウム、アルミニウムおよびこれ
らの混合物からなる群から選択される、請求項1に記載
の熱安定性の金属酸化物触媒。
7. The thermostable metal oxide catalyst according to claim 1, wherein the metal cation B is selected from the group consisting of zirconium, cerium, titanium, yttrium, aluminum and mixtures thereof.
【請求項8】 金属カチオンBが、ジルコニウム、セリ
ウム、チタン、イットリウム、アルミニウムおよびこれ
らの混合物からなる群から選択される、請求項4に記載
の熱安定性の金属酸化物触媒。
8. The heat-stable metal oxide catalyst according to claim 4, wherein the metal cation B is selected from the group consisting of zirconium, cerium, titanium, yttrium, aluminum and mixtures thereof.
【請求項9】 金属カチオンBが、ジルコニウム、セリ
ウム、チタン、イットリウム、アルミニウムおよびこれ
らの混合物からなる群から選択される、請求項6に記載
の熱安定性の金属酸化物触媒。
9. The thermally stable metal oxide catalyst according to claim 6, wherein the metal cation B is selected from the group consisting of zirconium, cerium, titanium, yttrium, aluminum and mixtures thereof.
【請求項10】 式SrZr1-xx3- δ(式中、x≦
0.3である)で表される、請求項9に記載の熱安定性
の金属酸化物触媒。
10. The formula SrZr 1-x M x O 3- δ (where x ≦
10. The heat-stable metal oxide catalyst according to claim 9, wherein the catalyst is 0.3.
【請求項11】 式CaZr1-xx3- δ(式中、x≦
0.3である)で表される、請求項9に記載の熱安定性
の金属酸化物触媒。
11. The formula CaZr 1-x M x O 3- δ (where x ≦
10. The heat-stable metal oxide catalyst according to claim 9, wherein the catalyst is 0.3.
【請求項12】 式SrTi1-xx3- δ(式中、x≦
0.3である)で表される、請求項9に記載の熱安定性
の金属酸化物触媒。
12. The formula SrTi 1-x M x O 3- δ (where x ≦
10. The heat-stable metal oxide catalyst according to claim 9, wherein the catalyst is 0.3.
【請求項13】 Mが鉄(Fe)である請求項12に記
載の熱安定性の金属酸化物触媒。
13. The thermally stable metal oxide catalyst according to claim 12, wherein M is iron (Fe).
【請求項14】 Mが、鉄(Fe)およびマンガン(M
n)またはコバルト(Co)の混合物である請求項12
に記載の熱安定性の金属酸化物触媒。
14. M is iron (Fe) and manganese (M
13. A mixture of n) or cobalt (Co).
3. The heat-stable metal oxide catalyst according to 1.).
【請求項15】 式La1-ySryAl1-xx3- δ(式
中、x≦0.3であり、y≦0.3である)で表され
る、請求項9に記載の熱安定性の金属酸化物触媒。
15. Formula La 1-y Sr y Al 1 -x M x O 3- δ ( wherein, a x ≦ 0.3, a is y ≦ 0.3) represented by the claims 9 3. The heat-stable metal oxide catalyst according to 1.
【請求項16】 Mが鉄(Fe)である請求項15に記
載の熱安定性の金属酸化物触媒。
16. The thermally stable metal oxide catalyst according to claim 15, wherein M is iron (Fe).
【請求項17】 Mが、鉄(Fe)およびマンガン(M
n)またはコバルト(Co)の混合物である請求項15
に記載の熱安定性の金属酸化物触媒。
17. M is iron (Fe) and manganese (M
16. A mixture of n) or cobalt (Co).
3. The heat-stable metal oxide catalyst according to 1.).
【請求項18】 一般式ABMO3- δ(式中、Aはイオ
ン半径が0.09nm〜0.15nmである少なくとも
1種の金属イオンで占められたカチオン部位であり、B
はイオン半径が0.05nm〜0.10nmである少な
くとも1種の金属イオンで占められたカチオン部位であ
り、金属カチオンAおよびBがほぼ同一の理論比率で存
在し、δは少なくとも0.02の酸素欠損量であり、M
は少なくとも1種の触媒金属によって占められたカチオ
ン部位である)で表され、ペロブスカイト結晶構造を有
する熱安定性の金属酸化物触媒の製造方法であって、 a) 各金属カチオンA、BおよびMの前駆物質を、酸
化物、水酸化物、炭酸塩、塩またはこれらの任意の混合
物の形で、水を含む溶液と混合し、これらを反応させて
水酸化物粒子の水性懸濁液を形成する(A、BおよびM
は各々、理論比率で混合され、全体で酸素欠損量が少な
くとも約0.02となるようにする)過程と、 b) 前記水性懸濁液を乾燥させることによって、乾燥
粒子を得る過程と、 c) 前記乾燥粒子を焼成する過程と、を含む熱安定性
の金属酸化物触媒の製造方法。
18. A general formula ABMO 3- δ wherein A is a cation site occupied by at least one metal ion having an ionic radius of 0.09 nm to 0.15 nm;
Is a cation site occupied by at least one metal ion having an ionic radius of 0.05 nm to 0.10 nm, wherein metal cations A and B are present in almost the same theoretical ratio, and δ is at least 0.02. Oxygen deficiency, M
Is a cation site occupied by at least one catalytic metal) and comprises a perovskite crystal structure, comprising: a) each metal cation A, B and M Is mixed with a solution containing water in the form of an oxide, hydroxide, carbonate, salt or any mixture thereof and reacting to form an aqueous suspension of hydroxide particles. (A, B and M
Are each mixed in a stoichiometric ratio so that the total oxygen deficiency is at least about 0.02); b) drying the aqueous suspension to obtain dry particles; c. And b) calcining the dried particles.
【請求項19】 焼成過程c)が、1000℃未満の温
度で行われる請求項18に記載の熱安定性の金属酸化物
触媒の製造方法。
19. The process according to claim 18, wherein the calcination step c) is performed at a temperature below 1000 ° C.
【請求項20】 触媒金属Mが、原子番号25〜28の
元素からなる群から選択される請求項18に記載の熱安
定性の金属酸化物触媒の製造方法。
20. The method according to claim 18, wherein the catalyst metal M is selected from the group consisting of elements having atomic numbers of 25 to 28.
【請求項21】 金属カチオンMの前記前駆物質が塩で
ある請求項20に記載の熱安定性の金属酸化物触媒の製
造方法。
21. The method according to claim 20, wherein the precursor of the metal cation M is a salt.
【請求項22】 前記塩が硝酸塩である請求項21に記
載の熱安定性の金属酸化物触媒の製造方法。
22. The method according to claim 21, wherein the salt is a nitrate.
【請求項23】 金属カチオンAが、ランタン、カルシ
ウム、ストロンチウムおよびこれらの混合物からなる群
から選択され、その前駆物質形態が、不溶性酸化物また
は炭酸塩である請求項18に記載の熱安定性の金属酸化
物触媒の製造方法。
23. The method of claim 18, wherein the metal cation A is selected from the group consisting of lanthanum, calcium, strontium, and mixtures thereof, and wherein the precursor form is an insoluble oxide or carbonate. A method for producing a metal oxide catalyst.
【請求項24】 金属カチオンAが、ランタン、カルシ
ウム、ストロンチウムおよびこれらの混合物からなる群
から選択され、その前駆物質形態が、不溶性酸化物また
は炭酸塩である請求項22に記載の熱安定性の金属酸化
物触媒の製造方法。
24. The method of claim 22, wherein the metal cation A is selected from the group consisting of lanthanum, calcium, strontium, and mixtures thereof, and wherein the precursor form is an insoluble oxide or carbonate. A method for producing a metal oxide catalyst.
【請求項25】 金属カチオンBが、ジルコニウム、セ
リウム、チタン、イットリウム、アルミニウムおよびこ
れらの混合物からなる群から選択され、その前駆物質形
態が、不溶性酸化物または可溶性塩である請求項18に
記載の熱安定性の金属酸化物触媒の製造方法。
25. The method according to claim 18, wherein the metal cation B is selected from the group consisting of zirconium, cerium, titanium, yttrium, aluminum and mixtures thereof, the precursor form of which is an insoluble oxide or a soluble salt. A method for producing a thermally stable metal oxide catalyst.
【請求項26】 金属カチオンBが、ジルコニウム、セ
リウム、チタン、イットリウム、アルミニウムおよびこ
れらの混合物からなる群から選択され、その前駆物質形
態が、不溶性酸化物または可溶性塩である請求項23に
記載の熱安定性の金属酸化物触媒の製造方法。
26. The method according to claim 23, wherein the metal cation B is selected from the group consisting of zirconium, cerium, titanium, yttrium, aluminum and mixtures thereof, the precursor form of which is an insoluble oxide or a soluble salt. A method for producing a thermally stable metal oxide catalyst.
【請求項27】 金属カチオンBが、ジルコニウム、セ
リウム、チタン、イットリウム、アルミニウムおよびこ
れらの混合物からなる群から選択され、その前駆物質形
態が、不溶性酸化物または可溶性塩である請求項24に
記載の熱安定性の金属酸化物触媒の製造方法。
27. The method of claim 24, wherein the metal cation B is selected from the group consisting of zirconium, cerium, titanium, yttrium, aluminum and mixtures thereof, and wherein the precursor form is an insoluble oxide or soluble salt. A method for producing a thermally stable metal oxide catalyst.
【請求項28】 請求項1〜17のいずれか1つに記載
の触媒の、炭化水素の燃焼用としての使用。
28. Use of the catalyst according to any one of claims 1 to 17 for burning hydrocarbons.
JP11248716A 1998-09-03 1999-09-02 Heat stable metal oxide catalyst having perovskite crystal structure and its production Pending JP2000140635A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14645298A 1998-09-03 1998-09-03
US09/146452 1998-09-03

Publications (1)

Publication Number Publication Date
JP2000140635A true JP2000140635A (en) 2000-05-23

Family

ID=22517424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11248716A Pending JP2000140635A (en) 1998-09-03 1999-09-02 Heat stable metal oxide catalyst having perovskite crystal structure and its production

Country Status (3)

Country Link
US (1) US20020035035A1 (en)
JP (1) JP2000140635A (en)
CA (1) CA2281123A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051035A (en) * 2005-08-18 2007-03-01 Noritake Co Ltd Oxygen ion conductor and oxygen separating film
JP2012519071A (en) * 2009-03-02 2012-08-23 ロデイア・オペラシヨン Compositions comprising lanthanum perovskite on an alumina or aluminum oxyhydroxide substrate, process for preparation and use in catalysts
WO2012132318A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石エネルギー株式会社 Catalyst for decomposition of hydrocarbon oil and method for decomposing hydrocarbon oil
JP2015229137A (en) * 2014-06-05 2015-12-21 株式会社村田製作所 Organic matter decomposition catalyst
KR20180003271A (en) * 2016-06-30 2018-01-09 연세대학교 산학협력단 An electrochemical catalyst structure, and method of fabricating the same
JP2019189485A (en) * 2018-04-24 2019-10-31 株式会社豊田中央研究所 Oxygen storage material and manufacturing method therefor
WO2019215951A1 (en) * 2018-05-11 2019-11-14 株式会社村田製作所 Organic matter decomposition catalyst, organic matter decomposition aggregate, and organic matter decomposition device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100570576B1 (en) * 2000-10-17 2006-04-13 샤프 가부시키가이샤 Oxide Material, Method for Preparing Oxide Thin Film and Element Using Said Material
KR101158985B1 (en) * 2004-08-13 2012-06-21 사까이가가꾸고오교가부시끼가이샤 Process for producing perovskite compound powder
EP1854538A4 (en) * 2005-03-04 2011-06-08 Daihatsu Motor Co Ltd Catalyst composition
BRPI0803895B1 (en) * 2008-07-03 2018-08-14 Oxiteno S.A. Indústria E Comércio PROCEDURE FOR THE PRODUCTION OF LIGHT HYDROCARBONS FROM METHANIC RICH GASES, STATES THE SOLID OXIDE FUEL USED FOR THE PRODUCTION OF LIGHT HYDROCARBONS, AND, CATALYST FOR LEVES GARDEN RIOBON GARS In Methane
EP2456553A2 (en) * 2009-07-20 2012-05-30 Council of Scientific & Industrial Research Ceaio3 perovskites containing transition metal
US8216862B2 (en) * 2010-03-16 2012-07-10 Sandisk 3D Llc Forming and training processes for resistance-change memory cell
CZ201750A3 (en) * 2017-01-30 2018-03-07 Ústav fyzikální chemie J. Heyrovského AV ČR, v. v. i. A method of production of catalysts of a perovskite structure, catalysts perovskite structure and their use for high temperature decomposition of N2O
CN114614033B (en) * 2022-05-11 2022-08-16 深圳大学 Solid oxide fuel cell oxygen reduction catalyst and preparation method and application thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007051035A (en) * 2005-08-18 2007-03-01 Noritake Co Ltd Oxygen ion conductor and oxygen separating film
JP2012519071A (en) * 2009-03-02 2012-08-23 ロデイア・オペラシヨン Compositions comprising lanthanum perovskite on an alumina or aluminum oxyhydroxide substrate, process for preparation and use in catalysts
WO2012132318A1 (en) * 2011-03-31 2012-10-04 Jx日鉱日石エネルギー株式会社 Catalyst for decomposition of hydrocarbon oil and method for decomposing hydrocarbon oil
JP2012213706A (en) * 2011-03-31 2012-11-08 Jx Nippon Oil & Energy Corp Catalyst for decomposition of hydrocarbon oil, and method for decomposing hydrocarbon oil
JP2015229137A (en) * 2014-06-05 2015-12-21 株式会社村田製作所 Organic matter decomposition catalyst
KR20180003271A (en) * 2016-06-30 2018-01-09 연세대학교 산학협력단 An electrochemical catalyst structure, and method of fabricating the same
KR101923266B1 (en) 2016-06-30 2018-11-28 연세대학교 산학협력단 An electrochemical catalyst structure, and method of fabricating the same
JP2019189485A (en) * 2018-04-24 2019-10-31 株式会社豊田中央研究所 Oxygen storage material and manufacturing method therefor
WO2019215951A1 (en) * 2018-05-11 2019-11-14 株式会社村田製作所 Organic matter decomposition catalyst, organic matter decomposition aggregate, and organic matter decomposition device
WO2019216240A1 (en) * 2018-05-11 2019-11-14 株式会社村田製作所 Catalyst for organic matter decomposition and organic matter decomposing apparatus
WO2019216090A1 (en) * 2018-05-11 2019-11-14 株式会社村田製作所 Honeycomb-structure catalyst for degrading organic matter, and device for degrading organic matter
CN110785229A (en) * 2018-05-11 2020-02-11 株式会社村田制作所 Catalyst for organic matter decomposition, aggregate for organic matter decomposition, and organic matter decomposition apparatus
CN111801159A (en) * 2018-05-11 2020-10-20 株式会社村田制作所 Honeycomb catalyst for organic matter decomposition and organic matter decomposition device
CN112004596A (en) * 2018-05-11 2020-11-27 株式会社村田制作所 Supported catalyst for organic matter decomposition and organic matter decomposition device
JPWO2019216010A1 (en) * 2018-05-11 2021-01-14 株式会社村田製作所 Support catalyst for organic matter decomposition and organic matter decomposition equipment
JP7001153B2 (en) 2018-05-11 2022-01-19 株式会社村田製作所 Support catalyst for organic matter decomposition and organic matter decomposition equipment
US11383226B2 (en) 2018-05-11 2022-07-12 Murata Manufacturing Co., Ltd. Catalyst for organic substance decomposition and organic substance decomposing apparatus
CN110785229B (en) * 2018-05-11 2022-10-18 株式会社村田制作所 Catalyst for organic matter decomposition, aggregate for organic matter decomposition, and organic matter decomposition apparatus
US11529613B2 (en) 2018-05-11 2022-12-20 Murata Manufacturing Co., Ltd. Organic matter decomposition catalyst, organic matter decomposition aggregate, and organic matter decomposition apparatus
US11571683B2 (en) 2018-05-11 2023-02-07 Murata Manufacturing Co., Ltd. Honeycomb-structured catalyst for organic substance decomposition and organic substance decomposing apparatus
US11642661B2 (en) 2018-05-11 2023-05-09 Murata Manufacturing Co., Ltd. Supported catalyst for organic substance decomposition and organic substance decomposition device
US11648537B2 (en) 2018-05-11 2023-05-16 Murata Manufacturing Co., Ltd. Supported catalyst for organic substance decomposition and organic substance decomposing apparatus
CN111801159B (en) * 2018-05-11 2023-07-07 株式会社村田制作所 Honeycomb structured catalyst for decomposing organic matter and organic matter decomposing apparatus
CN112004596B (en) * 2018-05-11 2023-09-12 株式会社村田制作所 Supported catalyst for decomposing organic matter

Also Published As

Publication number Publication date
US20020035035A1 (en) 2002-03-21
CA2281123A1 (en) 2000-03-03

Similar Documents

Publication Publication Date Title
JP4416651B2 (en) Metal oxides produced by flame spray pyrolysis
US8187996B2 (en) Exhaust gas-purifying catalyst
JP2000140635A (en) Heat stable metal oxide catalyst having perovskite crystal structure and its production
CN101218026A (en) Alumina-based perovskite catalysts and catalyst supports
RU2509725C2 (en) Composition based on cerium oxide and zirconium oxide having specific porosity, method of production and use in catalysis
US4200554A (en) Barium- and ruthenium-containing perovskite catalysts
JP5263677B2 (en) Ammonia decomposition catalyst, ammonia decomposition method using the same, and ammonia decomposition reaction apparatus
US5762894A (en) Process for producing composite oxide powder containing cerium and zirconium
US20160296910A1 (en) Doped catalyst support materials having oxygen storage capacity (osc) and method of making thereof
JP2005231951A (en) Multiple oxide and catalyst for purification of exhaust gas
JP2012519060A (en) Novel zirconia ceria composition
JP2021087948A (en) Dope catalyst carrying material having oxygen storage capacity (osc) and manufacturing method therefor
JP2003175337A (en) Exhaust gas cleaning ternary catalyst using a-site- detective perovskite compound oxide
EP1118383A1 (en) Perovskite oxidation catalysts and the process for their preparation
JP3876306B2 (en) Mixed conductive oxide
JP3707641B2 (en) Complex oxide promoter
RU2237038C2 (en) Fluorite-type ceramic material
JP7279203B2 (en) Heat-resistant ruthenium composites and their use as NOx storage and reduction catalysts
JP3914409B2 (en) Reforming catalyst and synthesis gas production method using the same
KR100549699B1 (en) The spherical NiO/NiAl2?4 medium material with high thermal stability and high oxygen carrier capacity for Chemical-Looping combustion and its preparation method
Zeng et al. Diffusion of transition metals (Co, Ni) and its effects on sol–gel derived ZrO 2 polymorphic stabilities
JP2005104799A (en) Compound oxide and catalyst for cleaning exhaust gas
RU2063267C1 (en) Oxidation catalyst on the base of oxides with structure of perovskite
JP7125715B2 (en) Nitrogen oxide storage material, manufacturing method thereof, exhaust gas purification catalyst
KR20230026046A (en) Water splitting material, composition for water splitting material and manufacturing method for water splitting material using the same