JP4138624B2 - Shipment management method for belt element for continuously variable transmission - Google Patents

Shipment management method for belt element for continuously variable transmission Download PDF

Info

Publication number
JP4138624B2
JP4138624B2 JP2003348626A JP2003348626A JP4138624B2 JP 4138624 B2 JP4138624 B2 JP 4138624B2 JP 2003348626 A JP2003348626 A JP 2003348626A JP 2003348626 A JP2003348626 A JP 2003348626A JP 4138624 B2 JP4138624 B2 JP 4138624B2
Authority
JP
Japan
Prior art keywords
group
priority
dimensional accuracy
elements
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003348626A
Other languages
Japanese (ja)
Other versions
JP2005115632A (en
Inventor
大輔 吉田
昭彦 ▲高▼橋
英一郎 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003348626A priority Critical patent/JP4138624B2/en
Publication of JP2005115632A publication Critical patent/JP2005115632A/en
Application granted granted Critical
Publication of JP4138624B2 publication Critical patent/JP4138624B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Automatic Assembly (AREA)
  • General Factory Administration (AREA)

Description

本発明は、無段変速機用ベルトのエレメントを保管場所からベルト組立工程に出荷する際に実行されるエレメントの出荷管理方法に関する。   The present invention relates to an element shipping management method executed when shipping an element of a continuously variable transmission belt from a storage location to a belt assembling process.

図1(a)を参照して、無段変速機用ベルトのエレメント1は、無段変速機のプーリに接触するボデー部2と、ボデー部2にネック部3を介して連設されるヘッド部4とを備える。そして、多数のエレメント1を環状に積層し、ボデー部2とヘッド部4との間に形成されるネック部3の両側の溝部5,5に夫々不図示の無端リングを嵌合して、これらエレメント1を結束することにより無段変速機用ベルトが組み立てられる。尚、エレメント1のボデー部2の片面には、図1(b)に示す如く、無段変速機のプーリにおけるエレメント1の円弧運動を許容するために、ベルト内周側に向かって板厚が減少するように傾斜部6が形成され、また、ヘッド部4には、半抜き加工で片面の突起7と反対面の凹孔8とが形成され、突起7が隣接するエレメントのヘッド部の凹孔に嵌合して、エレメント同士が整列するようにしている。   Referring to FIG. 1A, an element 1 of a continuously variable transmission belt includes a body portion 2 that contacts a pulley of the continuously variable transmission, and a head that is connected to the body portion 2 via a neck portion 3. Part 4. And many elements 1 are laminated | stacked cyclically | annularly, an endless ring (not shown) is fitted to the groove portions 5 and 5 on both sides of the neck portion 3 formed between the body portion 2 and the head portion 4, respectively. A belt for a continuously variable transmission is assembled by binding the elements 1 together. In addition, as shown in FIG. 1B, the thickness of one side of the body portion 2 of the element 1 is increased toward the inner periphery of the belt in order to allow the circular motion of the element 1 in the pulley of the continuously variable transmission. An inclined portion 6 is formed so as to decrease, and a single-side projection 7 and a concave hole 8 on the opposite surface are formed in the head portion 4 by half punching, and the projection 7 is a recess in the head portion of an adjacent element. The elements are aligned with each other by fitting in the holes.

エレメント1は打抜きプレス装置を用いてコイル材から打抜き成形される(例えば、特許文献1参照。)。この場合、打抜き時の材料の引張り等に起因して、エレメント1のヘッド部4とボデー部2の板厚差や、ボデー部2の幅方向両側の板厚差を生ずることがある。そして、プレス装置に複数の打抜き部を設けて、一回のプレス動作で複数のエレメントを打抜くようにした場合、打抜き部毎にエレメント1の寸法精度、即ち、ヘッド部4とボデー部2の板厚差やボデー部2の幅方向両側の板厚差が微妙に変化する。また、同一の打抜き部で打抜かれたエレメントであっても、コイル材の交換や打抜き部のパンチ、ダイの交換等により、更には、経時的にエレメントの寸法精度が変化する。   The element 1 is stamped and formed from a coil material using a punching press device (see, for example, Patent Document 1). In this case, a difference in the plate thickness between the head portion 4 and the body portion 2 of the element 1 or a difference in plate thickness between both sides in the width direction of the body portion 2 may be caused due to the pulling of the material at the time of punching. When a plurality of punching parts are provided in the press device and a plurality of elements are punched by a single press operation, the dimensional accuracy of the element 1 for each punching part, that is, the head part 4 and the body part 2 The plate thickness difference and the plate thickness difference on both sides in the width direction of the body part 2 slightly change. In addition, even in the case of elements punched at the same punched portion, the dimensional accuracy of the element changes with time due to replacement of the coil material, punch of the punched portion, replacement of the die, or the like.

ここで、複数の打抜き部を有するプレス装置では、打抜かれたエレメントを受ける受け箱を複数の打抜き部に対応して複数設け、各受け箱に所定個数(例えば6千個)のエレメントが溜まったところで受け箱を新たなものに交換している。この場合、個々の受け箱に収納されているエレメントは、寸法精度がほぼ同一のエレメント群として取り扱うことができる。そこで、各受け箱について抜き取り検査によりエレメントの寸法精度を測定し、その測定データを受け箱内のエレメント群の寸法精度として管理装置に記憶させている。   Here, in a press apparatus having a plurality of punched portions, a plurality of receiving boxes for receiving the punched elements are provided corresponding to the plurality of punched portions, and a predetermined number (for example, 6,000) of elements are accumulated in each receiving box. By the way, the receiving box is replaced with a new one. In this case, the elements accommodated in the individual receiving boxes can be handled as an element group having substantially the same dimensional accuracy. Therefore, the dimensional accuracy of the element is measured by sampling inspection for each receiving box, and the measurement data is received and stored in the management device as the dimensional accuracy of the element group in the receiving box.

ところで、無段変速機用ベルトでは、エレメント間のクリアランスがベルトの性能(スリップ率等)に影響を及ぼすため、クリアランスを適正に管理する必要がある。ここで、同一の受け箱内のエレメントを必要数(例えば400個)抽出してベルトを組立てると、これらエレメントの寸法精度がほぼ同一であるため、個々のエレメントの寸法精度の公差中心からの偏差が累積して、良好なクリアランスを持つベルトが得られなくなることが多い。例えば、受け箱内のエレメント1のボデー部4の幅方向一側の板厚が他側の板厚より薄い場合、ベルトの幅方向一側のクリアランスが過大になってしまう。この場合、ボデー部4の幅方向一側の板厚が他側の板厚より厚いエレメントを混ぜてベルトを組立てれば、幅方向両側のクリアランスが均等なベルトを得られる。   By the way, in a continuously variable transmission belt, the clearance between elements affects the performance (slip rate, etc.) of the belt, and thus the clearance needs to be properly managed. Here, when the required number (for example, 400) of elements in the same receiving box is extracted and the belt is assembled, the dimensional accuracy of these elements is almost the same, so the deviation of the dimensional accuracy of each element from the tolerance center. In many cases, a belt with good clearance cannot be obtained. For example, when the plate thickness on one side in the width direction of the body portion 4 of the element 1 in the receiving box is thinner than the plate thickness on the other side, the clearance on one side in the width direction of the belt becomes excessive. In this case, if the belt is assembled by mixing elements in which the thickness of the body portion 4 on one side in the width direction is thicker than the thickness on the other side, a belt having a uniform clearance on both sides in the width direction can be obtained.

従って、保管中の受け箱をベルト組立工程に出荷する際は、エレメントの平均的な寸法精度が公差範囲の中心に可及的に近づくように、各受け箱内のエレメント群の寸法精度に基づいて出荷する受け箱(エレメント群)の組合せを適切に選ぶことが望まれる。この場合、保管中の多数の受け箱に対し全検索的に組合せの探索を行ったのでは、演算量が膨大になってしまう。例えば、保管中の受け箱の数が180個、出荷する受け箱の数が16個とすると、組合せの数は、180C16≒2.92×1022になってしまい、一つの組合せの演算にかかる時間が1μsであっても、トータルの演算時間は約8.11×1012時間にもなってしまい、このような演算を行うことは到底無理である。そのため、受け箱(エレメント群)を複数の打抜き部に対応するものが均等に混ざるように所定数組合わせて出荷しているのが現状である。尚、このようなエレメントの出荷管理方法に関する公知文献は現段階で見付かっていない。
特開2001−246428号公報
Therefore, when shipping the storage bins in storage to the belt assembly process, it is based on the dimensional accuracy of the elements in each bin so that the average dimensional accuracy of the elements is as close as possible to the center of the tolerance range. It is desirable to select an appropriate combination of receiving boxes (element groups) to be shipped. In this case, if a search for a combination is performed in a full search for a large number of receiving boxes in storage, the amount of calculation becomes enormous. For example, if the number of receiving boxes in storage is 180 and the number of receiving boxes to be shipped is 16, the number of combinations is 180C16≈2.92 × 10 22 , and one combination is calculated. Even if the time is 1 μs, the total calculation time is about 8.11 × 10 12 hours, and it is impossible to perform such calculation. Therefore, the present situation is that a predetermined number of boxes (element groups) corresponding to a plurality of punched portions are shipped in combination so as to be evenly mixed. It should be noted that publicly known literature relating to such element shipping management methods has not been found at this stage.
JP 2001-246428 A

本発明は、以上の点に鑑み、ベルト組立工程に出荷する所定数のエレメント群の組合せとして、エレメントの平均的な寸法精度が公差範囲の中心に可及的に近づくような組合せを短時間で簡便に選ぶことができるようにし、良好なベルトの組立を可能とした無段変速機用ベルトのエレメントの出荷管理方法を提供することをその課題としている。   In view of the above points, the present invention provides a combination of a predetermined number of element groups to be shipped to the belt assembling process so that the average dimensional accuracy of the elements is as close as possible to the center of the tolerance range. It is an object of the present invention to provide a shipping management method for a continuously variable transmission belt element that enables easy selection and good belt assembly.

本発明は、無段変速機用のベルトの構成部品である、ベルト内周側のボデー部と、ボデー部にネック部を介して連設されるベルト外周側のヘッド部とを有する板状のエレメントの出荷管理方法であって、寸法精度がほぼ同一のエレメントのまとまりを一つのエレメント群として、保管中の複数のエレメント群から所定数のエレメント群を選択してベルト組立工程に出荷する方法の改良に関し、上記課題を解決するために、複数のエレメント群を、各組のエレメントの平均的な寸法精度が所定の条件を満たすように2個毎の組に組分けする組分け工程を、先の組分け工程で組分けされたエレメント群の各1個の組を次の組分け工程に際しての各1個のエレメント群と看做して、エレメント群の組の数が所定の設定数以下に減少するまで行った後、組分け工程で組分けされたエレメント群の組からベルト組立工程に出荷する組として、1個の組に属するエレメント群の数で前記所定数を徐した数の組を、これら組のエレメントの平均的な寸法精度が公差範囲の中心に可及的に近づくような組合せで選択する選択工程を行うようにしている。   The present invention relates to a belt-like component for a continuously variable transmission, which is a plate-like member having a body portion on the belt inner periphery side and a head portion on the belt outer periphery side connected to the body portion via a neck portion. An element shipping management method, in which a group of elements having substantially the same dimensional accuracy is taken as one element group, and a predetermined number of element groups are selected from a plurality of stored element groups and shipped to a belt assembling process. Regarding improvement, in order to solve the above-described problem, a grouping step of grouping a plurality of element groups into groups every two so that the average dimensional accuracy of each group of elements satisfies a predetermined condition, Each group of elements grouped in the grouping process is regarded as one element group in the next grouping process, and the number of element group groups is equal to or less than a predetermined set number. After going down As a group shipped from the element group grouped in the grouping process to the belt assembly process, the number of elements obtained by subtracting the predetermined number from the number of element groups belonging to one group is an average of the elements of these groups. The selection process is performed in which the dimensional accuracy is selected in such a combination as close as possible to the center of the tolerance range.

ベルト組立工程に出荷するエレメント群の組合せとして、エレメントの平均的な寸法精度が公差中心に可及的に近いものを選択するには、可能な全ての組合せについて平均的な寸法精度の演算を行う必要がある。然し、選択の対象となる母集団の構成数が多いと、組合せ方の総数が過大になる。そこで、本発明では、組分け工程を行うことにより、選択工程で選択の対象となる母集団の構成数(組の数)を組合せ方の総数が過大にならないような設定数以下に減少させている。具体的には、保管中のエレメント群の個数が例えば180個である場合、保管中のエレメント群が1回目の組分け工程で2個宛の90組に組分けされ、2回目の組分け工程で4個宛の45組に組分けされる。そして、上記設定数を「50」とした場合、2回目の組分け工程後に選択工程が実行される。2回目の組分け工程で組分けされた1個の組に属するエレメント群の数は4個であるから、ベルト組立工程に出荷するエレメント群の個数(上記所定数)が例えば16個であれば、選択工程で45個の組から4個の組の組合わせが選択される。ここで、1回目の組分け工程での組分け方は、180C2=16110通りあり、2回目の組分け工程での組分け方は、90C2=4005通りあり、選択工程での組合せ方は、45C4=148995通りある。これらの合計は169110通りになり、180個のエレメント群から直接16個のエレメント群の組合せを選択する場合に比し遥かに数が減少する。組分け工程や選択工程では、一つ一つの組分け(組合せ)についてエレメントの平均的な寸法精度を求めてこれが所要の条件を満たすか否かを判別する。そのための演算時間が一つについて例えば1μsであれば、トータルの演算時間は169msになり、短時間で出荷するエレメント群の組合せを選択できることになる。   To select a combination of elements to be shipped to the belt assembly process, the average dimensional accuracy of the elements is as close as possible to the center of tolerance, and calculate the average dimensional accuracy for all possible combinations. There is a need. However, if there are many constituents of the population to be selected, the total number of combinations becomes excessive. Therefore, in the present invention, by performing the grouping step, the number of constituents of the population (number of sets) to be selected in the selection step is reduced to a setting number or less so that the total number of combinations is not excessive. Yes. Specifically, when the number of element groups being stored is, for example, 180, the group of elements being stored is grouped into 90 groups addressed to two in the first grouping process, and the second grouping process. It is divided into 45 sets addressed to four. When the set number is “50”, the selection process is executed after the second grouping process. Since the number of element groups belonging to one group grouped in the second grouping process is four, if the number of element groups shipped to the belt assembly process (predetermined number) is 16, for example. In the selection step, a combination of four sets is selected from the 45 sets. Here, there are 180C2 = 16110 ways of grouping in the first grouping process, 90C2 = 4005 ways of grouping in the second grouping process, and 45C4 in the selection process. = 1488995 ways. These totals are 169110, and the number is much smaller than when a combination of 16 element groups is directly selected from 180 element groups. In the grouping process and the selection process, the average dimensional accuracy of the elements is obtained for each grouping (combination), and it is determined whether or not this satisfies a required condition. If the computation time for that is 1 μs, for example, the total computation time is 169 ms, and a combination of element groups to be shipped in a short time can be selected.

ところで、組分け工程において、各組のエレメントの平均的な寸法精度の公差中心に対する偏差の全ての組の総和が一番小さくなるように組分けを行うことも可能であるが、これでは、寸法精度の悪いエレメント群(公差中心に対する寸法精度の偏差が大きなエレメント群)を含む組の平均的な寸法精度が必ずしも良くなるとは限らない。そのため、寸法精度の悪いエレメント群が出荷されないまま長期に亘って保管される可能性が高くなり、歩留まりを向上させる上で問題になる。   By the way, in the grouping process, it is possible to perform grouping so that the total sum of all sets of deviations with respect to the center of tolerance of the average dimensional accuracy of each group of elements becomes the smallest. The average dimensional accuracy of a set including an inaccurate element group (an element group having a large dimensional accuracy deviation with respect to the center of tolerance) is not necessarily improved. Therefore, there is a high possibility that an element group with poor dimensional accuracy will be stored for a long period of time without being shipped, which is a problem in improving the yield.

この問題を解決するには、各エレメント群のエレメントの寸法精度に基づいて、複数のエレメント群に対し寸法精度が悪いほど優先度が高くなるように順位を付け、前記組分け工程において、未だ組になっていないエレメント群の内の最も優先度の高いエレメント群を抽出する抽出工程と、抽出されたエレメント群と同一の組になるエレメント群として、エレメントの平均的な寸法精度が公差範囲の中心に最も近くなるエレメント群を未だ組になっていないエレメント群から選定する選定工程とを繰り返すようにすることが望ましい。これによれば、寸法精度の悪いエレメント群は早い段階で抽出され、より多くのエレメント群から組になるエレメント群を選択することができる。そのため、寸法精度の悪いエレメント群であっても、これを含む組の平均的な寸法精度は公差中心に近付き、選択工程でこの組が選択されて出荷される可能性が高くなる。   In order to solve this problem, based on the dimensional accuracy of each element group, a priority is assigned to a plurality of element groups such that the lower the dimensional accuracy is, the higher the priority is. The extraction process for extracting the element group with the highest priority among the non-element groups, and the element group that has the same set as the extracted element group, the average dimensional accuracy of the element is the center of the tolerance range. It is desirable to repeat the selection process of selecting the element group closest to the element group from elements that have not yet been assembled. According to this, an element group with poor dimensional accuracy is extracted at an early stage, and an element group that forms a set can be selected from a larger number of element groups. Therefore, even for an element group with poor dimensional accuracy, the average dimensional accuracy of a set including the element group approaches the tolerance center, and the possibility that this set is selected and shipped in the selection process increases.

尚、寸法精度に関する管理項目として、エレメントのボデー部とヘッド部の板厚差と、ボデー部の幅方向両側の板厚差とを含む複数の項目がある場合は、これら各管理項目の公差中央値に対する偏差を元とするユークリッド距離を算出し、このユークリッド距離が大きくなるほど前記優先度が高くなるようにすることが望ましい。ユークリッド距離(d)は、p1〜pnを元として、d=p1+p2+…+pnになる値として定義される。ここで、ボデー部とヘッド部の板厚差の公差中央値に対する偏差とボデー部の幅方向両側の板厚差の公差中央値に対する偏差との合計値が同じであっても、両偏差がほぼ等しいエレメント群に比し一方の偏差のみが大きなエレメント群は、組になるエレメント群を見つけにくくなる。ここで、ユークリッド距離は、一方の偏差のみが大きな場合のほうが大きくなる。そのため、ユークリッド距離に応じて優先度を高くすることにより、一方の偏差のみが大きなエレメント群が早い段階で抽出されるようになり、このエレメント群が出荷される可能性が高くなる。 In addition, if there are multiple items including the thickness difference between the body part and the head part of the element and the thickness difference between both sides in the width direction of the body part as management items related to dimensional accuracy, the center of tolerance of each of these management items It is desirable to calculate the Euclidean distance based on the deviation with respect to the value, and to increase the priority as the Euclidean distance increases. The Euclidean distance (d) is defined as a value that becomes d 2 = p1 2 + p2 2 +... + Pn 2 based on p1 to pn. Here, even if the sum of the deviation with respect to the median tolerance of the plate thickness difference between the body part and the head part and the deviation with respect to the median tolerance of the plate thickness difference on both sides in the width direction of the body part are the same, both deviations are almost the same. An element group in which only one deviation is larger than an equal element group makes it difficult to find a group of elements. Here, the Euclidean distance becomes larger when only one deviation is large. Therefore, by increasing the priority according to the Euclidean distance, an element group having only one deviation is extracted at an early stage, and the possibility that this element group is shipped increases.

また、製造後、出荷されないまま長期間放置されたエレメント群は品質面で問題を生ずるおそれがある。この場合、エレメントの寸法精度の悪さに製造からの経過時間を加味して前記優先度を決定し、エレメントの寸法精度が同程度でも製造からの経過時間が長いエレメント群ほど優先度が高くなるようにすれば、製造からの経過時間が長いエレメント群を優先的に出荷できるようになり、エレメント群が出荷されないまま長期間放置されることを回避できる。   In addition, an element group that has been left for a long time without being shipped after production may cause a problem in quality. In this case, the priority is determined by taking into account the dimensional accuracy of the element and the elapsed time from the manufacture, so that even if the dimensional accuracy of the element is the same, the priority is higher for the element group having a longer elapsed time from the manufacture. By doing so, it becomes possible to preferentially ship the element group having a long elapsed time since manufacture, and it is possible to avoid leaving the element group for a long time without being shipped.

また、2回目以降の前記組分け工程では、先の組分け工程で組分けされたエレメント群の各組に属するエレメント群の内の最も高いエレメント群の優先度を当該組を代表する優先度として、前記抽出工程でのエレメント群の組の抽出を行うことが望ましい。これにより、寸法精度が悪いエレメント群や製造からの経過時間が長いエレメント群が出荷される可能性が高くなる。   In the second and subsequent grouping steps, the priority of the highest element group among the element groups belonging to each group of element groups grouped in the previous grouping step is set as a priority representing the group. It is desirable to extract a group of element groups in the extraction step. This increases the possibility that an element group with poor dimensional accuracy or an element group with a long elapsed time from manufacture will be shipped.

また、選択工程でエレメント群の組の組合せが複数選択された場合、各組合せの組に属するエレメント群の優先度の総和が最も高い組合せの組を優先的にベルト組立工程に出荷するようにすれば、寸法精度が悪いエレメント群や製造からの経過時間が長いエレメント群が出荷される可能性が一層高くなる。   In addition, when a plurality of combinations of element groups are selected in the selection process, the combination group having the highest sum of the priority levels of the element groups belonging to each combination group is preferentially shipped to the belt assembly process. For example, there is a higher possibility that an element group with poor dimensional accuracy or an element group with a long elapsed time from manufacture will be shipped.

更に、エレメント群の優先度の総和が最も高い組合せの組に属するエレメント群のうち優先度がこの組合せの組に属さない他のエレメント群の優先度より低いエレメント群を、エレメントの平均的な寸法精度が公差範囲に入るという条件を満たす限り当該他のエレメント群に置き換える調整工程を行い、調整工程後にベルト組立工程に出荷するようにすれば、寸法精度が悪いエレメント群や製造からの経過時間が長いエレメント群を可及的に優先して出荷することができる。尚、調整工程でエレメント群の置換を行うと、出荷される組合せ以外の他の組合せのエレメント群の平均的な寸法精度は悪くなってしまう。そのため、調整工程後に、未出荷のエレメント群に対し前記組分け工程と前記選択工程とを再度行い、次に出荷するエレメント群を選択する。   Further, among the element groups belonging to the combination set having the highest sum of the priority levels of the element groups, the element group whose priority is lower than the priority of other element groups not belonging to the combination set is determined as the average size of the elements. As long as the condition that the accuracy is within the tolerance range is satisfied, an adjustment process that replaces the other element group is performed, and after the adjustment process, it is shipped to the belt assembly process. Long elements can be shipped with priority as much as possible. If the element group is replaced in the adjustment step, the average dimensional accuracy of the element group of other combinations other than the combination to be shipped deteriorates. Therefore, after the adjustment process, the grouping process and the selection process are performed again on the unshipped element group, and the element group to be shipped next is selected.

以下、複数の打抜き部を有するプレス装置(図示せず)で打抜き成形された図1(a)に示す無段変速機用ベルトのエレメント1の出荷管理方法に本発明を適用した実施形態について説明する。   Hereinafter, an embodiment in which the present invention is applied to a shipping management method of the element 1 of the continuously variable transmission belt shown in FIG. 1A, which is stamped and formed by a press device (not shown) having a plurality of punched portions will be described. To do.

先に説明したように、複数の打抜き部を有するプレス装置では、打抜かれたエレメント1を受ける受け箱を複数の打抜き部に対応して複数設け、各受け箱に所定個数(例えば6千個)のエレメント1が溜まったところで受け箱を新たなものに交換している。この場合、個々の受け箱に収納されているエレメント1の寸法精度はほぼ同一なる。そこで、本実施形態では、一つの受け箱を、寸法精度がほぼ同一のエレメント1のまとまりである一つのエレメント群として取り扱う。尚、同一の打抜き部で打抜かれたエレメント1を収納する複数の受け箱を一つのエレメント群として取り扱うことも可能である。   As described above, in a press apparatus having a plurality of punched portions, a plurality of receiving boxes for receiving the punched elements 1 are provided corresponding to the plurality of punched portions, and a predetermined number (for example, 6,000) is provided in each receiving box. When the element 1 is accumulated, the receiving box is replaced with a new one. In this case, the dimensional accuracy of the elements 1 housed in the individual receiving boxes is almost the same. Therefore, in this embodiment, one receiving box is handled as one element group that is a group of elements 1 having substantially the same dimensional accuracy. It is also possible to handle a plurality of receiving boxes for storing the elements 1 punched by the same punching portion as one element group.

プレス装置から運び出された受け箱は測定工程に搬送され、ここで抜き取り検査により受け箱内のエレメント1の寸法精度を測定する。その測定データはコンピュータから成る管理装置に受け箱と関連付けて記憶される。尚、寸法精度の測定に際しては、図1(a)に示すように、ヘッド部4の幅方向両側部a,bと、ネック部3の基端部cと、ボデー部4の幅方向両側部d,eの計5箇所の板厚を計測し、a,b2箇所の板厚の平均値とd,e2箇所の板厚の平均値との差をヘッド部4とボデー部2との板厚差Δt1として求め、d,e2箇所の板厚の差をボデー部2の幅方向両側の板厚差Δt2として求める。寸法精度の測定後、受け箱は保管場所に搬送され、保管場所に設けられた保管棚の所定箇所に移載機によって置かれる。受け箱が置かれた箇所は管理装置に記憶される。尚、受け箱に収納されているエレメント1の個数が何らかの事情で上記所定個数より少なくなることがある。そのため、測定工程では、上記した寸法精度の測定に加え、受け箱の重量を測定し、受け箱内のエレメント1の個数を間接的に計測している。   The receiving box carried out from the press device is transported to a measuring process, where the dimensional accuracy of the element 1 in the receiving box is measured by sampling inspection. The measurement data is stored in association with a receiving box in a management device comprising a computer. When measuring the dimensional accuracy, as shown in FIG. 1 (a), both sides a and b of the head portion 4 in the width direction, the base end portion c of the neck portion 3, and both sides of the body portion 4 in the width direction. The total thickness of 5 points d and e is measured, and the difference between the average value of the thicknesses a and b2 and the average value of the thicknesses d and e2 is the thickness of the head 4 and the body 2. The difference Δt1 is obtained, and the difference between the thicknesses d and e2 is obtained as the thickness difference Δt2 on both sides of the body portion 2 in the width direction. After the measurement of the dimensional accuracy, the receiving box is transported to a storage place and placed by a transfer machine at a predetermined place on a storage shelf provided in the storage place. The location where the receiving box is placed is stored in the management device. The number of elements 1 stored in the receiving box may be less than the predetermined number for some reason. Therefore, in the measurement process, in addition to the above-described measurement of dimensional accuracy, the weight of the receiving box is measured, and the number of elements 1 in the receiving box is indirectly measured.

ベルト組立工程から出荷要請があると、管理装置は保管中の受け箱から所定数、例えば、16個の受け箱を選択する。そして、選択された受け箱を移載機により取り出してベルト組立工程に出荷する。ベルト組立工程では、先ず、これら受け箱内の全てのエレメントをミキサーに入れてミキシングし、ミキシングされたエレメントをパーツフィーダに投入して、ベルト組立作業を行う。尚、選択された受け箱のエレメントをミキシングした後にベルト組立工程に出荷することも勿論可能である。   When there is a shipping request from the belt assembling process, the management device selects a predetermined number, for example, 16 receiving boxes from the receiving boxes being stored. Then, the selected receiving box is taken out by the transfer machine and shipped to the belt assembling process. In the belt assembling process, first, all the elements in the receiving box are put into a mixer for mixing, and the mixed elements are put into a parts feeder to perform belt assembling work. Of course, it is possible to ship the selected receiving box element to the belt assembling process after mixing.

出荷する受け箱の選択作業は、図2に示す如く、順位付け工程(S1)、組分け工程(S2,S3)、選択工程(S4)および調整工程(S5)順に行われる。順位付け工程では、受け箱内のエレメント1の寸法精度および製造からの経過時間に基づいて、保管中の全ての受け箱に対し寸法精度が悪いほど、また、製造からの経過時間が長いほど優先度が高くなるように順位を付ける。これを詳述するに、エレメント1の寸法精度に関する各管理項目の公差中央値に対する偏差を元とするユークリッド距離dを算出し、製造からの経過時間Tに所定の係数kを乗算した値をユークリッド距離dに加算して評価値H(=d+k・T)を求め、この評価値Hが大きくなるほど優先度が高くなるように順位を付ける。尚、エレメント1の寸法精度に関する管理項目がヘッド部4とボデー部2との板厚差Δt1と、ボデー部2の幅方向両側の板厚差Δt2である場合、夫々の公差中央値はゼロであり、そのため、ユークリッド距離dは、d=Δt1+Δt2になる。また、ネック部3のcの箇所の板厚をエレメント1の板厚の代表値としてこれも管理項目に含める場合は、その公差中央値に対する偏差も含むユークリッド距離dを算出する。 As shown in FIG. 2, the selection operation of the receiving boxes to be shipped is performed in the order of the ranking step (S1), the grouping step (S2, S3), the selection step (S4), and the adjustment step (S5). In the ranking process, based on the dimensional accuracy of the element 1 in the receiving box and the elapsed time from manufacturing, the lower the dimensional accuracy for all receiving boxes in storage and the longer the elapsed time from manufacturing, the higher the priority. Set the order so that the degree is higher. To explain this in detail, the Euclidean distance d based on the deviation from the median tolerance of each control item relating to the dimensional accuracy of the element 1 is calculated, and the value obtained by multiplying the elapsed time T from manufacture by a predetermined coefficient k is Euclidean. An evaluation value H (= d + k · T) is obtained by adding to the distance d, and a ranking is given so that the higher the evaluation value H, the higher the priority. In addition, when the management items regarding the dimensional accuracy of the element 1 are the plate thickness difference Δt1 between the head portion 4 and the body portion 2 and the plate thickness difference Δt2 on both sides in the width direction of the body portion 2, the respective median tolerance is zero. Therefore, the Euclidean distance d is d 2 = Δt 1 2 + Δt 2 2 . When the thickness of the portion c of the neck portion 3 is included in the management item as a representative value of the thickness of the element 1, the Euclidean distance d including the deviation from the median tolerance is calculated.

図3(a)は受け箱に付けた優先度の順位を視覚的に示した図であり、各四角が受け箱10を表し、その中の数字が優先度であって、小さな数字ほど優先度が高いことを表している。   FIG. 3 (a) is a diagram visually showing the order of priority assigned to the receiving box, where each square represents the receiving box 10, and the numbers in the boxes are the priority, and the smaller the number, the higher the priority. Is high.

次に、組分け工程で保管中の受け箱10を2個毎の組Gs(図3(b)参照)に組分けする。この組分け工程では、先ず、保管中の受け箱10のうちで優先度が最も高い優先度「1」の受け箱10が抽出され、抽出された受け箱10と同一の組Gsになる受け箱10として、この受け箱10内のエレメントと抽出された受け箱10内のエレメントとの平均的な寸法精度が公差範囲の中心に最も近くなる受け箱10が残りの受け箱10のうちから選定される。例えば、ボデー部2の幅方向両側の板厚差Δt2に何れの側が厚いかで正負の符号を付けるとして、優先度「1」の受け箱10内のエレメント1のボデー部2の幅方向両側の板厚差Δt2が正であるときは、板厚差Δt2の絶対値がこれに近く符号が負のエレメント1が収納されている受け箱10が選定される。図3(b)では、優先度「1」の受け箱10と同一の組Gsになる受け箱10として優先度「8」のものが選定されている。尚、組Gsを構成する2個の受け箱10,10に収納されているエレメント1の個数が異なる場合は、受け箱10に収納されているエレメント1の個数を考慮した加重平均でエレメント1の平均的な寸法精度を求める。   Next, the receiving boxes 10 being stored in the grouping process are grouped into two groups Gs (see FIG. 3B). In this grouping step, first, the receiving box 10 having the highest priority “1” among the receiving boxes 10 being stored is extracted, and the receiving box 10 becomes the same set Gs as the extracted receiving box 10. 10, the receiving box 10 whose average dimensional accuracy between the elements in the receiving box 10 and the extracted elements in the receiving box 10 is closest to the center of the tolerance range is selected from the remaining receiving boxes 10. The For example, assuming that the thickness difference Δt2 on both sides of the body part 2 in the width direction is given a positive or negative sign depending on which side is thicker, When the plate thickness difference Δt2 is positive, the receiving box 10 in which the element 1 having an absolute value close to the plate thickness difference Δt2 and having a negative sign is selected is selected. In FIG. 3B, the receiving box 10 having the priority “8” is selected as the receiving box 10 having the same set Gs as the receiving box 10 having the priority “1”. In addition, when the number of the elements 1 accommodated in the two receiving boxes 10 and 10 constituting the group Gs is different, the weighted average of the elements 1 in consideration of the number of the elements 1 accommodated in the receiving box 10 is used. Find the average dimensional accuracy.

次は、優先度「1」の受け箱10と優先度「8」の受け箱10を除く受け箱10のうちで最も優先度が高い優先度「2」の受け箱10が抽出され、この受け箱10と組Gsになる受け箱10が上記と同様にして選定される。このように、組分け工程では、未だ組Gsになっていない受け箱10の内の最も優先度の高い受け箱10を抽出する抽出工程と、抽出された受け箱10と同一の組Gsになる受け箱10として、この受け箱10内のエレメントと抽出された受け箱10内のエレメントとの平均的な寸法精度が公差範囲の中心に最も近くなる受け箱10を未だ組Gsになっていない受け箱10から選定する選定工程とを繰り返す。図3(b)には、優先度「2」の受け箱10と同一の組Gsになる受け箱10として優先度「9」のものが選定され、優先度「3」の受け箱10と同一の組Gsになる受け箱10として優先度「5」のものが選定され、優先度「4」の受け箱10と同一の組Gsになる受け箱10として優先度「10」のものが選定され、優先度「6」の受け箱10と同一の組Gsになる受け箱10として優先度「7」のものが選定された状態が示されている。保管中の受け箱10の総数が180個である場合、これら受け箱10は上記の組分け工程で90個の組Gsに組分けされる。   Next, the receiving box 10 with the highest priority “2” is extracted from the receiving boxes 10 excluding the receiving box 10 with the priority “1” and the receiving box 10 with the priority “8”. The receiving box 10 that is paired with the box 10 is selected in the same manner as described above. Thus, in the grouping process, the extraction process for extracting the receiving box 10 with the highest priority among the receiving boxes 10 that are not yet in the set Gs, and the same group Gs as the extracted receiving box 10 are obtained. As the receiving box 10, the receiving box 10 whose average dimensional accuracy between the elements in the receiving box 10 and the extracted elements in the receiving box 10 is closest to the center of the tolerance range is not yet in the set Gs. The selection process of selecting from the box 10 is repeated. In FIG. 3B, the receiving box 10 having the same group Gs as the receiving box 10 having the priority “2” is selected with the priority “9” and is the same as the receiving box 10 having the priority “3”. A receiving box 10 having a priority of “5” is selected as a receiving box 10 to be set Gs, and a receiving box 10 having a priority of “10” is selected as a receiving box 10 having the same set Gs as the receiving box 10 having a priority of “4”. A state is shown in which the receiving box 10 having the same group Gs as the receiving box 10 having the priority “6” is selected with the priority “7”. When the total number of receiving boxes 10 being stored is 180, these receiving boxes 10 are grouped into 90 groups Gs in the above-described grouping process.

この場合、組Gsの数は後記詳述する設定数より多く、このときは2回目の組分け工程が実行される。この2回目の組分け工程では、上記1回目の組分け工程で組分けされた組Gsを2個毎の組Gb(図3(c)参照)に組分けする。この組分けに際しては、先ず、1回目の組分け工程で組分けされた各組Gsに属する受け箱10の内の最も高い優先度を当該組Gsを代表する優先度として、1回目の組分け工程で組分けされた複数の組Gsに対し優先度の順位を付ける。図3に示すもので組Gsの優先度の順位は、高いほうから、優先度「1」「8」の受け箱10の組Gs(No1)、優先度「2」「9」の受け箱10の組Gs(No2)、優先度「3」「5」の受け箱10の組Gs(No3)、優先度「4」「10」の受け箱10の組Gs(No4)、優先度「6」「7」の受け箱10の組Gs(No5)…になる。   In this case, the number of sets Gs is larger than the set number described in detail later, and in this case, the second grouping step is executed. In the second grouping step, the group Gs grouped in the first grouping step is grouped into two groups Gb (see FIG. 3C). In this grouping, first, the highest priority among the receiving boxes 10 belonging to each group Gs grouped in the first grouping step is set as a priority representing the group Gs. Priorities are assigned to the plurality of groups Gs grouped in the process. As shown in FIG. 3, the priority order of the group Gs is from the highest, the group Gs (No 1) of the receiving boxes 10 with the priority “1” “8”, and the receiving boxes 10 with the priority “2” “9”. Set Gs (No 2), set Gs (No 3) of receiving box 10 with priority “3” “5”, set Gs (No 4) of receiving box 10 with priority “4” “10”, priority “6” A set Gs (No. 5) of the receiving box 10 of “7” is obtained.

そして、最初に、組Gsの優先度が最も高い優先度「1」「8」の受け箱10の組Gsが抽出され、抽出された組Gsと同一の組Gbになる組Gsとして、この組Gsの受け箱10内のエレメント1と抽出された組Gsの受け箱10内のエレメント1との平均的な寸法精度が公差範囲の中心に最も近くなる組Gsが残りの組Gsのうちから選定される。以後、未だ組Gbになっていない組Gsの内の最も優先度の高い組Gsを抽出する抽出工程と、抽出された組Gsと同一の組Gbになる組Gsとして、この組Gsの受け箱10内のエレメント1と抽出された組Gsの受け箱10内のエレメント1との平均的な寸法精度が公差範囲の中心に最も近くなる組Gsを未だ組Gbになっていない組Gsから選定する選定工程とを繰り返して、2回目の組分けを行う。図3(c)には、優先度「1」「8」の受け箱10の組Gsと同一の組Gbになる組Gsとして優先度「2」「9」の受け箱10の組Gsが選定され、優先度「3」「5」の受け箱10の組Gsと同一の組Gbになる組Gsとして優先度「6」「7」の受け箱10の組Gsが選定された状態が示されている。そして、1回目の組分け工程で組分けされた組Gsの数が90個である場合、2回目の組分け工程で45個の組Gbに組分けされ、各組Gbに属する受け箱10の数は4個になる。   First, the group Gs of the receiving box 10 having the highest priority “1” “8” is extracted, and this group Gs becomes the same group Gb as the extracted group Gs. The group Gs whose average dimensional accuracy of the element 1 in the Gs receiving box 10 and the element 1 in the extracted group Gs receiving box 10 is closest to the center of the tolerance range is selected from the remaining groups Gs. Is done. Thereafter, an extraction process for extracting the set Gs having the highest priority among the sets Gs that have not yet been set to Gb, and a set Gs that is the same set Gb as the extracted set Gs, the receiving box of this set Gs The group Gs whose average dimensional accuracy between the element 1 in the element 10 and the element 1 in the receiving box 10 of the extracted group Gs is closest to the center of the tolerance range is selected from the group Gs that are not yet the group Gb. The selection process is repeated and the second grouping is performed. In FIG. 3C, the set Gs of the receiving boxes 10 with the priority “2” and “9” is selected as the set Gs that is the same set Gb as the set Gs of the receiving boxes 10 with the priorities “1” and “8”. The state in which the group Gs of the receiving boxes 10 with the priority “6” and “7” is selected as the group Gs that is the same as the group Gs of the receiving boxes 10 with the priority “3” and “5” is shown. ing. If the number of sets Gs grouped in the first grouping process is 90, the grouping process is divided into 45 groups Gb in the second grouping process, and the receiving boxes 10 belonging to each group Gb. The number will be four.

次に、2回目の組分け工程で組分けされた組Gbのうちから、ベルト組立工程に出荷する組Gbとして、1個の組Gbに属する受け箱10の数(=4)で出荷個数(=16)を徐した数、即ち、16/4=4個の組Gbを、これらの組Gbのエレメント1の平均的な寸法精度が公差範囲の中心に可及的に近づくような組合せで選択する選択工程を行う。この選択に際しては、全ての組合せについてエレメント1の平均的な寸法精度を演算して、最適な組合せを選択する。尚、選択工程での選択対象になる組Gbの数が多いと、組合せ方の総数が膨大になるため、演算に非常に時間がかかる。そこで、組合せ方の総数が過多にならないような組Gsの数を設定し、2回目の組分け工程で組分けされた組Gsの数が設定数(例えば50)以下にならないときは、3回目の組分け工程を行う。例えば、保管中の受け箱10の総数が240個であって、1回目の組分け工程で組Gsの数が120になるときは、2回目の組分け工程でも組Gbの数は60になり、組Gbを2個毎の組に組分けする3回目の組分け工程を行って、組の数を30に減らす。   Next, among the sets Gb grouped in the second grouping process, the number of shipments (= 4) of the receiving boxes 10 belonging to one group Gb as the group Gb to be shipped to the belt assembly process (= 4) = 16) is selected as a gradual number, that is, 16/4 = 4 sets Gb are selected in such a combination that the average dimensional accuracy of element 1 of these sets Gb is as close as possible to the center of the tolerance range. A selection process is performed. In this selection, the average dimensional accuracy of the element 1 is calculated for all the combinations, and the optimal combination is selected. Note that if the number of sets Gb to be selected in the selection process is large, the total number of combinations becomes enormous, and the calculation takes a very long time. Therefore, the number of sets Gs is set so that the total number of combinations is not excessive, and the third time when the number of sets Gs grouped in the second grouping step does not fall below the set number (for example, 50). The grouping process is performed. For example, when the total number of receiving boxes 10 being stored is 240 and the number of sets Gs is 120 in the first grouping process, the number of groups Gb is 60 in the second grouping process. Then, the third grouping step of grouping the group Gb into groups of two is performed, and the number of groups is reduced to 30.

選択工程で4個の組Gbの組合せ(以下、この組合せをグループGoと記す)が複数選択された場合は、各グループを構成する4個の組Gbに属する受け箱10の優先度の総和が最も高いグループGoを優先的にベルト組立工程に出荷する。図3(d)には、グループGoとして、優先度「1」「8」「2」「9」の受け箱10の組Gbを含むものと、優先度「3」「5」「6」「7」の受け箱10の組Gbを含むものとが選択された状態が示されている。この場合、受け箱10の優先度の総和が最も高いグループGoは優先度「1」「8」「2」「9」の受け箱10の組Gbを含むグループになり、このグループGoを出荷順位の第1位とする。   When a plurality of combinations of four groups Gb (hereinafter referred to as group Go) are selected in the selection step, the sum of the priorities of the receiving boxes 10 belonging to the four groups Gb constituting each group is The highest group Go is preferentially shipped to the belt assembly process. In FIG. 3D, the group Go includes a set Gb of the receiving boxes 10 having the priorities “1”, “8”, “2”, and “9”, and the priorities “3”, “5”, “6”, and “ A state in which the receiving box 10 including the set Gb of “7” is selected is shown. In this case, the group Go having the highest sum total of the priorities of the receiving boxes 10 is a group including the set Gb of the receiving boxes 10 having the priorities “1”, “8”, “2”, and “9”. The first place.

ここで、本実施形態では、組分け工程において、寸法精度が悪かったり製造からの経過時間が長い、いわば出来の悪いエレメントが収納されている受け箱10が早い段階で優先的に抽出されるため、より多くの受け箱10から組になる受け箱10を選択することができる。そのため、寸法精度の悪いエレメントを収納する受け箱10であっても、これを含む組の平均的な寸法精度は公差中心に近付き、選択工程でこの組が選択されて出荷される可能性が高くなる。更に、受け箱10の優先度の総和が最も高いグループGoを優先的にベルト組立工程に出荷するため、出来の悪いエレメントを収納する受け箱10が出荷される可能性が一層高くなる。その結果、歩留まりが向上する。   Here, in the present embodiment, in the grouping process, the receiving box 10 in which the dimensional accuracy is bad or the elapsed time from the manufacturing is long, that is, the poorly-made element is stored is preferentially extracted at an early stage. The receiving box 10 can be selected from a larger number of receiving boxes 10. Therefore, even if the receiving box 10 stores an element with poor dimensional accuracy, the average dimensional accuracy of a set including the element approaches the tolerance center, and there is a high possibility that this set is selected and shipped in the selection process. Become. Furthermore, since the group Go having the highest priority sum of the receiving boxes 10 is preferentially shipped to the belt assembling process, the possibility of shipping the receiving boxes 10 containing the poorly-made elements is further increased. As a result, the yield is improved.

また、上記の如く決定された出荷順位の第1位のグループGoをそのまま出荷することも可能であるが、本実施形態では、出来の悪いエレメントを収納する受け箱10をより優先的に出荷するために、以下の調整工程を行ってから出荷するようにしている。即ち、調整工程では、選択工程で選択された、受け箱10の優先度の総和が最も高い出荷順位第1位のグループGoに属する受け箱10のうち優先度がこのグループGoに属さない他の受け箱10の優先度より低い受け箱10を、エレメント1の平均的な寸法精度が公差範囲に入るという条件を満たす限り当該他の受け箱10に置き換える。例えば、図3(d)に示すものでは、出荷順位第1位のグループGoに、このグループGoに属さない優先度「3」「5」「6」「7」の受け箱10より優先度の低い優先度「8」「9」…の受け箱10が入っており、上記条件を満たすのであればこれら優先度の低い受け箱10を優先度「3」「5」「6」「7」の受け箱10に置換する。   Although it is possible to ship the first group Go of the shipping order determined as described above as it is, in this embodiment, the receiving box 10 that stores the poorly-made elements is shipped with higher priority. For this reason, the following adjustment process is performed before shipment. That is, in the adjustment process, among the receiving boxes 10 belonging to the first group Go of the shipping order having the highest sum of the priorities of the receiving boxes 10 selected in the selecting process, the priority of the receiving boxes 10 other than the group Go is not included. The receiving box 10 lower than the priority of the receiving box 10 is replaced with another receiving box 10 as long as the condition that the average dimensional accuracy of the element 1 falls within the tolerance range is satisfied. For example, in the case shown in FIG. 3 (d), the group Go having the first shipping order is assigned a priority level higher than the receiving boxes 10 having the priorities “3”, “5”, “6”, and “7” that do not belong to this group Go. The low priority “8”, “9”... Receiving box 10 is contained, and if the above condition is satisfied, the low priority receiving boxes 10 are assigned priority “3” “5” “6” “7”. Replace with the receiving box 10.

但し、上記の如く置換を行うと、出荷順位第2位以下のグループGoのエレメント1の平均的な寸法精度が悪化してしまう。そこで、置換後の出荷順位第1のグループGoに属する受け箱10を除く受け箱10に対し上記組分け工程と選択工程とを実行し、次に出荷するグループGoを選択する。   However, if the replacement is performed as described above, the average dimensional accuracy of the element 1 of the group Go that is second or lower in the shipping order will deteriorate. Therefore, the grouping process and the selection process are performed on the receiving boxes 10 excluding the receiving boxes 10 belonging to the first group Go of the shipping order after replacement, and the group Go to be shipped next is selected.

尚、上記実施形態では、寸法精度の管理項目の一つとしてボデー部2の幅方向両側の板厚差を採用しているが、この板厚差から一つのベルトを構成するエレメント1の個数を考慮してベルト組立状態での幅方向両側のクリアランス差を算出し、このクリアランス差をボデー部2の幅方向両側の板厚差に代えて寸法精度の管理項目にすることも可能である。   In the above embodiment, the thickness difference on both sides in the width direction of the body part 2 is adopted as one of the management items of the dimensional accuracy, but the number of elements 1 constituting one belt is determined from this thickness difference. It is also possible to calculate a clearance difference on both sides in the width direction in the belt assembly state in consideration, and to use this clearance difference as a management item of dimensional accuracy instead of the plate thickness difference on both sides in the width direction of the body portion 2.

また、上記実施形態では、プレス装置の打抜き部で打抜かれたエレメント1を受ける受け箱10を打抜き部毎に設けるようにしたが、図4(a)〜(f)に示すように、エレメント1の適所、例えば、ボデー部2の下端中央部に、打抜き部のパンチにより各打抜き部毎に異なる態様で切り込みマーク1aを付け(図4(a)の如くマーク1aを付けない場合も含む)、プレス装置から複数の打抜き部で打抜かれたエレメント1をまとめて払い出した後、マーク1aの識別手段を有する分別装置で打抜き部毎にエレメント1を分別して、各打抜き部に対応する受け箱に収納するようにしても良い。   Moreover, in the said embodiment, although the receiving box 10 which receives the element 1 punched by the punching part of the press apparatus was provided for every punching part, as shown to Fig.4 (a)-(f), element 1 is provided. For example, at the center of the lower end of the body portion 2, a cut mark 1a is attached in a different manner for each punched portion by punching of the punched portion (including the case where the mark 1a is not attached as shown in FIG. 4A), After the elements 1 punched by a plurality of punching portions are discharged together from the press device, the element 1 is sorted for each punching portion by a sorting device having a means for identifying the mark 1a and stored in a receiving box corresponding to each punching portion. You may make it do.

(a)無段変速機用ベルトのエレメントを示す正面図、(b)エレメントの断面図。(a) The front view which shows the element of the belt for continuously variable transmission, (b) Sectional drawing of an element. 本発明方法の実施形態を示すフロー図。The flowchart which shows embodiment of the method of this invention. (a)〜(d)本発明方法の各工程を視覚的に示す図。(a)-(d) The figure which shows each process of this invention method visually. (a)〜(f)エレメントに対するマーキングの態様を示す図。The figure which shows the aspect of the marking with respect to (a)-(f) element.

符号の説明Explanation of symbols

1…エレメント、2…ボデー部、3…ネック部、4…ヘッド部、10…受け箱(エレメント群)。   DESCRIPTION OF SYMBOLS 1 ... Element, 2 ... Body part, 3 ... Neck part, 4 ... Head part, 10 ... Receptacle box (element group).

Claims (7)

無段変速機用のベルトの構成部品である、ベルト内周側のボデー部と、ボデー部にネック部を介して連設されるベルト外周側のヘッド部とを有する板状のエレメントの出荷管理方法であって、
寸法精度がほぼ同一のエレメントのまとまりを一つのエレメント群として、保管中の複数のエレメント群から所定数のエレメント群を選択してベルト組立工程に出荷するものにおいて、
複数のエレメント群を、各組のエレメントの平均的な寸法精度が所定の条件を満たすように2個毎の組に組分けする組分け工程を、先の組分け工程で組分けされたエレメント群の各1個の組を次の組分け工程に際しての各1個のエレメント群と看做して、エレメント群の組の数が所定の設定数以下に減少するまで行った後、
組分け工程で組分けされたエレメント群の組からベルト組立工程に出荷する組として、1個の組に属するエレメント群の数で前記所定数を徐した数の組を、これら組のエレメントの平均的な寸法精度が公差範囲の中心に可及的に近づくような組合せで選択する選択工程を行うことを特徴とする無段変速機用ベルトのエレメントの出荷管理方法。
Shipment management of a plate-like element having a body part on the inner circumference side of the belt for a continuously variable transmission and a head part on the outer circumference side of the belt connected to the body part via a neck part. A method,
In a group of elements with almost the same dimensional accuracy as one element group, a predetermined number of element groups are selected from a plurality of stored element groups and shipped to the belt assembly process.
An element group in which a grouping process for grouping a plurality of element groups into groups each having two elements so that the average dimensional accuracy of each group of elements satisfies a predetermined condition After considering each one set of each as one element group in the next grouping step, until the number of sets of element groups is reduced below a predetermined set number,
As a group shipped from the element group grouped in the grouping process to the belt assembly process, the number of elements obtained by subtracting the predetermined number from the number of element groups belonging to one group is an average of the elements of these groups. Management method for the element of a continuously variable transmission belt, wherein a selection step is performed in which the dimensional accuracy is selected in such a combination as close as possible to the center of the tolerance range.
各エレメント群のエレメントの寸法精度に基づいて、複数のエレメント群に対し寸法精度が悪いほど優先度が高くなるように順位を付け、前記組分け工程において、未だ組になっていないエレメント群の内の最も優先度の高いエレメント群を抽出する抽出工程と、抽出されたエレメント群と同一の組になるエレメント群として、エレメントの平均的な寸法精度が公差範囲の中心に最も近くなるエレメント群を未だ組になっていないエレメント群から選定する選定工程とを繰り返すことを特徴とする請求項1記載の無段変速機用ベルトのエレメントの出荷管理方法。   Based on the dimensional accuracy of each element group, a plurality of element groups are prioritized so that the lower the dimensional accuracy, the higher the priority, and in the grouping step, among the element groups that have not yet been assembled. The extraction process for extracting the highest priority element group and the element group that has the same set as the extracted element group, the element group whose average dimensional accuracy is closest to the center of the tolerance range is still 2. The element shipping management method for a continuously variable transmission belt according to claim 1, wherein a selection step of selecting from an ungrouped element group is repeated. 前記寸法精度に関する管理項目として、エレメントのボデー部とヘッド部の板厚差と、ボデー部の幅方向両側の板厚差とを含む複数の項目がある場合は、これら各管理項目の公差中央値に対する偏差を元とするユークリッド距離を算出し、このユークリッド距離が大きくなるほど前記優先度が高くなるようにすることを特徴とする請求項2記載の無段変速機用ベルトのエレメントの出荷管理方法。   When there are a plurality of items including the thickness difference between the body part and the head part of the element and the thickness difference between both sides in the width direction of the body part as the management items related to the dimensional accuracy, the median tolerance of each of these management items 3. The shipment management method for an element of a continuously variable transmission belt according to claim 2, wherein a Euclidean distance based on a deviation with respect to is calculated, and the priority increases as the Euclidean distance increases. エレメントの寸法精度の悪さに製造からの経過時間を加味して前記優先度を決定し、エレメントの寸法精度が同程度でも製造からの経過時間が長いエレメント群ほど優先度が高くなるようにすることを特徴とする請求項2または3記載の無段変速機用ベルトのエレメントの出荷管理方法。   The priority is determined by taking into account the dimensional accuracy of the element and the elapsed time from the manufacture, so that the priority is higher for the element group having a longer elapsed time from the manufacture even if the dimensional accuracy of the element is the same. 4. A method for shipping management of elements of a belt for continuously variable transmission according to claim 2 or 3. 2回目以降の前記組分け工程では、先の組分け工程で組分けされたエレメント群の各組に属するエレメント群の内の最も高いエレメント群の優先度を当該組を代表する優先度として、前記抽出工程でのエレメント群の組の抽出を行うことを特徴とする請求項2〜4の何れか1項に記載の無段変速機用ベルトのエレメントの出荷管理方法。   In the second and subsequent grouping steps, the priority of the highest element group among the element groups belonging to each group of the element group grouped in the previous grouping step is set as the priority representing the group. 5. The element management method for a continuously variable transmission belt according to any one of claims 2 to 4, wherein a group of element groups is extracted in the extraction step. 前記選択工程でエレメント群の組の組合せが複数選択された場合、各組合せの組に属するエレメント群の優先度の総和が最も高い組合せの組を優先的にベルト組立工程に出荷することを特徴とする請求項2〜5の何れか1項に記載の無段変速機用ベルトのエレメントの出荷管理方法。   When a plurality of combinations of element groups are selected in the selection step, a combination set having the highest sum of priorities of element groups belonging to each combination set is preferentially shipped to the belt assembling step. 6. A method for managing the shipment of elements of a belt for a continuously variable transmission according to any one of claims 2 to 5. 前記選択工程で選択された、エレメント群の優先度の総和が最も高い組合せの組に属するエレメント群のうち優先度がこの組合せの組に属さない他のエレメント群の優先度より低いエレメント群を、エレメントの平均的な寸法精度が公差範囲に入るという条件を満たす限り当該他のエレメント群に置き換える調整工程を行い、調整工程後にベルト組立工程に出荷すると共に、未出荷のエレメント群に対し前記組分け工程と前記選択工程とを再度行うことを特徴とする請求項6記載の無段変速機用ベルトのエレメントの出荷管理方法。   An element group that is selected in the selection step and has a lower priority than the priority of other element groups that do not belong to the combination set among the element groups that belong to the combination set having the highest sum of the priority levels of the element group, As long as the condition that the average dimensional accuracy of the elements is within the tolerance range is satisfied, an adjustment process is performed to replace the element group with the other element group. 7. The shipment management method for an element of a continuously variable transmission belt according to claim 6, wherein the step and the selection step are performed again.
JP2003348626A 2003-10-07 2003-10-07 Shipment management method for belt element for continuously variable transmission Expired - Fee Related JP4138624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003348626A JP4138624B2 (en) 2003-10-07 2003-10-07 Shipment management method for belt element for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003348626A JP4138624B2 (en) 2003-10-07 2003-10-07 Shipment management method for belt element for continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2005115632A JP2005115632A (en) 2005-04-28
JP4138624B2 true JP4138624B2 (en) 2008-08-27

Family

ID=34540767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003348626A Expired - Fee Related JP4138624B2 (en) 2003-10-07 2003-10-07 Shipment management method for belt element for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4138624B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181759A (en) * 2013-03-19 2014-09-29 Honda Motor Co Ltd Shipping management method for element of non-stage transmission
CN110958929A (en) * 2017-07-31 2020-04-03 大金工业株式会社 Production management system and production management method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5064940B2 (en) * 2007-08-31 2012-10-31 シャープ株式会社 Production management system and product production method
JP4710898B2 (en) * 2007-12-03 2011-06-29 トヨタ自動車株式会社 Transmission belt manufacturing method
JP5391636B2 (en) * 2008-10-08 2014-01-15 アイシン・エィ・ダブリュ株式会社 Punching method for CVT belt element
JP5892080B2 (en) * 2013-02-01 2016-03-23 株式会社デンソー production management system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014181759A (en) * 2013-03-19 2014-09-29 Honda Motor Co Ltd Shipping management method for element of non-stage transmission
CN110958929A (en) * 2017-07-31 2020-04-03 大金工业株式会社 Production management system and production management method
CN110958929B (en) * 2017-07-31 2021-03-30 大金工业株式会社 Production management system and production management method

Also Published As

Publication number Publication date
JP2005115632A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
Amid et al. Multiview triplet embedding: Learning attributes in multiple maps
JP4138624B2 (en) Shipment management method for belt element for continuously variable transmission
TWI486885B (en) Efficient inventory management for providing distinct service qualities for multiple demand groups
Labatut et al. Evaluation of performance measures for classifiers comparison
CN112463971B (en) E-commerce commodity classification method and system based on hierarchical combination model
CN107004141A (en) To the efficient mark of large sample group
KR101136169B1 (en) Centralized information processing device and centralized information processing system
JP2012226511A (en) Yield prediction system and yield prediction program
Hebert Predicting rare failure events using classification trees on large scale manufacturing data with complex interactions
Gungor et al. Disassembly sequence planning for complete disassembly in product recovery
CN107368046B (en) Component assembly system and component assembly method using inspection information
JP2022040964A (en) Manufacturing condition setting automating device and method
Bouzouita et al. GARC: A new associative classification approach
CN115081961B (en) Logistics transport capacity intelligent dispatching method based on big data
JPWO2017164095A1 (en) Factor analysis device, factor analysis method, and storage medium storing program
Intayoad et al. Exploring the Relationship between Business Processes and Contextual Information in Manufacturing and Logistics Based on Event Logs
CN113989808B (en) Method and system for selecting specifications of mechanical manufacturing materials based on drawing information processing
CN111061246A (en) Method for analyzing failure mode, influence and hazard in mechanical product assembly process
US6993768B2 (en) Method of storing multi-parameter configuration information
KR20200144979A (en) System and method for establishing a middle scheduling of shipbuilding using plm big data
CN112784620B (en) Product manufacturing tracing method and tracing system thereof
Sivakumar et al. Minimizing cost of assembly of an interrelated dimensional chain product using ABC algorithm
Cullen et al. SPC for short production runs
JP4788396B2 (en) Sheet punching type and bladed block for balance adjustment
Adesiyan Performance prediction of production lines using machine learning algorithm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4138624

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees