JP4138263B2 - Electrostatic transfer device, developing device, and image forming apparatus - Google Patents

Electrostatic transfer device, developing device, and image forming apparatus Download PDF

Info

Publication number
JP4138263B2
JP4138263B2 JP2001066183A JP2001066183A JP4138263B2 JP 4138263 B2 JP4138263 B2 JP 4138263B2 JP 2001066183 A JP2001066183 A JP 2001066183A JP 2001066183 A JP2001066183 A JP 2001066183A JP 4138263 B2 JP4138263 B2 JP 4138263B2
Authority
JP
Japan
Prior art keywords
substrate
electrostatic
toner
transfer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001066183A
Other languages
Japanese (ja)
Other versions
JP2002268375A (en
Inventor
信昭 近藤
耀一郎 宮口
武 竹本
勝文 熊野
豊 海老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2001066183A priority Critical patent/JP4138263B2/en
Publication of JP2002268375A publication Critical patent/JP2002268375A/en
Application granted granted Critical
Publication of JP4138263B2 publication Critical patent/JP4138263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Dry Development In Electrophotography (AREA)

Description

【0001】
【産業上の利用分野】
本発明は静電搬送装置、現像装置及び画像形成装置に関し、特に粉体を静電力で搬送する静電搬送装置、潜像担持体にトナーを付着させる現像装置、潜像担持体の潜像を現像して画像を形成する画像形成装置に関する。
【0002】
【従来の技術】
複写装置、プリンタ、ファクシミリ等の画像形成装置として、電子写真プロセスを用いて、潜像担持体に潜像を形成し、この潜像に現像剤(以下「トナー」という。)を付着させて現像して可視像化し、このトナー像を記録媒体(転写紙)に転写することで画像を形成するものがある。
【0003】
このような画像形成装置において、潜像を現像する現像装置としては、従来から、現像装置内で攪拌されたトナーを現像剤担持体である現像ローラ表面に担持し、現像ローラを回転させることによって潜像担持体の表面に対向する位置まで搬送し、潜像担持体の潜像を現像し、現像終了後、潜像担持体に付着しなかったトナーは現像ローラの回転により現像装置内に回収し、新たにトナーを攪拌・帯電して再び現像ローラに担持して搬送するようにしたものが知られている。
【0004】
また、現像装置としては、特開平5−19615号公報に記載されているように、現像ローラ表面において静電力を用いてトナー搬送を搬送し、潜像担持体との間で生じる吸引力で現像ローラ表面からトナーを分離して潜像担持体表面に付着させるようにしたもの、或いは、特開昭59−181375号などに記載されているように、トナーを静電力で搬送する静電搬送基板を用いて、トナーを潜像担持体に対向する位置まで搬送し、潜像担持体との間で生じる吸引力で静電搬送基板からトナーを分離して潜像担持体表面に付着させるようにしたもの、特開平7−227995号公報に記載されているように、トナーを搬送する搬送基板に振動を励振させて搬送させるもの、特開平4−204570号公報に記載されているように、帯電粒子の搬送を静電力を用いて行うとともに搬送基板を振動により励振して帯電粒子を搬送するものなどが知られている。
る。
【0005】
さらに、他の画像形成装置として、トナーを担持する現像ローラや特開平9−141912号公報に記載されているストライプ状の電極が形成された電極基板を用いて、アパーチャ部までトナーを担持搬送し、記録媒体との間に制御用電極を、記録媒体の背面に背面電極をそれぞれ配置し、背面電極と現像ローラとの間で電界を発生させることで、トナーを記録媒体方向に飛翔可能とし、このトナーの飛翔を制御電極で選択的に制御することによって、記録媒体に画像を形成するいわゆる飛翔型(トナージェット型)画像形成装置も知られている。
【0006】
また、トナーなどの粉体を搬送する粉体搬送装置として、特開平7−267363号公報に記載されているように、空間進行波電界を用いて搬送するものがある。これは、電極に駆動電圧を印加することにより、電極の周辺に空間的な進行波電界が形成され、進行波電界により帯電された粉体に反発力と駆動力が働き、粉体が電界進行方向に搬送されるものである。この空間進行波電界を用いてトナーなどの粉体を分級する分級装置として、例えば特開平8−149859号公報に記載されているように、静電力と重力、遠心力等を作用させて分級(分別)を行うようにしたものが提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上述した現像ローラを用いてトナーを潜像担持体に与える現像装置を備えた画像形成装置、或いは、現像ローラにトナーを担持させて、現像ローラから電界制御で記録媒体にトナーを飛翔させる飛翔型画像形成装置にあっては、現像ローラを用いるため現像装置が大型化し、画像形成装置全体の小型化、低コスト化を図ることができない。
【0008】
また、静電搬送でトナーを搬送する現像装置にあっては確実にトナーを搬送することができない。すなわち、静電搬送を行うためには帯電粒体を予め所定の帯電電荷に帯電させておく必要あるが、現状で電子写真等に用いられるトナーにおいては帯電電荷量はバラツキが確認されている。粒体の帯電電荷が異なる場合には、同一の搬送電界を用いても、粒体には同一の搬送力が与えられないため、搬送量の精度及び搬送速度の制御ができないという課題がある。
【0009】
一方、搬送基板を振動させて、振動によるエネルギーにより粒体を搬送するものは、粒体を帯電させておく必要がなく搬送できるメリットはあるが、振動条件のみで搬送速度を制御できるものの、粒体に与えられる搬送力が、粒体と搬送基板との接触の摩擦力によるために、粒体と搬送基板との間で摩擦力がかかりにくい条件、例えば、粒体径が小さく軽すぎて搬送基板からのエネルギーが十分得られない場合には、粒体が搬送基板より浮きスリップしてしまい搬送力が低下してしまうという課題がある。
【0010】
さらに、帯電粒子の搬送を静電力と搬送基板の振動により行うものは、搬送基板から浮き上がる帯電粒子が潜像担持体の回転などによって生じる渦流などの風圧によって逆送されるなどして、所要の搬送方向に確実に搬送することができないという課題がある。
【0011】
本発明は上記の点に鑑みてなされたものであり、粉体を確実に所要の方向に搬送でき、搬送効率を向上した静電搬送装置、この静電搬送装置を用いた高い画像品質で現像を行うことのできる現像装置、この現像装置を用いて高画質画像を形成できる画像形成装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
上記の課題を解決するため、本発明に係る静電搬送装置は、
粉体を静電力で搬送する静電搬送装置において、
前記粉体を搬送面に沿って静電力で移動させるための電界を発生させる複数の電極を有する第1基板と、
この第1基板にギャップをおいて対向配置され、傾斜面及びこの傾斜面よりも傾斜角度が急峻な急峻面とを有する断面形状が略鋸歯状をなす第2基板とを備え、
前記第2基板は、該第2基板を振動させる手段として、圧電材料層とこれを挟む電極を有する振動発生基板を分割溝で分割して形成された分割振動発生基板を備え、
前記分割振動発生基板の電極ピッチは前記第1基板の電極ピッチと略同じであって、かつ前記分割振動発生基板の電極と前記第1基板の電極は互いに対面するよう配設されており、
前記分割振動発生基板の電極に対して、前記第1基板の電極に対する駆動波形と同期をとって交流又は直流パルスを印加することにより、前記分割振動発生基板を振動させる
構成とした。
なお、本明細書において「粉体」は、「微粒子」、「微粉末」、「粒子」、「粉末」、「粒体」、「微粉体」などを含む意味である。
【0013】
ここで、前記分割振動発生基板上に搬送面を形成する振動伝搬部材である搬送面形成部材を設け、さらに、該搬送面形成部材の傾斜面の略頂上部付近に電極を設け、前記搬送面形成部材の傾斜面上の電極に対して駆動波形を印加する構成とできる。また、前記第2基板の傾斜面と急峻面の底部側連続部が曲面形状をなす構成とできる。
【0022】
本発明に係る現像装置は、潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置であって、本発明に係る静電搬送装置を備え、この静電搬送装置の静電搬送基板の先端部が潜像担持担持体近傍に臨む構成としたものである。
【0023】
本発明に係る現像装置は、潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置であって、本発明に係る静電搬送装置を備え、トナーを潜像担持体に付着させる現像手段に対して静電搬送装置でトナーを送り込む構成としたものである。
【0024】
本発明に係る画像形成装置は、潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置を備えた画像形成装置であって、本発明に係る現像装置を備えたものである。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面を参照して説明する。先ず、本発明の第1実施形態に係る画像形成装置について図1を参照して説明する。なお、同図は同画像形成装置の全体概略構成図である。
この画像形成装置の全体の概略及び動作を説明すると、潜像担持体である感光体ドラム1(例えば、有機感光体:OPC)は同図で時計方向に回転駆動される。コンタクトガラス2上に原稿を載置し、図示しないプリントスタートスイッチを押すと、原稿照明光源3とミラー4とを含む走査光学系5と、ミラー6、7を含む走査光学系8とが移動して、原稿画像の読み取りが行われる。
【0026】
ここで、走査された原稿画像がレンズ9の後方に配置した画像読み取り素子10で画像信号として読み込まれ、読み込まれた画像信号はデジタル化され画像処理される。そして、この画像処理をした信号でレーザーダイオード(LD)を駆動し、このレーザーダイオードからのレーザー光をポリゴンミラー13で反射した後、ミラー14を介して感光体ドラム1上に照射する。この感光体ドラム1は帯電装置15によって一様に帯電されており、レーザー光による書き込みにより、感光体ドラム1の表面に静電潜像が形成される。
【0027】
そして、この感光体ドラム1表面の静電潜像は、本発明に係る静電搬送装置を含む本発明に係る現像装置16によってトナーが付着されて可視像化され、この可視像は、給紙部17A又は17Bから給紙コロ18A又は18Bで給紙された転写紙(記録媒体)19に転写チャージャ20のコロナ放電により転写される。この可視像が転写された転写紙19は、分離チャージャ21により感光体ドラム1の表面より分離されて、搬送ベルト22によって搬送され、定着ローラ対23の圧接部を通って、可視像が定着され、機外の排紙トレイ24へと排紙される。
【0028】
一方、転写が終了した感光体ドラム1の表面に残留しているトナーはクリーニング装置25によって除去され、感光体ドラム1の表面に残留している電荷は除電ランプ26によって消去される。
【0029】
次に、この画像形成装置における本発明に係る静電搬送装置を備えた本発明に係る現像装置16について図2を参照して説明する。なお、同図は同現像装置の概略構成図である。
この現像装置16は、トナーを収納するトナーホッパ部31と、このトナーホッパ部31内のトナーを攪拌するアジテータ32と、トナーホップ部31内のトナーを帯電させてトナーボックス部33に供給する帯電ローラ34及びこの帯電ローラ34の周面に接触させて配置したドクターブレード35と、トナーボックス部33内のトナーを静電力で搬送して潜像担持体である感光体ドラム1に向かってトナーを噴出させる本発明に係る静電搬送装置36と、現像に供されなかったトナーを回収するトナー回収部材38と、トナー回収部材38に回収されるトナーを静電力で搬送してトナーボックス部33に戻すトナー逆搬送部材39とを備えている。
【0030】
静電搬送装置36は、先端部が感光体ドラム1近傍に臨み、帯電したトナーを静電力で搬送して先端部から感光体ドラム1に向かって噴出する搬送面41aを有する第1基板でもある静電搬送基板41と、この静電搬送基板41の搬送面41aに対向する搬送面42aを有し、振動が付与される第2基板でもある振動搬送基板42とを備えている。
【0031】
そして、これらの静電搬送基板41と振動搬送基板42との間にトナーボックス部33内のトナーを静電力で搬送して送り込む送り込み基板43、43とを備え、これらの送り込み基板43、43の一端部は静電搬送基板41及び振動搬送基板42にそれぞれに接合し、他端部は帯電ローラ34側に配置している。
【0032】
ここで、静電搬送基板41と振動搬送基板42とは、図3にも示すように、搬送面41a、42aを対向させて所定のギャップdを置いて配置し、搬送方向と直交する方向(感光体ドラム1の軸方向)の両端部をスペーサ部材44を介して接合し、静電搬送基板41と振動搬送基板42とのギャップ空間46をトナーが搬送される通路としている。このように、静電搬送基板41と振動搬送基板42とを接合して一体化することにより、ギャップdを維持することができる。
【0033】
このときの2枚の静電搬送基板41と振動搬送基板42とのギャップ(対向間隔)dは、トナーの粒径、帯電量、駆動電圧などを考慮して決定するが、搬送する粉体であるトナーの粒径の2倍〜100倍の範囲内、より好ましくは5倍〜25倍の範囲内にすることが好ましい。実験によると、ギャップ(対向間隔)dをトナーの粒径の2倍未満にした場合には不帯電トナーに帯電トナーが妨害されて搬送効率が低下し、ギャップ(対向間隔)dがトナーの粒径の100倍を越える場合には振動搬送基板42による振動飛翔で得られるトナー搬送効果が十分に発揮されない。
【0034】
そこで、この静電搬送装置36を構成する静電搬送基板41の第1実施例の異なる例について図4乃至図6を参照して説明する。なお、図4は同静電搬送基板の一例の搬送方向に沿う模式的断面説明図、図5は同静電搬送基板の他の例の模式的断面説明図、図6は各例の静電搬送基板の電極パターンを説明する平面説明図である。
【0035】
これらの静電搬送基板41は、リジッドな支持部材である支持基板51に、空間進行波電界を発生させるための複数本の電極52を搬送方向と交差(直交に限らない。)する方向に所要の間隔で配置し、この支持基板51上に駆動電極52表面及び駆動電極52、52間を被覆する絶縁膜53を形成し、さらに絶縁膜53表面に機能性材料層である表面層54をコーティングしたものである。なお、図4の例と図5の例は搬送面41aを凹凸面とするか平坦面とするかの違いのみである。
【0036】
支持基板51は、ガラス基板、樹脂基板或いはセラミックス基板等の絶縁性基板、または、SUS、シリコン基板などの導電性基板の表面に絶縁層を成膜したものを用いている。
【0037】
ここで、導電性支持基板を用いた場合には、導電性基板を接地することが好ましい。すなわち、支持基板51を導電性基板で形成した場合、駆動電極52に空間進行波電界を発生させるための高速駆動パルスを印加することによる電荷の移動と、トナーが静電搬送基板41に接触して移動することに伴って導電性支持基板の帯電が発生するので、導電性支持基板を接地することによって常に導電性支持基板の静電位を一定し、残留電荷の発生を低減することができる。なお、この支持基板51は感光体ドラム1の幅と略同程度の幅を有している。
【0038】
駆動電極52は、支持基板51上にAl、Ni−Cr、TiN、ポリシリコン、或いはTi、W、Moなどの高温金属膜等の導電性材料を0.1〜2μmの厚みで成膜し、これをフォトリソグラフィ技術等の半導体技術を用いて電極形状にパターン化して形成している。
【0039】
この場合、駆動電極52の厚みTと搬送方向の幅Lが、T/L=0.1以上の関係になるように形成することが好ましい。例えば、駆動電極52は厚みT=2μm、幅L=10μmで形成する。このように、駆動電極52の厚みTを幅Lの0.1以上にすることにより、隣接する駆動電極52における電界強度が増し、トナーを効率良く、所定方向に搬送することが可能となる。実験によると、電極52の厚みが増すほど搬送量が多くなり、厚みを薄くするに従って搬送量も減少することが確認された。
【0040】
また、駆動電極52の厚みTと電極52、52間の間隔Rは、R/T=10〜3×10の関係になるように、好ましくはR/T=50〜300の関係になるように形成することが好ましい。例えば、駆動電極52を厚みT=2μmとすると、間隔R=100μmで形成する。このように駆動電極52の電極間距離Rが電極52の厚みに対して10倍から3×10の関係になるようにすることで、駆動電極52によって発生する空間進行電界とトナーの反発・吸引との調和がとれて、トナーを効率的に搬送できる。
【0041】
絶縁膜53としては、ポリイミド、SiO(シリコン酸化膜)、Ta(五酸化タンタル)などの無機材料或いは有機材料を用いることができる。この絶縁膜53としては、ヤング率が30〜5000kg/mm、誘電率ε=2〜300の範囲のものであることが好ましい。この絶縁膜53の誘電率を大きくすることによって、駆動電圧の低電圧化を図ることができるとともに、粒子(トナー)の駆動反跳と搬送速度が大きくなる。
【0042】
上述したように支持基板51がリジッドな基板である場合には、絶縁膜53のヤング率を30〜5000kg/mmとして誘電率を選ぶことで駆動電極52、52間の電界強度が高まり、シミョレーションでは絶縁膜53の膜厚が1〜2μmで、誘電率ε=3〜20程度では電界強度の大きさは大差がなかった。絶縁膜53の膜厚が5〜10μm以上になると寄与が大きくなる。また、BaTiO3膜のように誘電率ε=500〜800となると、その電界強度を高める効果が大きく、一層、駆動電極55間のトナー移動が効率よく行われる。
【0043】
表面層54は、特に搬送面41aと帯電トナー界面と接触抵抗の低減を図る機能を有する膜であり、この接触抵抗の低減のためには臨界表面エネルギーEgが30dyne/cm以下の材料が好ましく、例えばPTFE、PFAなどのフッ素系樹脂材料を0.1〜1μmの厚みでコートして形成している。フッ素系樹脂を用いることで、容易に低コストで所望の表面層54を形成することができる。
【0044】
次に、振動搬送基板42の第1実施例について図7を参照して説明する。なお、同図は同振動搬送基板42の搬送方向に沿う模式的断面説明図である。
この振動搬送基板42は、ガラス、金属、セラミックス等からなる支持基板61上に振動発生基板62を積層し、この振動発生基板62上に搬送面を形成する振動伝搬部材である搬送面形成部材63を設け、更に搬送面形成部材63上に表面層64を形成したものである。
【0045】
振動発生基板62は、セラミックス製の圧電層65を挟んでに電極66、67を積層したものである。搬送面形成部材63は、絶縁性又は導電性基板、例えばシリコン、SUS、Ni、ポリイミド等で形成している。この搬送面形成部材63には、搬送方向に向かって第1基板である静電搬送基板41に接近するように傾斜した傾斜面63aと、この傾斜面63aよりも傾斜角度が大きい急峻面63bとを形成して、断面形状で鋸歯状に形成している。
【0046】
ここで、搬送面形成部材63の傾斜面63aと急峻面63bのピッチは静電搬送基板41の駆動電極52のライン/スペース(ピッチ)と略同じか又は10倍以内の範囲で形成する。傾斜面63aと急峻面63bのピッチが駆動電極52のピッチの10倍を越えると、静電搬送基板41による搬送と振動搬送基板42による搬送との相乗効果を十分に発揮することができないことがある。
【0047】
また、搬送面形成部材63の傾斜面63aの傾斜角度θ1は5〜60°の範囲が好ましく、より好ましくは20〜45°の範囲内である。振動搬送基板42上の帯電トナーが十分なエネルギーを受けて搬送方向(図においては右から左へ)に進行し、さらに、前方帯電トナーに衝突することにより加速エネルギーを与える。このとき、傾斜面63aの角度θ1が5°より小さい場合、振動搬送基板42上の帯電トナーを十分に振動飛翔させることができないことから、駆動電圧の上昇を招くことになる。一方、傾斜面63aの角度θ1が60°より大きい場合は、振動飛翔トナーが多いときなどに、振動飛翔トナーが進行トナーにぶつかり進行エネルギーを奪ってトナー搬送の効率を妨げる結果となることがある。
【0048】
また、搬送面形成部材63の急峻面63bの急峻角度θ2は45〜120°の範囲が好ましく、より好ましくは60〜90°の範囲内である。これは、急峻角度θ2が120°より大きい場合、振動搬送基板42の傾斜面63aにおいて、急峻面63bに近い部分のトナーが振動飛翔しても急峻面63bの頂部にぶつかり再度傾斜面63aに落下することとなってトナーの滞留が生じ易くなる。一方、急峻角度θ2が45°より小さい場合、トナーが急峻面63bに堆積してしまうことがあり、いずれにしても搬送効率が低下するおそれがある。
【0049】
さらに、搬送面形成部材63のヤング率は30〜15000kg/mm2の範囲内であることが好ましい。この搬送面形成部材は、振動伝搬部材となるので、ヤング率の大きな材料を選択することにより、振動発生基板62で発生する振動を損失することなく伝搬することができて、搬送効率を向上することができる。
【0050】
表面層64は、静電搬送基板41の表面層53と同様に特に搬送面42aとトナー界面と接触抵抗の低減を図る機能を有する膜であり、この接触抵抗の低減のためには臨界表面エネルギーEgが30dyne/cm以下の材料が好ましく、例えばPTFE、PFAなどのフッ素系樹脂材料を0.1〜1μmの厚みでコートして形成している。フッ素系樹脂を用いることで、容易に低コストで所望の表面層64を形成することができる。なお、搬送面形成部材63に導電性基板を用いた場合には搬送面形成部材63の表面に絶縁膜を形成して、この絶縁膜表面に表面層64を形成する。このような表面層64を設けることで絶縁及びトナーに対する接触抵抗を緩和させることができて低電圧化が図れる。
【0051】
これらの静電搬送基板41と振動搬送基板42とは前述したようにスペーサ44を介して互いの搬送面を対向させて接合しているが、このとき配置に際しては、アライメントマークを用いて静電搬送基板41の駆動電極52と振動搬送基板42の急峻面63bが一致するよう接合する。
【0052】
次に、送り込み基板43の異なる例について図8及び図9をも参照して説明する。なお、各図は同送り込み基板43の送り方向に沿う断面説明図である。
図8に示す送り込み基板43は、ポリイミドフィルムなどのフレキシブルな絶縁性基板からなる支持部材である支持基板71上に、静電搬送基板41と同様に、複数本の電極72を搬送方向と交差(直交に限らない。)する方向に所要の間隔で配置し、支持基板71上に空間進行電界を発生させるための駆動電極72表面及び駆動電極72、72間を被覆する絶縁膜73を形成し、さらに絶縁膜73表面に表面層74をコーティングしたものである。
【0053】
フレキシブルな支持基板71については絶縁膜73としてヤング率30〜500kg/mmで、誘電率ε=2〜300のものを用いることにより、駆動電極72、72間の電界強度を強めることができる。また、支持基板71は導電性基板に絶縁層を形成したものでもよい。そして、各送り込み基板43は静電搬送基板41の支持基板51と振動搬送基板42の支持基板61に接合している。
【0054】
図9に示す送り込み基板43は、ポリイミドフィルムなどのフレキシブルな絶縁性基板からなる支持部材である支持基板71上に搬送面形成部材73を積層し、この搬送面形成部材73に振動搬送基板42と同様な傾斜面73a及び急峻面73bを形成し、更に傾斜面73aに空間進行電界を発生させるための駆動電極72を搬送方向と交差(直交に限らない。)する方向に所要の間隔で配置して、搬送面形成部材73の表面を表面層74で被覆したものである。
【0055】
このように支持基板71をフレキシブル基板とすることで自在な湾曲が可能となって装置のコンパクト化が図れるとともに、形状依存性が容易になってトナーボックス部等への装着が簡単になる。
【0056】
次に、静電搬送装置36によるトナーの搬送動作について図10乃至図15をも参照して説明する。
先ず、この静電搬送装置36においては、図10に示すように、静電搬送基板41の3本の駆動電極52、52、52を1セットとして、各駆動電極52に3相の駆動電圧(駆動波形)Va、Vb、Vcをそれぞれ印加する駆動回路(ドライバ)81を設けている。この駆動回路81から出力する駆動波形Va、Vb、Vcにはそれぞれ若干の遅延時間を持たせ、また駆動波形Va、Vb、Vcは、いずれも+電位、−電位、0電位(非印加)の三値をとる電圧波形である。一方、振動搬送基板42の電極66、67間に振動発生基板62を振動させるための交流又は直流パルスの駆動波形を印加する駆動回路82を設けている。
【0057】
ここで、図11に示すように、静電搬送基板41上に正帯電したトナーTがあり、静電搬送基板41の連続した複数の駆動電極52に、▲1▼で示すようにそれぞれ「−」、「+」、「0」、「−」、「+」が印加され、「0」の駆動電極52上に正帯電トナーTが位置するとき、正帯電トナーTには図で左側の「+」の駆動電極52との間で反発力が、右側の「−」の駆動電極52との間で吸引力がそれぞれ作用するので、正帯電トナーTは「−」の駆動電極52側に移動する。
【0058】
ここで、例えば、図12に示すような変化パターンで駆動回路81から3相駆動電圧Va、Vb、Vcを三本の駆動電極52毎に印加している場合、静電搬送基板41の連続した複数の駆動電極52に印加する電圧は▲2▼で示すようにそれぞれ「0」、「−」、「+」、「0」、「−」のように変化する。したがって、「−」から「0」になった駆動電極52と正帯電トナーTとの間には力が作用しなくなり、正帯電トナーTは「0」から「+」になった駆動電極52との間で反発力が、「+」から「−」になった駆動電極52との間で吸引力がそれぞれ作用するので、正帯電トナーTは更に「−」の駆動電極52側に移動する。
【0059】
このように駆動電極52に印加する駆動波形の電位を変化させて見かけ上の駆動波形を移動させることによって空間進行波電界が発生し、正帯電トナーTは「−」の駆動電極52側に引かれながら移動するので、静電搬送基板41の搬送面41aに沿って正帯電トナーTが搬送される。
【0060】
なお、駆動回路81から静電搬送基板41の各駆動電極52に印加する3相の駆動電圧Va、Vb、Vcの変化パターンは上記の例に限るものではなく、例えば図13に示すように「0」を用いないで三本の駆動電極52のうちの連続する二本の駆動電極52に対する駆動波形を「−」、他の一本の駆動電極52に対する駆動波形を「+」にするパターンであっても、正帯電トナーTは静電搬送基板41に搬送面に沿って搬送される。また、「−」を用いないで三本の駆動電極52のうちの連続する二本の駆動電極52に対する駆動波形を「0」、他の一本の駆動電極52に対する駆動波形を「+」にするパターンであっても、正帯電トナーTは静電搬送基板41に搬送面41aに沿って搬送される。
【0061】
また、3相の駆動電圧Va、Vb、Vcの変化パターンとして図14に示すように図12とは逆の変化パターンを用いれば正帯電トナーTは図11と逆方向に搬送される。同様に、図15に示すように図13とは逆の変化パターンを用いても正帯電トナーTは図11と逆方向に搬送される。さらに、負帯電トナーの場合には駆動波形の変化パターンを逆にすれば良い。
【0062】
このように静電搬送基板41によって送り込み基板43から送り込まれた帯電したトナーは空間進行波電界によって感光体ドラム1側に静電力で搬送される。
【0063】
一方、振動搬送基板42は電極66、67間に交流又は直流パルスの駆動波形が印加されることで圧電層65が振動し、この振動が搬送面形成部材63に伝搬されて搬送面42aが振動する。このとき、振動搬送基板42は電極66、67に印加する静電搬送基板41の電極52に印加する駆動波形(3相交流波形)と同期する3相交流波形或いは直流パルスとして、振動搬送基板42と静電搬送基板41との駆動波形は同期させる。
【0064】
この振動搬送基板42の搬送面42aに振動が生じることによって、振動搬送基板42上の帯電トナーが振動飛翔し、前方トナーに衝突することによって加速エネルギーを与え、帯電トナーが搬送方向に進行する。また、静電搬送基板41と振動搬送基板42との間にはギャップ空間46が形成されており、感光体ドラム1が回転することによって吸引作用が生じて先端部側に空気の流れが生じ、この空気の流れによって帯電トナーTには一層搬送方向のエネルギーが作用するので、帯電トナーは空気の流れによっても搬送方向に進行する。
【0065】
このように静電搬送装置36の静電搬送基板41と振動搬送基板42との間に送り込まれた帯電トナーは静電力と振動力による相乗効果によって感光体ドラム1側に搬送される。そして、静電力と振動力による相乗効果でトナーを搬送することで、多くのトナーを効率的に搬送することができる。
【0066】
そして、振動搬送基板が搬送方向に対して急峻面が形成されているため帯電量の少ないトナーの逆送を防止でき、傾斜面上の帯電トナーを搬送方向に確実に搬送でき、搬送方向の制御できるとともに搬送量の均一化が図れる。また、上記のように感光体ドラム1の回転による吸引作用が生じるものの、装置内では種々の要因から搬送方向と逆方向に向かう空気の流れが生じることがあり、この場合には搬送されるトナーに対して逆方向に力が作用することになるが、急峻面があることからこの急峻面に逆送トナーが衝突して搬送方向に跳ね返され、より確実にトナーを搬送方向に搬送することができる。
【0067】
次に、以上のように構成した画像形成装置における現像装置16を用いた現像作用について図16をも参照して説明する。なお、同図は同画像形成装置の現像原理説明図である。
この画像形成装置においては、現像装置16のトナーホッパ31のトナーがアジテータ32で攪拌されながら帯電ローラ34に運ばれ、帯電ローラ34の回転(図で左回り方向)によってドクタブレード35との摩擦帯電で所定の極性に帯電されてトナーボックス部33に送り込まれる。
【0068】
そして、このトナーボックス部32のトナーは、送り込み基板43、43に前述したような駆動波形Va、Vb、Vcが印加されることで送り込み基板43に沿って搬送されて静電搬送基板41と振動搬送基板42との間に送り込まれる。このとき、送り込み基板43、43と静電搬送基板41及び振動搬送基板42とを接合しているのでトナーのスムーズな移送が行われる。また、送り込み基板43として図9に示すように断面形状を鋸歯状に形成した搬送面を有する基板を用いることで、空気の流れによる帯電トナーの逆送が防止されて、より確実にトナーを静電搬送基板41及び振動搬送基板42間に送り込むことができる。
【0069】
さらに、静電搬送基板41と振動搬送基板42との間に送り込まれたトナーは、静電搬送基板41に前述したような駆動波形Va、Vb、Vcが印加され、振動搬送基板42に前述したように圧電層65を振動させる駆動波形が印加されることで、静電搬送基板41及び振動搬送基板42に沿って多くの搬送量でスムーズに搬送されて、感光体ドラム1との対向部方向に向けて噴出側から順次供給される。
【0070】
これによって、噴出された正帯電トナーTは感光体ドラム1表面の負電荷がある部分(画像部分)に付着して感光体ドラム1上の潜像が現像される。このとき、静電搬送基板41及び振動搬送基板42によるトナー搬送が効率的に確実に行われることから、現像に必要とされる十分なトナー量の供給を確保することができる。
【0071】
この場合、静電搬送基板41と振動搬送基板42の噴出側に交流電源83からの交流電圧を印加して、静電搬送基板41と振動搬送基板42の先端部間に交流電界を発生させておくと、静電搬送基板41と振動搬送基板42との間から噴出したトナーTが交流電界によってクラウド状態になるトナークラウド84が発生し、感光体ドラム1の潜像に対して均質にトナーが付着するので、画像品質が向上する。
【0072】
このように、本発明に係る静電搬送装置を備えて帯電したトナーを静電搬送基板及び振動搬送基板の搬送面に沿って静電力及び振動飛翔による相乗作用で搬送して、潜像担持体にトナーを供給付着させる現像装置を備えることによって、非接触で直接トナーを潜像担持体表面に付着させることができ、静電搬送を用いた高画像品質の現像が可能になるとともに、装置が簡単になって低コスト化を図れる。
【0073】
また、現像ローラを現像手段とする場合に比べてトナーの劣化が少なくなる。すなわち、通常は、摩擦帯電で、トナーを帯電させ、現像ローラに磁性キャリヤとともに製膜し、キャリヤに静電付着したトナーを磁気ブラシ状にして、潜像担持体に接触させて現像するが、このため、トナーは現像ローラで混練り状態となり、さらに微粉末に粉砕されたり、SiO,TiO等、添加物がトナーの樹脂部に刷り込まれるなどして、トナーの特性劣化が発生して、機能障害が発生する。これに対して、上述したように静電搬送基板でトナーを搬送することで、トナーが更に微粉末に粉砕されたり、SiO,TiO等、添加物がトナーの樹脂部に刷り込まれることがなく、特性劣化も低減する。
【0074】
さらに、現像ローラなどの現像剤担持体を回転させることなく潜像担持体にトナーを搬送するので、現像装置内でのトナー固着がなくなり、また、トナーが静電力により担持されるため現像部周りのシール部からのトナー飛散の低減を図ることができ、画像品質の向上が図れる。また、現像装置に特殊な材料を用いることなくコンパクトに形成できるので、コストの低減が図れる。
【0075】
また、上記実施形態のように静電搬送基板及び振動搬送基板を板状にすることで、トナー収納部から潜像担持体まで間のトナー移送手段が大幅に小型化することができ、この点でも画像形成装置等の小型化、薄型化を図ることができる。
【0076】
次に、本発明に係る画像形成装置の第2実施形態について図18を参照して説明する。なお、同図は本発明に係る現像装置の静電搬送装置に係わる部分を説明する要部説明図である。
この実施形態では、現像装置16の静電搬送装置36の静電搬送基板41の各駆動電極52、52…に対して駆動波形を印加する駆動回路85として、静電搬送基板41の各駆動電極52に対して周波数f1の三相の駆動波形Va1、Vb1、Vc1と、周波数f2の三相の駆動波形Va2、Vb2、Vc2と、周波数f3(f1>f2>f3)の三相の駆動波形Va3、Vb3、Vc3との3種類の駆動周波数の駆動波形を出力するものを用いている。
【0077】
そして、駆動回路85の周波数f1の三相の駆動波形Va1、Vb1、Vc1を静電搬送基板41の噴出側の所要の領域の駆動電極52、52……に、周波数f2の三相の駆動波形Va2、Vb2、Vc2を静電搬送基板41の中間部の領域の駆動電極52、52……に、周波数f3の三相の駆動波形Va3、Vb3、Vc3を静電搬送基板41の供給側の所要の領域の電極52、52……に、それぞれ印加するようにしている。その他の構成は前記第1実施形態の現像装置16と同様であるので説明及び図示は省略している。
【0078】
このように構成することで、静電搬送基板41の各駆動電極52に印加される駆動波形Va、Vb、Vcの周波数は供給側から噴出側に向かって段階的(この例ではf3、f2、f1の三段階)に高くなる。ここで、帯電したトナーに作用する吸引力と反発力は駆動波形の周波数が高いほど単時間で変化することになるので、静電搬送基板41の供給側から与えられたトナーは、駆動電極52、52…に与えられる駆動波形の周波数が高くなるに従って移動速度が速くなり、したがって、トナーは静電搬送基板41の搬送面に沿って加速されながら搬送され、噴出側(一端部側)から感光体ドラム1に向かって飛翔する。
【0079】
このように、駆動波形の周波数を段階的に変化させて与えることによってトナーを加速して潜像担持体に向けて飛翔させることができ、より確実に潜像担持体にトナーを付着させることができる。
【0080】
次に、本発明に係る画像形成装置の第3実施形態について図19及び図20を参照して説明する。なお、図19は同画像形成装置における本発明に係る現像装置の本発明に係る静電搬送装置の要部説明図、図18は同静電搬送装置の振動搬送基板の拡大断面説明図である。
【0081】
この静電搬送装置36は、前述した静電搬送基板41と、これに対向する振動搬送基板92とを備えている。この振動搬送基板92は、振動搬送基板42と略同様の構成であるが、ガラス、金属、セラミックス等からなる支持基板61上にそれぞれ搬送方向に沿って複数の独立した振動発生手段である分割振動発生基板93を配列し、これらの分割振動発生基板93上に搬送面を形成する振動伝搬部材である搬送面形成部材63を設け、更に搬送面形成部材63上に表面層64を形成したものである。
【0082】
分割振動発生基板93は、前述したように圧電層65を挟んで電極66、67を積層してなる振動発生基板を分割溝94で分割して形成したものであり、この分割振動発生基板93は圧電素子である。そして、この分割振動発生基板92の配列ピッチは静電搬送基板41の駆動電極52の配列ピッチと略同様にしている。
【0083】
そして、図18に示すように、駆動回路86から各分割振動発生基板93の電極66、67に対して静電搬送基板41の駆動電極52、52に対する駆動波形と同期をとって交流又は直流パルスを印加して、静電搬送基板41の駆動電極52による電界の発生と同期したタイミングで各分割振動発生基板93を振動させる。なお、各分割振動発生基板93の電極66、67に対する駆動波形の印加は、例えば電極67に対して基板93の感光体ドラム軸方向の一端部側から、電極68に対しては基板93の感光体ドラム軸方向の他端部側から行う。
【0084】
このように、複数の独立した振動発生手段(振動発生基板)を静電搬送基板41の駆動電極52の配列ピッチに合わせて配列することにより、前述した画像形成装置の第1実施形態で述べた作用効果に加えて、静電搬送基板41の駆動電極52による電界発生と当該電極52に対応する振動搬送基板92側の振動をより確実に合わせることができて、より搬送効率が向上する。
【0085】
次に、本発明に係る画像形成装置の第4実施形態について図20及び図21を参照して説明する。なお、図20は同画像形成装置における本発明に係る現像装置の本発明に係る静電搬送装置の要部説明図、図20は同静電搬送装置の振動搬送基板の拡大断面説明図である。
【0086】
この静電搬送装置36は、前述した静電搬送基板41と、これに対向する振動搬送基板102とを備えている。この振動搬送基板102は、振動搬送基板92と略同様の構成であるが、ガラス、金属、セラミックス等からなる支持基板61上に複数のそれぞれ独立した分割振動発生基板93を搬送方向に沿って配列し、これらの分割振動発生基板93上に搬送面を形成する振動伝搬部材である搬送面形成部材63を設け、更に搬送面形成部材63の傾斜面63aの略頂部付近に駆動電極103を形成して表面層64で被覆したものである。
【0087】
そして、図20に示すように、前述したように駆動回路86から各分割振動発生基板93の電極66、67に対して静電搬送基板41の駆動電極52、52に対する駆動波形と同期をとって交流又は直流パルスを印加して、静電搬送基板41の駆動電極52による電界の発生と同期したタイミングで各分割振動発生基板93を振動させる。
【0088】
それとともに、振動搬送基板102の駆動電極103に対して静電搬送基板41の駆動電極52に対すると同様に、駆動回路(ドライバ)104から3本の駆動電極103、103、103を1セットとして、各駆動電極103に3相の駆動電圧(駆動波形)Va、Vb、Vcをそれぞれ印加する。これにより、振動搬送基板102は振動によるトナー搬送とともに静電力によるトナー搬送をも行うことができて、更に搬送量を増加して搬送効率を向上することができる。
【0089】
ここで、上述した各実施形態で用いることができる振動搬送基板の他の実施例について図22を参照して説明する。なお、同図は振動搬送基板の搬送方向に沿う要部拡大断面説明図である。
この振動搬送基板112は前述した振動搬送基板42と同様な構成であるが、搬送面形成部材63に形成した搬送方向に向かって静電搬送基板41に接近する傾斜面63aと、この傾斜面63aよりも傾斜角度が大きい急峻面63bとの底部側の連続部63cを曲面形状に形成したものである。
【0090】
このように、傾斜面63aと急峻面63bとの底部側連続部63cを曲面形状に形成することで、連続部63cにトナーが滞留することを防止できて、より搬送効率が向上するとともにスムーズな搬送を行うことができる。なお、ここでは、振動搬送基板112は振動搬送基板42と同様な構成としているが、振動搬送基板92、102と同様な構成とすることもできる。
【0091】
次に、本発明に係る画像形成装置の第5実施形態について図23及び図24を参照して説明する。なお、図23は同画像形成装置の本発明に係る現像装置の本発明に係る静電搬送装置の要部説明図、図24は同静電搬送装置の対向基板の拡大断面説明図である。
【0092】
この静電搬送装置136は、前述した静電搬送基板41と、これに対向する第2基板である対向基板142とを備えている。この対向基板142は、ガラス、金属、セラミックス等からなる支持基板151に搬送面153となる静電搬送基板41に向かって接近する傾斜面153aとこの傾斜面153aよりも傾斜角の大きい急峻面153bとを形成するとともに、傾斜面153aと急峻面153bとの底部側の連続部153cを曲面形状に形成し、更に搬送面153に表面層154を形成したものである。
【0093】
ここで、傾斜面153aと急峻面153bのピッチは静電搬送基板41の駆動電極52のライン/スペース(ピッチ)と略同じか又は10倍以内の範囲で形成することが好ましい。傾斜面153aと急峻面153bのピッチが駆動電極52のピッチの10倍を越えると、急峻面153bによるトナーの反跳効果が薄れて逆送防止効果が低減するおそれがある。
【0094】
また、傾斜面153aの傾斜角度θ3は5〜60°の範囲が好ましく、より好ましくは20〜45°の範囲内である。対向基板142上の帯電トナーが十分なエネルギーを受けて搬送方向(図においては右から左へ)に進行し、さらに、前方帯電トナーに衝突することにより加速エネルギーを与える。これは角度θ3が小さい場合、静電搬送基板41からの電界による静電力が得られず対向基板142上の帯電トナーを十分に搬送させることができないことから、駆動電圧の昇圧を招くこととなる。一方、傾斜面153aの角度θ3が大きい場合は、対向基板142上のトナーは傾斜面153aの底部方向に落ち込んでトナー搬送の効率を妨げることになる。
【0095】
表面層154は、静電搬送基板41の表面層54と同様に特に搬送面153とトナー界面と接触抵抗の低減を図る機能を有する膜であり、この接触抵抗の低減のためには臨界表面エネルギーEgが30dyne/cm以下の材料が好ましく、例えばPTFE、PFAなどのフッ素系樹脂材料を0.1〜1μmの厚みでコートして形成している。
【0096】
これらの静電搬送基板41と対向基板142とは、前述した静電搬送基板42と振動搬送基板42と同様に、スペーサを介して互いの搬送面を対向させて接合し、ギャップ空間146をトナーを搬送する通路としている。
【0097】
このときの2枚の静電搬送基板41と対向基板142とのギャップ(対向間隔)dは、トナーの粒径、帯電量、駆動電圧などを考慮して決定するが、搬送する粉体であるトナーの粒径の2倍〜100倍の範囲内、より好ましくは5倍〜25倍の範囲内にすることが好ましい。実験によると、ギャップ(対向間隔)dをトナーの粒径の2倍未満にした場合には不帯電トナーに帯電トナーが妨害されて搬送効率が低下し、ギャップ(対向間隔)dがトナーの粒径の100倍を越える場合には対向基板142によるトナー搬送効果が十分に得られない。
【0098】
このように構成した静電搬送装置136においては、前述したように静電搬送基板41による静電力によって帯電トナーが搬送される。それとともに、静電搬送装置136の先端部が臨む感光体ドラム1が回転することによる吸引作用が生じて、静電搬送基板41と対向基板142との間にはトナー搬送方向の風の流れが発生し、この流れと静電搬送基板41からの静電力によって帯電トナーは十分なエネルギーを受けて搬送方向(図23においては右から左へ)に進行し、さらに、前方帯電トナーに衝突することにより加速エネルギーを与えて搬送させる。また、急峻面153bを持たせているので、急峻面にぶつかったトナーは、衝突時のエネルギーでもって搬送方向に跳ね飛ばされ他の帯電トナーとともに搬送方向に移動し、トナーの逆送が防止される。
【0099】
このように第2基板を振動搬送基板としないで、傾斜面と急峻面とを有する断面形状が鋸歯状をなす対向基板とすることによっても、単なる静電搬送基板のみの場合に比べて、装置内で生じる逆送方向の空気の流れによるトナーの逆送を防止できて順方向(搬送方向)にトナーを効率的に搬送することができる。
【0100】
そして、接触で直接トナーを潜像担持体表面に付着させることができ、静電搬送を用いた高画像品質の現像が可能になるとともに、装置が簡単になって低コスト化を図れる。さらに、現像ローラ等のメカ的動力を用いることなくトナーの搬送を行うことができ、トナーの搬送に際して、この実施形態のように板状の静電搬送基板や対向基板を使用することで、トナー収納部から潜像担持体との間のトナー移送手段が大幅に小型化することができ、高画像品質の画像を形成できる画像形成装置の小型化、薄型化が図れる。
【0101】
次に、本発明に係る画像形成装置の第6実施形態について図26及び図27を参照して説明する。なお、図25は同画像形成装置の本発明に係る現像装置の本発明に係る静電搬送装置の要部説明図、図26は同静電搬送装置の対向基板の拡大断面説明図である。
【0102】
この静電搬送装置136は、前述した静電搬送基板41と、これに対向する第2基板である対向静電搬送基板162とを備えている。この対向静電搬送基板162は、上記第5実施形態の対向基板142と同様の構成であるが、搬送面153の傾斜面153aの略頂部に空間進行波電界を発生させるための駆動電極163を設けている。そして、この対向静電搬送基板162の駆動電極163にも静電搬送基板41の駆動電極52に対する駆動波形と同期した3相交流波形を駆動回路164によって印加して空間進行波電界を発生させる。
【0103】
これにより、帯電したトナーは上下の静電搬送基板41と対向静電搬送基板162との静電力を受けて搬送されるとともに、感光体ドラム1の吸引作用によるエネルギーも受けることになり、より多くの搬送量で搬送することができる。
【0104】
次に、本発明に係る画像形成装置の第7実施形態及び第8実施形態について図27及び図28を参照して説明する。両図は、各実施形態の画像形成装置の本発明に係る現像装置の本発明に係る静電搬送装置の要部説明図である。
図27に示す第7実施形態に係る画像形成装置における現像装置を構成する静電搬送装置176は、前述した第4実施形態に係る振動搬送基板102とこの振動搬送基板102との間でトナー通路177を形成する蓋部材178を備え、振動搬送基板102と蓋部材178は前記各実施形態と同様に所定のギャップをおいて接合している。
【0105】
この実施形態では、振動搬送基板102の静電力と振動及び感光体ドラム1による順方向の空気の流れによってトナーの搬送が行われる。このようにしても、装置内の空気の流れによるトナーの逆送が防止されるので、トナーを単純な静電力と振動で搬送する場合に比べて十分な量のトナーを効率的に搬送することができる。
【0106】
図28に示す第8実施形態に係る画像形成装置における現像装置を構成する静電搬送装置186は、前述した第6実施形態に係る対向静電搬送基板162とこの対向静電搬送基板162との間でトナー通路187を形成する蓋部材188を備え、対向静電搬送基板162と蓋部材188は前記各実施形態と同様に所定のギャップをおいて接合している。
【0107】
この実施形態では、対向静電搬送基板162の静電力及び感光体ドラム1による順方向の空気の流れによってトナーの搬送が行われる。このようにしても、装置内の空気の流れによるトナーの逆送が防止されるので、トナーを単純な静電力で搬送する場合に比べて十分な量のトナーを効率的に搬送することができる。
【0108】
次に、本発明に係る現像装置の他の例について図29をも参照して説明する。この現像装置は、感光体ドラム1の潜像を現像手段である現像ローラ191を用いて現像するものであり、この現像ローラ191に対して前述した図9に示す送り込み基板43を用いてトナーを送り込むようにしている。
【0109】
このように送り込み基板43を用いて現像ローラ191にトナーを供給することによって現像ローラ191の回転による風圧の影響が低減して、確実にトナーを現像ローラ191に供給することができ、トナーの静電搬送を行うことによって現像装置の小型化を図ることができる。
【0110】
なお、上記各実施形態においてはトナーを静電力で搬送する静電搬送装置で説明したが、トナー以外の粉体の搬送を行う装置にも同様に適用することができる。
【0111】
【発明の効果】
以上説明したように、本発明に係る静電搬送装置によれば、粉体を搬送面に沿って静電力で移動させるための電界を発生させる複数の電極を有する第1基板と、この第1基板にギャップをおいて対向配置され、傾斜面及びこの傾斜面よりも傾斜角度が急峻な急峻面とを有する断面形状が略鋸歯状をなす第2基板とを備え、第2基板は、該第2基板を振動させる手段として、圧電材料層とこれを挟む電極を有する振動発生基板を分割溝で分割して形成された分割振動発生基板を備え、分割振動発生基板の電極ピッチは第1基板の電極ピッチと略同じであって、かつ分割振動発生基板の電極と第1基板の電極は互いに対面するよう配設されており、分割振動発生基板の電極に対して、第1基板の電極に対する駆動波形と同期をとって交流又は直流パルスを印加することにより、分割振動発生基板を振動させる構成としたので、粉体の逆送が防止されて粉体を確実に効率的に搬送することができる。
【0112】
ここで、分割振動発生基板上に搬送面を形成する振動伝搬部材である搬送面形成部材を設け、さらに、該搬送面形成部材の傾斜面の略頂上部付近に電極を設け、搬送面形成部材の傾斜面上の電極に対して駆動波形を印加する構成とすることで、搬送量を増加して搬送効率を向上できる。また、第2基板の傾斜面と急峻面の底部側連続部が曲面形状をなす構成とすることで、連続部における粉体の滞留を防止できて、粉体搬送効率がより向上する
【0123】
本発明に係る現像装置によれば、潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置であって、本発明に係る静電搬送装置を備え、この静電搬送装置の静電搬送基板の先端部が潜像担持担持体近傍に臨む構成としたので、安定した搬送量で現像に必要なトナー搬送を行うことができて、現像品質が向上し、また現像装置に小型化を図れる。
【0124】
本発明に係る現像装置によれば、潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置であって、本発明に係る静電搬送装置を備え、トなーを潜像担持体に付着させる現像手段に対して静電搬送装置でトナーを送り込むようにしたので、安定した搬送量で現像に必要なトナー供給を行うことができて、現像品質が向上し、また現像装置に小型化を図れる。
【0125】
本発明に係る画像形成装置によれば、潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置を備えた画像形成装置であって、本発明に係る現像装置を備えたので、高い画像品質で画像を形成できるとともに、装置全体の小型化も図れる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る画像形成装置の全体概略構成図
【図2】同画像形成装置の現像装置の一例を示す概略構成図
【図3】同現像装置の静電搬送装置の側面説明図
【図4】同静電搬送装置における静電搬送基板の一例を示す搬送方向に沿う模式的断面説明図
【図5】同静電搬送装置における静電搬送基板の他の例を示す搬送方向に沿う模式的断面説明図
【図6】同静電搬送基板の平面説明図
【図7】同静電搬送装置における振動搬送基板の一例を示す搬送方向に沿う模式的断面説明図
【図8】同静電搬送装置における送り込み基板の一例を示す搬送方向に沿う模式的断面説明図
【図9】同静電搬送装置における送り込み基板の他の例を示す搬送方向に沿う模式的断面説明図
【図10】同静電搬送装置の駆動部を説明する説明図
【図11】同静電搬送装置による粉体搬送の原理説明に供する説明図
【図12】同静電搬送装置の駆動電極に印加する駆動波形の変化パターンの一例を説明する説明図
【図13】同静電搬送装置の駆動電極に印加する駆動波形の変化パターンの他の例を説明する説明図
【図14】同静電搬送装置の駆動電極に印加する駆動波形の変化パターンの更に他の例を説明する説明図
【図15】同静電搬送装置の駆動電極に印加する駆動波形の変化パターンの更にまた他の例を説明する説明図
【図16】同画像形成装置における現像動作の原理説明に供する説明図
【図17】本発明の第2実施形態に係る画像形成装置の静電搬送装置部分の要部説明図
【図18】本発明の第3実施形態に係る画像形成装置の静電搬送装置部分の要部説明図
【図19】同静電搬送装置の振動搬送基板の搬送方向に沿う要部拡大説明図
【図20】本発明の第4実施形態に係る画像形成装置の静電搬送装置部分の要部説明図
【図21】同静電搬送装置の振動搬送基板の搬送方向に沿う要部拡大説明図
【図22】振動搬送基板の他の例を説明する搬送方向に沿う要部拡大説明図
【図23】本発明の第5実施形態に係る画像形成装置の静電搬送装置部分の要部説明図
【図24】同静電搬送装置の対向基板の搬送方向に沿う要部拡大説明図
【図25】本発明の第6実施形態に係る画像形成装置の静電搬送装置部分の要部説明図
【図26】同静電搬送装置の対向静電搬送基板の搬送方向に沿う要部拡大説明図
【図27】本発明の第7実施形態に係る画像形成装置の静電搬送装置部分の要部説明図
【図28】本発明の第8実施形態に係る画像形成装置の静電搬送装置部分の要部説明図
【図29】本発明に係る現像装置の他の例を示す要部説明図
【符号の説明】
1…感光体ドラム(潜像担持体)、5、8…走査光学系、13…ポリゴンミラー、15…帯電装置、16…現像装置、17A,17B…給紙部、20…転写チャージャ、21…分離チャジージャ、23…定着ローラ対、31…粉体ホッパ部、34…帯電ローラ、36…静電搬送装置、41…静電搬送基板、42、92、102、112…振動搬送搬送基板、43…送り込み基板、51…支持基板、52…駆動電極、53…絶縁膜、54…表面層、61…支持基板、62…振動発生基板、63…搬送面形成部材、63a…傾斜面、63b…急峻面、63c…連続部、64…表面層、93…分割振動発生基板、103…電極、142…対向基板、153a…傾斜面、153b…急峻面、153c…連続部、162…対向静電搬送基板。
[0001]
[Industrial application fields]
The present invention relates to an electrostatic conveyance device, a developing device, and an image forming apparatus, and more particularly to an electrostatic conveyance device that conveys powder by electrostatic force, a developing device that attaches toner to a latent image carrier, and a latent image on a latent image carrier. The present invention relates to an image forming apparatus that develops and forms an image.
[0002]
[Prior art]
As an image forming apparatus such as a copying apparatus, a printer, or a facsimile, an electrophotographic process is used to form a latent image on a latent image carrier, and a developer (hereinafter referred to as “toner”) is attached to the latent image for development. In some cases, a visible image is formed and the toner image is transferred to a recording medium (transfer paper) to form an image.
[0003]
In such an image forming apparatus, as a developing device for developing a latent image, conventionally, the toner stirred in the developing device is carried on the surface of the developing roller as a developer carrying member, and the developing roller is rotated. The latent image carrier is transported to a position facing the surface of the latent image carrier, and the latent image on the latent image carrier is developed. After the development, the toner that has not adhered to the latent image carrier is collected in the developing device by the rotation of the developing roller. In addition, there is a known toner that is newly stirred and charged and then carried again on the developing roller and conveyed.
[0004]
As a developing device, as described in Japanese Patent Laid-Open No. 5-19615, toner is transported using electrostatic force on the surface of the developing roller and developed with suction force generated between the latent image carrier and the developing device. An electrostatic transport substrate that separates toner from the roller surface and adheres to the surface of the latent image carrier, or an electrostatic transport substrate that transports toner with electrostatic force as described in JP-A-59-181375 The toner is transported to a position facing the latent image carrier, and the toner is separated from the electrostatic transport substrate by the suction force generated between the latent image carrier and adhered to the surface of the latent image carrier. As described in Japanese Patent Application Laid-Open No. 7-227995, as described in Japanese Patent Application Laid-Open No. 4-204570, charging is performed by exciting vibrations on a conveyance substrate that conveys toner. particle Such as those of the transport substrate and excited by vibration conveys the charged particle performs with electrostatic conveyance is known.
The
[0005]
Further, as another image forming apparatus, a developing roller for carrying toner and an electrode substrate on which stripe-shaped electrodes described in JP-A-9-141912 are used to carry and carry toner to the aperture portion. The control electrode is disposed between the recording medium and the back electrode is disposed on the back surface of the recording medium, and an electric field is generated between the back electrode and the developing roller, so that the toner can fly in the direction of the recording medium, A so-called flying type (toner jet type) image forming apparatus that forms an image on a recording medium by selectively controlling the flying of the toner with a control electrode is also known.
[0006]
Further, as a powder conveying apparatus for conveying powder such as toner, there is an apparatus that conveys a space traveling wave electric field as described in JP-A-7-267363. This is because when a driving voltage is applied to the electrode, a spatial traveling wave electric field is formed around the electrode, and a repulsive force and a driving force act on the powder charged by the traveling wave electric field, so that the powder travels in the electric field. It is conveyed in the direction. As a classifying device for classifying powders such as toner using this space traveling wave electric field, for example, as described in JP-A-8-149859, classification is performed by applying electrostatic force, gravity, centrifugal force, etc. (Sorting) has been proposed.
[0007]
[Problems to be solved by the invention]
However, the image forming apparatus provided with a developing device that applies toner to the latent image carrier using the developing roller described above, or the toner is carried on the developing roller, and the toner is ejected from the developing roller to the recording medium by electric field control. In the flying type image forming apparatus, since the developing roller is used, the developing apparatus becomes large, and the entire image forming apparatus cannot be reduced in size and cost.
[0008]
Further, in a developing device that conveys toner by electrostatic conveyance, the toner cannot be reliably conveyed. That is, in order to perform electrostatic conveyance, charged particles need to be charged to a predetermined charge in advance. However, in toners used for electrophotography and the like, variations in the amount of charged charges have been confirmed. When the charged charges of the particles are different, the same conveying force is not applied to the particles even if the same conveying electric field is used, and thus there is a problem that the accuracy of the conveying amount and the conveying speed cannot be controlled.
[0009]
On the other hand, those that vibrate the transport substrate and transport the particles by the energy of vibration have the advantage that they can be transported without having to charge the particles, but the transport speed can be controlled only by vibration conditions, Since the conveying force applied to the body is due to the frictional force of contact between the particles and the transfer substrate, it is difficult to apply a friction force between the particles and the transfer substrate, for example, the particle diameter is too small and transferred. In the case where sufficient energy from the substrate cannot be obtained, there is a problem that the particles float and slip from the transfer substrate and the transfer force is reduced.
[0010]
Further, in the case where the charged particles are transported by electrostatic force and the vibration of the transport substrate, the charged particles floating from the transport substrate are sent back by wind pressure such as vortex generated by the rotation of the latent image carrier, etc. There exists a subject that it cannot convey reliably in a conveyance direction.
[0011]
The present invention has been made in view of the above points. An electrostatic transport apparatus that can reliably transport powder in a required direction and has improved transport efficiency, and development with high image quality using the electrostatic transport apparatus. An object of the present invention is to provide a developing device capable of performing the above and an image forming apparatus capable of forming a high-quality image using the developing device.
[0012]
[Means for Solving the Problems]
  In order to solve the above problems, an electrostatic transfer device according to the present invention is:
  In an electrostatic transport device that transports powder with electrostatic force,
  A first substrate having a plurality of electrodes for generating an electric field for moving the powder with electrostatic force along the conveying surface;
  A second substrate that is disposed to face the first substrate with a gap, and has a sloped surface and a steep surface with a steeper angle than the sloped surface.
  The second substrate includes a divided vibration generating substrate formed by dividing a vibration generating substrate having a piezoelectric material layer and an electrode sandwiching the piezoelectric material layer by dividing grooves as means for vibrating the second substrate,
  The electrode pitch of the divided vibration generating substrate is substantially the same as the electrode pitch of the first substrate, and the electrode of the divided vibration generating substrate and the electrode of the first substrate are arranged to face each other,
  The divided vibration generating substrate is vibrated by applying an AC or DC pulse to the electrode of the divided vibration generating substrate in synchronization with the drive waveform for the electrode of the first substrate.
The configuration.
  In this specification, “powder” includes “fine particles”, “fine powder”, “particles”, “powder”, “particles”, “fine powder”, and the like.
[0013]
  here,A conveying surface forming member that is a vibration propagation member that forms a conveying surface on the divided vibration generating substrate is provided, and an electrode is provided in the vicinity of the top of the inclined surface of the conveying surface forming member. A driving waveform can be applied to the electrodes on the inclined surface. Also,The inclined surface of the second substrate and the bottom side continuous portion of the steep surface form a curved surface shape.Can be configured.
[0022]
A developing device according to the present invention is a developing device that develops a latent image on a latent image carrier by depositing toner on the latent image carrier, and includes the electrostatic transport device according to the present invention. The tip of the electrostatic transfer substrate of the transfer device is configured to face the vicinity of the latent image carrier.
[0023]
A developing device according to the present invention is a developing device that develops a latent image on a latent image carrier by depositing toner on the latent image carrier, and includes the electrostatic conveyance device according to the present invention. In this configuration, toner is sent to the developing means attached to the image carrier by an electrostatic conveyance device.
[0024]
An image forming apparatus according to the present invention is an image forming apparatus including a developing device that develops a latent image on a latent image carrier by attaching toner on the latent image carrier, and the developing device according to the present invention is provided. It is provided.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. First, an image forming apparatus according to a first embodiment of the present invention will be described with reference to FIG. FIG. 2 is an overall schematic configuration diagram of the image forming apparatus.
The overall outline and operation of the image forming apparatus will be described. A photosensitive drum 1 (for example, an organic photosensitive member: OPC), which is a latent image carrier, is rotationally driven clockwise in FIG. When a document is placed on the contact glass 2 and a print start switch (not shown) is pressed, the scanning optical system 5 including the document illumination light source 3 and the mirror 4 and the scanning optical system 8 including the mirrors 6 and 7 are moved. The original image is read.
[0026]
Here, the scanned document image is read as an image signal by the image reading element 10 disposed behind the lens 9, and the read image signal is digitized and subjected to image processing. Then, a laser diode (LD) is driven by the signal subjected to the image processing, and laser light from the laser diode is reflected by the polygon mirror 13 and then irradiated onto the photosensitive drum 1 through the mirror 14. The photosensitive drum 1 is uniformly charged by a charging device 15, and an electrostatic latent image is formed on the surface of the photosensitive drum 1 by writing with a laser beam.
[0027]
The electrostatic latent image on the surface of the photosensitive drum 1 is visualized by being attached with toner by the developing device 16 according to the present invention including the electrostatic transport device according to the present invention. The image is transferred to a transfer sheet (recording medium) 19 fed from the sheet feeding unit 17A or 17B by the sheet feeding roller 18A or 18B by corona discharge of the transfer charger 20. The transfer sheet 19 onto which the visible image has been transferred is separated from the surface of the photosensitive drum 1 by the separation charger 21, transported by the transport belt 22, and passes through the pressure contact portion of the fixing roller pair 23 so that the visible image is transferred. The paper is fixed and discharged to a discharge tray 24 outside the apparatus.
[0028]
On the other hand, the toner remaining on the surface of the photosensitive drum 1 after the transfer is removed by the cleaning device 25, and the charge remaining on the surface of the photosensitive drum 1 is erased by the static elimination lamp 26.
[0029]
Next, the developing device 16 according to the present invention provided with the electrostatic conveyance device according to the present invention in the image forming apparatus will be described with reference to FIG. FIG. 2 is a schematic configuration diagram of the developing device.
The developing device 16 includes a toner hopper unit 31 that stores toner, an agitator 32 that stirs the toner in the toner hopper unit 31, and a charging roller 34 that charges the toner in the toner hop unit 31 and supplies the toner to the toner box unit 33. In addition, the doctor blade 35 disposed in contact with the peripheral surface of the charging roller 34 and the toner in the toner box portion 33 are conveyed by electrostatic force to eject the toner toward the photosensitive drum 1 as a latent image carrier. The electrostatic transport device 36 according to the present invention, a toner recovery member 38 that recovers toner that has not been developed, and toner that transports the toner recovered by the toner recovery member 38 to the toner box unit 33 by electrostatic force. And a reverse conveying member 39.
[0030]
The electrostatic conveyance device 36 is also a first substrate having a conveyance surface 41a that has a front end portion facing the vicinity of the photosensitive drum 1, conveys charged toner by electrostatic force, and ejects the charged toner from the front end portion toward the photosensitive drum 1. An electrostatic transfer substrate 41 and a vibration transfer substrate 42 which has a transfer surface 42a facing the transfer surface 41a of the electrostatic transfer substrate 41 and is also a second substrate to which vibration is applied are provided.
[0031]
In addition, there are provided feeding substrates 43 and 43 for conveying the toner in the toner box portion 33 by electrostatic force between the electrostatic conveying substrate 41 and the vibration conveying substrate 42. One end is bonded to the electrostatic transfer substrate 41 and the vibration transfer substrate 42, and the other end is disposed on the charging roller 34 side.
[0032]
Here, as shown in FIG. 3, the electrostatic transfer substrate 41 and the vibration transfer substrate 42 are arranged with a predetermined gap d with the transfer surfaces 41a and 42a facing each other, and in a direction orthogonal to the transfer direction ( Both end portions in the axial direction of the photosensitive drum 1 are joined via a spacer member 44, and a gap space 46 between the electrostatic conveyance substrate 41 and the vibration conveyance substrate 42 is used as a path through which the toner is conveyed. Thus, the gap d can be maintained by joining and integrating the electrostatic transfer substrate 41 and the vibration transfer substrate 42.
[0033]
The gap (opposite distance) d between the two electrostatic transfer substrates 41 and the vibration transfer substrate 42 at this time is determined in consideration of the toner particle size, charge amount, drive voltage, and the like. It is preferable that the particle diameter is within a range of 2 to 100 times, more preferably within a range of 5 to 25 times the particle size of a certain toner. According to experiments, when the gap (opposite interval) d is less than twice the particle size of the toner, the charged toner is obstructed by the uncharged toner and the conveyance efficiency is lowered. When the diameter exceeds 100 times, the toner conveying effect obtained by vibration flying by the vibration conveying substrate 42 is not sufficiently exhibited.
[0034]
Accordingly, a different example of the first embodiment of the electrostatic transfer substrate 41 constituting the electrostatic transfer device 36 will be described with reference to FIGS. 4 is a schematic cross-sectional explanatory view along the transport direction of an example of the electrostatic transport substrate, FIG. 5 is a schematic cross-sectional explanatory view of another example of the electrostatic transport substrate, and FIG. 6 is an electrostatic diagram of each example. It is plane explanatory drawing explaining the electrode pattern of a conveyance board | substrate.
[0035]
These electrostatic transfer substrates 41 are required in a direction in which a plurality of electrodes 52 for generating a spatial traveling wave electric field intersect with the transfer direction (not limited to orthogonal) on a support substrate 51 which is a rigid support member. An insulating film 53 is formed on the support substrate 51 so as to cover the surface of the driving electrode 52 and between the driving electrodes 52, 52, and a surface layer 54 that is a functional material layer is coated on the surface of the insulating film 53. It is a thing. Note that the example of FIG. 4 and the example of FIG. 5 are the only differences in whether the conveying surface 41a is an uneven surface or a flat surface.
[0036]
As the support substrate 51, an insulating substrate such as a glass substrate, a resin substrate, or a ceramic substrate, or a conductive substrate such as a SUS or silicon substrate is used.
[0037]
Here, when a conductive support substrate is used, it is preferable to ground the conductive substrate. That is, when the support substrate 51 is formed of a conductive substrate, the charge is transferred by applying a high-speed drive pulse for generating a spatial traveling wave electric field to the drive electrode 52, and the toner contacts the electrostatic transfer substrate 41. Since the conductive support substrate is charged as it moves, the electrostatic potential of the conductive support substrate is always constant by grounding the conductive support substrate, and the generation of residual charges can be reduced. The support substrate 51 has a width approximately the same as the width of the photosensitive drum 1.
[0038]
The drive electrode 52 is formed of a conductive material such as Al, Ni—Cr, TiN, polysilicon, or a high-temperature metal film such as Ti, W, or Mo on the support substrate 51 with a thickness of 0.1 to 2 μm. This is formed by patterning into an electrode shape using a semiconductor technique such as a photolithography technique.
[0039]
In this case, it is preferable to form the drive electrode 52 so that the thickness T and the width L in the transport direction have a relationship of T / L = 0.1 or more. For example, the drive electrode 52 is formed with a thickness T = 2 μm and a width L = 10 μm. Thus, by setting the thickness T of the drive electrode 52 to 0.1 or more of the width L, the electric field strength at the adjacent drive electrode 52 increases, and the toner can be efficiently conveyed in a predetermined direction. According to experiments, it was confirmed that the transport amount increases as the thickness of the electrode 52 increases, and the transport amount decreases as the thickness decreases.
[0040]
The thickness T of the drive electrode 52 and the distance R between the electrodes 52 and 52 are R / T = 10 to 3 × 10.3It is preferable to form so that it may become a relationship of R / T = 50-300 so that it may become a relationship of these. For example, when the drive electrode 52 has a thickness T = 2 μm, the drive electrode 52 is formed with an interval R = 100 μm. Thus, the interelectrode distance R of the drive electrode 52 is 10 times to 3 × 10 4 with respect to the thickness of the electrode 52.3By satisfying the relationship, the space traveling electric field generated by the drive electrode 52 and the repulsion / suction of the toner are harmonized, and the toner can be efficiently conveyed.
[0041]
As the insulating film 53, polyimide, SiO2(Silicon oxide film), Ta2O5An inorganic material or an organic material such as (tantalum pentoxide) can be used. The insulating film 53 has a Young's modulus of 30 to 5000 kg / mm.2The dielectric constant is preferably in the range of ε = 2 to 300. By increasing the dielectric constant of the insulating film 53, the drive voltage can be lowered, and the drive recoil and transport speed of particles (toner) are increased.
[0042]
As described above, when the support substrate 51 is a rigid substrate, the Young's modulus of the insulating film 53 is set to 30 to 5000 kg / mm.2The electric field strength between the drive electrodes 52 and 52 is increased by selecting the dielectric constant as follows. In simulation, the film thickness of the insulating film 53 is 1 to 2 μm, and when the dielectric constant ε is about 3 to 20, the electric field strength is large. There was no big difference. The contribution increases when the thickness of the insulating film 53 is 5 to 10 μm or more. Further, when the dielectric constant ε = 500 to 800 as in the BaTiO 3 film, the effect of increasing the electric field strength is great, and the toner movement between the drive electrodes 55 is further efficiently performed.
[0043]
The surface layer 54 is a film having a function of particularly reducing the contact resistance between the transport surface 41a and the charged toner interface, and a material having a critical surface energy Eg of 30 dyne / cm or less is preferable for reducing the contact resistance. For example, it is formed by coating a fluorine resin material such as PTFE or PFA with a thickness of 0.1 to 1 μm. By using the fluororesin, the desired surface layer 54 can be easily formed at low cost.
[0044]
Next, a first embodiment of the vibration transfer substrate 42 will be described with reference to FIG. This figure is a schematic cross-sectional explanatory view along the conveyance direction of the vibration conveyance substrate 42.
The vibration transfer substrate 42 is formed by laminating a vibration generating substrate 62 on a support substrate 61 made of glass, metal, ceramics, or the like, and a transfer surface forming member 63 that is a vibration propagation member that forms a transfer surface on the vibration generating substrate 62. Further, a surface layer 64 is formed on the transport surface forming member 63.
[0045]
The vibration generating substrate 62 is obtained by laminating electrodes 66 and 67 with a ceramic piezoelectric layer 65 interposed therebetween. The transport surface forming member 63 is formed of an insulating or conductive substrate such as silicon, SUS, Ni, polyimide, or the like. The transfer surface forming member 63 includes an inclined surface 63a inclined so as to approach the electrostatic transfer substrate 41 as the first substrate in the transfer direction, and a steep surface 63b having a larger inclination angle than the inclined surface 63a. Are formed in a sawtooth shape in cross-sectional shape.
[0046]
Here, the pitch of the inclined surface 63a and the steep surface 63b of the transport surface forming member 63 is formed to be substantially the same as the line / space (pitch) of the drive electrode 52 of the electrostatic transport substrate 41 or within a range of 10 times or less. If the pitch between the inclined surface 63a and the steep surface 63b exceeds 10 times the pitch of the drive electrode 52, the synergistic effect between the transport by the electrostatic transport substrate 41 and the transport by the vibration transport substrate 42 may not be sufficiently exhibited. is there.
[0047]
Further, the inclination angle θ1 of the inclined surface 63a of the transport surface forming member 63 is preferably in the range of 5 to 60 °, more preferably in the range of 20 to 45 °. The charged toner on the vibration conveyance substrate 42 receives sufficient energy, proceeds in the conveyance direction (from right to left in the figure), and further gives acceleration energy by colliding with the front charged toner. At this time, if the angle θ1 of the inclined surface 63a is smaller than 5 °, the charged toner on the vibration conveyance substrate 42 cannot be sufficiently oscillated to fly, resulting in an increase in driving voltage. On the other hand, when the angle θ1 of the inclined surface 63a is larger than 60 °, when there is a lot of vibration flying toner, the vibration flying toner may collide with the progress toner and take away the progress energy, thereby hindering the efficiency of toner conveyance. .
[0048]
Further, the steep angle θ2 of the steep surface 63b of the transport surface forming member 63 is preferably in the range of 45 to 120 °, and more preferably in the range of 60 to 90 °. This is because, when the steep angle θ2 is larger than 120 °, even if the toner near the steep surface 63b oscillates on the inclined surface 63a of the vibration conveyance substrate 42, it hits the top of the steep surface 63b and falls again onto the inclined surface 63a. As a result, toner stays easily. On the other hand, when the steep angle θ2 is smaller than 45 °, the toner may be deposited on the steep surface 63b, and in any case, the conveyance efficiency may be lowered.
[0049]
Furthermore, the Young's modulus of the conveyance surface forming member 63 is 30 to 15000 kg / mm.2It is preferable to be within the range. Since this conveyance surface forming member becomes a vibration propagation member, by selecting a material having a large Young's modulus, it is possible to propagate the vibration generated in the vibration generation substrate 62 without losing it, thereby improving the conveyance efficiency. be able to.
[0050]
The surface layer 64 is a film having a function of reducing the contact resistance particularly between the transport surface 42a and the toner interface, like the surface layer 53 of the electrostatic transport substrate 41. In order to reduce the contact resistance, a critical surface energy is used. A material having an Eg of 30 dyne / cm or less is preferable. For example, a fluorine resin material such as PTFE or PFA is coated to a thickness of 0.1 to 1 μm. By using the fluororesin, the desired surface layer 64 can be easily formed at low cost. When a conductive substrate is used for the transport surface forming member 63, an insulating film is formed on the surface of the transport surface forming member 63, and the surface layer 64 is formed on the surface of the insulating film. By providing such a surface layer 64, the contact resistance against insulation and toner can be relaxed, and the voltage can be reduced.
[0051]
The electrostatic transfer substrate 41 and the vibration transfer substrate 42 are bonded with the transfer surfaces facing each other via the spacer 44 as described above. Bonding is performed so that the drive electrode 52 of the transfer substrate 41 and the steep surface 63b of the vibration transfer substrate 42 coincide.
[0052]
Next, different examples of the feeding substrate 43 will be described with reference to FIGS. Each figure is a cross-sectional explanatory view along the feeding direction of the feeding substrate 43.
The feed substrate 43 shown in FIG. 8 crosses a plurality of electrodes 72 on the support substrate 71 which is a support member made of a flexible insulating substrate such as a polyimide film, in the same manner as the electrostatic transport substrate 41 (in the transport direction). The insulating film 73 is formed on the support substrate 71 to cover the surface of the drive electrode 72 and the space between the drive electrodes 72 and 72 for generating a space traveling electric field on the support substrate 71. Furthermore, the surface layer 74 is coated on the surface of the insulating film 73.
[0053]
For the flexible support substrate 71, the Young's modulus is 30 to 500 kg / mm as the insulating film 73.2Thus, by using a material having a dielectric constant ε = 2 to 300, the electric field strength between the drive electrodes 72 can be increased. The support substrate 71 may be a conductive substrate formed with an insulating layer. Each feeding substrate 43 is bonded to the support substrate 51 of the electrostatic transfer substrate 41 and the support substrate 61 of the vibration transfer substrate 42.
[0054]
The feed substrate 43 shown in FIG. 9 is formed by laminating a transport surface forming member 73 on a support substrate 71 which is a support member made of a flexible insulating substrate such as a polyimide film, and the vibration transport substrate 42 and the transport surface forming member 73. A similar inclined surface 73a and steep surface 73b are formed, and driving electrodes 72 for generating a spatial electric field on the inclined surface 73a are arranged at a required interval in a direction intersecting (not limited to orthogonal) to the transport direction. The surface of the transport surface forming member 73 is covered with the surface layer 74.
[0055]
In this way, by using the support substrate 71 as a flexible substrate, it is possible to freely bend the device and to make the device compact. In addition, the shape dependency is facilitated and the mounting to the toner box portion or the like is simplified.
[0056]
Next, the toner conveyance operation by the electrostatic conveyance device 36 will be described with reference to FIGS.
First, in the electrostatic transport device 36, as shown in FIG. 10, the three drive electrodes 52, 52, 52 of the electrostatic transport substrate 41 are set as one set, and a three-phase drive voltage ( A driving circuit (driver) 81 for applying driving waveforms Va, Vb, and Vc is provided. The drive waveforms Va, Vb, and Vc output from the drive circuit 81 each have a slight delay time, and the drive waveforms Va, Vb, and Vc all have + potential, −potential, and 0 potential (non-applied). It is a voltage waveform that takes three values. On the other hand, a drive circuit 82 for applying an AC or DC pulse drive waveform for vibrating the vibration generating substrate 62 is provided between the electrodes 66 and 67 of the vibration transfer substrate 42.
[0057]
Here, as shown in FIG. 11, there is positively charged toner T on the electrostatic transport substrate 41, and a plurality of continuous drive electrodes 52 on the electrostatic transport substrate 41 are respectively “−” as indicated by (1). ”,“ + ”,“ 0 ”,“ − ”,“ + ”are applied, and when the positively charged toner T is positioned on the drive electrode 52 of“ 0 ”, the positively charged toner T has“ Since a repulsive force acts between the “+” drive electrode 52 and an attractive force acts between the “−” drive electrode 52 and the right “−” drive electrode 52, the positively charged toner T moves to the “−” drive electrode 52 side. To do.
[0058]
Here, for example, when the three-phase drive voltages Va, Vb, and Vc are applied to the three drive electrodes 52 from the drive circuit 81 in a change pattern as shown in FIG. The voltages applied to the plurality of drive electrodes 52 change as “0”, “−”, “+”, “0”, “−”, respectively, as indicated by (2). Accordingly, no force acts between the drive electrode 52 that has changed from “−” to “0” and the positively charged toner T, and the positively charged toner T has the same relationship as the drive electrode 52 that has changed from “0” to “+”. Since the repulsive force acts between the drive electrode 52 and the drive electrode 52 from “+” to “−”, the positively charged toner T further moves to the “−” drive electrode 52 side.
[0059]
In this way, by changing the potential of the drive waveform applied to the drive electrode 52 and moving the apparent drive waveform, a spatial traveling wave electric field is generated, and the positively charged toner T is attracted to the “−” drive electrode 52 side. The positively charged toner T is transported along the transport surface 41 a of the electrostatic transport substrate 41 because it moves while being moved.
[0060]
Note that the change pattern of the three-phase drive voltages Va, Vb, and Vc applied from the drive circuit 81 to each drive electrode 52 of the electrostatic transport substrate 41 is not limited to the above example. For example, as shown in FIG. Without using “0”, the drive waveform for the two consecutive drive electrodes 52 among the three drive electrodes 52 is “−”, and the drive waveform for the other one drive electrode 52 is “+”. Even in such a case, the positively charged toner T is transported to the electrostatic transport substrate 41 along the transport surface. In addition, without using “−”, the drive waveform for two consecutive drive electrodes 52 among the three drive electrodes 52 is set to “0”, and the drive waveform for the other one drive electrode 52 is set to “+”. The positively charged toner T is transported to the electrostatic transport substrate 41 along the transport surface 41a even if the pattern is to be transferred.
[0061]
Further, as shown in FIG. 14, as the change patterns of the three-phase drive voltages Va, Vb, and Vc, the positively charged toner T is conveyed in the direction opposite to that shown in FIG. Similarly, as shown in FIG. 15, the positively charged toner T is conveyed in the direction opposite to that shown in FIG. 11 even if the change pattern opposite to that shown in FIG. 13 is used. Further, in the case of negatively charged toner, the drive waveform change pattern may be reversed.
[0062]
As described above, the charged toner fed from the feeding substrate 43 by the electrostatic conveyance substrate 41 is conveyed to the photosensitive drum 1 side by electrostatic force by a spatial traveling wave electric field.
[0063]
On the other hand, in the vibration transfer substrate 42, the piezoelectric layer 65 vibrates when an AC or DC pulse drive waveform is applied between the electrodes 66 and 67, and this vibration is propagated to the transfer surface forming member 63 and the transfer surface 42a vibrates. To do. At this time, the vibration transfer substrate 42 is a three-phase AC waveform or a DC pulse synchronized with a drive waveform (three-phase AC waveform) applied to the electrode 52 of the electrostatic transfer substrate 41 applied to the electrodes 66 and 67. And the driving waveform of the electrostatic transfer substrate 41 are synchronized.
[0064]
When the vibration is generated on the conveyance surface 42a of the vibration conveyance substrate 42, the charged toner on the vibration conveyance substrate 42 oscillates and strikes the front toner to give acceleration energy, and the charged toner advances in the conveyance direction. In addition, a gap space 46 is formed between the electrostatic transfer substrate 41 and the vibration transfer substrate 42. When the photosensitive drum 1 rotates, a suction action is generated, and an air flow is generated on the front end side. Since energy in the transport direction is further applied to the charged toner T by this air flow, the charged toner advances in the transport direction also by the air flow.
[0065]
In this way, the charged toner sent between the electrostatic transport substrate 41 and the vibration transport substrate 42 of the electrostatic transport device 36 is transported to the photosensitive drum 1 side by a synergistic effect of electrostatic force and vibration force. A large amount of toner can be efficiently conveyed by conveying the toner by a synergistic effect of electrostatic force and vibration force.
[0066]
In addition, since the vibration transfer substrate has a steep surface with respect to the transfer direction, it is possible to prevent the reverse transfer of toner with a small amount of charge, and the charged toner on the inclined surface can be reliably transferred in the transfer direction. In addition, the transport amount can be made uniform. In addition, although the suction action is caused by the rotation of the photosensitive drum 1 as described above, an air flow in the direction opposite to the conveyance direction may occur in the apparatus due to various factors. In this case, the toner to be conveyed However, since there is a steep surface, the reversely fed toner collides with the steep surface and rebounds in the transport direction, so that the toner can be transported more reliably in the transport direction. it can.
[0067]
Next, the developing operation using the developing device 16 in the image forming apparatus configured as described above will be described with reference to FIG. This figure is an explanatory view of the developing principle of the image forming apparatus.
In this image forming apparatus, the toner in the toner hopper 31 of the developing device 16 is conveyed to the charging roller 34 while being stirred by the agitator 32, and is frictionally charged with the doctor blade 35 by the rotation of the charging roller 34 (counterclockwise in the figure). The toner is charged to a predetermined polarity and sent to the toner box 33.
[0068]
The toner in the toner box portion 32 is conveyed along the feeding substrate 43 by applying the drive waveforms Va, Vb, and Vc as described above to the feeding substrates 43 and 43, and vibrates with the electrostatic conveyance substrate 41. It is sent between the transfer substrate 42. At this time, since the feeding substrates 43 and 43 are bonded to the electrostatic transfer substrate 41 and the vibration transfer substrate 42, the toner is smoothly transferred. Further, by using a substrate having a conveying surface having a sawtooth cross-sectional shape as shown in FIG. 9 as the feeding substrate 43, the reverse feeding of the charged toner due to the air flow is prevented, so that the toner can be more surely statically discharged. It can be sent between the electric transfer board 41 and the vibration transfer board 42.
[0069]
Further, the toners sent between the electrostatic transfer substrate 41 and the vibration transfer substrate 42 are applied with the drive waveforms Va, Vb, and Vc as described above on the electrostatic transfer substrate 41, and the vibration transfer substrate 42 described above. By applying the drive waveform for vibrating the piezoelectric layer 65 as described above, the piezoelectric layer 65 is smoothly transported by a large transport amount along the electrostatic transport substrate 41 and the vibration transport substrate 42, and is opposed to the photosensitive drum 1. Are supplied sequentially from the ejection side.
[0070]
As a result, the ejected positively charged toner T adheres to the negatively charged portion (image portion) on the surface of the photosensitive drum 1 and the latent image on the photosensitive drum 1 is developed. At this time, since the toner conveyance by the electrostatic conveyance substrate 41 and the vibration conveyance substrate 42 is performed efficiently and reliably, supply of a sufficient amount of toner required for development can be ensured.
[0071]
In this case, an AC voltage from an AC power supply 83 is applied to the ejection side of the electrostatic transfer board 41 and the vibration transfer board 42 to generate an AC electric field between the electrostatic transfer board 41 and the tip of the vibration transfer board 42. Then, a toner cloud 84 in which the toner T ejected from between the electrostatic conveyance substrate 41 and the vibration conveyance substrate 42 becomes a cloud state due to an alternating electric field is generated, and the toner is uniformly distributed with respect to the latent image on the photosensitive drum 1. Since it adheres, the image quality is improved.
[0072]
As described above, the latent image carrier is provided with the electrostatic transport device according to the present invention, and the charged toner is transported along the transport surfaces of the electrostatic transport substrate and the vibration transport substrate by a synergistic action by electrostatic force and vibration flight. By providing a developing device for supplying and adhering toner to the toner, it is possible to directly adhere the toner to the surface of the latent image carrier without contact, enabling high image quality development using electrostatic conveyance, and Simplify and reduce costs.
[0073]
Further, toner deterioration is reduced as compared with the case where the developing roller is used as the developing means. That is, normally, the toner is charged by frictional charging, a film is formed on the developing roller together with the magnetic carrier, and the toner electrostatically attached to the carrier is made into a magnetic brush shape, which is brought into contact with the latent image carrier and developed. For this reason, the toner is kneaded by the developing roller and further pulverized into fine powder,2, TiO2For example, additives are imprinted on the resin part of the toner, and the characteristics of the toner are deteriorated, resulting in functional failure. In contrast, when the toner is transported by the electrostatic transport substrate as described above, the toner is further pulverized into fine powder, or SiO 22, TiO2Thus, the additive is not imprinted on the resin part of the toner, and the characteristic deterioration is also reduced.
[0074]
Further, since the toner is conveyed to the latent image carrier without rotating the developer carrier such as the developing roller, the toner is not fixed in the developing device, and the toner is carried by the electrostatic force, so that the periphery of the developing unit The toner scattering from the seal portion can be reduced, and the image quality can be improved. Further, since the developing device can be formed compactly without using a special material, the cost can be reduced.
[0075]
In addition, by forming the electrostatic transfer substrate and the vibration transfer substrate in the plate shape as in the above embodiment, the toner transfer means from the toner storage portion to the latent image carrier can be greatly reduced in size. However, it is possible to reduce the size and thickness of the image forming apparatus and the like.
[0076]
Next, a second embodiment of the image forming apparatus according to the present invention will be described with reference to FIG. FIG. 2 is a main part explanatory view for explaining a part related to the electrostatic transfer device of the developing device according to the present invention.
In this embodiment, each drive electrode of the electrostatic transport substrate 41 is used as a drive circuit 85 that applies a drive waveform to each of the drive electrodes 52, 52... Of the electrostatic transport substrate 41 of the electrostatic transport device 36 of the developing device 16. 52, three-phase drive waveforms Va1, Vb1, Vc1 of frequency f1, three-phase drive waveforms Va2, Vb2, Vc2 of frequency f2, and three-phase drive waveforms Va3 of frequency f3 (f1> f2> f3). , Vb3, and Vc3, which output drive waveforms of three types of drive frequencies are used.
[0077]
The three-phase drive waveforms Va1, Vb1, and Vc1 of the frequency f1 of the drive circuit 85 are applied to the drive electrodes 52, 52... In the required region on the ejection side of the electrostatic transport substrate 41, and the three-phase drive waveforms of the frequency f2. Va2, Vb2, and Vc2 are applied to the drive electrodes 52, 52,... In the middle portion of the electrostatic transfer substrate 41, and three-phase drive waveforms Va3, Vb3, and Vc3 of the frequency f3 are required on the supply side of the electrostatic transfer substrate 41. The voltage is applied to the electrodes 52, 52. Since other configurations are the same as those of the developing device 16 of the first embodiment, description and illustration are omitted.
[0078]
With this configuration, the frequencies of the drive waveforms Va, Vb, and Vc applied to the drive electrodes 52 of the electrostatic transfer substrate 41 are stepwise from the supply side to the ejection side (in this example, f3, f2, It becomes higher in three stages (f1). Here, since the suction force and the repulsive force acting on the charged toner change in a single time as the frequency of the drive waveform increases, the toner supplied from the supply side of the electrostatic transport substrate 41 is driven by the drive electrode 52. , 52..., 52..., So that the moving speed increases, so that the toner is transported while being accelerated along the transport surface of the electrostatic transport substrate 41 and exposed from the ejection side (one end side). Fly toward the body drum 1.
[0079]
As described above, by giving the drive waveform frequency stepwise, the toner can be accelerated and fly toward the latent image carrier, and the toner can be more reliably attached to the latent image carrier. it can.
[0080]
Next, a third embodiment of the image forming apparatus according to the present invention will be described with reference to FIGS. FIG. 19 is an explanatory view of the main part of the electrostatic transfer device according to the present invention of the developing device according to the present invention in the image forming apparatus, and FIG. 18 is an enlarged sectional explanatory view of the vibration transfer substrate of the electrostatic transfer device. .
[0081]
The electrostatic transfer device 36 includes the above-described electrostatic transfer substrate 41 and a vibration transfer substrate 92 facing the electrostatic transfer substrate 41. The vibration transfer substrate 92 has substantially the same configuration as that of the vibration transfer substrate 42, but is divided vibrations that are a plurality of independent vibration generating means on the support substrate 61 made of glass, metal, ceramics, or the like along the transfer direction. A generation substrate 93 is arranged, a conveyance surface forming member 63 which is a vibration propagation member for forming a conveyance surface is provided on the divided vibration generation substrate 93, and a surface layer 64 is further formed on the conveyance surface forming member 63. is there.
[0082]
The divided vibration generating substrate 93 is formed by dividing the vibration generating substrate formed by laminating the electrodes 66 and 67 with the piezoelectric layer 65 interposed therebetween as described above, and dividing the divided vibration generating substrate 93. It is a piezoelectric element. The arrangement pitch of the divided vibration generating substrates 92 is substantially the same as the arrangement pitch of the drive electrodes 52 of the electrostatic transfer substrate 41.
[0083]
Then, as shown in FIG. 18, an AC or DC pulse is synchronized with the drive waveforms for the drive electrodes 52 and 52 of the electrostatic transfer substrate 41 from the drive circuit 86 to the electrodes 66 and 67 of each divided vibration generating substrate 93. Is applied, and each divided vibration generating substrate 93 is vibrated at a timing synchronized with the generation of the electric field by the drive electrode 52 of the electrostatic transfer substrate 41. The drive waveform is applied to the electrodes 66 and 67 of each divided vibration generating substrate 93, for example, from one end side of the substrate 93 in the photosensitive drum axial direction with respect to the electrode 67, and to the electrode 68 with respect to the photosensitive of the substrate 93. Perform from the other end side in the body drum axis direction.
[0084]
As described above, the plurality of independent vibration generating means (vibration generating substrates) are arranged in accordance with the arrangement pitch of the drive electrodes 52 of the electrostatic transfer substrate 41 to thereby describe the first embodiment of the image forming apparatus described above. In addition to the effects, the electric field generation by the drive electrode 52 of the electrostatic transfer substrate 41 and the vibration on the vibration transfer substrate 92 side corresponding to the electrode 52 can be more reliably matched, and the transfer efficiency is further improved.
[0085]
Next, a fourth embodiment of the image forming apparatus according to the present invention will be described with reference to FIGS. 20 is an explanatory view of a main part of the electrostatic transfer device according to the present invention of the developing device according to the present invention in the image forming apparatus, and FIG. 20 is an enlarged sectional explanatory view of a vibration transfer substrate of the electrostatic transfer device. .
[0086]
The electrostatic transfer device 36 includes the above-described electrostatic transfer substrate 41 and the vibration transfer substrate 102 opposed thereto. This vibration transfer substrate 102 has substantially the same configuration as the vibration transfer substrate 92, but a plurality of independent divided vibration generation substrates 93 are arranged along the transfer direction on a support substrate 61 made of glass, metal, ceramics, or the like. Then, a conveyance surface forming member 63 that is a vibration propagation member that forms a conveyance surface is provided on the divided vibration generating substrate 93, and a drive electrode 103 is formed in the vicinity of the top of the inclined surface 63a of the conveyance surface forming member 63. And coated with the surface layer 64.
[0087]
As shown in FIG. 20, the drive circuit 86 synchronizes the drive waveforms for the drive electrodes 52 and 52 of the electrostatic transfer substrate 41 with respect to the electrodes 66 and 67 of the divided vibration generation substrate 93 as described above. Each divided vibration generating substrate 93 is vibrated at a timing synchronized with the generation of an electric field by the drive electrode 52 of the electrostatic transfer substrate 41 by applying an AC or DC pulse.
[0088]
At the same time, similarly to the drive electrode 103 of the electrostatic transfer substrate 41, the drive electrode 103 of the vibration transfer substrate 102 is set as a set of three drive electrodes 103, 103, 103 from the drive circuit (driver) 104. Three-phase drive voltages (drive waveforms) Va, Vb, and Vc are applied to the drive electrodes 103, respectively. Thereby, the vibration conveyance substrate 102 can perform toner conveyance by electrostatic force as well as toner conveyance by vibration, and can further increase the conveyance amount and improve the conveyance efficiency.
[0089]
Here, another example of the vibration transfer substrate that can be used in each of the above-described embodiments will be described with reference to FIG. This figure is an enlarged cross-sectional explanatory view of a main part along the conveyance direction of the vibration conveyance substrate.
The vibration transfer substrate 112 has the same configuration as the vibration transfer substrate 42 described above, but an inclined surface 63a that approaches the electrostatic transfer substrate 41 toward the transfer direction formed on the transfer surface forming member 63, and the inclined surface 63a. The continuous portion 63c on the bottom side with the steep surface 63b having a larger inclination angle than that is formed in a curved shape.
[0090]
Thus, by forming the bottom side continuous portion 63c of the inclined surface 63a and the steep surface 63b in a curved surface shape, it is possible to prevent toner from staying in the continuous portion 63c, thereby improving the conveyance efficiency and smoothing. Transport can be performed. Here, the vibration transfer substrate 112 has the same configuration as that of the vibration transfer substrate 42, but can also have the same configuration as the vibration transfer substrates 92 and 102.
[0091]
Next, an image forming apparatus according to a fifth embodiment of the invention will be described with reference to FIGS. FIG. 23 is an explanatory view of a main part of the electrostatic transfer device according to the present invention of the developing device according to the present invention of the image forming apparatus, and FIG. 24 is an enlarged cross-sectional explanatory view of a counter substrate of the electrostatic transfer device.
[0092]
The electrostatic transfer device 136 includes the above-described electrostatic transfer substrate 41 and a counter substrate 142 that is a second substrate facing the electrostatic transfer substrate 41. The counter substrate 142 includes an inclined surface 153a approaching a support substrate 151 made of glass, metal, ceramics, or the like toward the electrostatic transfer substrate 41 serving as a transfer surface 153, and a steep surface 153b having a larger inclination angle than the inclined surface 153a. In addition, a continuous portion 153c on the bottom side of the inclined surface 153a and the steep surface 153b is formed in a curved shape, and a surface layer 154 is further formed on the transport surface 153.
[0093]
Here, it is preferable that the pitch between the inclined surface 153a and the steep surface 153b is substantially the same as the line / space (pitch) of the drive electrode 52 of the electrostatic transfer substrate 41 or within a range of 10 times or less. If the pitch between the inclined surface 153a and the steep surface 153b exceeds 10 times the pitch of the drive electrode 52, the toner recoil effect by the steep surface 153b may be diminished and the reverse feed prevention effect may be reduced.
[0094]
Further, the inclination angle θ3 of the inclined surface 153a is preferably in the range of 5 to 60 °, more preferably in the range of 20 to 45 °. The charged toner on the counter substrate 142 receives sufficient energy and proceeds in the transport direction (from right to left in the figure), and further gives acceleration energy by colliding with the forward charged toner. This is because when the angle θ3 is small, the electrostatic force due to the electric field from the electrostatic transport substrate 41 cannot be obtained, and the charged toner on the counter substrate 142 cannot be transported sufficiently, leading to an increase in driving voltage. . On the other hand, when the angle θ3 of the inclined surface 153a is large, the toner on the counter substrate 142 falls in the bottom direction of the inclined surface 153a and hinders the efficiency of toner conveyance.
[0095]
The surface layer 154 is a film having a function of reducing the contact resistance between the transfer surface 153 and the toner interface, in particular, like the surface layer 54 of the electrostatic transfer substrate 41. In order to reduce the contact resistance, the critical surface energy is reduced. A material having an Eg of 30 dyne / cm or less is preferable. For example, a fluorine resin material such as PTFE or PFA is coated to a thickness of 0.1 to 1 μm.
[0096]
Similar to the electrostatic transfer substrate 42 and the vibration transfer substrate 42 described above, the electrostatic transfer substrate 41 and the counter substrate 142 are bonded to each other with the transfer surfaces facing each other via a spacer, and the gap space 146 is joined to the toner. It is used as a passage to convey.
[0097]
The gap (opposite distance) d between the two electrostatic transfer substrates 41 and the counter substrate 142 at this time is determined in consideration of the toner particle size, charge amount, drive voltage, and the like, but is a powder to be transferred. It is preferable that the toner particle diameter is in the range of 2 to 100 times, more preferably in the range of 5 to 25 times. According to experiments, when the gap (opposite interval) d is less than twice the particle size of the toner, the charged toner is obstructed by the uncharged toner and the conveyance efficiency is lowered. When the diameter exceeds 100 times, the toner conveying effect by the counter substrate 142 cannot be sufficiently obtained.
[0098]
In the electrostatic transport device 136 configured as described above, the charged toner is transported by the electrostatic force of the electrostatic transport substrate 41 as described above. At the same time, a suction action is generated by the rotation of the photosensitive drum 1 facing the tip of the electrostatic transport device 136, and a wind flow in the toner transport direction is generated between the electrostatic transport substrate 41 and the counter substrate 142. Due to this flow and the electrostatic force from the electrostatic transport substrate 41, the charged toner receives sufficient energy and proceeds in the transport direction (from right to left in FIG. 23), and further collides with the forward charged toner. It is made to convey with acceleration energy. Further, since the steep surface 153b is provided, the toner that collides with the steep surface is bounced off in the transport direction by the energy at the time of collision, and moves in the transport direction together with other charged toner, thereby preventing the toner from being reversely fed. The
[0099]
Thus, the second substrate is not a vibration transfer substrate, and the cross-sectional shape having an inclined surface and a steep surface is a counter substrate having a saw-tooth shape, as compared with the case of a simple electrostatic transfer substrate alone. Therefore, it is possible to prevent the toner from being reversely fed due to the air flow in the reverse feeding direction, and to efficiently carry the toner in the forward direction (conveying direction).
[0100]
Then, the toner can be directly adhered to the surface of the latent image carrier by contact, and high image quality development using electrostatic conveyance becomes possible, and the apparatus is simplified and the cost can be reduced. Further, the toner can be transported without using mechanical power such as a developing roller, and the toner can be transported by using a plate-like electrostatic transport substrate or counter substrate as in this embodiment. The toner transfer means between the storage unit and the latent image carrier can be greatly reduced in size, and the image forming apparatus capable of forming an image of high image quality can be reduced in size and thickness.
[0101]
Next, a sixth embodiment of the image forming apparatus according to the present invention will be described with reference to FIGS. FIG. 25 is an explanatory view of a main part of the electrostatic transfer device according to the present invention of the developing device according to the present invention of the image forming apparatus, and FIG. 26 is an enlarged cross-sectional explanatory view of a counter substrate of the electrostatic transfer device.
[0102]
The electrostatic transfer device 136 includes the above-described electrostatic transfer substrate 41 and a counter electrostatic transfer substrate 162 that is a second substrate facing the electrostatic transfer substrate 41. The counter electrostatic transfer substrate 162 has the same configuration as that of the counter substrate 142 of the fifth embodiment, but includes a drive electrode 163 for generating a spatial traveling wave electric field substantially at the top of the inclined surface 153a of the transfer surface 153. Provided. A three-phase AC waveform synchronized with the drive waveform for the drive electrode 52 of the electrostatic transfer substrate 41 is also applied to the drive electrode 163 of the counter electrostatic transfer substrate 162 by the drive circuit 164 to generate a spatial traveling wave electric field.
[0103]
As a result, the charged toner is transported by receiving electrostatic force between the upper and lower electrostatic transport substrates 41 and the counter electrostatic transport substrate 162, and also receives energy from the suction action of the photosensitive drum 1, and more. It is possible to carry with the carry amount.
[0104]
Next, seventh and eighth embodiments of the image forming apparatus according to the present invention will be described with reference to FIGS. 27 and 28. FIG. FIGS. 2A and 2B are explanatory views of a main part of the electrostatic conveyance device according to the present invention of the developing device according to the present invention of the image forming apparatus of each embodiment.
The electrostatic conveyance device 176 constituting the developing device in the image forming apparatus according to the seventh embodiment shown in FIG. 27 is configured such that the toner path is between the vibration conveyance substrate 102 according to the fourth embodiment and the vibration conveyance substrate 102. A lid member 178 forming 177 is provided, and the vibration transfer substrate 102 and the lid member 178 are joined with a predetermined gap as in the above embodiments.
[0105]
In this embodiment, toner is transported by electrostatic force and vibration of the vibration transport substrate 102 and forward air flow by the photosensitive drum 1. Even in this case, since the reverse flow of the toner due to the air flow in the apparatus is prevented, a sufficient amount of toner can be efficiently conveyed as compared with the case where the toner is conveyed by simple electrostatic force and vibration. Can do.
[0106]
The electrostatic transfer device 186 constituting the developing device in the image forming apparatus according to the eighth embodiment shown in FIG. 28 includes the counter electrostatic transfer substrate 162 according to the sixth embodiment described above and the counter electrostatic transfer substrate 162. A cover member 188 that forms a toner passage 187 is provided, and the counter electrostatic transfer substrate 162 and the cover member 188 are joined with a predetermined gap as in the above embodiments.
[0107]
In this embodiment, toner is transported by the electrostatic force of the counter electrostatic transport substrate 162 and the forward air flow by the photosensitive drum 1. Even in this case, since the reverse feeding of the toner due to the air flow in the apparatus is prevented, a sufficient amount of toner can be efficiently conveyed as compared with the case where the toner is conveyed with a simple electrostatic force. .
[0108]
Next, another example of the developing device according to the present invention will be described with reference to FIG. This developing device develops the latent image on the photosensitive drum 1 using a developing roller 191 as developing means, and the developing roller 191 is supplied with toner by using the feeding substrate 43 shown in FIG. I try to send it in.
[0109]
By supplying the toner to the developing roller 191 using the feeding substrate 43 in this way, the influence of the wind pressure due to the rotation of the developing roller 191 is reduced, and the toner can be reliably supplied to the developing roller 191. The size of the developing device can be reduced by performing the electric conveyance.
[0110]
In each of the above embodiments, the electrostatic conveyance device that conveys toner with an electrostatic force has been described. However, the present invention can be similarly applied to a device that conveys powder other than toner.
[0111]
【The invention's effect】
  As described above, according to the electrostatic transfer device of the present invention, the first substrate having a plurality of electrodes for generating an electric field for moving the powder with an electrostatic force along the transfer surface, and the first substrate. A second substrate having an inclined surface and a steep surface whose inclination angle is steeper than that of the inclined surface, the second substrate having a substantially serrated shape. As a means for vibrating the two substrates, a divided vibration generating substrate formed by dividing a vibration generating substrate having a piezoelectric material layer and an electrode sandwiching the piezoelectric material layer into divided grooves is provided, and the electrode pitch of the divided vibration generating substrate is the same as that of the first substrate. It is substantially the same as the electrode pitch, and the electrode of the divided vibration generating substrate and the electrode of the first substrate are arranged to face each other, and the drive of the electrode of the first substrate with respect to the electrode of the divided vibration generating substrate is driven AC or DC in sync with waveform By applying a pulse vibrates the split vibration generating substrateConfiguredTherefore, the reverse feeding of the powder is prevented and the powder can be reliably and efficiently conveyed.
[0112]
  here,A conveying surface forming member that is a vibration propagation member that forms a conveying surface on the divided vibration generating substrate is provided, and an electrode is provided near the top of the inclined surface of the conveying surface forming member, and the inclined surface of the conveying surface forming member is provided. By adopting a configuration in which the drive waveform is applied to the upper electrode, the conveyance amount can be increased and the conveyance efficiency can be improved. Also,The inclined surface of the second substrate and the bottom side continuous portion of the steep surface form a curved surface shape.By configuringPrevents stagnation of powder in the continuous part and improves powder transfer efficiency..
[0123]
The developing device according to the present invention is a developing device that develops the latent image on the latent image carrier by attaching toner onto the latent image carrier, and includes the electrostatic conveyance device according to the present invention. Since the tip of the electrostatic transport substrate of the electrostatic transport device faces the latent image carrier, the toner transport necessary for development can be performed with a stable transport amount, and the development quality is improved. Further, the developing device can be reduced in size.
[0124]
The developing device according to the present invention is a developing device that develops the latent image on the latent image carrier by attaching toner onto the latent image carrier, and includes the electrostatic transport device according to the present invention. Since the toner is fed by the electrostatic conveyance device to the developing means for attaching the toner to the latent image carrier, the toner necessary for development can be supplied with a stable conveyance amount, and the development quality is improved. In addition, the developing device can be reduced in size.
[0125]
According to the image forming apparatus of the present invention, the image forming apparatus includes a developing device that develops the latent image on the latent image carrier by attaching toner onto the latent image carrier, and the developing device according to the present invention. Since the apparatus is provided, an image can be formed with high image quality and the entire apparatus can be miniaturized.
[Brief description of the drawings]
FIG. 1 is an overall schematic configuration diagram of an image forming apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram illustrating an example of a developing device of the image forming apparatus.
FIG. 3 is an explanatory side view of an electrostatic transfer device of the developing device.
FIG. 4 is a schematic cross-sectional explanatory view along the transport direction showing an example of an electrostatic transport substrate in the electrostatic transport apparatus.
FIG. 5 is a schematic cross-sectional explanatory view along the transport direction showing another example of the electrostatic transport substrate in the electrostatic transport apparatus.
FIG. 6 is an explanatory plan view of the electrostatic transfer substrate.
FIG. 7 is a schematic cross-sectional explanatory view along the transport direction showing an example of a vibration transport substrate in the electrostatic transport device.
FIG. 8 is a schematic cross-sectional explanatory view along the transport direction showing an example of a feeding substrate in the electrostatic transport apparatus.
FIG. 9 is a schematic cross-sectional explanatory view along the transport direction showing another example of the feeding substrate in the electrostatic transport apparatus.
FIG. 10 is an explanatory diagram illustrating a driving unit of the electrostatic transfer device
FIG. 11 is an explanatory diagram for explaining the principle of powder conveyance by the electrostatic conveyance device.
FIG. 12 is an explanatory diagram for explaining an example of a change pattern of a drive waveform applied to a drive electrode of the electrostatic transfer device
FIG. 13 is an explanatory diagram for explaining another example of a change pattern of a drive waveform applied to a drive electrode of the electrostatic transfer device
FIG. 14 is an explanatory diagram for explaining still another example of a change pattern of a drive waveform applied to a drive electrode of the electrostatic transfer device
FIG. 15 is an explanatory diagram for explaining still another example of a change pattern of a drive waveform applied to the drive electrode of the electrostatic transfer device
FIG. 16 is an explanatory diagram for explaining the principle of the developing operation in the image forming apparatus.
FIG. 17 is an explanatory view of a main part of an electrostatic transfer device portion of an image forming apparatus according to a second embodiment of the present invention.
FIG. 18 is an explanatory view of a main part of an electrostatic transfer device portion of an image forming apparatus according to a third embodiment of the present invention.
FIG. 19 is an enlarged explanatory view of a main part along the conveyance direction of the vibration conveyance substrate of the electrostatic conveyance device.
FIG. 20 is an explanatory view of a main part of an electrostatic transfer device portion of an image forming apparatus according to a fourth embodiment of the present invention.
FIG. 21 is an enlarged explanatory view of a main part along the conveyance direction of the vibration conveyance substrate of the electrostatic conveyance device.
FIG. 22 is a main part enlarged explanatory view along the transport direction for explaining another example of the vibration transport substrate.
FIG. 23 is an explanatory view of a main part of an electrostatic transfer device portion of an image forming apparatus according to a fifth embodiment of the present invention.
FIG. 24 is an enlarged explanatory view of a main part along the transfer direction of the counter substrate of the electrostatic transfer device.
FIG. 25 is an explanatory view of a main part of an electrostatic transfer device portion of an image forming apparatus according to a sixth embodiment of the present invention.
FIG. 26 is a main part enlarged explanatory view along the transport direction of the counter electrostatic transport substrate of the electrostatic transport apparatus.
FIG. 27 is an explanatory view of a main part of an electrostatic transfer device portion of an image forming apparatus according to a seventh embodiment of the present invention.
FIG. 28 is an explanatory view of a main part of an electrostatic transfer device portion of an image forming apparatus according to an eighth embodiment of the present invention.
FIG. 29 is a main part explanatory view showing another example of a developing device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Photosensitive drum (latent image carrier), 5, 8 ... Scanning optical system, 13 ... Polygon mirror, 15 ... Charging device, 16 ... Developing device, 17A, 17B ... Paper feeding unit, 20 ... Transfer charger, 21 ... Separation charger 23 ... Fixing roller pair 31 ... Powder hopper part 34 ... Charging roller 36 ... Electrostatic transfer device 41 ... Electrostatic transfer substrate 42, 92, 102, 112 ... Vibration transfer transfer substrate 43 ... Feed substrate 51 ... Support substrate 52 ... Drive electrode 53 ... Insulating film 54 ... Surface layer 61 ... Support substrate 62 ... Vibration generating substrate 63 ... Conveying surface forming member 63a ... Inclined surface 63b ... Steep surface , 63c ... continuous portion, 64 ... surface layer, 93 ... divided vibration generating substrate, 103 ... electrode, 142 ... counter substrate, 153a ... tilted surface, 153b ... steep surface, 153c ... continuous portion, 162 ... counter electrostatic transfer substrate.

Claims (6)

粉体を静電力で搬送する静電搬送装置において、
前記粉体を搬送面に沿って静電力で移動させるための電界を発生させる複数の電極を有する第1基板と、
この第1基板にギャップをおいて対向配置され、傾斜面及びこの傾斜面よりも傾斜角度が急峻な急峻面とを有する断面形状が略鋸歯状をなす第2基板とを備え、
前記第2基板は、該第2基板を振動させる手段として、圧電材料層とこれを挟む電極を有する振動発生基板を分割溝で分割して形成された分割振動発生基板を備え、
前記分割振動発生基板の電極ピッチは前記第1基板の電極ピッチと略同じであって、かつ前記分割振動発生基板の電極と前記第1基板の電極は互いに対面するよう配設されており、
前記分割振動発生基板の電極に対して、前記第1基板の電極に対する駆動波形と同期をとって交流又は直流パルスを印加することにより、前記分割振動発生基板を振動させる
ことを特徴とする静電搬送装置。
In an electrostatic transport device that transports powder with electrostatic force,
A first substrate having a plurality of electrodes for generating an electric field for moving the powder with electrostatic force along the conveying surface;
A second substrate that is disposed to face the first substrate with a gap, and has a sloped surface and a steep surface with a steeper angle than the sloped surface.
The second substrate includes a divided vibration generating substrate formed by dividing a vibration generating substrate having a piezoelectric material layer and an electrode sandwiching the piezoelectric material layer by dividing grooves as means for vibrating the second substrate,
The electrode pitch of the divided vibration generating substrate is substantially the same as the electrode pitch of the first substrate, and the electrode of the divided vibration generating substrate and the electrode of the first substrate are arranged to face each other,
An electrostatic system characterized in that the divided vibration generating substrate is vibrated by applying an AC or DC pulse to the electrode of the divided vibration generating substrate in synchronization with a driving waveform for the electrode of the first substrate. Conveying device.
請求項1に記載の静電搬送装置において、前記分割振動発生基板上に搬送面を形成する振動伝搬部材である搬送面形成部材を設け、さらに、該搬送面形成部材の傾斜面の略頂上部付近に電極を設け、前記搬送面形成部材の傾斜面上の電極に対して駆動波形を印加することを特徴とする静電搬送装置。The electrostatic transfer apparatus according to claim 1, further comprising: a transfer surface forming member that is a vibration propagation member that forms a transfer surface on the divided vibration generating substrate, and further substantially the top of the inclined surface of the transfer surface forming member. An electrostatic transfer apparatus, wherein an electrode is provided in the vicinity, and a drive waveform is applied to an electrode on an inclined surface of the transfer surface forming member. 請求項1又は2に記載の静電搬送装置において、前記第2基板の傾斜面と急峻面の底部側連続部が曲面形状をなすことを特徴とする静電搬送装置。 3. The electrostatic transfer apparatus according to claim 1 , wherein an inclined surface of the second substrate and a bottom side continuous portion of the steep surface have a curved surface shape. 4. 潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置において、請求項1ないし3のいずれかに記載の静電搬送装置を備え、この静電搬送装置の静電搬送基板の先端部が前記潜像担持体近傍に臨むことを特徴とする現像装置。In the developing apparatus by adhering toner on the latent image bearing member to develop the latent image on the latent image bearing member comprises an electrostatic transport device according to any one of claims 1 to 3, the electrostatic transporting device a developing device tip of the electrostatic transporting substrate is characterized in that the face in the vicinity of the latent Zo担 bearing member. 潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置において、請求項1ないし3のいずれかに記載の静電搬送装置を備え、前記トナーを前記潜像担持体に付着させる現像手段に対して前記静電搬送装置で前記トナーを送り込むことを特徴とする現像装置。4. A developing device for developing a latent image on a latent image carrier by attaching toner on the latent image carrier, comprising: the electrostatic transport device according to claim 1; A developing device characterized in that the toner is fed by the electrostatic conveying device to a developing means to be adhered to a carrier. 潜像担持体上にトナーを付着させて潜像担持体上の潜像を現像する現像装置を備えた画像形成装置において、前記現像装置が請求項に記載の現像装置であることを特徴とする画像形成装置。5. An image forming apparatus comprising a developing device for developing a latent image on a latent image carrier by attaching toner on the latent image carrier, wherein the developing device is the developing device according to claim 4. Image forming apparatus.
JP2001066183A 2001-03-09 2001-03-09 Electrostatic transfer device, developing device, and image forming apparatus Expired - Fee Related JP4138263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066183A JP4138263B2 (en) 2001-03-09 2001-03-09 Electrostatic transfer device, developing device, and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066183A JP4138263B2 (en) 2001-03-09 2001-03-09 Electrostatic transfer device, developing device, and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2002268375A JP2002268375A (en) 2002-09-18
JP4138263B2 true JP4138263B2 (en) 2008-08-27

Family

ID=18924716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066183A Expired - Fee Related JP4138263B2 (en) 2001-03-09 2001-03-09 Electrostatic transfer device, developing device, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4138263B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010078629A (en) * 2008-09-24 2010-04-08 Brother Ind Ltd Image forming apparatus and toner supply apparatus
WO2009099175A1 (en) * 2008-02-08 2009-08-13 Brother Kogyo Kabushiki Kaisha Developer supply apparatus and image forming apparatus
JP4497220B2 (en) 2008-03-18 2010-07-07 ブラザー工業株式会社 Image forming apparatus and developer supply apparatus

Also Published As

Publication number Publication date
JP2002268375A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
JP2002240943A (en) Electrostatic transporter, developer, image former, and classifier
US6597884B2 (en) Image forming apparatus including electrostatic conveyance of charged toner
US7308222B2 (en) Toner supplying system for an image forming apparatus
JP2002287495A (en) Electrostatic carrying device, developing device, image forming device and classification device
JP2004279880A (en) Developing device, image forming apparatus, and process cartridge
JP2004198675A (en) Developing apparatus and developing method, image forming apparatus and image forming method, and process cartridge
JP5429053B2 (en) Developer supply device
JP2007178924A (en) Developer conveying device and image forming apparatus
JP4342819B2 (en) Toner supply device, developing device, and image forming apparatus
JPH0361960A (en) Image recording device
JP4138263B2 (en) Electrostatic transfer device, developing device, and image forming apparatus
JP2002307740A (en) Electrostatic transfer device, development device, imaging device and toner supply device
JP2003098826A (en) Fine particle carrying apparatus and image forming apparatus
JP4194250B2 (en) Image forming apparatus
JP4307753B2 (en) Electrostatic transfer device, developing device, and image forming apparatus
JP2004045943A (en) Developing apparatus and image forming apparatus
JP2003098821A (en) Developing apparatus and image forming apparatus
JP2002082524A (en) Image forming device, developing device, toner feeding device, pulverulent body injection nozzle and classification device
WO2009116406A1 (en) Image forming device, and developer supply device
JP2002091159A (en) Toner carrying device, developing device, image forming device and toner supply device
JP2003107908A (en) Developing device, process cartridge and image forming apparatus
JP2005173383A (en) Electrostatic carrying device, developing device, process cartridge, and image forming apparatus
JP2003098820A (en) Electrostatic transfer device and imaging apparatus
JP4734142B2 (en) Developing device, process cartridge, and image forming apparatus
JP2004198744A (en) Electrostatic carrying device, developing device, process cartridge and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees