JP4137722B2 - Deformation measuring device - Google Patents

Deformation measuring device Download PDF

Info

Publication number
JP4137722B2
JP4137722B2 JP2003183194A JP2003183194A JP4137722B2 JP 4137722 B2 JP4137722 B2 JP 4137722B2 JP 2003183194 A JP2003183194 A JP 2003183194A JP 2003183194 A JP2003183194 A JP 2003183194A JP 4137722 B2 JP4137722 B2 JP 4137722B2
Authority
JP
Japan
Prior art keywords
mirror
test piece
deformation
plane
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003183194A
Other languages
Japanese (ja)
Other versions
JP2005017134A (en
Inventor
英隆 石井
毅志 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003183194A priority Critical patent/JP4137722B2/en
Publication of JP2005017134A publication Critical patent/JP2005017134A/en
Application granted granted Critical
Publication of JP4137722B2 publication Critical patent/JP4137722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、材料の変形量を測定する変形量測定装置に関するものである。
【0002】
【従来の技術】
衛星搭載用宇宙望遠鏡などの宇宙用機器や、宇宙用構造物の構造材料として一般的に使用されている材料にCFRP(Carbon Fiber Reinforced Plastic:炭素繊維強化プラスチック)がある。CFRPを形成する樹脂は、空気中の水分を吸収して重量増加や変形を生じることが知られている。宇宙用構造物は湿度50〜60(%)の地上環境から湿度0%の宇宙環境へ打ち上げられるため、宇宙環境での脱湿による変形量は非常に大きい。特に、CFRP製の精密測定機器などでは、脱湿変形により宇宙環境での測定精度が大幅に低下する可能性があり、測定値の信頼性も低下する。従って、宇宙環境で高い測定精度を維持するためには、精密測定機器の構造部材としては吸湿及び脱湿変形の少ないCFRPを適用する必要がある。それと同時に、宇宙用構造部材の吸湿及び脱湿変形量を精密に測定する技術も必要となる。なお、宇宙環境では上記のように脱湿変形が生じるが、脱湿変形量と吸湿変形量は等しいと考えられるので、脱湿変形の測定装置・方法の代わりに吸湿変形の測定装置・方法を考えればよい。
【0003】
従来の吸湿変形を測定する方法の1つとして、作動トランスを利用する方法を挙げることができる。この例として、特許文献1に開示された従来の吸湿膨張係数の測定装置がある。
特許文献1に開示された測定装置では、一定温度/湿度環境に保たれたチャンバー内に設置された作動トランスに、あらかじめ脱湿された試験片をセットする。試験片の吸湿による長さ変化量を作動トランスで読み取ることにより、吸湿膨張係数を測定する。試験片としては、例えば、人工衛星に搭載される光学部品の材料として用いられる黒鉛/エポキシ樹脂複合材料等が適用される。
【0004】
また、別の方法として、複合材料等の吸湿変形量をレーザー変位計を用いて測定する方法が知られている。この方法では、試料の両側から試料に向けて発射されたレーザービームが、試料端部に取り付けられたゼロ膨張の反射鏡で反射され、元の位置まで戻るまでの時間を、試料の両側に配置されたレーザー変位計で測定する。レーザービームが戻るまでの時間の変位量から試料の吸湿変形量が求められる。
【0005】
【特許文献1】
米国特許第5249456号明細書
【0006】
【発明が解決しようとする課題】
しかし、特許文献1で示されるような従来の作動トランスを利用した測定方法では、測定結果が作動トランスのノイズの影響を受け、3〜10ppm(ppmは百万分率)程度の精度でしか吸湿変形量が測定できないという問題がある。このノイズの原因として考えられるのは、試験片が作動トランスに吊り下げられた形で固定されるため、測定の際、試験片が収縮することによって生じるわずかな振動である。しかし、近年高まってきている精密機器へのより高い精度要求を満たすためには、より高い精度で吸湿変形量を測定する必要がある。
【0007】
また、上記のレーザー変位計を用いて測定する方法では、長期間(1日以上)連続して測定を行なうと、試験片に変形がなくても試験片が変形していくかのような挙動、すなわち測定値が時間とともに変化していく現象がみられることが知られている。この測定値のシフトの原因の1つとして考えられるのは、レーザーの出力安定性である。一般に、レーザーは、定格出力を中心として、約5分間で±1%、約10時間で±3%程度の振幅の変化が生じることが知られており、測定時間が長時間になるほど振幅は大きくなる。このため、1週間以上の長時間の測定が必要な吸湿変形測定においては、安定した信頼しうるデータが得られないという問題がある。
【0008】
この発明は上記のような課題を解決するためになされたもので、材料の変形量を、より高い精度で、かつ経時変化なしに安定して測定できる変形量測定装置を得ることを目的とする。
【0009】
【課題を解決するための手段】
この発明に係る変形量測定装置は、恒温恒湿槽と、恒温恒湿槽内に設置されたレーザー干渉計と、恒温恒湿槽内に、レーザー干渉計に対向して配置された平面半透鏡と、平面半透鏡を挟んでレーザー干渉計と反対側に配置され、平面半透鏡に鏡面が向かい合うように、弾性体によって可動に設置された平面鏡と、平面鏡を挟んで平面半透鏡と反対側の、レーザー干渉計と平面半透鏡を結ぶ線の延長上に配置され、棒状に形成された測定試料及び基準試料を設置するための支持体とを備え、測定試料及び基準試料は、各一端部が平面鏡の鏡面と反対側の面に接するように設置され、各他端部が恒温恒湿槽内に固定された支持体に接するように設置されることを特徴としたものである。
【0010】
【発明の実施の形態】
以下、この発明の実施の様々な形態を説明する。
実施の形態1.
図1(a)は、この発明の実施の形態1による変形量測定装置100に含まれる試験片格納装置12の構造を示す鳥瞰図であり、図1(b)は、変形量測定装置100の全体を図1(a)におけるA−A断面で見た断面図である。
変形量測定装置100は、恒温恒湿槽14を備え、恒温恒湿槽14内部にレーザー干渉計9及び試験片格納装置12が備えられている。試験片格納装置12は、外枠8で囲まれた直方体の装置であり、直方体の軸線方向の延長上にレーザー干渉計9が設置されている。
【0011】
試験片格納装置12には、試験片1(測定試料)、リファレンス2(基準試料)、平面ミラー3、平面ハーフミラー4が備えられている。試験片1は、変形量の測定対象であり、例えば、CFRP等の材料で断面が一定な棒状に形成されている。リファレンス2は、例えばゼロ膨張ガラスや石英のような、試験片1と比べて吸湿変形をほとんど生じない材料で形成されている。リファレンス2も試験片1と同様に断面が一定な棒状に形成されている。
平面ハーフミラー4は、外枠8のレーザー干渉計9と向き合う面にはめ込まれる形で設置されており、レーザー干渉計9からの入射光6を透過及び反射する。平面ミラー3は、平面ハーフミラー4が設置されている外枠8の内側にスプリング5を介して接続されている。試験片1及びリファレンス2は、一端が平面ミラー3の背面に接するように設置される。平面ミラー3と平面ハーフミラー4を接続するスプリング5は、試験片1及びリファレンス2が圧入されることにより圧縮され、これにより、万が一試験片1が縮んだ場合でも、試験片1と平面ミラー3が離れるのを防ぐことができる。
【0012】
次に、実施の形態1による変形量測定装置100の測定原理について説明する。
実施の形態1は、レーザー干渉計9から発振され平面ミラー3で反射されるレーザー光と、平面ハーフミラー4で反射されたレーザー光の干渉によって生じる干渉縞の変化量から、試験片1の吸湿による変形量を測定する。
【0013】
図2は、変形量測定装置100の測定原理を説明するための図である。図2(a)は、図1(a)の試験片格納装置12を上面から見た図であり、図2(b)及び(c)は、図2(a)に示すB部の拡大図である。図2(b)は、試験片1が吸湿により膨張する前の状態を示し、図2(c)は試験片1の吸湿による膨張後の状態を示している。試験片1及びリファレンス2の平面ミラー3に接する面と反対側の一端には、試験片1の初期位置の微調整に使用するマイクロメータ(図示せず)が備えられており、試験片1の吸湿変形前の状態でも、リファレンス2と試験片1の長さに差を設けている。平面ミラー3は試験片1とリファレンス2の長さに応じて、固定された平面ハーフミラー4に対する傾斜角を変化させる。
【0014】
レーザー干渉計9から発振された入射光6は、試験片等格納装置12に取り付けられた平面ハーフミラー4で透過光と反射光11に分割される。透過光は平面ミラー3で反射される(反射光10)。反射光10及び平面ハーフミラー4での反射光11は、レーザー干渉計9に入り、干渉計内部で図3に示すような干渉縞を形成する。ここで、図3(a)は、試験片1が吸湿により変形する前の状態での干渉縞の測定例を表し、図3(b)は、試験片1の吸湿変形後の干渉縞の測定例を表している。
【0015】
図2に示すように、試験片1は平面ミラー3の背面に接しているため、吸湿により試験片1の長さが変化すると、平面ミラー3が押されてスプリング5が収縮することにより、平面ミラー3と平面ハーフミラー4間の角度が変化する。その結果、平面ミラー3での反射光10と平面ハーフミラー4での反射光11の行路差が試験片変形前と比べて変化する。このため、角度変化に応じてレーザー干渉計9で観測される干渉縞に変化が生じる。吸湿変形による試験片1の長さの変位量を、予め得られている干渉縞の変化量と試験片変形量の関係を用いて算出することができる。
【0016】
次に、具体例を用いて実施の形態1による変形量測定装置100の効果について説明する。
例えば、精密な寸法安定性が必要とされる衛星搭載用宇宙望遠鏡に使用されるCFRP製トラスパイプ(長さ500mm、外径30mm、厚さ2.0mm程度)の吸湿変形を測定する場合を例として説明する。実際には、湿度50〜60(%)の地上環境から湿度0%の宇宙環境へ打ち上げられるため脱湿過程での変形量の測定になるが、ここでは、部材を乾燥させて水分を完全に取り除き、湿度0%にした後、一定の湿度・温度の環境下で部材を保持し、吸湿過程での変形量を測定する。
【0017】
測定の具体的手順について説明する。まずCFRPの試験片1の水分含有率を0%にするため、試験片1を真空オーブンの中に入れ、100℃の真空環境下に約48時間曝してベーキングし、その後23℃の真空環境下に約24時間曝す。測定試験を行なう恒温恒湿槽内の温度/湿度環境は23℃/55%であるため、100℃の真空環境から直ぐに恒温恒湿槽内に移すと、測定中に吸湿変形だけでなく熱変形も生じる。これを避けるため、試験用恒温恒湿槽内に移す前に、槽内の温度環境と等しい温度環境下(23℃)に試験片を曝し、恒温恒湿槽内に移した後に熱変形が生じないようにする必要がある。脱湿に要する時間は主に試験片1の板厚と関係し、試験片1の板厚が厚い程、時間がかかることが一般的に知られている。このため、試験片1が厚い場合は、より長時間真空オーブンに入れておく必要がある。
【0018】
次に、一定温度/湿度環境[温度23℃、湿度55%RH(クリーンルーム環境);温度変動幅:±0.3℃、湿度変動幅:±2.5%RH]に保たれた恒温恒湿槽14に設置された、図1(a)に示すような試験片格納装置12に試験片1をセットし、干渉縞が生じるようにレーザー干渉計9の調整を行なう。なお、ここではレーザー干渉計9にFUJINON社製のF601を用いた。このレーザー干渉計9では、レーザー光源としてHe−Neレーザー(波長:630nm)を使用しており、干渉縞1つあたりの間隔は半波長分の約300nm(=0.3μm)となる。また、ここでの試験片1の長さは500mmなので、測定精度は、0.3×10−6/500×10−3=0.6ppm程度となる。
【0019】
ここで、恒温恒湿槽14の温度変動幅は±0.3℃であり、0.6×10−6/0.3=2ppm/K以上の線膨張率を持つ材料で試験片等格納装置12の外枠8を作製すると、恒温恒湿槽14内の温度を一定に保っていても、恒温恒湿槽14の微小な温度変動により試験片等格納装置12の外枠8が変形し、この変形量がノイズとなって測定結果に影響を与える可能性がある。そのため、試験片等格納装置12の外枠8は吸湿変形を生じず、かつ線膨張率の小さい材料を使用して作成する必要がある。例えば、ゼロ膨張ガラス(線膨張率:0.1ppm/K以下、吸湿膨張率:0)や石英(線膨張率0.2ppm/K:、吸湿膨張率:0)等を使用することができる。なお、ここでは、試験片格納装置12の外枠8の材料として、石英で作製した装置を使用して試験した。
【0020】
実際の測定では、干渉縞はレーザー干渉計9に付属のモニターに映し出されるので、この画像を一定時間ごと(30分毎、2時間毎等)にビデオキャプチャーを用いてコンピュータに取り込み、取り込んだ画像から縞の本数の時間的な変化量を調べ、その変化量を基に試験片の吸湿変形量を逆算する。
【0021】
図3(a)、(b)に示す干渉縞の測定例を用いて説明する。図に示すように、左上方から右下方に向かって傾斜した濃淡の干渉縞模様が見られ、試験片変形の前後で干渉縞の本数や間隔に変化が生じている。
なお、今回測定した試験片1の長さでは、完全に吸湿過程が終了するまで3ヶ月程度必要と考えられるため、その間、一定時間ごとの測定を継続する必要がある。
【0022】
以上のように、実施の形態1の変形量測定装置100を使用することにより、1ppm程度の高い測定精度が得られる。従来の作動トランスを使用する装置で得られる3〜10ppm程度の精度に比べると、高い精度で試験片の吸湿変形量を測定することが可能となる。
【0023】
また、従来のレーザー変位計による測定のように、測定対象物からの反射光を基に変形量を測定せず、2本の反射光の行路差を利用して変形量を測定しているので、レーザー出力の安定性の影響を受けず、時間経過による測定値のシフトの問題が発生しないことが確認されている。
【0024】
以上のように、この実施の形態1によれば、試験片1の吸湿変形による変位を平面ミラー3と平面ハーフミラー4の位置関係に反映させ、平面ミラー3の反射光と平面ハーフミラー4の反射光の干渉により生じる干渉縞の変化量をレーザー干渉計9で測定することにより、試験片1の変位量を測定するようにしたので、レーザー光源の安定性等に依存せず、精密で安定した測定結果が得られるという効果がある。
【0025】
なお、実施の形態1では、吸湿及び脱湿による材料の変形量を測定しているが、吸湿(脱湿)以外の原因による変形量の測定装置にも利用することが可能である。
【0026】
また、実施の形態1では、平面ミラー3はスプリング5を介して平面ハーフミラー4に接続されているが、例えば、平面ミラー3と試験片格納装置12の直方体の軸線方向と平行な両側の外枠8をスプリング5で接続することにより、平面ミラー3を実施の形態1と同様の配置にしてもよい。この場合にも、スプリング5の伸縮により、試験片1の変形を平面ミラー3と平面ハーフミラー4の位置関係に反映することができる。
【0027】
実施の形態2.
実施の形態2では、複数の試験片の吸湿変形量を一度に連続して測定することを可能にする。
図4は、この発明の実施の形態2による変形量測定装置200の構造を示す斜視図である。図1(a)、(b)と同一の符号は同一の構成要素を表している。図4に示すように、変形量測定装置200には、恒温恒湿槽14内にレーザー干渉計9を載せて移動可能な精密位置決め機構付きのガイドレール13が備えられている。このガイドレール13上にレーザー干渉計9を載せて移動させることにより、恒温恒湿槽14内に設置された複数の試験片格納装置12に設置された試験片1の吸湿変形量を連続して測定することが可能となる。また、試験片格納装置12の内部は、実施の形態1と同様の構成になっている。
【0028】
実際に、図4に示すような測定装置を用いて、CFRP製トラスパイプ(長さ500mm、外径30mm、厚さ2.0mm程度)の試験片5個の吸湿変形量を一度に連続して測定した結果、短期間で所期のデータが得られ、吸湿変形量測定の効率化を図ることができた。
【0029】
以上のように、この実施の形態2によれば、複数の試験片を一度にまとめて測定できる効率の良い測定装置を得ることができる。上述のようなトラストパイプでは、肉厚が非常に厚いため、測定終了までに3ヶ月以上の期間が必要となる。このようなパイプを多数測定する場合、一つの試験片格納装置だけを用いて行うと、全測定を終了するまでに数年間の期間が必要である。
【0030】
なお、実施の形態2では、試験片格納装置12を恒温恒湿槽14内に固定し、レーザー干渉計9を移動させる構成としたが、レーザー干渉計9を固定して試験片格納装置12を移動させる構成とすることも可能である。ただし、試験片格納装置12を動かすと、内部の試験片が動き、測定が失敗する可能性がある。また、限られたスペースの恒温恒湿槽14内で複数の試験片格納装置12を動かすよりはレーザー干渉計9を移動させる方が容易であることから、実施の形態2の構成の方が実用的である。
【0031】
また、実施の形態1と同様に実施の形態2についても、吸湿及び脱湿による材料の変形量の測定に限らず、吸湿(脱湿)以外の原因による変形量の測定装置に利用することが可能である。
【0032】
【発明の効果】
以上のように、この発明によれば、恒温恒湿槽と、恒温恒湿槽内に設置されたレーザー干渉計と、恒温恒湿槽内に、レーザー干渉計に対向して配置された平面半透鏡と、平面半透鏡を挟んでレーザー干渉計と反対側に配置され、平面半透鏡に鏡面が向かい合うように、弾性体によって可動に設置された平面鏡と、平面鏡を挟んで平面半透鏡と反対側の、レーザー干渉計と平面半透鏡を結ぶ線の延長上に配置され、棒状に形成された測定試料及び基準試料を設置するための支持体とを備え、測定試料及び基準試料は、各一端部が平面鏡の鏡面と反対側の面に接するように設置され、各他端部が恒温恒湿槽内に固定された支持体に接するように設置されることを特徴としたので、測定試料の変形に伴って弾性体が伸縮し、平面半透鏡と平面鏡のなす角度が変化することにより、平面半透鏡の反射光と平面鏡の反射光の行路差が変化する。これにより、レーザー干渉計で観測される両反射光による干渉縞が変化する。その変化量に基づいて測定試料の変形量を測定することにより、試料の変形量をより高い精度で、かつ経時変化なしに安定して測定できる変形量測定装置が得られるという効果がある。
【図面の簡単な説明】
【図1】 (a)は、この発明の実施の形態1による変形量測定装置に含まれる試験片格納装置の構造を示す鳥瞰図であり、(b)は、変形量測定装置の全体を(a)におけるA−A断面で見た断面図である。
【図2】 (a)は、試験片格納装置を上面から見た図であり、図2(b)は、(a)に示すB部の拡大図で、試験片が吸湿により変形する前の状態を示したもの、(c)は、(a)に示すB部の拡大図で、試験片の吸湿による変形後の状態を示したものである。
【図3】 (a)は、試験片が吸湿により変形する前の状態での干渉縞の測定例を示す図、(b)は、試験片の吸湿変形後の干渉縞の測定例を示す図である。
【図4】 この発明の実施の形態2による、変形量測定装置の構造を示す斜視図である。
【符号の説明】
1 試験片、2 リファレンス、3 平面ミラー、4 平面ハーフミラー、5スプリング、8 外枠、9 レーザー干渉計、12 試験片格納装置、13 ガイドレール、14 恒温恒湿槽、100,200 変形量測定装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deformation amount measuring apparatus for measuring a deformation amount of a material.
[0002]
[Prior art]
CFRP (Carbon Fiber Reinforced Plastic) is a material generally used as a structural material for space equipment such as a space-borne space telescope and a structure for space. It is known that the resin forming CFRP absorbs moisture in the air and causes weight increase and deformation. Since a space structure is launched from a ground environment having a humidity of 50 to 60 (%) to a space environment having a humidity of 0%, the amount of deformation due to dehumidification in the space environment is very large. In particular, in a precision measuring instrument made of CFRP or the like, there is a possibility that the measurement accuracy in the space environment may be significantly reduced due to dehumidification deformation, and the reliability of the measurement value is also reduced. Therefore, in order to maintain high measurement accuracy in the space environment, it is necessary to apply CFRP with less moisture absorption and dehumidification deformation as a structural member of the precision measurement instrument. At the same time, a technique for precisely measuring the amount of moisture absorption and dehumidification deformation of the space structural member is also required. In the space environment, dehumidification deformation occurs as described above. However, since the dehumidification deformation amount and the hygroscopic deformation amount are considered to be equal, a hygroscopic deformation measurement device / method is used instead of the dehumidification deformation measurement device / method. Think about it.
[0003]
One of the conventional methods for measuring moisture absorption deformation is a method using an operating transformer. As an example of this, there is a conventional hygroscopic expansion coefficient measuring device disclosed in Patent Document 1.
In the measuring apparatus disclosed in Patent Document 1, a test piece dehumidified in advance is set in an operating transformer installed in a chamber maintained in a constant temperature / humidity environment. The hygroscopic expansion coefficient is measured by reading the change in length of the test piece due to moisture absorption with an operating transformer. As the test piece, for example, a graphite / epoxy resin composite material used as a material for an optical component mounted on an artificial satellite is applied.
[0004]
As another method, a method of measuring the amount of moisture absorption deformation of a composite material or the like using a laser displacement meter is known. In this method, the time until the laser beam emitted from both sides of the sample is reflected by the zero-expansion mirror attached to the end of the sample and returned to the original position is placed on both sides of the sample. Measure with a laser displacement meter. The moisture absorption deformation amount of the sample is obtained from the displacement amount of time until the laser beam returns.
[0005]
[Patent Document 1]
US Pat. No. 5,249,456 [0006]
[Problems to be solved by the invention]
However, in the measurement method using the conventional operating transformer as disclosed in Patent Document 1, the measurement result is affected by the noise of the operating transformer, and absorbs moisture only with an accuracy of about 3 to 10 ppm (ppm is in parts per million). There is a problem that the amount of deformation cannot be measured. A possible cause of this noise is slight vibration caused by contraction of the test piece during measurement because the test piece is fixed in a suspended state on the operating transformer. However, it is necessary to measure the amount of moisture absorption deformation with higher accuracy in order to satisfy higher accuracy requirements for precision instruments that have been increasing in recent years.
[0007]
Moreover, in the method of measuring using the laser displacement meter described above, if the measurement is performed continuously for a long period (one day or more), the behavior of the test piece is deformed even if the test piece is not deformed. That is, it is known that there is a phenomenon that the measured value changes with time. One possible cause of this measured value shift is laser output stability. In general, it is known that the laser changes in amplitude of about ± 1% in about 5 minutes and about ± 3% in about 10 hours, centering on the rated output, and the amplitude increases as the measurement time becomes longer. Become. For this reason, there is a problem that stable and reliable data cannot be obtained in moisture absorption deformation measurement that requires measurement for a long time of one week or more.
[0008]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a deformation amount measuring apparatus that can stably measure a deformation amount of a material with higher accuracy and without change over time. .
[0009]
[Means for Solving the Problems]
The deformation measuring device according to the present invention includes a thermostatic chamber, a laser interferometer installed in the thermostatic chamber, and a planar semi-transparent mirror disposed in the thermostatic chamber facing the laser interferometer And a plane mirror placed on the opposite side of the laser interferometer across the plane semi-transparent mirror and movably installed by an elastic body so that the mirror surface faces the plane semi-transparent mirror, and on the opposite side of the plane semi-transparent mirror across the plane mirror , is disposed on an extension of a line connecting the laser interferometer and the plane half Torukyo, and a support for established the measurement and reference samples are formed into a rod, the measurement and reference samples, each end portion Is installed so as to be in contact with the surface opposite to the mirror surface of the flat mirror, and the other end is installed so as to be in contact with the support fixed in the thermo-hygrostat .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various embodiments of the present invention will be described.
Embodiment 1 FIG.
FIG. 1A is a bird's-eye view showing the structure of the test piece storage device 12 included in the deformation amount measuring apparatus 100 according to Embodiment 1 of the present invention, and FIG. It is sectional drawing which looked at the AA cross section in Fig.1 (a).
The deformation measuring device 100 includes a constant temperature and humidity chamber 14, and a laser interferometer 9 and a test piece storage device 12 are provided inside the constant temperature and humidity chamber 14. The test piece storage device 12 is a rectangular parallelepiped device surrounded by an outer frame 8, and a laser interferometer 9 is installed on an extension of the rectangular parallelepiped in the axial direction.
[0011]
The test piece storage device 12 includes a test piece 1 (measurement sample), a reference 2 (reference sample), a flat mirror 3, and a flat half mirror 4. The test piece 1 is an object for measuring the amount of deformation, and is formed in a rod shape with a constant cross section made of, for example, a material such as CFRP. The reference 2 is formed of a material that hardly causes moisture absorption deformation as compared with the test piece 1, such as zero expansion glass or quartz. Similarly to the test piece 1, the reference 2 is also formed in a rod shape with a constant cross section.
The flat half mirror 4 is installed so as to be fitted into a surface of the outer frame 8 facing the laser interferometer 9, and transmits and reflects incident light 6 from the laser interferometer 9. The plane mirror 3 is connected to the inside of the outer frame 8 on which the plane half mirror 4 is installed via a spring 5. The test piece 1 and the reference 2 are installed such that one end is in contact with the back surface of the flat mirror 3. The spring 5 connecting the flat mirror 3 and the flat half mirror 4 is compressed by press-fitting the test piece 1 and the reference 2, so that even if the test piece 1 is contracted, the test piece 1 and the flat mirror 3 are compressed. Can be prevented from leaving.
[0012]
Next, the measurement principle of the deformation amount measuring apparatus 100 according to the first embodiment will be described.
In the first embodiment, the moisture absorption of the test piece 1 is determined from the amount of change in interference fringes caused by the interference between the laser light oscillated from the laser interferometer 9 and reflected by the plane mirror 3 and the laser light reflected by the plane half mirror 4. Measure the amount of deformation due to.
[0013]
FIG. 2 is a diagram for explaining the measurement principle of the deformation amount measuring apparatus 100. 2A is a view of the test piece storage device 12 of FIG. 1A as viewed from above, and FIGS. 2B and 2C are enlarged views of a portion B shown in FIG. 2A. It is. 2B shows a state before the test piece 1 expands due to moisture absorption, and FIG. 2C shows a state after the test piece 1 expands due to moisture absorption. A micrometer (not shown) used for fine adjustment of the initial position of the test piece 1 is provided at one end of the test piece 1 and the reference 2 opposite to the surface in contact with the flat mirror 3. Even in the state before the moisture absorption deformation, a difference is provided between the lengths of the reference 2 and the test piece 1. The flat mirror 3 changes the tilt angle with respect to the fixed flat half mirror 4 according to the length of the test piece 1 and the reference 2.
[0014]
Incident light 6 oscillated from the laser interferometer 9 is divided into transmitted light and reflected light 11 by a flat half mirror 4 attached to a storage device 12 such as a test piece. The transmitted light is reflected by the plane mirror 3 (reflected light 10). The reflected light 10 and the reflected light 11 from the flat half mirror 4 enter the laser interferometer 9, and form interference fringes as shown in FIG. Here, FIG. 3A shows an example of measurement of interference fringes before the test piece 1 is deformed by moisture absorption, and FIG. 3B shows measurement of interference fringes after the moisture absorption deformation of the test piece 1. An example is shown.
[0015]
As shown in FIG. 2, since the test piece 1 is in contact with the back surface of the flat mirror 3, when the length of the test piece 1 changes due to moisture absorption, the flat mirror 3 is pushed and the spring 5 contracts, thereby The angle between the mirror 3 and the flat half mirror 4 changes. As a result, the path difference between the reflected light 10 at the flat mirror 3 and the reflected light 11 at the flat half mirror 4 changes compared to before the test piece is deformed. For this reason, a change occurs in the interference fringes observed by the laser interferometer 9 according to the change in angle. The amount of displacement of the length of the test piece 1 due to moisture-absorbing deformation can be calculated using the relationship between the interference fringe variation obtained in advance and the amount of deformation of the test piece.
[0016]
Next, the effect of the deformation amount measuring apparatus 100 according to Embodiment 1 will be described using a specific example.
For example, when measuring hygroscopic deformation of a CFRP truss pipe (length: 500 mm, outer diameter: 30 mm, thickness: about 2.0 mm) used in a space-borne space telescope that requires precise dimensional stability Will be described. Actually, since it is launched from a ground environment with a humidity of 50-60% to a space environment with a humidity of 0%, the amount of deformation is measured during the dehumidification process. After removing and making the humidity 0%, the member is held in an environment of constant humidity and temperature, and the amount of deformation in the moisture absorption process is measured.
[0017]
A specific procedure for measurement will be described. First, in order to set the moisture content of the CFRP test piece 1 to 0%, the test piece 1 is placed in a vacuum oven, exposed to a vacuum environment of 100 ° C. for about 48 hours, and then baked. For about 24 hours. Since the temperature / humidity environment in the constant temperature and humidity chamber for the measurement test is 23 ° C / 55%, if it is immediately transferred from the 100 ° C vacuum environment to the constant temperature and humidity chamber, not only moisture absorption deformation but also thermal deformation during measurement Also occurs. In order to avoid this, the test piece is exposed to a temperature environment (23 ° C.) equal to the temperature environment in the bath before being transferred into the temperature and humidity chamber for testing, and thermal deformation occurs after being transferred into the temperature and humidity chamber. It is necessary not to. It is generally known that the time required for dehumidification is mainly related to the plate thickness of the test piece 1, and the longer the plate thickness of the test piece 1, the longer it takes. For this reason, when the test piece 1 is thick, it is necessary to put it in a vacuum oven for a longer time.
[0018]
Next, constant temperature / humidity maintained at a constant temperature / humidity environment [temperature 23 ° C., humidity 55% RH (clean room environment); temperature fluctuation range: ± 0.3 ° C., humidity fluctuation range: ± 2.5% RH] The test piece 1 is set in the test piece storage device 12 as shown in FIG. 1A installed in the tank 14, and the laser interferometer 9 is adjusted so that interference fringes are generated. Here, F601 made by FUJINON was used for the laser interferometer 9. In this laser interferometer 9, a He—Ne laser (wavelength: 630 nm) is used as a laser light source, and an interval per interference fringe is about 300 nm (= 0.3 μm) corresponding to a half wavelength. Moreover, since the length of the test piece 1 here is 500 mm, the measurement accuracy is about 0.3 × 10 −6 / 500 × 10 −3 = 0.6 ppm.
[0019]
Here, the temperature fluctuation range of the constant temperature and humidity chamber 14 is ± 0.3 ° C., and a test piece storage device such as a material having a linear expansion coefficient of 0.6 × 10 −6 /0.3=2 ppm / K or more. When the outer frame 8 of 12 is produced, the outer frame 8 of the storage device 12 such as the test piece is deformed by a minute temperature fluctuation of the constant temperature and humidity chamber 14 even if the temperature in the constant temperature and humidity chamber 14 is kept constant. This amount of deformation may become noise and affect the measurement result. Therefore, it is necessary to make the outer frame 8 of the test piece storage device 12 using a material which does not cause moisture absorption deformation and has a low linear expansion coefficient. For example, zero expansion glass (linear expansion coefficient: 0.1 ppm / K or less, hygroscopic expansion coefficient: 0), quartz (linear expansion coefficient 0.2 ppm / K :, hygroscopic expansion coefficient: 0), or the like can be used. In addition, it tested here using the apparatus produced with quartz as a material of the outer frame 8 of the test piece storage apparatus 12. FIG.
[0020]
In actual measurement, the interference fringes are projected on the monitor attached to the laser interferometer 9, so this image is taken into a computer using video capture at regular intervals (every 30 minutes, every 2 hours, etc.), and the captured image From this, the amount of change in the number of stripes over time is examined, and the amount of moisture absorption deformation of the test piece is calculated backward based on the amount of change.
[0021]
A description will be given using an example of measurement of interference fringes shown in FIGS. As shown in the figure, a light and dark interference fringe pattern inclined from the upper left to the lower right is seen, and the number and interval of the interference fringes change before and after the deformation of the test piece.
The length of the test piece 1 measured this time is considered to be required for about three months until the moisture absorption process is completely completed. Therefore, it is necessary to continue the measurement at regular intervals.
[0022]
As described above, a high measurement accuracy of about 1 ppm can be obtained by using the deformation amount measuring apparatus 100 of the first embodiment. Compared to the accuracy of about 3 to 10 ppm obtained with a device using a conventional operating transformer, it is possible to measure the moisture absorption deformation amount of the test piece with high accuracy.
[0023]
In addition, unlike the measurement with a conventional laser displacement meter, the deformation is not measured based on the reflected light from the measurement object, but the deformation is measured using the path difference between the two reflected lights. It has been confirmed that there is no problem of the shift of the measurement value over time without being affected by the stability of the laser output.
[0024]
As described above, according to the first embodiment, the displacement due to the moisture absorption deformation of the test piece 1 is reflected in the positional relationship between the plane mirror 3 and the plane half mirror 4, and the reflected light of the plane mirror 3 and the plane half mirror 4 are By measuring the amount of interference fringe change caused by reflected light interference with the laser interferometer 9, the displacement of the test piece 1 is measured, so it is accurate and stable without depending on the stability of the laser light source. It is effective that the measured result obtained can be obtained.
[0025]
In the first embodiment, the amount of deformation of the material due to moisture absorption and dehumidification is measured. However, the deformation amount due to a cause other than moisture absorption (dehumidification) can also be used.
[0026]
In the first embodiment, the plane mirror 3 is connected to the plane half mirror 4 via the spring 5. For example, the plane mirror 3 and the outer side of both sides parallel to the axial direction of the rectangular parallelepiped of the specimen storage device 12 are connected. By connecting the frame 8 with the spring 5, the plane mirror 3 may be arranged in the same manner as in the first embodiment. Also in this case, the deformation of the test piece 1 can be reflected in the positional relationship between the flat mirror 3 and the flat half mirror 4 by the expansion and contraction of the spring 5.
[0027]
Embodiment 2. FIG.
In the second embodiment, it is possible to continuously measure the moisture absorption deformation amount of a plurality of test pieces at a time.
FIG. 4 is a perspective view showing a structure of a deformation amount measuring apparatus 200 according to Embodiment 2 of the present invention. The same reference numerals as those in FIGS. 1A and 1B represent the same components. As shown in FIG. 4, the deformation amount measuring apparatus 200 includes a guide rail 13 with a precision positioning mechanism that can be moved by placing the laser interferometer 9 in the constant temperature and humidity chamber 14. By moving the laser interferometer 9 on the guide rail 13 and moving it, the amount of moisture absorption deformation of the test piece 1 installed in the plurality of test piece storage devices 12 installed in the constant temperature and humidity chamber 14 is continuously obtained. It becomes possible to measure. Further, the inside of the test strip storage device 12 has the same configuration as that of the first embodiment.
[0028]
Actually, using a measuring apparatus as shown in FIG. 4, the amount of moisture absorption deformation of five test pieces of a CFRP truss pipe (length: 500 mm, outer diameter: 30 mm, thickness: about 2.0 mm) is continuously measured. As a result of the measurement, the expected data was obtained in a short period of time, and it was possible to improve the efficiency of measuring the amount of moisture absorption deformation.
[0029]
As described above, according to the second embodiment, an efficient measuring device that can measure a plurality of test pieces at once can be obtained. Since the above-described trust pipe is very thick, a period of 3 months or more is required until the measurement is completed. When a large number of such pipes are measured, if only one specimen storage device is used, a period of several years is required to complete all measurements.
[0030]
In the second embodiment, the test piece storage device 12 is fixed in the thermostatic chamber 14 and the laser interferometer 9 is moved. However, the laser interferometer 9 is fixed and the test piece storage device 12 is fixed. It is also possible to adopt a configuration in which it is moved. However, if the specimen storage device 12 is moved, the internal specimen may move and measurement may fail. In addition, since it is easier to move the laser interferometer 9 than to move a plurality of specimen storage devices 12 in a constant temperature and humidity chamber 14 in a limited space, the configuration of the second embodiment is more practical. Is.
[0031]
Similarly to the first embodiment, the second embodiment is not limited to the measurement of the deformation amount of the material due to moisture absorption and dehumidification, but can be used for a measurement device for the deformation amount due to a cause other than moisture absorption (dehumidification). Is possible.
[0032]
【The invention's effect】
As described above, according to the present invention, a constant temperature and humidity chamber, a laser interferometer installed in the constant temperature and humidity chamber, and a planar half disposed in the constant temperature and humidity chamber facing the laser interferometer. The plane mirror is placed on the opposite side of the laser interferometer across the plane semi-transparent mirror, and the plane mirror is movably installed by an elastic body so that the mirror surface faces the plane semi-transparent mirror, and on the opposite side of the plane semi-transparent mirror across the plane mirror of, it is disposed on an extension of a line connecting the laser interferometer and the plane half Torukyo, and a support for established the measurement and reference samples are formed into a rod, the measurement and reference samples, each end Since each part is installed so as to be in contact with the surface opposite to the mirror surface of the plane mirror, and each other end is installed so as to be in contact with a support fixed in a constant temperature and humidity chamber, The elastic body expands and contracts with deformation, and there is no flat semi-transparent mirror or flat mirror. By the angle is changed, the path difference of the reflected light of the reflected light and the plane mirror plane half Torukyo changes. As a result, the interference fringes due to both reflected lights observed by the laser interferometer change. By measuring the amount of deformation of the measurement sample based on the amount of change, there is an effect that a deformation amount measuring apparatus that can measure the amount of deformation of the sample with higher accuracy and stably without change over time can be obtained.
[Brief description of the drawings]
FIG. 1 (a) is a bird's-eye view showing the structure of a test piece storage device included in a deformation amount measuring apparatus according to Embodiment 1 of the present invention, and FIG. It is sectional drawing seen in the AA cross section in.
FIG. 2 (a) is a view of the specimen storage device from above, and FIG. 2 (b) is an enlarged view of part B shown in FIG. 2 (a) before the specimen is deformed by moisture absorption. FIG. 8C is an enlarged view of a portion B shown in FIG. 5A, and shows a state after deformation due to moisture absorption of the test piece.
3A is a diagram showing an example of measurement of interference fringes in a state before the test piece is deformed due to moisture absorption, and FIG. 3B is a diagram showing an example of measurement of interference fringes after moisture absorption deformation of the test piece. It is.
FIG. 4 is a perspective view showing the structure of a deformation amount measuring apparatus according to Embodiment 2 of the present invention.
[Explanation of symbols]
1 test piece, 2 reference, 3 flat mirror, 4 flat half mirror, 5 spring, 8 outer frame, 9 laser interferometer, 12 test piece storage device, 13 guide rail, 14 constant temperature and humidity chamber, 100, 200 deformation measurement apparatus.

Claims (2)

恒温恒湿槽と、
上記恒温恒湿槽内に設置されたレーザー干渉計と、
上記恒温恒湿槽内に、上記レーザー干渉計に対向して配置された平面半透鏡と、
上記平面半透鏡を挟んで上記レーザー干渉計と反対側に配置され、上記平面半透鏡に鏡面が向かい合うように、弾性体によって可動に設置された平面鏡と、
上記平面鏡を挟んで上記平面半透鏡と反対側の、上記レーザー干渉計と上記平面半透鏡を結ぶ線の延長上に配置され、棒状に形成された測定試料及び基準試料を設置するための支持体とを備え
上記測定試料及び上記基準試料は、各一端部が上記平面鏡の上記鏡面と反対側の面に接するように設置され、各他端部が上記恒温恒湿槽内に固定された上記支持体に接するように設置されることを特徴とする変形量測定装置。
A constant temperature and humidity chamber;
A laser interferometer installed in the temperature and humidity chamber,
In the constant temperature and humidity chamber, a plane semi-transparent mirror disposed facing the laser interferometer,
A plane mirror placed on the opposite side of the laser interferometer across the plane semi-transparent mirror, and movably installed by an elastic body so that the mirror surface faces the plane semi-transparent mirror;
Of the planar half Torukyo the opposite side of the plane mirror is disposed on an extension of a line connecting the laser interferometer and the flat semi Torukyo, support for established the measurement and reference samples were formed into a rod With body ,
The measurement sample and the reference sample are installed so that each one end is in contact with the surface opposite to the mirror surface of the plane mirror, and each other end is in contact with the support fixed in the constant temperature and humidity chamber. The deformation amount measuring device is characterized in that it is installed as described above .
恒温恒湿槽内にガイドレールを備え、上記ガイドレールに沿ってレーザー干渉計又は平面半透鏡と平面鏡と支持体が移動可能に配置されることを特徴とする請求項1記載の変形量測定装置。  2. The deformation amount measuring apparatus according to claim 1, wherein a guide rail is provided in the constant temperature and humidity chamber, and a laser interferometer or a plane semi-transparent mirror, a plane mirror, and a support are movably disposed along the guide rail. .
JP2003183194A 2003-06-26 2003-06-26 Deformation measuring device Expired - Fee Related JP4137722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003183194A JP4137722B2 (en) 2003-06-26 2003-06-26 Deformation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003183194A JP4137722B2 (en) 2003-06-26 2003-06-26 Deformation measuring device

Publications (2)

Publication Number Publication Date
JP2005017134A JP2005017134A (en) 2005-01-20
JP4137722B2 true JP4137722B2 (en) 2008-08-20

Family

ID=34183366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183194A Expired - Fee Related JP4137722B2 (en) 2003-06-26 2003-06-26 Deformation measuring device

Country Status (1)

Country Link
JP (1) JP4137722B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506808A (en) * 2011-10-24 2012-06-20 北京航天计量测试技术研究所 Method for dynamically measuring deformation amount of mechanical structure
CN105910547A (en) * 2016-04-26 2016-08-31 南京航空航天大学 Strain sensor able to withstand large deformation in high temperature environment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759748B2 (en) * 2005-06-21 2011-08-31 国立大学法人北海道大学 Sample expansion / contraction amount measurement system and sample expansion / contraction amount measurement method
JP6550891B2 (en) * 2015-04-23 2019-07-31 日本電気株式会社 Dehumidification deformation measuring device
CN106248113B (en) * 2016-08-26 2018-07-27 中国电子科技集团公司第四十九研究所 A kind of optical fiber sensing probe
CN106996797B (en) * 2017-05-02 2018-07-27 中国电子科技集团公司第四十九研究所 A kind of optical fiber sensing probe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506808A (en) * 2011-10-24 2012-06-20 北京航天计量测试技术研究所 Method for dynamically measuring deformation amount of mechanical structure
CN102506808B (en) * 2011-10-24 2013-11-06 北京航天计量测试技术研究所 Method for dynamically measuring deformation amount of mechanical structure
CN105910547A (en) * 2016-04-26 2016-08-31 南京航空航天大学 Strain sensor able to withstand large deformation in high temperature environment

Also Published As

Publication number Publication date
JP2005017134A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
Kunzmann et al. Scales vs. laser interferometers performance and comparison of two measuring systems
US6894788B2 (en) Interferometric system for automated radius of curvature measurements
JP2007528125A (en) Equipment consisting of at least one optical component
JP2008046108A (en) Method for enhancing measuring accuracy when determining coordinates of structure on substrate
JP4137722B2 (en) Deformation measuring device
KR20010014187A (en) Two piece mirror arrangement for interferometrically controlled stage
Bowles et al. Moiré interferometry for thermal expansion of composites: High-sensitivity moiré interferometry with a real reference grating is extended to the reflection domain and applied to the measurement of coefficients of thermal expansion of graphite-epoxy composites
Siewert et al. Advanced metrology: an essential support for the surface finishing of high performance x-ray optics
US6611379B2 (en) Beam splitter and method for generating equal optical path length beams
Truax Absolute interferometric testing of spherical surfaces
JPH11183413A (en) Expansion measuring apparatus
Gubarev et al. Calibration of a vertical-scan long trace profiler at MSFC
CN205642307U (en) Long -range shape of face measuring apparatu
Courteville et al. Contact-free on-axis metrology for the fabrication and testing of complex optical systems
Harper et al. Measuring thermal expansion variations in ULE glass with interferometry
Vikram et al. A laser speckle method for measuring ultra-low thermal expansion
Dil et al. High-precision measurement of aspheric surfaces
JP7433954B2 (en) laser interference device
JP2004125638A (en) Displacement sensor and method for fixing interferometer
Lassila et al. Absolute calibration of quartz bars of Väisälä interferometer by white light gauge block interferometer
US20230089973A1 (en) Deflectometry device for differential metrology of material removal
Badami et al. In-situ metrology for adaptive x-ray optics with an array of interferometric absolute distance measuring sensors
JPH11237305A (en) Detecting apparatus for deviation of optical axis
Ben-Dor et al. Interferometric techniques and data evaluation methods for the UTIAS 10cmx18cm hypervelocity shock tube
Okahi et al. Precise and versatile systems for dilatometric measurement of solid materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070920

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees