JP4137684B2 - Fine movement mechanism and optical switch - Google Patents

Fine movement mechanism and optical switch Download PDF

Info

Publication number
JP4137684B2
JP4137684B2 JP2003105128A JP2003105128A JP4137684B2 JP 4137684 B2 JP4137684 B2 JP 4137684B2 JP 2003105128 A JP2003105128 A JP 2003105128A JP 2003105128 A JP2003105128 A JP 2003105128A JP 4137684 B2 JP4137684 B2 JP 4137684B2
Authority
JP
Japan
Prior art keywords
movable part
movable
movement mechanism
fine movement
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003105128A
Other languages
Japanese (ja)
Other versions
JP2004309892A (en
JP2004309892A5 (en
Inventor
洋介 原
明 江川
靖幸 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2003105128A priority Critical patent/JP4137684B2/en
Publication of JP2004309892A publication Critical patent/JP2004309892A/en
Publication of JP2004309892A5 publication Critical patent/JP2004309892A5/ja
Application granted granted Critical
Publication of JP4137684B2 publication Critical patent/JP4137684B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、微細技術の分野において、対象物を駆動する微動機構の分野に関するものである。
【0002】
【従来の技術】
近年、半導体プロセスを用いた、小型且つ低消費電力な微動機構の開発が行われており、そのような微動機構を組み込んだ機能素子として光スイッチがある(例えば、特許文献1参照。)。
【0003】
図5(a)は従来の微動機構を組み込んだ光スイッチの上面図、図5(b)は図5(a)の破線部分の断面図で可動電極板41と、外枠45、それらをつなぐ4本の弾性体43、そして固定電極板44から構成されている。また光スイッチとして動作させるために、T字に設置された入力用光ファイバ46、出力用光ファイバ47、及び出力用光ファイバ48、そして光路を切り替えるためのミラー42がある。ミラー42は可動電極板41上に形成されており、図5(b)に実線と破線で示すように、可動電極板41を上下に駆動することで、入力用ファイバ46から出射した光信号49の光路を切り替える事が可能となる。例えば、ミラー42が上側にある場合には、光信号49はミラー42によって反射され出力用光ファイバ47に、また、下側にある場合には光路50のように出力用光ファイバ48に結合される。本光スイッチでは、可動電極板41の下方向への移動に、可動電極板41と固定電極板44への電圧の印加によって発生する静電引力を、上方向への移動には、伸張された弾性体43の復元力を用いている。
【0004】
【特許文献1】
特開2000−258702号公報 (第5頁、図1)
【0005】
【発明が解決しようとする課題】
従来例は、図5(b)の実線で示した状態の時、弾性体43からの支持のみで可動電極板41を中空に維持しているため、外部からの衝撃及び振動によって、可動電極板41に傾き及び位置ずれ等、揺動が容易に生じる。従来例のように可動電極板41上にミラー42を形成し、光スイッチとして用いる時、ミラー42に揺動が生じると、ミラー42で反射した光信号が意図した光路から外れ、光スイッチの出力信号の損失や消失などの、誤動作の要因となる。弾性体43に高い剛性を与えると、可動電極板41の揺動を低減できるが、弾性体43による復元力が大きくなるため、可動電極板41の駆動には、広い電極面積もしくは高い電圧が必要となる。よって、小型、低消費電力という長所を失うことになる。
【0006】
本発明は、小型、低消費電力という従来の利点はそのままに、衝撃及び振動がある状況下でも揺動を低減し、安定動作する微動機構を提供する。
【0007】
【課題を解決するための手段】
以上の課題を解決するため、本発明による微動機構は、固定基板と、固定基板と一体となった弾性体、及び弾性体を介して固定基板に支持された可動部から構成され、尚且つ構成部品が微細加工技術を用いて一体形成された微動機構において、以上の可動部に予圧が加わる保持機構を有することを特徴とする。さらに、以上の予圧は、可動部を変位させること、もしくは可動部に圧力を与えることによって、可動部に対して加えられることを特徴とする。さらに、以上の保持機構は、可動部保持具、可動部保持具位置決め構造、及び固定構造から構成され、可動部に予圧を与える可動部保持具を、可動部に形成された可動部保持具位置決め構造に位置を合わせ、固定構造に設置及び固定することによって、可動部の維持を図る事を特徴とする。さらに、以上の可動部保持具は、光ファイバ等の棒状の弾性体、もしくは球体を有する押さえ基板であることを特徴とする。また、以上の可動部保持具位置決め構造及び固定構造は、凹構造、もしくは貫通孔のいずれかである。さらに、以上の凹構造の断面はV字、U字、もしくは矩形のいずれかであり、以上の凹構造、もしくは貫通孔の開口部は、多角形、もしくは円形であることを特徴とする。
【0008】
以上の保持機構が可動部に予圧を与えることによって、可動部は外部から衝撃や振動を受けても駆動方向に対して容易に揺動しなくなる。また、保持機構の備える位置合わせ機能によって、駆動方向以外にも容易に揺動しない構造となる。
【0009】
本発明では、互いに離間した光ファイバ対の間に、前記光ファイバを通過する光の行路を変更するミラーを有し、前記ミラーを支持する支持部と、前記前記支持部とともに前記ミラーを挟持し前記ミラーに圧力を付加する加圧部を有する光スイッチを構成した。
【0010】
【発明の実施の形態】
(実施の形態1)
本発明を使用した微動機構の第1の実施の形態を以下に記す。
【0011】
図1は本発明の微動機構を使用した2×2光スイッチの構造を示している。図1(a)はその斜視図であり、図1(b)は図1(a)の破線部分の断面図である。図1(a)に示すように、本光スイッチは光信号の入出力のための光導波路として、固定基板3上のV溝25に2本ずつ対向して、光ファイバ26、光ファイバ27、及び光ファイバ28、光ファイバ29が固定されている。光信号の出力方向を切り替えるための光学素子として、ミラー20が対向した光ファイバの間に配置されている。光信号の出力方向の切り替えは、図1(b)に示すように、微動機構を用いてミラー20を上下に駆動することにより行われる。本光スイッチの光信号の光路を図2に示す。光信号の光路は、図2(a)に示すように、光ファイバ26及び光ファイバ29から出射し、光路上のミラー20によって反射され、それぞれ光ファイバ27及び光ファイバ28に結合する場合と、図2(b)に示すように、ミラー20が光路外に移動し、光ファイバ26及び光ファイバ29から光ファイバ28及び光ファイバ27へ直進する場合がある。ここまでの光スイッチとしての構成は、切り替える光路が異なるものの、可動部分の動作に関しては、ほぼ従来例と同じ構成といえる。
【0012】
本発明の微動機構は、可動部1と固定基板3、そして固定基板3と可動部1をつなぐ弾性体2、及び保持機構によって構成されている。保持機構は可動部保持具21と、保持具位置決め構造として可動部1に形成されたV溝22、そして固定構造として固定基板3に形成されたV溝23及び押さえ基板24から構成されている。図1(a)に示すように、可動部保持具21はV溝22と、V溝23の溝内に配置され、押さえ基板24によってV溝23に固定されている。本発明の微動機構の駆動手段としては、可動部1に電極を形成し、対向面に固定電極を設置すれば、静電引力によって駆動可能となり、可動部1に磁性体を形成し、対向面に電磁石等を設置すれば、磁力によって駆動できる。
【0013】
可動部保持具21の効果を、図3を用いて説明する。図3(a)は可動部保持具21を設置していない状態の微動機構を示した図であり、図3(b)は可動部保持具21を設置した状態の微動機構を示した図である。図3(a)に示すように、可動部1の高さは固定基板3の上面よりΔZ高くなるように形成されている。よって、図3(b)に示すように、可動部保持具21を可動部1と固定基板3に設置した場合、可動部1はΔZ下方に変位する。その結果、弾性体2よりΔZに応じた復元力が上方に発生する。このように、可動部保持具21によって可動部1を保持した状態では、常に弾性体2による復元力が可動部1に作用する状態、つまり、予圧の作用する状態とすることができる。この状態では上下方向に対して、外部からの振動などによって可動部1に力が加わった場合でも、その力が予圧より弱ければ、状態を維持することが可能となる。また、予圧の作用する上下方向以外に力が加わっても、可動部保持具21と可動部1の界面に発生する摩擦力によって位置ずれを低減する事ができる。
【0014】
しかし、摩擦力のみでは、状態の維持に十分な力を発生できない。また、可動部1が図1(b)の破線状態から実線の状態に移行する際、図1(a)のXY方向にずれを生じたまま可動部1が保持される可能性もある。そこで、本発明の保持機構には、可動部保持具位置決め構造V溝22が、可動部1に設けられている。このV溝22によって、可動部1が上方に移動した際の位置ずれを低減する。また、保持した状態では、可動部1に外部からの力が加わった場合、可動部保持具21がV溝22内に位置し、V溝22の壁面と接触しているため、図1(a)のY方向について、可動部1は可動部保持具21の有するY方向の弾性力によって保持される。これは可動部位置決め構造が、本実施の形態のように溝の断面形状がV字ではなく、U字、又は矩形であっても同様である。もしくは、溝ではなく貫通孔であっても同様である。また、可動部保持具21としては、例えば、金属材料、ガラス材料、又は高分子材料を細く加工した棒や、光ファイバなどを用いる事が可能である。
【0015】
また、本実施の形態では、可動部保持具21から可動部1に予圧を加えるために、可動部1と固定基板3の上面にΔZの段差を形成した。しかし、可動部1と固定基板3に段差を設けなくとも、可動部保持具21に可動部1と接する部分が下側に突出するような加工を施す、または可動部1と固定基板3上の可動部保持具21と接する部分にのみ段差を設けるような加工を施すなどの方法であっても、同様の効果を得る事ができる。その他、可動部1に予圧を加える方法として、可動部1に静電引力または磁力を働かせ、駆動方向へ吸引することなども利用可能である。
【0016】
本発明の微動機構は、可動部1の誤動作を防止するために、従来例のように弾性体2の強化を必要とせず、それに伴う駆動電力の上昇等がないため、小型で低消費電力且つ可動部分の揺動が起こり難い微動機構である。また、従来の微動機構では、図5(b)の破線の状態から実線の状態に移動した時、可動電極板41は実線の状態で静止せず、共振周波数に応じた振動、所謂チャタリングを発生する。チャタリングは、実線の状態を振動の中心とする減衰振動であり、振動が消失するまでには時間を要する。よって、破線の状態から実線の状態となるまでの移行時間には、駆動時間だけでなく、チャタリングの減衰時間が含まれていた。しかし、本発明の微動機構では、可動部保持具21が図1(b)の実線の状態より上方への振動を低減するため、チャタリングの減衰時間、結果としては移行時間を短縮できる。
【0017】
(実施の形態2)
次に、本発明を使用した微動機構の第2の実施の形態を以下に記す。
図4は本発明の微動機構を使用した2×2光スイッチの、第2の実施の形態の構造を示す図である。図4(a)は斜視図、図4(b)は、押さえ基板33の構成を示した図であり、図4(c)は、保持機構の詳細を示した図である。第2の実施の形態において、保持機構に関する構成以外は、第1の実施の形態と共通の構造となっている。
【0018】
本発明の微動機構の保持機構は、可動部保持具となる押さえ基板33と、保持具位置決め構造及び固定構造となる四角錘の凹構造31から構成される。押さえ基板33は図4(b)に示すように、凹構造32が形成されている。本実施の形態では、凹構造31及び凹構造32の形状を四角錘としているが、例えばその他の多角錘や円錘、または多角柱や円柱、半円球であっても利用可能である。もしくは、貫通孔であってもよい。凹構造32には、金属製やガラス製、又は高分子製の微小球体30が固定されている。
【0019】
そして、押さえ基板33を、図4(c)に示すように微小球体30と凹構造31の位置を合わせ、可動部1と固定基板3に設置すると、可動部1と固定基板3の段差の作用によって、第1の実施の形態と同様に、可動部1に予圧を与えることができる。予圧による効果は第1の実施の形態と同様であり、外部からの衝撃及び振動によって容易に揺動することはない。
【0020】
また、第1の実施の形態では、Y方向に関して可動部保持具21と可動部保持具位置決め溝であるV溝22が機能していたことに対し、本実施の形態では、微小球30はXY方向に対応する凹構造31の4つの壁面と干渉するため、それぞれの方向について可動部1を保持、及び高精度に位置合わせすることが可能となる。
【0021】
【発明の効果】
本発明によって、小型、低消費電力であるとともに、傾きや位置ずれ等の揺動に対して強固であり、且つ、高精度に位置決め可能な微動機構を提供できる。
【図面の簡単な説明】
【図1】本発明の1実施例の光スイッチを示す図である。
【図2】本発明の1実施例の光スイッチの光路を示す図である。
【図3】本発明の1実施例の光スイッチ保持機構を示す図である。
【図4】本発明の2実施例の光スイッチを示す図である。
【図5】従来の光スイッチを示す図である。
【符号の説明】
1 可動部
2 弾性体
3 固定基板
20 ミラー
21 棒型可動部保持具
22 固定基板側可動部保持具用V溝
23 可動部側可動部保持具用V溝
24 押さえ基板
25 光信号入出力用光ファイバ用V溝
26 光信号入出力用光ファイバ
27 光信号入出力用光ファイバ
28 光信号入出力用光ファイバ
29 光信号入出力用光ファイバ
30 微小球型可動部保持具
31 可動部・固定基板側四角錘状凹構造
32 押さえ基板側四角錐状凹構造
33 押さえ基板
41 可動電極板
42 ミラー
43 弾性体
44 固定電極板
45 外枠
46 入力用光ファイバ
47 出力用光ファイバ
48 出力用光ファイバ
49 光信号
50 光路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the field of a fine movement mechanism for driving an object in the field of fine technology.
[0002]
[Prior art]
In recent years, a small and low power consumption fine movement mechanism using a semiconductor process has been developed, and there is an optical switch as a functional element incorporating such a fine movement mechanism (for example, see Patent Document 1).
[0003]
5A is a top view of an optical switch incorporating a conventional fine movement mechanism, and FIG. 5B is a cross-sectional view of the broken line portion of FIG. 5A, which connects the movable electrode plate 41 and the outer frame 45 to each other. It is composed of four elastic bodies 43 and a fixed electrode plate 44. In order to operate as an optical switch, there are an input optical fiber 46, an output optical fiber 47 and an output optical fiber 48 installed in a T-shape, and a mirror 42 for switching the optical path. The mirror 42 is formed on the movable electrode plate 41. As shown by a solid line and a broken line in FIG. 5B, the mirror 42 is driven up and down to drive an optical signal 49 emitted from the input fiber 46. It is possible to switch the optical path. For example, when the mirror 42 is on the upper side, the optical signal 49 is reflected by the mirror 42 and coupled to the output optical fiber 47, and when it is on the lower side, the optical signal 49 is coupled to the output optical fiber 48 like the optical path 50. The In the present optical switch, the electrostatic attraction generated by applying a voltage to the movable electrode plate 41 and the fixed electrode plate 44 is extended for the downward movement of the movable electrode plate 41, and the upward movement is extended for the upward movement. The restoring force of the elastic body 43 is used.
[0004]
[Patent Document 1]
JP 2000-258702 A (5th page, FIG. 1)
[0005]
[Problems to be solved by the invention]
In the conventional example, since the movable electrode plate 41 is kept hollow only by the support from the elastic body 43 in the state shown by the solid line in FIG. 5B, the movable electrode plate is caused by external impact and vibration. 41 is easily oscillated, such as tilt and displacement. When the mirror 42 is formed on the movable electrode plate 41 as in the conventional example and used as an optical switch, if the mirror 42 is swung, the optical signal reflected by the mirror 42 is deviated from the intended optical path, and the output of the optical switch It causes malfunctions such as signal loss and loss. When the elastic body 43 is given high rigidity, the swinging of the movable electrode plate 41 can be reduced. However, since the restoring force by the elastic body 43 is increased, a large electrode area or a high voltage is required for driving the movable electrode plate 41. It becomes. Therefore, the advantages of small size and low power consumption are lost.
[0006]
The present invention provides a fine movement mechanism that reduces a swing and operates stably even in the presence of an impact and a vibration while maintaining the conventional advantages of small size and low power consumption.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, a fine movement mechanism according to the present invention includes a fixed substrate, an elastic body integrated with the fixed substrate, and a movable portion supported by the fixed substrate via the elastic body. The fine movement mechanism in which the parts are integrally formed using a fine processing technique is characterized by having a holding mechanism that applies a preload to the above-described movable part. Further, the above preload is applied to the movable part by displacing the movable part or applying pressure to the movable part. Further, the above holding mechanism is composed of a movable part holder, a movable part holder positioning structure, and a fixed structure, and the movable part holder that preloads the movable part is positioned on the movable part holder. It is characterized by maintaining the movable part by aligning the position with the structure and installing and fixing to the fixed structure. Furthermore, the movable part holder described above is a holding substrate having a rod-like elastic body such as an optical fiber or a sphere. Moreover, the above movable part holder positioning structure and fixing structure are either a concave structure or a through-hole. Furthermore, the cross section of the above-described concave structure is any one of a V shape, a U shape, and a rectangle, and the above concave structure or the opening of the through hole is a polygon or a circle.
[0008]
When the above holding mechanism applies a preload to the movable part, the movable part does not easily swing with respect to the driving direction even if it receives an impact or vibration from the outside. In addition, the positioning mechanism provided in the holding mechanism makes the structure not easily rocked except in the driving direction.
[0009]
In the present invention, a pair of optical fibers separated from each other has a mirror that changes a path of light passing through the optical fiber, and a support part that supports the mirror, and the mirror is sandwiched together with the support part. An optical switch having a pressurizing unit for applying pressure to the mirror was configured.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
A first embodiment of a fine movement mechanism using the present invention will be described below.
[0011]
FIG. 1 shows the structure of a 2 × 2 optical switch using the fine movement mechanism of the present invention. FIG. 1A is a perspective view thereof, and FIG. 1B is a cross-sectional view of a broken line portion of FIG. As shown in FIG. 1 (a), this optical switch is an optical waveguide for inputting / outputting optical signals, and is opposed to the V-groove 25 on the fixed substrate 3 two by two, so that an optical fiber 26, an optical fiber 27, The optical fiber 28 and the optical fiber 29 are fixed. As an optical element for switching the output direction of the optical signal, a mirror 20 is disposed between the facing optical fibers. As shown in FIG. 1B, the output direction of the optical signal is switched by driving the mirror 20 up and down using a fine movement mechanism. The optical path of the optical signal of this optical switch is shown in FIG. As shown in FIG. 2A, the optical path of the optical signal is emitted from the optical fiber 26 and the optical fiber 29, reflected by the mirror 20 on the optical path, and coupled to the optical fiber 27 and the optical fiber 28, respectively. As shown in FIG. 2B, the mirror 20 may move out of the optical path and go straight from the optical fiber 26 and the optical fiber 29 to the optical fiber 28 and the optical fiber 27. Although the configuration as the optical switch so far is different in the optical path to be switched, it can be said that the configuration of the movable part is almost the same as the conventional example.
[0012]
The fine movement mechanism of the present invention includes a movable portion 1 and a fixed substrate 3, an elastic body 2 that connects the fixed substrate 3 and the movable portion 1, and a holding mechanism. The holding mechanism includes a movable part holder 21, a V groove 22 formed in the movable part 1 as a holder positioning structure, and a V groove 23 and a pressing board 24 formed in the fixed substrate 3 as a fixed structure. As shown in FIG. 1A, the movable part holder 21 is disposed in the grooves of the V groove 22 and the V groove 23, and is fixed to the V groove 23 by a pressing substrate 24. As a driving means of the fine movement mechanism of the present invention, if an electrode is formed on the movable part 1 and a fixed electrode is provided on the opposing surface, it can be driven by electrostatic attraction, a magnetic material is formed on the movable part 1, and the opposing surface If an electromagnet or the like is installed in the, it can be driven by magnetic force.
[0013]
The effect of the movable part holder 21 will be described with reference to FIG. FIG. 3A is a view showing the fine movement mechanism in a state where the movable part holder 21 is not installed, and FIG. 3B is a view showing the fine movement mechanism in a state where the movable part holder 21 is installed. is there. As shown in FIG. 3A, the height of the movable portion 1 is formed to be higher by ΔZ than the upper surface of the fixed substrate 3. Therefore, as shown in FIG. 3B, when the movable part holder 21 is installed on the movable part 1 and the fixed substrate 3, the movable part 1 is displaced downward by ΔZ. As a result, a restoring force corresponding to ΔZ is generated upward from the elastic body 2. As described above, in a state where the movable part 1 is held by the movable part holder 21, a state where the restoring force by the elastic body 2 always acts on the movable part 1, that is, a state where preload acts can be obtained. In this state, even when a force is applied to the movable portion 1 due to external vibration or the like in the vertical direction, the state can be maintained if the force is weaker than the preload. Further, even if a force is applied in a direction other than the vertical direction in which the preload acts, the displacement can be reduced by the frictional force generated at the interface between the movable part holder 21 and the movable part 1.
[0014]
However, the frictional force alone cannot generate a force sufficient to maintain the state. Further, when the movable part 1 shifts from the broken line state in FIG. 1B to the solid line state, there is a possibility that the movable part 1 is held with a deviation in the XY direction in FIG. Therefore, in the holding mechanism of the present invention, the movable part holder positioning structure V-groove 22 is provided in the movable part 1. The V groove 22 reduces the displacement when the movable part 1 moves upward. Further, in the held state, when an external force is applied to the movable part 1, the movable part holder 21 is located in the V groove 22 and is in contact with the wall surface of the V groove 22. ), The movable portion 1 is held by the elastic force in the Y direction of the movable portion holder 21. This is the same even when the movable portion positioning structure is U-shaped or rectangular instead of V-shaped in cross section as in this embodiment. Or it is the same even if it is not a groove but a through-hole. Moreover, as the movable part holder 21, for example, a rod obtained by processing a metal material, a glass material, or a polymer material into a thin shape, an optical fiber, or the like can be used.
[0015]
Further, in the present embodiment, a step of ΔZ is formed on the upper surface of the movable part 1 and the fixed substrate 3 in order to apply preload from the movable part holder 21 to the movable part 1. However, even if the movable portion 1 and the fixed substrate 3 are not provided with a step, the movable portion holder 21 is processed so that the portion in contact with the movable portion 1 protrudes downward, or on the movable portion 1 and the fixed substrate 3. The same effect can be obtained even by a method of performing processing such that a step is provided only in a portion in contact with the movable part holder 21. In addition, as a method for applying a preload to the movable part 1, it is also possible to apply an electrostatic attractive force or a magnetic force to the movable part 1 and attract it in the driving direction.
[0016]
The fine movement mechanism of the present invention does not require reinforcement of the elastic body 2 unlike the conventional example in order to prevent the malfunction of the movable part 1, and does not increase the driving power associated therewith. This is a fine movement mechanism in which the swing of the movable part hardly occurs. Further, in the conventional fine movement mechanism, when the movable electrode plate 41 is moved from the broken line state to the solid line state in FIG. 5B, the movable electrode plate 41 does not stand still in the solid line state, and generates vibration according to the resonance frequency, so-called chattering. To do. Chattering is a damped vibration whose center is the state of the solid line, and it takes time until the vibration disappears. Therefore, the transition time from the broken line state to the solid line state includes not only the driving time but also the chattering decay time. However, in the fine movement mechanism of the present invention, since the movable part holder 21 reduces vibrations upward from the solid line state in FIG. 1B, the chattering decay time and consequently the transition time can be shortened.
[0017]
(Embodiment 2)
Next, a second embodiment of a fine movement mechanism using the present invention will be described below.
FIG. 4 is a diagram showing the structure of a second embodiment of a 2 × 2 optical switch using the fine movement mechanism of the present invention. 4A is a perspective view, FIG. 4B is a diagram showing the configuration of the holding substrate 33, and FIG. 4C is a diagram showing details of the holding mechanism. In the second embodiment, the structure is the same as that of the first embodiment except for the configuration related to the holding mechanism.
[0018]
The holding mechanism of the fine movement mechanism of the present invention is composed of a pressing substrate 33 serving as a movable part holder, and a concave structure 31 of a square pyramid serving as a holder positioning structure and a fixing structure. As shown in FIG. 4B, the holding substrate 33 has a concave structure 32 formed thereon. In the present embodiment, the shape of the concave structure 31 and the concave structure 32 is a quadrangular pyramid. However, for example, other polygonal pyramids, circular pyramids, polygonal columns, cylinders, and semicircles can also be used. Or a through-hole may be sufficient. A metal, glass, or polymer microsphere 30 is fixed to the concave structure 32.
[0019]
When the holding substrate 33 is placed on the movable portion 1 and the fixed substrate 3 by aligning the positions of the microsphere 30 and the concave structure 31 as shown in FIG. Thus, the preload can be applied to the movable part 1 as in the first embodiment. The effect of the preload is the same as that of the first embodiment, and it does not swing easily due to external impact and vibration.
[0020]
In the first embodiment, the movable part holder 21 and the V groove 22 which is a movable part holder positioning groove functioned in the Y direction. In the present embodiment, the microsphere 30 is an XY. Since it interferes with the four wall surfaces of the concave structure 31 corresponding to the direction, it becomes possible to hold the movable part 1 in each direction and to align with high accuracy.
[0021]
【The invention's effect】
According to the present invention, it is possible to provide a fine movement mechanism that is small in size, consumes low power, is strong against rocking such as tilt and displacement, and can be positioned with high accuracy.
[Brief description of the drawings]
FIG. 1 is a diagram showing an optical switch according to an embodiment of the present invention.
FIG. 2 is a diagram showing an optical path of an optical switch according to one embodiment of the present invention.
FIG. 3 is a view showing an optical switch holding mechanism according to an embodiment of the present invention.
FIG. 4 is a diagram illustrating an optical switch according to a second embodiment of the present invention.
FIG. 5 is a diagram showing a conventional optical switch.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Movable part 2 Elastic body 3 Fixed board | substrate 20 Mirror 21 Rod-type movable part holder 22 V groove | channel 23 for fixed board | substrate side movable part holders V groove | channel 24 for movable part side movable part holders Pressing substrates 25 Light for optical signal input / output Fiber V-groove 26 Optical signal input / output optical fiber 27 Optical signal input / output optical fiber 28 Optical signal input / output optical fiber 29 Optical signal input / output optical fiber 30 Microsphere type movable part holder 31 Movable part / fixed substrate Side square pyramidal concave structure 32 Holding substrate side pyramidal concave structure 33 Holding substrate 41 Movable electrode plate 42 Mirror 43 Elastic body 44 Fixed electrode plate 45 Outer frame 46 Input optical fiber 47 Output optical fiber 48 Output optical fiber 49 Optical signal 50 Optical path

Claims (15)

複数の光ファイバを備える固定基板と、
可動部保持具と、
前記固定基板に接続された弾性体に支持され、前記弾性体により前記可動部保持具に押付けられた可動部と、
前記可動部が前記可動部保持具に押付けられた押付状態から、前記可動部が前記可動部保持部から引き離された離間状態に前記可動部を駆動させる駆動部とを備え、
前記可動部は、前記可動部が前記押付状態である場合には前記光ファイバからの光を反射し、前記可動部が前記離間状態である場合には前記光ファイバからの光を通すミラーを備え、
前記可動部に備えられ、前記可動部保持具を前記可動部に対して位置決めする保持具位置決め構造を備える事を特徴とする微動機構。
A fixed substrate comprising a plurality of optical fibers;
A movable part holder;
A movable part supported by an elastic body connected to the fixed substrate and pressed against the movable part holder by the elastic body;
A drive unit that drives the movable unit from a pressed state in which the movable unit is pressed against the movable unit holder to a separated state in which the movable unit is separated from the movable unit holding unit;
The movable portion includes a mirror that reflects light from the optical fiber when the movable portion is in the pressed state and passes light from the optical fiber when the movable portion is in the separated state. ,
A fine movement mechanism provided in the movable part, comprising a holder positioning structure for positioning the movable part holder with respect to the movable part.
複数の光ファイバを備える固定基板と、
可動部保持具と、
前記固定基板に接続された弾性体に支持され、前記弾性体により前記可動部保持具に押付けられた可動部と、
前記可動部が前記可動部保持具に押付けられた押付状態から、前記可動部が前記可動部保持部から引き離された離間状態に前記可動部を駆動させる駆動部とを備え、
前記可動部は、前記可動部が前記押付状態である場合には前記光ファイバからの光を反射し、前記可動部が前記離間状態である場合には前記光ファイバからの光を通すミラーを備え、
前記可動部及び前記可動部保持具のいずれか一方は、
前記可動部の厚さ方向に厚みを有しており、前記弾性体の付勢力を増加させる段差部を備える事を特徴とする微動機構。
A fixed substrate comprising a plurality of optical fibers;
A movable part holder;
A movable part supported by an elastic body connected to the fixed substrate and pressed against the movable part holder by the elastic body;
A drive unit that drives the movable unit from a pressed state in which the movable unit is pressed against the movable unit holder to a separated state in which the movable unit is separated from the movable unit holding unit;
The movable portion includes a mirror that reflects light from the optical fiber when the movable portion is in the pressed state and passes light from the optical fiber when the movable portion is in the separated state. ,
One of the movable part and the movable part holder is
A fine movement mechanism comprising a step portion that has a thickness in a thickness direction of the movable portion and increases an urging force of the elastic body.
前記保持具位置決め構造は、
位置決めされた前記可動部保持具を固定する固定構造を備える事を特徴とする請求項1に記載の微動機構。
The holder positioning structure is
The fine movement mechanism according to claim 1, further comprising a fixing structure that fixes the positioned movable part holder.
前記可動部保持具は、弾性を有する事を特徴とする請求項1又は2のいずれかに記載の微動機構。  The fine movement mechanism according to claim 1, wherein the movable part holder has elasticity. 前記可動部保持具は、棒体である事を特徴とする請求項1又は2のいずれかに記載の微動機構。  The fine movement mechanism according to claim 1, wherein the movable part holder is a rod. 前記可動部保持具は、球体を介して可動部を保持する押さえ基板である事を特徴とする請求項1又は2のいずれかに記載の微動機構。  3. The fine movement mechanism according to claim 1, wherein the movable part holder is a holding substrate that holds the movable part via a sphere. 前記棒体の可動部保持具は、光ファイバである事を特徴とする請求項5に記載の微動機構。  The fine movement mechanism according to claim 5, wherein the movable part holder of the rod is an optical fiber. 前記保持具位置決め構造及び前記固定構造は、凹構造である事を特徴とする請求項3に記載の微動機構。  The fine movement mechanism according to claim 3, wherein the holder positioning structure and the fixing structure are concave structures. 前記保持具位置決め構造あるいは前記固定構造は、貫通孔である事を特徴とする請求項3に記載の微動機構。  The fine movement mechanism according to claim 3, wherein the holder positioning structure or the fixing structure is a through hole. 前記凹構造は、溝構造である事を特徴とする請求項8に記載の微動機構。  The fine movement mechanism according to claim 8, wherein the concave structure is a groove structure. 前記凹構造の断面は、V字型である事を特徴とする請求項8に記載の微動機構。  The fine movement mechanism according to claim 8, wherein a cross section of the concave structure is V-shaped. 前記凹構造の断面は、U字型である事を特徴とする請求項8に記載の微動機構。  The fine movement mechanism according to claim 8, wherein a cross section of the concave structure is U-shaped. 前記凹構造の断面は、矩形である事を特徴とする請求項8に記載の微動機構。  The fine movement mechanism according to claim 8, wherein a cross section of the concave structure is rectangular. 前記凹構造あるいは前記貫通孔の端面形状は、多角形である事を特徴とする請求項8又は請求項9のいずれかに記載の微動機構。  10. The fine movement mechanism according to claim 8, wherein an end surface shape of the concave structure or the through hole is a polygon. 前記凹構造あるいは前記貫通孔の端面形状は、円形である事を特徴とする請求項8又は請求項9のいずれかに記載の微動機構。  10. The fine movement mechanism according to claim 8, wherein an end surface shape of the concave structure or the through hole is circular.
JP2003105128A 2003-04-09 2003-04-09 Fine movement mechanism and optical switch Expired - Fee Related JP4137684B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003105128A JP4137684B2 (en) 2003-04-09 2003-04-09 Fine movement mechanism and optical switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003105128A JP4137684B2 (en) 2003-04-09 2003-04-09 Fine movement mechanism and optical switch

Publications (3)

Publication Number Publication Date
JP2004309892A JP2004309892A (en) 2004-11-04
JP2004309892A5 JP2004309892A5 (en) 2006-01-19
JP4137684B2 true JP4137684B2 (en) 2008-08-20

Family

ID=33467733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003105128A Expired - Fee Related JP4137684B2 (en) 2003-04-09 2003-04-09 Fine movement mechanism and optical switch

Country Status (1)

Country Link
JP (1) JP4137684B2 (en)

Also Published As

Publication number Publication date
JP2004309892A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
KR101264136B1 (en) Micro-mirror device using a moving structure
US6114799A (en) Driving mechanism
JP2010134432A (en) Micromechanical element, sensor for monitoring micromechanical element, method of operating micromechanical element, method of monitoring micromechanical element, computer program including program code for executing the methods, and method of affecting mechanical natural vibration of micromechanical element
US7446963B2 (en) Lens actuating device
CA2474099A1 (en) Electrostatic comb drive actuator, and optical controller using the electrostatic comb drive actuator
US7009755B2 (en) MEMS mirror with drive rotation amplification of mirror rotation angle
US20060144948A1 (en) MEMS scanning mirror with distributed hinges and multiple support attachments
US20030210853A1 (en) Optical switch
JP2009288359A (en) Microelectromechanical element and microelectromechanical element array
US20050045727A1 (en) MEMS scanning mirror with distributed hinges and multiple support attachments
EP1346947A2 (en) Electrostatically operated optical switching or attenuating devices
JP2010026147A (en) Movable structure and optical scanning mirror using the same
JP4137684B2 (en) Fine movement mechanism and optical switch
US20110096423A1 (en) Piezoelectric actuator, lens barrel and optical device
US20040028322A1 (en) Fiber-aligning optical switch
KR100296389B1 (en) 2-axis actuator
JP5160299B2 (en) Micro movable device and driving method thereof
JP3942621B2 (en) Electrostatic drive type optical deflection element
JP2008292703A (en) Movable structure, optical scanning mirror element using the same and method of manufacturing movable structure
JP4396299B2 (en) Mirror system and optical switch
JP2002023069A (en) Optical switch
JP4405705B2 (en) Optical router including bistable optical switch and method thereof
JP2002244052A (en) Optical switch and optical cross connection apparatus
JP2000028890A (en) Driving device
JP3993136B2 (en) Optical switch device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees