JP4137524B2 - 光ファイバ凍結センサ - Google Patents

光ファイバ凍結センサ Download PDF

Info

Publication number
JP4137524B2
JP4137524B2 JP2002160628A JP2002160628A JP4137524B2 JP 4137524 B2 JP4137524 B2 JP 4137524B2 JP 2002160628 A JP2002160628 A JP 2002160628A JP 2002160628 A JP2002160628 A JP 2002160628A JP 4137524 B2 JP4137524 B2 JP 4137524B2
Authority
JP
Japan
Prior art keywords
optical fiber
freezing
strain
container
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002160628A
Other languages
English (en)
Other versions
JP2004003889A (ja
Inventor
博重 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002160628A priority Critical patent/JP4137524B2/ja
Publication of JP2004003889A publication Critical patent/JP2004003889A/ja
Application granted granted Critical
Publication of JP4137524B2 publication Critical patent/JP4137524B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、路面や農地などの凍結および凍結の融解を光ファイバを利用して検知する光ファイバ凍結センサに関する。
【0002】
【従来の技術】
高速道路及び一般道路において、降雪や降雨によって路面が凍結すると、通常スリップ事故の発生確率が増加するため、路面状況をリアルタイムに検知して自動車運転者に注意を喚起する必要がある。
【0003】
また、農地では霜や凍結により農作物に被害が出るため、気温を測定して適切な凍結防止策を講じる必要がある。
【0004】
そのため、このような路面あるいは農地の凍結状況を検知する手段として、通常の気象情報の他に、現場に設置した温度計や湿度計からの情報を用いて、路面の凍結を予測している。そのような温度計には、金属の抵抗や熱電対を利用した電子温度計、赤外線放射を検知するサーモグラフィが従来から一般的に使用されていたが、近年では、光ファイバに生じるラマン散乱のストークス光、あるいはアンチストークス光の強度比から温度を求める光ファイバ温度センサ、光ファイバに生じるブリルアン散乱光の周波数やファイバグレーティングの反射波長から温度を求める光ファイバ温度センサなどが開発され、利用され初めている。そして、これら従来の光ファイバ温度センサでは、例えば降雨後に温度計の指示が0℃以下となった場合に凍結と判断している(特開平5−71111号公報,特開平9−166666号公報,特開平10−96668号公報,特開平10−104363号公報など参照)。
【0005】
【発明が解決しようとする課題】
しかし、従来の温度計を用いた凍結判断方法では、従来の温度計の精度が1℃程度と低いため、0℃付近において凍結しているのか否かの判断が、不正確なものとならざるを得なかった。さらに、路面に水分がある場合には、気化熱で気温が氷点以上であっても凍結することがあるし、逆に、地熱等の影響で気温が0℃以下であっても必ずしも凍結しない場合がある。
【0006】
このようなことから、気温だけでは凍結したかどうかは判断できないため、地中の温度や風速などの情報を組み合わせて精度を高めようとする試みもなされているが、凍結の有無の判断精度を高めようとすると、気象情報や湿度情報など多くのデータが必要となるため、凍結判断のアルゴリズムが複雑化するばかりでなく、部分的に観測者の主観を含んでしまい、予期せぬ判断ミスを招く危険性もある。
【0007】
また、金属の抵抗や熱電対を利用した電子温度計では、測定位置が設置点のみに限られ、赤外線放射を検知するサーモグラフィでは2次元的に表面温度を測定できるが、範囲が狭く、そのため道路全体について測定するには非常に多数の測定装置の設置を必要とするという実用面での難点があった。
【0008】
本発明は、上述のような従来技術の課題に鑑みてなされたもので、その目的は、複雑なアルゴリズムを要することなく、高精度に凍結の有無を判断できる光ファイバ凍結センサを提供することにある。
【0009】
また、本発明の付随する目的は、光ファイバの任意の位置の凍結状況を検知することができる光ファイバ凍結センサを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明の光ファイバ凍結センサは、路面等が凍結しているか否かの判断を正確にかつ客観的に行うために、凍結の原因となる水そのものをセンサの材料として利用し、水の凍結による膨張を光ファイバの歪に変換し、この歪の大きさから凍結を検知することを特徴とする。この特徴構成により、本発明は、凍結判断のために複雑なアルゴリズムを必要とせずに、センサ材料である水の凍結の有無から、センサが設置された場所の凍結の有無を正確に、かつ、簡易に、低コストで判断できる。
【0011】
すなわち、本発明の第1の形態の光ファイバ凍結センサは、筒状の剛体と、前記剛体内に密着して配置されて内部に水が閉じ込められている筒状の容器と、前記容器の壁面内に長手方向に沿って埋設されて固定された光ファイバと、前記光ファイバに光を入射する光源と、前記光源から入射された光によって前記光ファイバに生じたブリルアン後方散乱光のパワースペクトルを測定する測定装置とを有し、前記測定装置は、前記水が温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力が前記容器を通して前記光ファイバに伝わった結果、該光ファイバに生じた歪をブリルアン散乱光周波数の歪依存性から検知し、前記歪の有無を以って凍結の有無を判断することを特徴とする。
【0012】
ここで、好ましくは、前記容器を前記光ファイバに沿って連続して配置し、前記光源としてパルス光源を用い、前記測定装置は、前記ブリルアン散乱光のパワースペクトルを時間分解して測定することにより、前記光ファイバに生じた前記歪を該光ファイバに沿って連続的に測定し、該測定結果に基づき凍結の有無を連続的に判断する。
【0013】
また、本発明の第3の形態の光ファイバ凍結センサは、筒状の剛体と、前記剛体内に密着して配置されて内部に水が閉じ込められている筒状の容器と、前記容器の壁面内に長手方向に沿って埋設されて固定され、該固定位置にファイバグレーティングが形成されている光ファイバと、前記光ファイバに光を入射する光源と、前記光源から入射された光が前記ファイバグレーティングによって反射された波長を測定する測定装置とを有し、前記測定装置は、前記水が温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力が前記容器を通して前記光ファイバに伝わった結果、該光ファイバに生じた歪を前記ファイバグレーティングの反射波長の歪依存性から検知し、前記歪の有無を以って凍結の有無を判断することを特徴とする。
【0014】
ここで、好ましくは、前記水の相転移点における膨張の際に前記容器も膨張するが、該容器の膨張が該容器の材料がもつ弾性範囲内であるように、該容器の材料および構造が設定されている。
【0015】
また、本発明の第4の形態の光ファイバ凍結センサは、心線を取り巻く被覆に多数個、水胞状態で水が閉じ込められている光ファイバと、前記光ファイバの前記心線に光を入射する光源と、前記光源から入射された光によって前記光ファイバに生じたブリルアン後方散乱光のパワースペクトルを測定する測定装置とを有し、前記測定装置は、前記水が温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力が前記光ファイバの前記被覆を通して前記光ファイバの前記心線に伝わった結果、該光ファイバの前記心線に生じた歪をブリルアン散乱光周波数の歪依存性から検知し、前記歪の有無を以って凍結の有無を判断することを特徴とする。
また、本発明の第5の形態の光ファイバ凍結センサは、心線を取り巻く被覆に多数個、水胞状態で水が閉じ込められており、かつ長手方向沿って該心線にファイバグレーティングが形成されている光ファイバと、前記光ファイバの前記心線に光を入射する光源と、前記光源から入射された光が前記ファイバグレーティングによって反射された波長を測定する測定装置とを有し、前記測定装置は、前記水が温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力が前記光ファイバの前記被覆を通して前記光ファイバの前記心線に伝わった結果、該光ファイバの前記心線に生じた歪を前記ファイバグレーティングの反射波長の歪依存性から検知し、前記歪の有無を以って凍結の有無を判断することを特徴とする。
【0016】
本発明は、上記構成のように、凍結の原因となる水そのものをセンサ材料として利用し、凍結による膨張を光ファイバの歪に換算するようにしているので、凍結判断のために複雑なアルゴリズムを必要とせずに、センサである水の凍結の有無からセンサが設置された場所の凍結の有無を判断できる。凍結に関しては現場環境に非常に近いセンシング機構であることと、凍結の際急激な膨張を伴うため、それによって生じる歪を検知するのは容易であり、温度測定などに比べ、S/Nが非常に高く、従って、検出精度も高い。もちろん、気象情報や湿度センサ等の情報も併用して複合的な判断を行うことを妨げるものではなく、むしろ既存の路面等の状況検知システムに、凍結情報を追加できるという使用方法もあり得る。
【0017】
凍結の際、水の凝固熱があるため、急激な温度変化があった場合には、センサとして使用している水の凍結が、センサ設置場所の凍結に比べて遅延するが、水の量を調節することにより、相転移の際の凝固熱量を小さくして、この遅延を実用上問題ない程度まで微小にすることが可能である。また、光ファイバを通過する光信号の減衰は、導線を流れる電気信号のそれに比べて非常に小さいため、光ファイバをセンサおよび伝送路として利用することで、10km以上遠く離れた点の凍結をその地点には無給電で判断することが可能になる。
【0018】
さらに、光源としてパルス光源を用いる場合には、光ファイバに沿って連続的に凍結状況の分布を得ることが可能となる。あるいは、ある領域に光ファイバを縦横に張り巡らすことにより、2次元的、3次元的な凍結分布を得ることも可能となる。
【0019】
また、光ファイバ凍結センサの容器の構造あるいは材料を適切に選ぶことにより、膨張による容器の変形が弾性範囲内となるようにすることで、センサとなる水を囲む容器が凍結で膨張したときでも、その材料の持つ弾性範囲内での変形しか生じなければ、温度が上昇し氷が融解した場合でも残留歪が無く、繰り返し使用できる。水と一緒に空気などの気体を容器に閉じ込めることで、凍結の膨張によって容器に生じる応力を緩和することもできる。
【0020】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0021】
(第1の実施形態)
本発明の第1の実施形態による光ファイバ凍結センサの概略構成を図1に示す。図1に示すように、この光ファイバ凍結センサ10は、凍結の原因となる水11がセンサの材料としてあらかじめ閉じ込められている、筒状または箱状の容器12と、その容器12の壁内に固定用治具(図示しない)、接着、埋め込み固着等の適切な固定手段により固定された光ファイバ13と、その光ファイバ13に光を入射する光源14と、その光源14から入射された光によってその光ファイバ13によって生じたブリルアン後方散乱光のパワースペクトルを測定する歪測定器15とを備えている。容器12は路面や農地に配設されるため、容器12を外部からの衝撃から保護するためのパイプ状の剛体16が被覆されている。
【0022】
容器12内に閉じ込められている水11が、温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力は、容器12を通して光ファイバ13に伝わる。歪測定器15は、光ファイバ13に生じた歪をブリルアン散乱光周波数の歪依存性から検知し、その歪の有無を以って凍結の有無を判断し、判断結果を表示装置等(図示しない)に出力する。
【0023】
本実施形態の光ファイバ凍結センサ10は、光ファイバ13に生じた歪を光学的に検出するためにブリルアン散乱光周波数の歪依存性を利用することを特徴としている(文献[1]T.Horiguchi et al.,“Development of a distributed sensing technique using Brillouin scattering”,J.Lightwave Technol., vol.13,no.7,pp.1296-132, July 1995参照)。
【0024】
ブリルアン散乱光の周波数や、後述のファイバグレーティングの反射波長は、歪依存性を持つばかりでなく、温度依存性も持つ(文献[2]T.Kurashima, T.Horiguchi, and M. Tateda,“Thermal effects on the Brillouin frequency shift in jacketed optical fibers,”Appl. Opt., Vol. 29, 2219-2222, 1990)ため、図2に示すように温度変化に伴って変動する。図2から分かるように、ブリルアン散乱光の周波数シフトあるいはファイバグレーティングの反射波長の逆数は、0℃において凍結による歪の影響による顕著な変化が現れる。従って、この特性を利用すれば、高精度で、かつ凍結を判断する機能を失うことなく温度も同時に計測することができる。
【0025】
本発明によるセンサメカニズムの理解をさらに容易にするため、次の例で凍結による歪の発生について説明する。
【0026】
図1のように充満して閉じ込められている水11と容器12が両方とも長さLの円筒形であって、容器側面が摩擦の無い剛体16で覆われているとした場合のセンサ構造についての歪について考える。また、説明を簡単にするため、容器12、水11、氷111の熱膨張は無視することとする。容器12の内径、外形をそれぞれ、d,dと置くと、それらの断面積はそれぞれ、A=πd /4,A=πd /4となる。
【0027】
凍結による膨張は容器12の軸方向(長手方向)のみに生じ、その凍結による膨張率をβとすると、図3に示すように、凍結後の氷111がもし容器12に閉じ込められていなければ、その長さは(1+β)Lとなる。しかし、容器12に閉じ込められている凍結後の氷111は、容器12と一体となって変形するので、図4に示すように実際は容器12も氷111も等しく長さL+ΔLとなる。このことに注意すると、この変形による内部応力によって氷111、容器12それぞれに発生する応力σicepは、
【0028】
【数1】
Figure 0004137524
【0029】
と書くことができる。ここで、Eice, Eはそれぞれ氷111,容器12のヤング率である。
外力が働かないため、力はつりあっており、
【0030】
【数2】
Figure 0004137524
【0031】
である。この式(1)、(2)から、光ファイバ13が感知する歪ε=ΔL/Lを求めると、
【0032】
【数3】
Figure 0004137524
【0033】
となる。
【0034】
凍結による膨張率であるβは、9%程度の値であることが知られており、膨張による容器12の変形が弾性範囲内、つまり降伏しない条件にしたい場合には、この凍結による歪が、降伏歪εより小さくなるように、容器12の断面積や材料を選ぶ必要がある。すなわち、光ファイバ凍結センサは、凍結により膨張した容器が材料的に降伏してしまうと、その後もとの長さに戻らず、繰り返し使用できないが、容器12の断面積や材料を上記のように適切に選ぶことにより、その課題を解決することができる。
【0035】
また、水11と一緒に空気などの気体を容器12に閉じ込めることで、凍結の膨張によって容器12に生じる応力を緩和することもできる。
【0036】
図1の歪測定器15と光源14を含む測定装置としては、例えば、本出願人による特開平10−048067号公報(特許第3237745号)で開示されている、図5に示すような構成の歪・温度分布測定装置が利用できる。
【0037】
この装置を簡潔に説明すると、図5中、501は周波数が安定で発振線幅の狭い、第1の周波数安定化狭線幅光源である。502は光パルス変調器、503は光増幅器、504は光方向性結合器、13は光ファイバ、507は光フィルタ、508は光検出器、509は増幅器、510はAD変換器、511はディジタル信号処理装置、512はタイミング信号発生器である。
【0038】
また、513は第2の周波数安定化狭線幅光源である。514は第1の周波数安定化狭線幅光源501と第2の周波数安定化狭線幅光源513の発振周波数、あるいは両光源の周波数差を制御する第1の光周波数制御装置である。515は光ファイバ13に入射する光パルスの入射端を切り替えると同時に、第2の周波数安定化狭線幅光源513からの出力光が光パルスと対向して光ファイバ13を伝搬するように、第2の周波数安定化狭線幅光源513からの出力光を光ファイバ13に入射させるための2×2光切替スイッチである。また、516は第2の周波数安定化狭線幅光源513と2×2光切替スイッチ515間に接続した光ON/OFFスイッチである。
【0039】
光ファイバ13における後方ブリルアン散乱係数の歪み依存性係数C、その温度依存係数C、ブリルアン周波数シフトの歪み依存性係数C、その温度依存係数Cを予め求めておき、光フアイバ13に光を入射し、光フアイバ13の各点の後方ブリルアン散乱光の散乱係数ηの相対変化δη/ηと、ブリルアン周波数シフトの変化δνの両方を光検出器508を介して検出し、光ファイバに発生した歪みの変化δεと光フアイバの温度の変化δTに関する2元連立方程式
δη/η=C・δε+C・δT
δν =C・δε+C・δT
を演算により解くことにより、光ファイバ13に発生した歪みの変化δεと光ファイバ13の温度の変化δTをそれぞれ区別して同時に測定することができる。
【0040】
(第2の実施形態)
上述の本発明の第1の実施形態においては、光ファイバによって生じたブリルアン後方散乱光のパワースペクトルを測定することで、凍結を検出している。
【0041】
これに対し、本発明の第2の実施形態の光ファイバ凍結センサは、構成は図1とほぼ同様であるが、歪を検出するために、光ファイバに刻み込まれた周期的な屈折率変化である、ファイバグレーティング(図示しない)を用いる。
【0042】
ファイバグレーティングで反射する光の波長が歪依存性を持つことを利用することで、凍結を検出できる(文献[3]A. D.Kersey,“Fiber Grating Sensors,”J. Light. Technol., Vol. 15, 1442-1463(1997)。
【0043】
(第3の実施形態)
本発明の第3の実施形態の分布型光ファイバ凍結センサは、歪を1点だけでなく、光ファイバに沿って連続的に分布として得るために、構成は図1とほぼ同様であるが、光源14としてパルス光源を用い、水11が密閉された円筒状の容器12を光ファイバ13に沿って連続的に設け、歪測定器15により、ブリルアン散乱光のパワースペクトルを時間分解して測定することにより、光ファイバ13に生じた歪を光ファイバに沿って連続的に測定し、その結果に基づき凍結の有無を連続的に判断する。
【0044】
このように、光源としてパルス光源を用いる場合には、光ファイバに沿って連続的に凍結状況の分布を得ることが可能となるので、例えば、ある領域に光ファイバを縦横にマトリックス状に張り巡らすことにより、2次元的、3次元的な凍結分布を得ることも可能である。
【0045】
(第4の実施形態)
図6は本発明の第4の実施形態における分布型光ファイバ凍結センサの概略構成を示す。この光ファイバ凍結センサでは、図1に示したと同様な構造の水が密閉された円筒状の容器(センサ1,2,3…)を複数個、光ファイバケーブル131に沿って、必要箇所に固定治具61を用いて取り付け、歪測定器15により遠隔より光ファイバ131を通じて凍結による歪の有無を判断する。
【0046】
例えば、センサ1,2,3のうち1のみが凍結している場合には、図7に示すのような歪が歪測定器15のディスプレイ(図示しない)等で観測されるので、遠隔より複数のセンサの凍結を個別に正確に判断することができる。
【0047】
(第5の実施形態)
図8は本発明の第5の実施形態における光ファイバ凍結センサの概略構成を示す。この光ファイバ凍結センサは、光ファイバケーブル80の被覆81内に密封された多数の小さな水胞部82を設けることにより、光ファイバの被覆81が図1等で説明した容器12となる構造のものである。83は光ファイバケーブル80の心線であり、図1の光ファイバ13に相当するもので、光源14と歪測定器15に接続している。
【0048】
このような構造にすることにより、本実施形態の光ファイバ凍結センサは、自由に曲げることができるため、設置環境の範囲を広げることができる。また水胞82の大きさが歪計測の空間分解能と同程度以下であれば、連続的な歪計測を行うことができる。
【0049】
【発明の効果】
以上述べたように、本発明によれば、複雑なアルゴリズムを要することなく、路面や農地の温度管理だけでなく、高精度でかつ、客観的な凍結管理を行うことができる。
【0050】
また、本発明によれば、凍結検知をヒータのスイッチとすることで、凍結の被害を防止するためのヒータの使用電力を必要最低限にすることが可能となる。
【0051】
また、本発明によれば、通信用の光ファイバケーブルの一部を第4の実施形態で述べたような凍結センサとすることにより、敷設光ファイバの凍結による通信障害地点の早期発見に効果を発揮する。
【図面の簡単な説明】
【図1】本発明の第1、第2および第3の実施形態における光ファイバ凍結センサの円筒容器の構造例を示す概略模式図である。
【図2】ブリルアン散乱光周波数、あるいは、ファイバグレーティング反射波長の温度依存性を凍結による急激な歪と併せて示すグラフである。
【図3】凍結後の氷と容器のそれぞれについて、互いに拘束されない場合の状態を示す仮想的な模式図である。
【図4】図1で示す光ファイバ凍結センサについて、凍結後の状態を示す模式図である。
【図5】本発明で用いる光源・歪測定器として利用可能な公知の歪・温度分布測定装置の構成例を示すブロック図である。
【図6】本発明の第4の実施形態として、光ファイバケーブルに後で複数のセンサを設置した構成例を示す模式図である。
【図7】本発明の第4の実施形態における凍結監視結果を示すグラフである。
【図8】本発明の第5の実施形態として、光ファイバ被覆に水胞を設けてセンサとした構成例を示す模式図である。
【符号の説明】
10 光ファイバ凍結センサ
11 水
111 氷
12 容器
13 光ファイバ
131 光ファイバケーブル
14 光源
15 歪測定器
16 剛体
61 固定治具
80 光ファイバ
81 光ファイバの被覆
82 水胞(水胞部)
83 光ファイバの心線

Claims (6)

  1. 筒状の剛体と、
    前記剛体内に密着して配置されて内部に水が閉じ込められている筒状の容器と、
    前記容器の壁面内に長手方向に沿って埋設されて固定された光ファイバと、
    前記光ファイバに光を入射する光源と、
    前記光源から入射された光によって前記光ファイバに生じたブリルアン後方散乱光のパワースペクトルを測定する測定装置とを有し、
    前記測定装置は、前記水が温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力が前記容器を通して前記光ファイバに伝わった結果、該光ファイバに生じた歪をブリルアン散乱光周波数の歪依存性から検知し、前記歪の有無を以って凍結の有無を判断することを特徴とする光ファイバ凍結センサ。
  2. 前記容器を前記光ファイバに沿って連続して配置し、前記光源としてパルス光源を用い、前記測定装置は、前記ブリルアン散乱光のパワースペクトルを時間分解して測定することにより、前記光ファイバに生じた前記歪を該光ファイバに沿って連続的に測定し、該測定結果に基づき凍結の有無を連続的に判断することを特徴とする請求項1に記載の光ファイバ凍結センサ。
  3. 筒状の剛体と、
    前記剛体内に密着して配置されて内部に水が閉じ込められている筒状の容器と、
    前記容器の壁面内に長手方向に沿って埋設されて固定され、該固定位置にファイバグレーティングが形成されている光ファイバと、
    前記光ファイバに光を入射する光源と、
    前記光源から入射された光が前記ファイバグレーティングによって反射された波長を測定する測定装置とを有し、
    前記測定装置は、前記水が温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力が前記容器を通して前記光ファイバに伝わった結果、該光ファイバに生じた歪を前記ファイバグレーティングの反射波長の歪依存性から検知し、前記歪の有無を以って凍結の有無を判断することを特徴とする光ファイバ凍結センサ。
  4. 前記水の相転移点における膨張の際に前記容器も膨張するが、該容器の膨張が該容器の材料がもつ弾性範囲内であるように、該容器の材料および構造が設定されていることを特徴とする請求項1ないし3のいずれかに記載の光ファイバ凍結センサ。
  5. 心線を取り巻く被覆に多数個、水胞状態で水が閉じ込められている光ファイバと、
    前記光ファイバの前記心線に光を入射する光源と、
    前記光源から入射された光によって前記光ファイバに生じたブリルアン後方散乱光のパワースペクトルを測定する測定装置とを有し、
    前記測定装置は、前記水が温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力が前記光ファイバの前記被覆を通して前記光ファイバの前記心線に伝わった結果、該光ファイバの前記心線に生じた歪をブリルアン散乱光周波数の歪依存性から検知し、前記歪の有無を以って凍結の有無を判断することを特徴とする光ファイバ凍結センサ。
  6. 心線を取り巻く被覆に多数個、水胞状態で水が閉じ込められており、かつ長手方向沿って該心線にファイバグレーティングが形成されている光ファイバと、
    前記光ファイバの前記心線に光を入射する光源と、
    前記光源から入射された光が前記ファイバグレーティングによって反射された波長を測定する測定装置とを有し、
    前記測定装置は、前記水が温度の低下により液体から固体への相転移点(氷点)に達したときに膨張する応力が前記光ファイバの前記被覆を通して前記光ファイバの前記心線に伝わった結果、該光ファイバの前記心線に生じた歪を前記ファイバグレーティングの反射波長の歪依存性から検知し、前記歪の有無を以って凍結の有無を判断することを特徴とする光ファイバ凍結センサ。
JP2002160628A 2002-05-31 2002-05-31 光ファイバ凍結センサ Expired - Fee Related JP4137524B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002160628A JP4137524B2 (ja) 2002-05-31 2002-05-31 光ファイバ凍結センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002160628A JP4137524B2 (ja) 2002-05-31 2002-05-31 光ファイバ凍結センサ

Publications (2)

Publication Number Publication Date
JP2004003889A JP2004003889A (ja) 2004-01-08
JP4137524B2 true JP4137524B2 (ja) 2008-08-20

Family

ID=30429972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002160628A Expired - Fee Related JP4137524B2 (ja) 2002-05-31 2002-05-31 光ファイバ凍結センサ

Country Status (1)

Country Link
JP (1) JP4137524B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899820B2 (ja) 2006-11-24 2012-03-21 株式会社日立製作所 凝固センサ
CN101397904B (zh) * 2008-11-05 2012-08-29 大庆油田有限责任公司 一种应用光纤传感器监测井下套管受力的方法
CN107894213A (zh) * 2018-01-08 2018-04-10 河北科技大学 光纤冻土深度传感器
CN107917690A (zh) * 2018-01-08 2018-04-17 河北科技大学 基于压力传感器的冻土深度测量装置
CN112814681A (zh) * 2021-03-29 2021-05-18 神华北电胜利能源有限公司 一种冻土区露天煤矿的采煤方法
CN116009170B (zh) * 2023-02-23 2023-06-06 江苏中天科技股份有限公司 一种adss光缆融冰系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874143U (ja) * 1981-11-16 1983-05-19 オムロン株式会社 温度検知装置
JPH09243465A (ja) * 1996-03-04 1997-09-19 Hiroko Tanaami 温度検知器
JP3440721B2 (ja) * 1996-11-12 2003-08-25 日立電線株式会社 多点型歪み及び温度センサ
JP2000298177A (ja) * 1999-04-13 2000-10-24 Sumitomo Electric Ind Ltd 凍結検知センサ

Also Published As

Publication number Publication date
JP2004003889A (ja) 2004-01-08

Similar Documents

Publication Publication Date Title
He et al. Distributed temperature sensing for soil physical measurements and its similarity to heat pulse method
US7215416B2 (en) Method for measuring using optical fiber distributed sensor
Tyler et al. Spatially distributed temperatures at the base of two mountain snowpacks measured with fiber-optic sensors
Hoffmann et al. Applications of fibre optic temperature measurement.
Ishii et al. A fire detection system using optical fibres for utility tunnels
US20160168980A1 (en) Dual-ended distributed temperature sensor with temperature sensor array
US6817759B2 (en) Method of enhancing spatial resolution for distributed temperature measurement
CN105788749A (zh) 一种监测结构局部大变形的智能光电复合缆及监测方法
Cao et al. Performance evaluation of two types of heated cables for distributed temperature sensing-based measurement of soil moisture content
Li et al. Combined interrogation using an encapsulated FBG sensor and a distributed Brillouin tight buffered fiber sensor in a Tunnel
JP4137524B2 (ja) 光ファイバ凍結センサ
Günday et al. Optical fiber distributed sensing of temperature, thermal strain and thermo-mechanical force formations on OPGW cables under wind effects
Zhu et al. Rayleigh scattering based, thermal-induced displacement measurement along a steel plate at high temperature
Kwon et al. Distributed strain and temperature measurement of a beam using fiber optic BOTDA sensor
JP2001228264A (ja) 路面凍結予測システム
CN115452196A (zh) 一种光纤敏感环高精度温度灵敏度系数测试的装置及方法
JPH03102231A (ja) 路面温度分布計測装置
Reddy et al. FBG-based temperature sensor package
JPH10153609A (ja) 風速計
Kilpatrick et al. Measurement of unsteady gas temperature with optical fibre Fabry-Perot microsensors
JP2004037358A (ja) 光ファイバケーブルの浸水個所検出方法および装置
RU158854U1 (ru) Волоконно-оптический сенсор распределения температуры
JPH10153610A (ja) 風速計
JP2645173B2 (ja) 温度分布計測型光ファイバセンサ
Kingsley et al. Distributed Fiber-Optic Hot-Spot Sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees