JP4136886B2 - Polymers of novel alicyclic vinyl ethers - Google Patents

Polymers of novel alicyclic vinyl ethers Download PDF

Info

Publication number
JP4136886B2
JP4136886B2 JP2003350677A JP2003350677A JP4136886B2 JP 4136886 B2 JP4136886 B2 JP 4136886B2 JP 2003350677 A JP2003350677 A JP 2003350677A JP 2003350677 A JP2003350677 A JP 2003350677A JP 4136886 B2 JP4136886 B2 JP 4136886B2
Authority
JP
Japan
Prior art keywords
vinyl ether
polymer
tricyclodecane
solution
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003350677A
Other languages
Japanese (ja)
Other versions
JP2005113049A (en
Inventor
保 橋本
毅 浪越
剛史 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruzen Petrochemical Co Ltd
Original Assignee
Maruzen Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Petrochemical Co Ltd filed Critical Maruzen Petrochemical Co Ltd
Priority to JP2003350677A priority Critical patent/JP4136886B2/en
Publication of JP2005113049A publication Critical patent/JP2005113049A/en
Application granted granted Critical
Publication of JP4136886B2 publication Critical patent/JP4136886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、新規な脂環式ビニルエーテル重合体に関し、更に詳しくは、光学材料、電気・電子材料用樹脂に好適な、側鎖に脂環骨格を有する新規な脂環式ビニルエーテル重合体に関するものである。   The present invention relates to a novel alicyclic vinyl ether polymer, and more particularly to a novel alicyclic vinyl ether polymer having an alicyclic skeleton in the side chain, which is suitable for optical materials and resins for electrical and electronic materials. is there.

近年、ジシクロペンタジエンの誘導体としてのアクリレート類やエポキシ類について、光学材料分野においては透明性樹脂、接着剤、コーティグ及び光導波路用樹脂として、又、レジスト分野においてはエッチング性が高く、微細なパターンを精度良く形成できるフォトレジスト用樹脂として、その用途が検討されている。   In recent years, acrylates and epoxies as derivatives of dicyclopentadiene are used as transparent resins, adhesives, coatings and optical waveguide resins in the field of optical materials, and in the resist field, they have high etching properties and fine patterns. Is being studied as a photoresist resin that can be accurately formed.

一般に、ジシクロペンタジエンの誘導体としてのアクリレート類は、脂環骨格を有するために剛直な構造や透明性を有しており、このようなアクリレート類については、例えば特許文献1や特許文献2に、トリシクロペンタデカンジメタノールとアクリル酸及びメタアクリル酸のエステル化物であるジメチロールトリシクロペンタデカンジ(メタ)アクリレートのラジカル重合体やその製造方法が記載されている。   In general, acrylates as derivatives of dicyclopentadiene have a rigid structure and transparency because they have an alicyclic skeleton, and for such acrylates, for example, in Patent Document 1 and Patent Document 2, A radical polymer of dimethylol tricyclopentadecane di (meth) acrylate, which is an esterified product of tricyclopentadecane dimethanol with acrylic acid and methacrylic acid, and a method for producing the same are described.

又、上記のジメチロールトリシクロペンタデカンジ(メタ)アクリレートのラジカル重合体の用途としては、例えば特許文献3に、寸法安定性、耐熱性、透明性に優れる成型品を製造可能な光硬化性樹脂組成物が記載されている。   Moreover, as a use of the above-mentioned radical polymer of dimethylol tricyclopentadecane di (meth) acrylate, for example, Patent Document 3 discloses a photocurable resin capable of producing a molded product having excellent dimensional stability, heat resistance, and transparency. A composition is described.

しかしながら、上記のようなアクリル系モノマーに関しては、皮膚刺激性や臭気性が強く、作業性、環境上の問題があること、及び、アクリル系化合物は吸湿性を有するために、樹脂材料として使用する際には寸法安定性に問題あることがますます指摘されるようになり、このようなアクリル系化合物の欠点を改善しようとする中で、ビニルエーテル系化合物及びこれらの重合体が注目されるようになった。   However, the acrylic monomers as described above have strong skin irritation and odor properties, have workability and environmental problems, and acrylic compounds have hygroscopic properties, so they are used as resin materials. In some cases, it is increasingly pointed out that there is a problem in dimensional stability, and vinyl ether compounds and polymers thereof are attracting attention in an attempt to improve the drawbacks of such acrylic compounds. became.

例えば、ビニルエーテル系化合物の重合体としては、特許文献4に、光学用成型品として、ポリ(ネオペンチルビニルエーテル)、或いは、このポリマーと、側鎖に環状飽和炭化水素、例えばノルボルニル基、ジメタノデカヒドロナフチル基等の基本骨格を有するビニルエーテルポリマーとのブレンド品が、ガラス転移点がそれぞれ125℃、140℃近くあり、複屈折が極めて低く、光透過性に優れ、且つ、吸水率が低いことが記載されている。   For example, as a polymer of a vinyl ether compound, Patent Document 4 discloses, as an optical molded product, poly (neopentyl vinyl ether), or this polymer, and a cyclic saturated hydrocarbon such as norbornyl group, dimethanodeca on the side chain. A blended product with a vinyl ether polymer having a basic skeleton such as a hydronaphthyl group has glass transition points of 125 ° C. and 140 ° C., respectively, extremely low birefringence, excellent light transmittance, and low water absorption. Are listed.

又、特許文献5には、光学用成型品として、例えば側鎖に環状飽和炭化水素、例えばノルボルニル基、ジメタノデカヒドロナフチル基等の基本骨格を有するビニルエーテルポリマーが、ガラス転移点が105℃乃至162℃近くあり、複屈折が極めて低く、光透過性に優れ、且つ、吸水率が低いことが開示されている。   Further, in Patent Document 5, as an optical molded article, for example, a vinyl ether polymer having a basic skeleton such as a cyclic saturated hydrocarbon such as a norbornyl group or a dimethanodecahydronaphthyl group in a side chain has a glass transition point of 105 ° C. to It is disclosed that the temperature is close to 162 ° C., the birefringence is extremely low, the light transmittance is excellent, and the water absorption is low.

更に、特許文献6には、脂環式炭化水素、例えばアダマンタン環、ノルボルナン環、トリシクロデカン環等を有するビニルエーテル化合物を単独重合して得られる、耐エッチング性に優れ、微細なパターンを精度良く形成できるフォトレジスト用高分子化合物が開示されている。   Furthermore, Patent Document 6 discloses that a fine pattern is obtained with excellent etching resistance and a fine pattern obtained by homopolymerizing a vinyl ether compound having an alicyclic hydrocarbon such as an adamantane ring, a norbornane ring, a tricyclodecane ring or the like. Polymer compounds for photoresist that can be formed are disclosed.

ところが、側鎖にノルボルナン、トリシクロデカン等の基本骨格を有する上記のビニルエーテルポリマーは、ガラス転移点が高いため、光透明性を有する光学材料に用いられているが、近年の光学材料分野における波長の短波長への変遷と透明性への要求、或いは、電気・電子材料分野における高速化と高密度化に対応するには、更に、単分散に近いポリマー等への改良が望まれている。
特開昭61−174208号公報 特開平01−168712号公報 特開平10−120739号公報 特開平01−102501号公報 特開平01−102502号公報 特開2003−160612号公報
However, the above vinyl ether polymers having a basic skeleton such as norbornane or tricyclodecane in the side chain are used for optical materials having optical transparency because of their high glass transition points. In order to respond to the transition to short wavelength and the demand for transparency, or to increase the speed and density in the field of electric and electronic materials, further improvements to polymers close to monodispersion are desired.
JP-A-61-174208 Japanese Patent Laid-Open No. 01-168712 Japanese Patent Laid-Open No. 10-12039 Japanese Patent Laid-Open No. 01-102501 Japanese Patent Laid-Open No. 01-102502 JP 2003-160612 A

本発明は、上記のような従来技術の難点を解消し、光学材料分野における波長の短波長への変遷と透明性への要求、或いは、電気・電子材料分野における高速化と高密度化への要求に対応し、側鎖に新規な脂環骨格を導入した新たなビニルエーテル重合体を提供することを目的とする。   The present invention solves the problems of the prior art as described above, and shifts the wavelength to a short wavelength in the optical material field and demands for transparency, or increases the speed and density in the electric / electronic material field. An object of the present invention is to provide a new vinyl ether polymer in which a new alicyclic skeleton is introduced into a side chain in response to the demand.

本発明者は、上記の課題を解決すべく鋭意検討した結果、側鎖に新規な脂環骨格、即ち、特定のトリシクロデカン或いはペンタシクロペンタデカン骨格を有するビニルエーテル重合体が、疎水性が高いため、吸湿性が低く、寸法安定性に優れ、又、その嵩高さから、耐熱性、ビニルエーテル基による金属等への優れた密着性が期待でき、且つ、単分散に近い樹脂であることを見い出し、更に研究を重ねて新規な脂環式ビニルエーテル重合体を開発し、本発明を完成させた。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a novel alicyclic skeleton, that is, a vinyl ether polymer having a specific tricyclodecane or pentacyclopentadecane skeleton is highly hydrophobic. , Low hygroscopicity, excellent dimensional stability, and from its bulkiness, heat resistance, excellent adhesion to metals by vinyl ether groups can be expected, and found to be a resin close to monodispersion, Further research was conducted to develop a novel alicyclic vinyl ether polymer, thereby completing the present invention.

即ち、本発明は、式[1]   That is, the present invention provides the formula [1]


(mは0又は1を示し、nは10〜10,000の整数を示す。)
で表され、リビングカチオン重合法により重合されたことを特徴とする新規な脂環式ビニルエーテル重合体を提供する。

(M represents 0 or 1, and n represents an integer of 10 to 10,000.)
And a novel alicyclic vinyl ether polymer characterized by being polymerized by a living cationic polymerization method .

又、本発明は、式[2]     The present invention also provides the formula [2]

(p及びqは0以上の整数を示し、p+q=10〜10,000である。)
で表されることを特徴とする新規な脂環式ビニルエーテル重合体を提供する。
(P and q represent an integer of 0 or more, and p + q = 10 to 10,000.)
The alicyclic vinyl ether polymer characterized by these is provided.

更に又、本発明は、式[3]     Furthermore, the present invention provides the formula [3]


(mは0又は1を示し、p、qは0以上の整数を示し、p+q=10〜10,000である。)
で表され、リビングカチオン重合法により重合されたことを特徴とする新規な脂環式ビニルエーテル重合体を提供する。

(M represents 0 or 1, p, q represents an integer of 0 or more, and p + q = 10 to 10,000.)
And a novel alicyclic vinyl ether polymer characterized by being polymerized by a living cationic polymerization method .

本発明により、光学、電気・電子材料用樹脂として有用な、側鎖に特定のトリシクロデカン、及びペンタシクロペンタデカン骨格を有する新たな脂環式ビニルエーテルを重合して新規な脂環式ビニルエーテル重合体を提供することが可能となる。   According to the present invention, a novel alicyclic vinyl ether polymer obtained by polymerizing a new alicyclic vinyl ether having a specific tricyclodecane and pentacyclopentadecane skeleton in the side chain, which is useful as a resin for optical and electrical / electronic materials. Can be provided.

式[1]〜[3]で表される本発明の脂環式ビニルエーテル重合体のためのモノマーとなる脂環式ビニルエーテル類としては、特に制限はなく、ビニル基交換等、公知の合成方法により得られるものを採用することができるが、例えば下式で示されるものが用いられる。   The alicyclic vinyl ethers that are monomers for the alicyclic vinyl ether polymer of the present invention represented by the formulas [1] to [3] are not particularly limited, and may be obtained by a known synthesis method such as vinyl group exchange. Although what is obtained can be adopted, for example, one represented by the following formula is used.

上記の脂環式ビニルエーテル類の製造は、効率面から無置換のアセチレンを用いる方法によることが望ましい。即ち、例えば、前駆体のアルコールを、塩基性化合物である水酸化カリウム、水酸化ナトリウム等のアルカリ金属化合物の存在下、反応溶媒として極性非プロトン溶媒である1,3−ジメチルイミダゾリジノン等を導入し、減圧下にて100〜200℃の温度で反応させ、得られた反応液を所定の反応容器に導入し、アセチレン雰囲気下に100〜200の温度で反応させ、反応液を回収してから溶媒を留去し、抽出、精製等することにより原料モノマーを得ることができる。 The above alicyclic vinyl ethers are preferably produced by a method using unsubstituted acetylene from the viewpoint of efficiency. That is, for example, the precursor alcohol is converted into a polar aprotic solvent such as 1,3-dimethylimidazolidinone as a reaction solvent in the presence of an alkali metal compound such as potassium hydroxide or sodium hydroxide as a basic compound. Introducing and reacting at a temperature of 100 to 200 ° C. under reduced pressure, introducing the resulting reaction solution into a predetermined reaction vessel, reacting at a temperature of 100 to 200 in an acetylene atmosphere, and recovering the reaction solution The raw material monomer can be obtained by evaporating the solvent from, extracting, purifying, and the like.

更に具体的には、上記の脂環式ビニルエーテル類のうち、例えば、式[4]で表されるトリシクロデカンビニルエーテルは、式[9]に示されるトリシクロデカンモノオールと無置換のアセチレンにより、以下のようにして製造することができる。   More specifically, among the above alicyclic vinyl ethers, for example, tricyclodecane vinyl ether represented by the formula [4] is represented by tricyclodecane monool represented by the formula [9] and unsubstituted acetylene. It can be manufactured as follows.

上記の原料(脂環式ビニルエーテル類)により、本発明の新規な脂環式ビニルエーテル重合体を製造するための方法としては特に制限はなく、カチオン重合等、公知の合成方により製造できるが、重合度の制御が容易で、且つ、単分散に近い重合体が得られることから、リビングカチオン重合法を用いることが望ましい。 The method for producing the novel alicyclic vinyl ether polymer of the present invention using the above raw materials (alicyclic vinyl ethers) is not particularly limited and can be produced by a known synthesis method such as cationic polymerization. It is desirable to use the living cationic polymerization method because the degree of control is easy and a polymer close to monodispersion can be obtained.

例えば、公知のビニルエーテル重合体の製造法に準じて、対応するビニルエーテルモノマーを不活性雰囲気中で硫酸等のプレンステツド酸や三フツ化ホウ素、四塩化チタン等のルイス酸を開始剤とする、通常のカチオン重合により高分子量化させることができる。重合の反応溶媒としては、通常のカチオン重合に用いられる溶媒、例えばトルエンや塩化メチレン或いは塩化メチレン/ヘキサン混合溶媒等が用いられる。   For example, in accordance with a known method for producing a vinyl ether polymer, a corresponding vinyl ether monomer is used in an inert atmosphere as a starter acid such as sulfuric acid or other prested acid, boron trifluoride, titanium tetrachloride or other Lewis acid as an initiator. High molecular weight can be achieved by cationic polymerization. As a polymerization reaction solvent, a solvent used for normal cationic polymerization, for example, toluene, methylene chloride, a methylene chloride / hexane mixed solvent, or the like is used.

反応温度は、通常−100℃程度から30℃の範囲であるが、高分子量の脂環式ビニルエーテル重合体を得るためには、開始剤濃度を下げ、−30℃以下の低温で重合させるのが良い。尚、カチオン共重合の場合には、第3のコモノマーとして、更に炭素数4以下の低級アルキルビニルエーテルを添加することができる。   The reaction temperature is usually in the range of about −100 ° C. to 30 ° C., but in order to obtain a high molecular weight alicyclic vinyl ether polymer, the initiator concentration is lowered and the polymerization is carried out at a low temperature of −30 ° C. or lower. good. In the case of cationic copolymerization, a lower alkyl vinyl ether having 4 or less carbon atoms can be added as the third comonomer.

上記重合反応により、重合体は塊状若しくは溶媒に溶解或いは分散した形で得られるが、必要に応じてメタノール等の貧溶媒に注ぐことによって、未反応のモノマーや、低重合度のオリゴマー、分散剤等を除去することができる。   By the above polymerization reaction, the polymer is obtained in the form of a mass or dissolved or dispersed in a solvent, but if necessary, by pouring it into a poor solvent such as methanol, an unreacted monomer, an oligomer with a low polymerization degree, a dispersing agent Etc. can be removed.

具体的には、例えば、上記の原料(脂環式ビニルエーテル類)にトルエンを加えて、系内の温度が−30℃に達した時点で、塩化水素のトルエン溶液及び塩化亜鉛のジエチルエーテル溶液を添加し、重合を開始し、分子量を時間の経過に応じてゲルパーミエーションクロマトグラフィー(GPC)でモニタリングし、最後に系内にアンモニア/メタノール溶液を加えて、重合を停止させる。反応後は混合溶液中にトルエンを加え希釈し、食塩水溶液で洗浄し、溶媒を除去させ、その後に残留物をTHF(テトラヒドロフラン)に溶解させ、メタノール溶液中に再沈澱させ、濾過し、減圧乾燥させて、目的とする重合体が得ることができるのである。   Specifically, for example, when toluene is added to the above raw materials (alicyclic vinyl ethers) and the temperature in the system reaches −30 ° C., a toluene solution of hydrogen chloride and a diethyl ether solution of zinc chloride are added. The polymerization is started, the molecular weight is monitored by gel permeation chromatography (GPC) as time passes, and finally, an ammonia / methanol solution is added to the system to stop the polymerization. After the reaction, toluene is added to the mixed solution to dilute, washed with brine solution to remove the solvent, and then the residue is dissolved in THF (tetrahydrofuran), reprecipitated in methanol solution, filtered and dried under reduced pressure. Thus, the desired polymer can be obtained.

以下に実施例を挙げて詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
下記の実施例中、「数平均分子量(以下、Mnと略す)」及び「分子量分布(重量平均分子量と数平均分子量の比、以下、Mw/Mnと略す)」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いた標準ポリスチレン換算法により算出した。
Examples will be described in detail below, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
In the following examples, “number average molecular weight (hereinafter abbreviated as Mn)” and “molecular weight distribution (ratio of weight average molecular weight to number average molecular weight, hereinafter abbreviated as Mw / Mn)” are gel permeation chromatography ( It was calculated by a standard polystyrene conversion method using GPC).

参考例1
トリシクロデカンモノメチルビニルエーテルの合成
ガラス製フラスコにトリシクロデカンモノメタノール205.66g(1.24mol)、水酸化カリウム7.56g(10mol%)、1,3−ジメチルイミダゾリジノン(DMI) 454.35gを導入し、減圧下(12mmHg)、120℃で反応させた。この反応液をステンレス製オートクレーブに導入し、0.02MPaのアセチレン雰囲気下、140℃で5時間反応させた。反応液を回収、溶媒を留去した後、残渣をヘキサン/メタノール/水で抽出し、ヘキサン相を回収した。ヘキサン相を無水硫酸ナトリウムで乾燥、濾別し、減圧乾燥することにより粗トリシクロデカンモノメチルビニルエーテル160.01gを得た。更に、蒸留精製を行って、目的のトリシクロデカンモノメチルビニルエーテル139.89gを得た。
Reference example 1
Synthesis of tricyclodecane monomethyl vinyl ether In a glass flask, 205.66 g (1.24 mol) of tricyclodecane monomethanol, 7.56 g (10 mol%) of potassium hydroxide, 454.35 g of 1,3-dimethylimidazolidinone (DMI) Was allowed to react at 120 ° C. under reduced pressure (12 mmHg). This reaction solution was introduced into a stainless steel autoclave and allowed to react at 140 ° C. for 5 hours in an acetylene atmosphere of 0.02 MPa. After the reaction solution was recovered and the solvent was distilled off, the residue was extracted with hexane / methanol / water to recover the hexane phase. The hexane phase was dried over anhydrous sodium sulfate, filtered, and dried under reduced pressure to obtain 160.01 g of crude tricyclodecane monomethyl vinyl ether. Furthermore, distillation purification was performed to obtain 139.89 g of the desired tricyclodecane monomethyl vinyl ether.

参考例2
トリシクロデカンビニルエーテルの合成
ガラス製フラスコにトリシクロデカンモノオール137.00g(0.90mol)、水酸化カリウム5.5g(10mol%)、1,3−ジメチルイミダゾリジノン(DMI)500gを導入し、減圧下(40mmHg)、120℃で反応させた。この反応液をステンレス製オートクレーブに導入し、0.02MPaのアセチレン雰囲気下、140℃で5時間反応させた。反応液を回収、溶媒を留去した後、残渣をトルエン/水で抽出し、トルエン相を回収した。トルエン相を無水硫酸ナトリウムで乾燥、濾別し、減圧乾燥することにより粗トリシクロデカンビニルエーテル143.80gを得た。更に、蒸留精製を行って、目的のトリシクロデカンビニルエーテル116.70gを得た。
Reference example 2
Synthesis of tricyclodecane vinyl ether Into a glass flask, 137.00 g (0.90 mol) of tricyclodecane monool, 5.5 g (10 mol%) of potassium hydroxide, and 500 g of 1,3-dimethylimidazolidinone (DMI) were introduced. The reaction was carried out at 120 ° C. under reduced pressure (40 mmHg). This reaction solution was introduced into a stainless steel autoclave and allowed to react at 140 ° C. for 5 hours in an acetylene atmosphere of 0.02 MPa. After the reaction solution was recovered and the solvent was distilled off, the residue was extracted with toluene / water to recover the toluene phase. The toluene phase was dried over anhydrous sodium sulfate, filtered, and dried under reduced pressure to obtain 143.80 g of crude tricyclodecane vinyl ether. Furthermore, distillation purification was performed to obtain 116.70 g of the target tricyclodecane vinyl ether.

参考例3
トリシクロデセンビニルエーテルの合成
ガラス製フラスコにトリシクロデセンモノオール200.00g(1.33mol)、水酸化カリウム7.2g(10mol%)、1,3−ジメチルイミダゾリジノン(DMI)500gを導入し、減圧下(40mmHg)、120℃で反応させた。この反応液をステンレス製オートクレーブに導入し、0.02MPaのアセチレン雰囲気下、140℃で6時間反応させた。反応液を回収、溶媒を留去した後、残渣をヘキサン/水で抽出し、ヘキサン相を回収した。ヘキサン相を無水硫酸ナトリウムで乾燥、濾別し、減圧乾燥することにより粗トリシクロデセンビニルエーテル211.00gを得た。更に、蒸留精製を行って、目的のトリシクロデセンビニルエーテル170.50gを得た。
Reference example 3
Synthesis of tricyclodecene vinyl ether Into a glass flask was introduced 200.00 g (1.33 mol) of tricyclodecene monool, 7.2 g (10 mol%) of potassium hydroxide, and 500 g of 1,3-dimethylimidazolidinone (DMI). The reaction was carried out at 120 ° C. under reduced pressure (40 mmHg). This reaction solution was introduced into a stainless steel autoclave and allowed to react at 140 ° C. for 6 hours in an acetylene atmosphere of 0.02 MPa. After the reaction solution was recovered and the solvent was distilled off, the residue was extracted with hexane / water to recover the hexane phase. The hexane phase was dried over anhydrous sodium sulfate, filtered and dried under reduced pressure to obtain 211.00 g of crude tricyclodecene vinyl ether. Furthermore, distillation purification was performed to obtain 170.50 g of the desired tricyclodecene vinyl ether.

参考例4
ペンタシクロペンタデカンモノビニルエーテルの合成
ガラス製フラスコにペンタシクロペンタモノオール185.00g(0.85mol)、水酸化カリウム4.76g(10mol%)、N−メチルピロリドン(NMP) 500gを導入し、減圧下(40mmHg)、120℃で反応させた。この反応液をステンレス製オートクレーブに導入し、0.02MPaのアセチレン雰囲気下、145℃で5時間反応させた。反応液を回収、溶媒を留去した後、残渣をヘキサン/メタノール/水で抽出し、ヘキサン相を回収した。ヘキサン相を無水硫酸ナトリウムで乾燥、濾別し、減圧乾燥することにより粗ペンタシクロペンタデカンモノビニルエーテル39.06gを得た。更に、蒸留精製を行って、目的のペンタシクロペンタデカンモノビニルエーテル20.28gを得た。
Reference example 4
Synthesis of pentacyclopentadecane monovinyl ether 185.00 g (0.85 mol) of pentacyclopentamonool, 4.76 g (10 mol%) of potassium hydroxide and 500 g of N-methylpyrrolidone (NMP) were introduced into a glass flask under reduced pressure. (40 mmHg), the reaction was performed at 120 ° C. This reaction solution was introduced into a stainless steel autoclave and allowed to react at 145 ° C. for 5 hours in an acetylene atmosphere of 0.02 MPa. After the reaction solution was recovered and the solvent was distilled off, the residue was extracted with hexane / methanol / water to recover the hexane phase. The hexane phase was dried over anhydrous sodium sulfate, filtered and dried under reduced pressure to obtain 39.06 g of crude pentacyclopentadecane monovinyl ether. Furthermore, distillation purification was performed to obtain 20.28 g of the intended pentacyclopentadecane monovinyl ether.

トリシクロデカンモノメチルビニルエーテル重合体の合成
三方活栓を取り付けたガラス容器内を窒素置換した後、窒素ガス雰囲気下で加熱することにより、ガラス容器内の吸着水を除去した。系を室温に戻した後、トリシクロデカンモノメチルビニルエーテル5.0mmol及びトルエン5.0mlを加え、系中の温度が−30℃に達したところで塩化水素(2.5×10−2mmol)のトルエン溶液及び塩化亜鉛(2.5×10−3mmol)のジエチルエーテル溶液を添加して重合を開始した。分子量を時間の経過に応じてGPCを用いてモニタリングし、系中に3.0wt%のアンモニア/メタノール溶液を加えることにより重合反応の停止を行った。反応を終えた混合溶液中にトルエンを加え希釈し、10wt%食塩水溶液で3回洗浄し溶媒を除去した。その後残留物をテトラヒドロフラン(THF)に溶解させ、メタノール溶液中で再沈殿したものを濾過し、減圧乾燥させて目的物であるトリシクロデカンモノメチルビニルエーテル重合体0.8gを得た。
Synthesis of tricyclodecane monomethyl vinyl ether polymer The inside of a glass container equipped with a three-way stopcock was purged with nitrogen, and then the adsorbed water in the glass container was removed by heating in a nitrogen gas atmosphere. After returning the system to room temperature, 5.0 mmol of tricyclodecane monomethyl vinyl ether and 5.0 ml of toluene were added, and when the temperature in the system reached −30 ° C., toluene of hydrogen chloride (2.5 × 10 −2 mmol). The solution and a solution of zinc chloride (2.5 × 10 −3 mmol) in diethyl ether were added to initiate the polymerization. The molecular weight was monitored using GPC over time, and the polymerization reaction was stopped by adding a 3.0 wt% ammonia / methanol solution to the system. Toluene was added to the mixed solution after the reaction to dilute, and the mixture was washed 3 times with a 10 wt% saline solution to remove the solvent. Thereafter, the residue was dissolved in tetrahydrofuran (THF), and the re-precipitated product in a methanol solution was filtered and dried under reduced pressure to obtain 0.8 g of the target tricyclodecane monomethyl vinyl ether polymer.

回収した重合体のMnは2.2×104 、Mw/Mnは1.1であり、Tgは65℃であった。又、トリシクロデカンモノメチルビニルエーテルの1H−NMR分析において6.4ppmに観察されるエーテル酸素に隣接したビニル水素のシグナルが重合後消失することから、トリシクロデカンモノメチルビニルエーテル重合体が生成していることが支持された。 The recovered polymer had Mn of 2.2 × 10 4 , Mw / Mn of 1.1, and Tg of 65 ° C. Moreover, since the signal of vinyl hydrogen adjacent to ether oxygen observed at 6.4 ppm in 1 H-NMR analysis of tricyclodecane monomethyl vinyl ether disappears after polymerization, a tricyclodecane monomethyl vinyl ether polymer is formed. It was supported.

トリシクロデカンビニルエーテル重合体の合成
三方活栓を取り付けたガラス容器内を窒素置換した後、窒素ガス雰囲気下で加熱することにより、ガラス容器内の吸着水を除去した。系を室温に戻した後、トリシクロデカンビニルエーテル56.1mmol及びトルエン55.0mlを加え、系中の温度が−30℃に達したところで塩化水素(3.0×10−2mmol)のトルエン溶液及び塩化亜鉛(7.0×10−3mmol)のジエチルエーテル溶液を添加して重合を開始した。分子量を時間の経過に応じてGPCを用いてモニタリングし、系中に3.0wt%のアンモニア/メタノール溶液を加える事により重合反応の停止を行った。反応を終えた混合溶液中にトルエンを加え希釈し、10wt%食塩水溶液で3回洗浄し溶媒を除去した。その後残留物をTHFに溶解させ、メタノール溶液中で再沈殿したものを濾過し、減圧乾燥させて目的物であるトリシクロデカンビニルエーテル重合体8.4gを得た。
Synthesis of Tricyclodecane Vinyl Ether Polymer The inside of a glass container equipped with a three-way cock was replaced with nitrogen, and then heated in a nitrogen gas atmosphere to remove adsorbed water in the glass container. After returning the system to room temperature, 56.1 mmol of tricyclodecane vinyl ether and 55.0 ml of toluene were added. When the temperature in the system reached −30 ° C., a toluene solution of hydrogen chloride (3.0 × 10 −2 mmol). And a diethyl ether solution of zinc chloride (7.0 × 10 −3 mmol) was added to initiate the polymerization. The molecular weight was monitored using GPC over time, and the polymerization reaction was stopped by adding a 3.0 wt% ammonia / methanol solution to the system. Toluene was added to the mixed solution after the reaction to dilute, and the mixture was washed 3 times with a 10 wt% saline solution to remove the solvent. Thereafter, the residue was dissolved in THF, and the re-precipitated product in methanol solution was filtered and dried under reduced pressure to obtain 8.4 g of the target tricyclodecane vinyl ether polymer.

回収した重合体のMnは1.8×10、Mw/Mnは1.2であり、Tgは108℃であった。又、トリシクロデカンビニルエーテルの1H−NMR分析において6.4ppmに観察されるエーテル酸素に隣接したビニル水素のシグナルが重合後消失することから、トリシクロデカンビニルエーテル重合体が生成していることが支持された。 The recovered polymer had Mn of 1.8 × 10 5 , Mw / Mn of 1.2, and Tg of 108 ° C. Moreover, since the signal of vinyl hydrogen adjacent to ether oxygen observed at 6.4 ppm in 1 H-NMR analysis of tricyclodecane vinyl ether disappears after polymerization, a tricyclodecane vinyl ether polymer is formed. Supported.

トリシクロデセンビニルエーテル重合体の合成
三方活栓を取り付けたガラス容器内を窒素置換した後、窒素ガス雰囲気下で加熱することにより、ガラス容器内の吸着水を除去した。系を室温に戻した後、トリシクロデセンビニルエーテル8.0mmol及びトルエン8.0mlを加え、系中の温度が−30℃に達したところで塩化水素(4.0×10−2mmol)のトルエン溶液及び塩化亜鉛(4.0×10−3mmol)のジエチルエーテル溶液を添加して重合を開始した。分子量を時間の経過に応じてGPCを用いてモニタリングし、系中に3.0wt%のアンモニア/メタノール溶液を加える事により重合反応の停止を行った。反応を終えた混合溶液中にトルエンを加え希釈し、10wt%食塩水溶液で3回洗浄し溶媒を除去した。その後残留物をTHFに溶解させ、メタノール溶液中で再沈殿したものを濾過し、減圧乾燥させて目的物であるトリシクロデセンビニルエーテル重合体1.1gを得た。
Synthesis of Tricyclodecene Vinyl Ether Polymer After the inside of a glass container equipped with a three-way cock was replaced with nitrogen, the adsorbed water in the glass container was removed by heating in a nitrogen gas atmosphere. After returning the system to room temperature, 8.0 mmol of tricyclodecene vinyl ether and 8.0 ml of toluene were added, and when the temperature in the system reached −30 ° C., a toluene solution of hydrogen chloride (4.0 × 10 −2 mmol). And a diethyl ether solution of zinc chloride (4.0 × 10 −3 mmol) was added to initiate the polymerization. The molecular weight was monitored with GPC over time, and the polymerization reaction was stopped by adding 3.0 wt% ammonia / methanol solution to the system. Toluene was added to the mixed solution after the reaction to dilute, and the mixture was washed 3 times with a 10 wt% saline solution to remove the solvent. Thereafter, the residue was dissolved in THF, and reprecipitated in a methanol solution was filtered and dried under reduced pressure to obtain 1.1 g of the target tricyclodecene vinyl ether polymer.

回収した重合体のMnは2.2×104、Mw/Mnは1.1であり、Tgは100℃であった。又、トリシクロデセンビニルエーテル1H−NMR分析において6.3ppmに観察されるエーテル酸素に隣接したビニル水素のシグナルが重合後消失することから、トリシクロデセンビニルエーテル重合体が生成していることが支持された。 The recovered polymer had Mn of 2.2 × 10 4 , Mw / Mn of 1.1, and Tg of 100 ° C. Further, since the signal of vinyl hydrogens adjacent to an ether oxygen are observed 6.3ppm in of 1 H-NMR analysis tricycloalkyl decene vinyl disappears after polymerization, be tricycloalkyl decene vinyl polymer is produced Supported.

ペンタシクロペンタデカンモノビニルエーテル重合体の合成
三方活栓を取り付けたガラス容器内を窒素置換した後、窒素ガス雰囲気下で加熱することにより、ガラス容器内の吸着水を除去した。系を室温に戻した後、ペンタシクロペンタデカンモノビニルエーテル3.9mmol及びトルエン3mlを加え、系中の温度が−30℃に達したところで塩化水素(2.0×10−2mmol)のトルエン溶液及び塩化亜鉛(2.0×10−3mmol)のジエチルエーテル溶液を添加して重合を開始した。GPCを用いてモニタリングし、系中に3wt%のアンモニア/メタノール溶液を加える事により重合反応の停止を行った。反応を終えた混合溶液中にトルエンを加え希釈し、10wt%食塩水溶液で3回洗浄し溶媒を除去した。その後残留物をTHFに溶解させ、メタノール溶液中で再沈殿したものを濾過し、減圧乾燥させて目的物であるペンタシクロペンタデカンモノビニルエーテル重合体0.8gを得た。
Synthesis of Pentacyclopentadecane Monovinyl Ether Polymer The inside of a glass container equipped with a three-way stopcock was purged with nitrogen, and then heated in a nitrogen gas atmosphere to remove adsorbed water in the glass container. After returning the system to room temperature, 3.9 mmol of pentacyclopentadecane monovinyl ether and 3 ml of toluene were added. When the temperature in the system reached −30 ° C., a toluene solution of hydrogen chloride (2.0 × 10 −2 mmol) and Polymerization was initiated by adding a diethyl ether solution of zinc chloride (2.0 × 10 −3 mmol). Monitoring was performed using GPC, and the polymerization reaction was stopped by adding a 3 wt% ammonia / methanol solution to the system. Toluene was added to the mixed solution after the reaction to dilute, and the mixture was washed 3 times with a 10 wt% saline solution to remove the solvent. Thereafter, the residue was dissolved in THF, and reprecipitated in a methanol solution was filtered and dried under reduced pressure to obtain 0.8 g of the target pentacyclopentadecane monovinyl ether polymer.

回収した重合体のMnは1.5×104、Mw/Mnは1.5であり、Tgは160℃であった。又、ペンタシクロペンタデカンモノビニルエーテルの1H−NMR分析において6.2ppmに観察されるエーテル酸素に隣接したビニル水素のシグナルが重合後消失することから、ペンタシクロペンタデカンモノビニルエーテル重合体が生成していることが支持された。 The recovered polymer had Mn of 1.5 × 10 4 , Mw / Mn of 1.5, and Tg of 160 ° C. Moreover, since the signal of vinyl hydrogen adjacent to ether oxygen observed at 6.2 ppm in 1 H-NMR analysis of pentacyclopentadecane monovinyl ether disappears after polymerization, a pentacyclopentadecane monovinyl ether polymer is formed. It was supported.

本発明のビニルエーテル重合体は、側鎖に特定のトリシクロデカン或いはペンタシクロペンタデカン骨格を有し、疎水性が高いため、吸湿性が低く、寸法安定性に優れ、又、その嵩高さから、耐熱性、ビニルエーテル基による金属等への優れた密着性が期待でき、且つ、単分散に近い樹脂であるという優れたものである。   The vinyl ether polymer of the present invention has a specific tricyclodecane or pentacyclopentadecane skeleton in the side chain, and since it has high hydrophobicity, it has low hygroscopicity, excellent dimensional stability, and its bulkiness makes it heat resistant. And excellent adhesion to a metal or the like due to vinyl ether groups, and an excellent resin that is close to monodispersion.

Claims (3)

式[1]

(mは0又は1を示し、nは10〜10,000の整数を示す。)
で表され、リビングカチオン重合法により重合されたことを特徴とする新規な脂環式ビニルエーテル重合体。
Formula [1]

(M represents 0 or 1, and n represents an integer of 10 to 10,000.)
And a novel alicyclic vinyl ether polymer characterized by being polymerized by a living cationic polymerization method .
式[2]

(p及びqは0以上の整数を示し、p+q=10〜10,000である。)
で表されることを特徴とする新規な脂環式ビニルエーテル重合体。
Formula [2]

(P and q represent an integer of 0 or more, and p + q = 10 to 10,000.)
A novel alicyclic vinyl ether polymer characterized by the following:
式[3]

(mは0又は1を示し、p、qは0以上の整数を示し、p+q=10〜10,000である。)
で表され、リビングカチオン重合法により重合されたことを特徴とする新規な脂環式ビニルエーテル重合体。
Formula [3]

(M represents 0 or 1, p, q represents an integer of 0 or more, and p + q = 10 to 10,000.)
And a novel alicyclic vinyl ether polymer characterized by being polymerized by a living cationic polymerization method .
JP2003350677A 2003-10-09 2003-10-09 Polymers of novel alicyclic vinyl ethers Expired - Fee Related JP4136886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350677A JP4136886B2 (en) 2003-10-09 2003-10-09 Polymers of novel alicyclic vinyl ethers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350677A JP4136886B2 (en) 2003-10-09 2003-10-09 Polymers of novel alicyclic vinyl ethers

Publications (2)

Publication Number Publication Date
JP2005113049A JP2005113049A (en) 2005-04-28
JP4136886B2 true JP4136886B2 (en) 2008-08-20

Family

ID=34542162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350677A Expired - Fee Related JP4136886B2 (en) 2003-10-09 2003-10-09 Polymers of novel alicyclic vinyl ethers

Country Status (1)

Country Link
JP (1) JP4136886B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231227A (en) * 2006-03-03 2007-09-13 Univ Of Fukui Vinyl ether copolymer
JP5088925B2 (en) * 2006-09-01 2012-12-05 国立大学法人福井大学 Vinyl ether compound having acetoacetoxy group, polymer thereof and production method thereof
US7435782B2 (en) * 2006-11-10 2008-10-14 Maruzen Petrochemical Co., Ltd. ABA tri-block copolymer
US8785582B2 (en) 2008-09-29 2014-07-22 Nippon Carbide Industries Co., Ltd. Vinylozy group-containing vinyl polymer
CN102449004B (en) * 2009-05-29 2014-04-09 吉坤日矿日石能源株式会社 Isobutylene-based polymer and method for producing same
WO2011021437A1 (en) * 2009-08-21 2011-02-24 新日本石油株式会社 Rubber composition, crosslinked rubber composition, and pneumatic tire
SG178992A1 (en) 2009-09-08 2012-04-27 Jx Nippon Oil & Energy Corp Vinyl ether compound, vinyl ether polymer, and method for producing vinyl ether compound
JP5890323B2 (en) 2011-01-13 2016-03-22 丸善石油化学株式会社 Resin composition for optical imprint, pattern forming method, and etching mask
JP6003898B2 (en) 2011-09-27 2016-10-05 丸善石油化学株式会社 Optical element material and manufacturing method thereof
EP3284760A4 (en) * 2015-03-25 2018-12-19 Zeon Corporation Polymer, molding material and resin molded body

Also Published As

Publication number Publication date
JP2005113049A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
EP2079844B1 (en) Synthesis of inimers and hyperbranched polymers
JP4136886B2 (en) Polymers of novel alicyclic vinyl ethers
Liu et al. Dihydroxyl-terminated telechelic polymers prepared by RAFT polymerization using functional trithiocarbonate as chain transfer agent
JP2000313721A (en) New hydroxy group-containing copolymer and its production
EP3080170B1 (en) Insertion polynorbornene-based thermoset resins
JP5877507B2 (en) Curing composition having resistance to curing shrinkage, cured product obtained by curing said curable composition, and method
US20100324235A1 (en) Catalytic composition for producing 1-alkene and acrylates copolymer and method for producing 1-alkene and acrylates copolymer
JP5039615B2 (en) Novel alicyclic vinyl ether polymer
CN1886431B (en) Hyperbranched polymer
JP4924795B2 (en) Norbornane lactone (meth) acrylate and polymer thereof
Feng et al. Synthesis of 6‐Armed Amphiphilic Block Copolymers with Styrene and 2, 3‐Dihydroxypropyl Acrylate by Atom Transfer Radical Polymerization
Matsumoto et al. Synthesis and characterization of thermally stable polymers through anionic polymerization of tert-alkyl crotonates
JP4452037B2 (en) New alicyclic vinyl ether
CN1194994C (en) Method for preparing hyperbranched polymers and its preparing method
JP2007131683A (en) Acrylic acid ester-based polymer having excellent thermal characteristic and optical characteristic and monomer for the same
JP2007231227A (en) Vinyl ether copolymer
CN105254791A (en) Branched poly (p-hydroxystyrene) copolymer used for 248nm photoresist
JP2719602B2 (en) Acrylic acid copolymer and method for producing the same
Cho et al. Controlled Anionic Synthesis of Poly [2‐(3‐nitrocarbazolyl) ethyl methacrylate]
KR20000057447A (en) (meth)acrylic ester copolymers and process for producing the same
JPS63305112A (en) Novel phenolic alternating copolymer and manufacture thereof
CN108976426B (en) High-grafting-density ring comb polymer and preparation method thereof
Choi et al. Synthesis and thermal characterization of poly (dimethyl bicyclobutane‐1, 3‐dicarboxylate) and its copolymers
JP3649477B2 (en) Transparent heat resistant resin
JPH01106834A (en) Cyclohexylcyclohexyl vinyl ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Ref document number: 4136886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees