JP4136166B2 - Method for detecting abnormal heating of sodium-sulfur battery and method for preventing damage using the same - Google Patents

Method for detecting abnormal heating of sodium-sulfur battery and method for preventing damage using the same Download PDF

Info

Publication number
JP4136166B2
JP4136166B2 JP07083499A JP7083499A JP4136166B2 JP 4136166 B2 JP4136166 B2 JP 4136166B2 JP 07083499 A JP07083499 A JP 07083499A JP 7083499 A JP7083499 A JP 7083499A JP 4136166 B2 JP4136166 B2 JP 4136166B2
Authority
JP
Japan
Prior art keywords
sodium
sulfur battery
abnormal heating
battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07083499A
Other languages
Japanese (ja)
Other versions
JP2000268856A (en
Inventor
敏幸 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP07083499A priority Critical patent/JP4136166B2/en
Publication of JP2000268856A publication Critical patent/JP2000268856A/en
Application granted granted Critical
Publication of JP4136166B2 publication Critical patent/JP4136166B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、異常加熱を素早く検知して、火災やナトリウム−硫黄電池が破損するのを防止するためのナトリウム−硫黄電池の異常加熱検知方法及びそれを用いた破損防止方法に関する。
【0002】
【従来の技術】
ナトリウム−硫黄電池は、一方に陰極活性物質である溶融金属ナトリウム、他方には陽極活性物質である溶融硫黄を配し、両者をナトリウムイオンに対して選択的な透過性を有するβ−アルミナ固体電解質で隔離した高温二次電池である。このようなナトリウム−硫黄電池は、例えば、夜間電力貯蔵等の用途を有し、通常、単電池を複数接続して断熱容器に収納したモジュール電池として用いられる。
【0003】
ところで、ナトリウム−硫黄電池は、運転立ち上げ時に外部から熱を供給して一定温度以上に昇温する必要があり、又、充放電休止中においても、電池内部のナトリウムや多硫化ナトリウムの固化を防いで、次の充放電が速やかに実施できるように、所定の温度に保温しておく必要がある。即ち、モジュール電池の昇温や保温に必要とされる熱を外部から供給することが必要であり、その手段として、通常、ヒーターを断熱容器内部に設置してある。
【0004】
このヒーターの作動は、通常、断熱容器内の温度を熱電対により測定した値に基づいて、コンピュータ・プログラムにより自動的に制御されている。又、何らかの理由により、ヒーターが異常加熱を起こした場合にも、上記の熱電対が温度の上昇を検知し、熱電対からの信号に基づいて、コンピュータ・プログラムにより自動的にヒーターの作動を停止することにより、火災の発生やナトリウム−硫黄電池の破損を防止していた。
【0005】
【発明が解決しようとする課題】
しかしながら、上記のように、温度のみを手がかりにしてヒーターの異常加熱を検知する方法では、例えば熱電対等の温度検知手段が故障した場合、ヒーターの異常加熱を検知する手段がなくなり、火災の発生やナトリウム−硫黄電池の破損を効果的に防止することができないおそれがあった。従って、ヒーターの異常加熱を、温度以外のパラメーターにより検知する手段を設け、温度検知手段との併用により、二重にヒーターの異常加熱を検知できるような手段を講じることが望ましい。
【0006】
本発明はかかる状況に鑑みてなされたものであり、その目的とするところは、温度以外のパラメーターを介してヒーターの異常加熱を検知でき、温度検知手段との併用により、より確実にヒーターの異常加熱を検知できるナトリウム−硫黄電池の異常加熱検知方法及びそれを用いた破損防止方法を提供することにある。
【0007】
【課題を解決するための手段】
即ち、本発明によれば、ナトリウム−硫黄電池の充電末開放電圧が2.072V/セル未満の場合に異常加熱と判定するナトリウム−硫黄電池の異常加熱検知方法が提供される。又、本発明によれば、ナトリウム−硫黄電池であるモジュール電池を構成する単電池を同数の2つのブロックに分け、この2つのブロックのそれぞれの充電末開放電圧を測定し、その差の絶対値が0.003V/セル以上の場合に異常加熱と判定するナトリウム−硫黄電池の異常加熱検知方法が提供される。後者の場合、各ブロックの充電末開放電圧測定回路を互いに絶縁することが好ましい。又、上記の方法においては、ナトリウム−硫黄電池の充電段階終了後、所定時間経過後に充電末開放電圧を測定することが好ましい。又、計測温度に対する電圧値の差が大きいときに異常加熱と判断してもよい。
【0008】
又、本発明によれば、上記の方法によりナトリウム−硫黄電池の異常加熱を検知した後、ヒーターの作動を停止するナトリウム−硫黄電池の破損防止方法が提供される。
【0009】
【発明の実施の形態】
本発明の方法においては、ナトリウム−硫黄電池の充電末開放電圧を測定することにより、ナトリウム−硫黄電池の異常加熱を検知する。
これは、図1に示すように、ナトリウム−硫黄電池の電圧(起電力)は温度依存性があるため、電圧を測定すれば、断熱容器内の温度を知ることができ、従ってナトリウム−硫黄電池の異常加熱を検知することができることを利用したものである。
【0010】
又、「充電末開放電圧」とは、図2に示すように、充電段階が終了し、次の放電段階が始まるまでの休止段階における電圧をいい、この段階において、電池は完全に充電された状態にある。本発明において、充電末開放電圧を測定することとしたのは、放電段階及び充電段階では、電池の電圧は絶えず変動しており、又、その電圧は、電池の放電量により、各サイクル毎に変動するため(図2の点線)、異常加熱を検知する目的には不適当であり、放電段階と充電段階の間の休止段階では、電池の電圧が放電段階における放電量により各サイクル毎に変動するため、同様に異常加熱を検知する目的には不向きだからである。即ち、本発明では、基準となる電圧の値を決め、実際に測定した電圧の値を、その基準値と比較することにより異常加熱か否かを判定するため、サイクル毎の放電量の相違に関わらず、電池が常に同様の状態にある時点において電圧を測定する必要があるのである。
【0011】
ナトリウム−硫黄電池の電圧(E)は次式
E=2.075−(T−320)×85×10-6(V)
で計算される。ここで、Tは電池の温度(℃)であり、85×10-6は温度係数(V/℃)である。又、ナトリウム−硫黄電池においては、充電段階後の休止段階における断熱容器内の温度は320℃に制御されている。従って、ヒーターが正常に作動していれば、電池の充電末開放電圧は2.075V/セルとなるはずである。一方、ヒーターが正常に作動せず、電池が異常加熱を起こし、断熱容器内の温度が上昇すると、図1に示すグラフの傾きより、1℃温度が上昇するごとに85μVずつ電圧が小さくなるはずである。
【0012】
従って、2.075V/セルを基準電圧とし、電池の充電末開放電圧がこれより小さな値となった場合に異常加熱と判定して、ヒーターの作動を停止すれば、火災や電池の破損を防止できることになる。
【0013】
又、モジュール電池を構成する単電池を同数の2つのブロックに分け、この2つのブロックのそれぞれの充電末開放電圧を測定し、その差の絶対値が0より大きい場合に異常加熱と判定してもよい。
【0014】
例えば、モジュール電池を構成する単電池の数が8の場合、単電池4つずつの2つのブロックに分け、各ブロックの充電末開放電圧E1及びE2を測定すれば、その値はいずれも2.075×4=8.300Vとなるはずである。従って、両者の差の絶対値|E1−E2|は0となるはずである。一方、ヒーターが正常に作動せず、電池が異常加熱を起こし、断熱容器内の温度が上昇すると、ヒーターに近い側の電池の電圧がより小さくなるため、|E1−E2|は0にはならないはずである。従って、基準値を0とし、計測系の誤差等を考慮して、|E1−E2|が0.003V以上の値となった場合に異常加熱と判断して、ヒーターの作動を停止すれば、火災や電池の破損を防止できることになる。
【0015】
上記のように、モジュール電池を構成する単電池を2つのブロックに分けて、その充電末開放電圧の差により異常加熱か否かを判断することにより、直接、電圧の値で判断する場合に比べ、正確に検出できるという利点がある。
【0016】
この場合、各ブロックの電圧測定回路を互いに絶縁することが好ましい。電圧を測定する場合には、電圧測定器は必ずアースに接続するが、各ブロックの電圧測定器をそれぞれアースに接続すると、それぞれの電圧測定回路がアースを介して短絡し、電圧を正確に測定することができなくなるからである。各回路を絶縁する手段としては、例えば、各ブロックの電圧測定回路に絶縁アンプを組み込む等の方法がある。
【0017】
尚、本発明の方法において、充電末開放電圧の測定は、充電段階終了直後ではなく、充電段階終了後、所定時間経過後、具体的には10〜60秒経過後に行うことが好ましい。これは、充電段階終了直後は、活物質の拡散により、電池の電圧が安定しないため、この段階で電圧を測定すると断熱容器内の温度が正常であるにも関わらず、異常加熱と判断されるおそれがあるからである。
【0018】
以上のように、本発明のナトリウム−硫黄電池の異常加熱検知方法においては、温度を測定するのではなく、電池の電圧を測定することにより異常加熱を検知できるので、本発明の方法を、温度検知手段と併用すれば、温度検知手段が故障した場合にも、ヒーターの異常加熱を検知することができ、火災の発生やナトリウム−硫黄電池の破損を効果的に防止することができる。
【0019】
【実施例】
以下、本発明を図示の実施例を用いてさらに詳しく説明するが、本発明はこれらの実施例に限られるものではない。
【0020】
(実施例1) モジュール電池を、同数の単電池から成る2つのブロックに分け、各ブロック毎に充電末開放電圧を測定し、その差の絶対値により異常加熱が起こっているか否かを判定するための異常加熱検知システムを構成した。図3に、異常加熱検知システムにおける信号の流れを示す。
【0021】
図3において、モジュール電池は4つの単電池から構成される。4つの単電池は、2つの単電池から成る2つのブロックに分けられ、各ブロックの電圧は、それぞれ別個の電圧測定器によって測定される。電圧測定器と電池の各ブロックとの間には絶縁アンプが設置されている。測定された電圧の値は、比較器へ送られ、比較器において、両ブロックの電圧の差の絶対値が算出されるとともに、その絶対値が0か0以外の数値かが判断される。比較器からの信号は、交直変換装置からの信号とともに、AND回路を介して異常加熱判定装置に送られる。交直変換装置は、モジュール電池の充電段階終了時に異常加熱判定装置に信号を送るための装置である。従って、異常加熱判定装置は、交直変換装置からの信号が送られた時点の比較器からの信号に基づいて、比較器からの信号が0であれば異常加熱とは判定せず、比較器からの信号が0.003V/セル以上の数値であれば異常加熱と判定し、警報及びヒーターに信号を送り、警報を鳴らすとともに、ヒーターの作動を停止させる。尚、交直変換装置とAND回路との間には遅延タイマが設置され、交直変換装置からの信号を、10〜60秒遅延させて異常加熱判定装置に送る。
【0022】
【発明の効果】
本発明の方法を、温度検知手段と併用すれば、温度検知手段が故障した場合にも、ヒーターの異常加熱を検知することができ、より確実にヒーターの異常加熱を検知できるとともに、火災の発生やナトリウム−硫黄電池の破損を効果的に防止することができる。
【図面の簡単な説明】
【図1】 ナトリウム−硫黄電池の電圧の温度依存性を示すグラフである。
【図2】 ナトリウム−硫黄電池の放充電サイクルを示すグラフである。
【図3】 本発明の異常加熱検知方法の一例における信号の流れを示す流れ図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting abnormal heating of a sodium-sulfur battery and a method for preventing damage using the same in order to quickly detect abnormal heating and prevent damage to a fire or a sodium-sulfur battery.
[0002]
[Prior art]
A sodium-sulfur battery is a β-alumina solid electrolyte that has molten metal sodium as a cathode active material on one side and molten sulfur as an anodic active material on the other side, and both have selective permeability to sodium ions. High temperature secondary battery isolated in Such a sodium-sulfur battery has applications such as nighttime power storage, and is usually used as a module battery in which a plurality of single cells are connected and stored in a heat insulating container.
[0003]
By the way, the sodium-sulfur battery needs to be heated to a certain temperature or more by supplying heat from the outside at the start-up of the operation, and the sodium and sodium polysulfide inside the battery are solidified even during the charge / discharge pause. Therefore, it is necessary to keep the temperature at a predetermined temperature so that the next charging / discharging can be performed promptly. That is, it is necessary to supply heat required for temperature rise and heat retention of the module battery from the outside, and as a means for that, a heater is usually installed inside the heat insulating container.
[0004]
The operation of the heater is usually automatically controlled by a computer program based on a value obtained by measuring the temperature in the insulated container with a thermocouple. In addition, even if the heater is heated abnormally for some reason, the above thermocouple detects a rise in temperature, and the computer program automatically stops the heater operation based on the signal from the thermocouple. By doing so, the occurrence of fire and damage to the sodium-sulfur battery were prevented.
[0005]
[Problems to be solved by the invention]
However, as described above, in the method of detecting abnormal heating of the heater by using only the temperature as a clue, for example, when a temperature detection means such as a thermocouple fails, there is no means for detecting abnormal heating of the heater, There is a possibility that damage to the sodium-sulfur battery cannot be effectively prevented. Therefore, it is desirable to provide means for detecting abnormal heating of the heater by a parameter other than temperature, and to take measures that can detect abnormal heating of the heater in combination with the temperature detecting means.
[0006]
The present invention has been made in view of such a situation, and an object of the present invention is to detect abnormal heating of the heater through parameters other than temperature, and by using the temperature detecting means in combination, the abnormality of the heater can be detected more reliably. An object of the present invention is to provide a method for detecting abnormal heating of a sodium-sulfur battery capable of detecting heating and a method for preventing damage using the same.
[0007]
[Means for Solving the Problems]
That is, according to the present invention, sodium - sodium charging end open voltage sulfur battery is determined to be abnormal heating when less than 2.072V / cell - sulfur battery anomaly heating detection method is provided. In addition, according to the present invention, the unit cell constituting the module battery which is a sodium-sulfur battery is divided into two blocks of the same number, and the open-circuit open-circuit voltages of the two blocks are measured, and the absolute value of the difference between them is measured. There sodium is determined that abnormal heating in the case of more than 0.003V / cell - sulfur battery anomaly heating detection method is provided. In the latter case, it is preferable to isolate the end-of-charge open-circuit voltage measuring circuits of the respective blocks from each other. In the above method, it is preferable to measure the open-circuit open-circuit voltage after a predetermined time has elapsed after completion of the charging step of the sodium-sulfur battery. Moreover, you may judge that it is abnormal heating when the difference of the voltage value with respect to measured temperature is large.
[0008]
In addition, according to the present invention, there is provided a method for preventing damage to a sodium-sulfur battery that stops the operation of the heater after detecting abnormal heating of the sodium-sulfur battery by the above method.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, abnormal heating of the sodium-sulfur battery is detected by measuring the open-circuit open-circuit voltage of the sodium-sulfur battery.
As shown in FIG. 1, since the voltage (electromotive force) of the sodium-sulfur battery has temperature dependency, the temperature in the heat insulating container can be known by measuring the voltage, and therefore the sodium-sulfur battery. This is based on the fact that abnormal heating can be detected.
[0010]
In addition, the “end-of-charge open circuit voltage” means a voltage in a resting stage until the end of the charging stage and the start of the next discharging stage, as shown in FIG. 2, in which the battery is fully charged. Is in a state. In the present invention, the end-of-charge open-circuit voltage was measured because the battery voltage constantly fluctuated in the discharging stage and the charging stage, and the voltage was changed every cycle depending on the battery discharge amount. Because it fluctuates (dotted line in FIG. 2), it is not suitable for the purpose of detecting abnormal heating, and the battery voltage fluctuates from cycle to cycle depending on the amount of discharge in the discharge phase during the rest phase between the discharge phase and the charge phase. Therefore, it is also unsuitable for the purpose of detecting abnormal heating. That is, in the present invention, the value of the reference voltage is determined, and the value of the actually measured voltage is compared with the reference value to determine whether or not there is abnormal heating. Regardless, the voltage needs to be measured when the battery is always in a similar state.
[0011]
The voltage (E) of the sodium-sulfur battery is represented by the following formula E = 2. 075− (T−320) × 85 × 10 −6 (V)
Calculated by Here, T is the battery temperature (° C.), and 85 × 10 −6 is the temperature coefficient (V / ° C.). Moreover, in the sodium-sulfur battery, the temperature in the heat insulation container in the resting stage after the charging stage is controlled to 320 ° C. Therefore, if the heater is operating normally, the end-of-charge voltage of the battery should be 2.075 V / cell. On the other hand, if the heater does not operate normally, the battery heats up abnormally, and the temperature in the insulated container rises, the voltage should decrease by 85 μV each time the temperature rises by 1 ° C from the slope of the graph shown in FIG. It is.
[0012]
Therefore, if the open voltage at the end of charge of the battery is lower than 2.075V / cell, it will be judged as abnormal heating and the heater will be stopped to prevent fire or battery damage. It will be possible.
[0013]
In addition, the single cells constituting the module battery are divided into two blocks of the same number, and the open-circuit open-circuit voltage of each of the two blocks is measured. If the absolute value of the difference is greater than 0, it is determined that the heating is abnormal. Also good.
[0014]
For example, when the number of unit cells constituting the module battery is 8, it is divided into two blocks each having four unit cells, and when the end-of-charge open circuit voltages E 1 and E 2 of each block are measured, the values are both It should be 2.075 × 4 = 8.300V. Therefore, the absolute value | E 1 −E 2 | of the difference between the two should be zero. On the other hand, if the heater does not operate normally, the battery is abnormally heated, and the temperature in the heat insulating container rises, the voltage of the battery on the side closer to the heater becomes smaller, so | E 1 −E 2 | Should not be. Therefore, when the reference value is set to 0 and the error of the measurement system is taken into consideration, when | E 1 −E 2 | becomes a value of 0.003 V or more, it is determined that the heating is abnormal and the heater operation is stopped. As a result, fire and battery damage can be prevented.
[0015]
As described above, the unit cell constituting the module battery is divided into two blocks, and whether or not abnormal heating is determined by the difference in open-circuit open-circuit voltage, compared with the case of directly determining by the voltage value There is an advantage that it can be detected accurately.
[0016]
In this case, it is preferable to insulate the voltage measurement circuits of the respective blocks from each other. When measuring voltage, the voltage measuring instrument must be connected to the earth. However, if the voltage measuring instrument of each block is connected to the earth, each voltage measuring circuit is short-circuited through the earth, and the voltage is measured accurately. It is because it becomes impossible to do. As a means for insulating each circuit, for example, there is a method of incorporating an insulation amplifier in the voltage measurement circuit of each block.
[0017]
In the method of the present invention, the end-of-charge open-circuit voltage is preferably measured not after the end of the charging stage but after the end of the charging stage, specifically after the elapse of a predetermined time, specifically after 10 to 60 seconds. This is because the voltage of the battery is not stabilized immediately after the end of the charging stage due to the diffusion of the active material. Therefore, when the voltage is measured at this stage, it is determined that the temperature is abnormal in spite of the normal temperature in the heat insulating container. Because there is a fear.
[0018]
As described above, in the method for detecting abnormal heating of a sodium-sulfur battery according to the present invention, abnormal heating can be detected not by measuring the temperature but by measuring the voltage of the battery. When used in combination with the detection means, even when the temperature detection means fails, it is possible to detect abnormal heating of the heater, and to effectively prevent the occurrence of a fire and damage to the sodium-sulfur battery.
[0019]
【Example】
Hereinafter, the present invention will be described in more detail with reference to the illustrated examples. However, the present invention is not limited to these examples.
[0020]
(Example 1) A module battery is divided into two blocks composed of the same number of unit cells, and the end-of-charge open-circuit voltage is measured for each block, and whether or not abnormal heating is occurring is determined by the absolute value of the difference An abnormal heating detection system was constructed. FIG. 3 shows a signal flow in the abnormal heating detection system.
[0021]
In FIG. 3, the module battery is composed of four unit cells. The four cells are divided into two blocks of two cells, and the voltage of each block is measured by a separate voltage meter. An insulation amplifier is installed between the voltage measuring device and each block of the battery. The measured voltage value is sent to the comparator, where the absolute value of the difference between the voltages of both blocks is calculated, and whether the absolute value is 0 or a numerical value other than 0 is determined. The signal from the comparator is sent to the abnormal heating determination device via the AND circuit together with the signal from the AC / DC converter. The AC / DC converter is a device for sending a signal to the abnormal heating determination device at the end of the charging stage of the module battery. Therefore, the abnormal heating determination device does not determine abnormal heating based on the signal from the comparator at the time when the signal from the AC / DC converter is sent, and if the signal from the comparator is 0, If the signal is a numerical value of 0.003 V / cell or more, it is determined that the heating is abnormal, a signal is sent to the alarm and the heater, the alarm is sounded, and the operation of the heater is stopped. Note that a delay timer is installed between the AC / DC converter and the AND circuit, and a signal from the AC / DC converter is delayed by 10 to 60 seconds and sent to the abnormal heating determination apparatus.
[0022]
【The invention's effect】
If the method of the present invention is used in combination with a temperature detection means, even when the temperature detection means fails, abnormal heating of the heater can be detected, abnormal heating of the heater can be detected more reliably, and a fire may occur. And sodium-sulfur battery can be effectively prevented from being damaged.
[Brief description of the drawings]
FIG. 1 is a graph showing temperature dependence of voltage of a sodium-sulfur battery.
FIG. 2 is a graph showing a charge / discharge cycle of a sodium-sulfur battery.
FIG. 3 is a flowchart showing a signal flow in an example of the abnormal heating detection method of the present invention.

Claims (5)

ナトリウム−硫黄電池の充電末開放電圧が2.072V/セル未満の場合に異常加熱判定することを特徴とするナトリウム−硫黄電池の異常加熱検知方法。An abnormal heating detection method for a sodium-sulfur battery, characterized in that it is determined as abnormal heating when the end-of-charge voltage of the sodium-sulfur battery is less than 2.072 V / cell . ナトリウム−硫黄電池であるモジュール電池を構成する単電池を同数の2つのブロックに分け、
該2つのブロックのそれぞれの充電末開放電圧を測定し、その差の絶対値が0.003V/セル以上の場合に異常加熱と判定することを特徴とするナトリウム−硫黄電池の異常加熱検知方法。
Dividing the single cell constituting the module battery, which is a sodium-sulfur battery, into two blocks of the same number,
A method for detecting abnormal heating of a sodium-sulfur battery, wherein the open-circuit open-circuit voltage of each of the two blocks is measured, and the abnormal heating is determined when the absolute value of the difference is 0.003 V / cell or more .
該各ブロックの充電末開放電圧測定回路を互いに絶縁した請求項2に記載のナトリウム−硫黄電池の異常加熱検知方法。 The method for detecting abnormal heating of a sodium-sulfur battery according to claim 2 , wherein the end-of-charge open-circuit voltage measuring circuits of the respective blocks are insulated from each other . ナトリウム−硫黄電池の充電段階終了後、所定時間経過後に充電末開放電圧を測定する請求項1〜3のいずれか一項に記載のナトリウム−硫黄電池の異常加熱検知方法。 The method for detecting abnormal heating of a sodium-sulfur battery according to any one of claims 1 to 3, wherein an end-of-charge open-circuit voltage is measured after a predetermined time has elapsed after completion of the charging step of the sodium-sulfur battery. 請求項1〜4のいずれか一項に記載の方法によりナトリウム−硫黄電池の異常加熱を検知した後、ヒーターの作動を停止することを特徴とするナトリウム−硫黄電池の破損防止方法。A method for preventing damage to a sodium-sulfur battery, comprising: detecting the abnormal heating of the sodium-sulfur battery by the method according to any one of claims 1 to 4, and then stopping the operation of the heater.
JP07083499A 1999-03-16 1999-03-16 Method for detecting abnormal heating of sodium-sulfur battery and method for preventing damage using the same Expired - Lifetime JP4136166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07083499A JP4136166B2 (en) 1999-03-16 1999-03-16 Method for detecting abnormal heating of sodium-sulfur battery and method for preventing damage using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07083499A JP4136166B2 (en) 1999-03-16 1999-03-16 Method for detecting abnormal heating of sodium-sulfur battery and method for preventing damage using the same

Publications (2)

Publication Number Publication Date
JP2000268856A JP2000268856A (en) 2000-09-29
JP4136166B2 true JP4136166B2 (en) 2008-08-20

Family

ID=13443008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07083499A Expired - Lifetime JP4136166B2 (en) 1999-03-16 1999-03-16 Method for detecting abnormal heating of sodium-sulfur battery and method for preventing damage using the same

Country Status (1)

Country Link
JP (1) JP4136166B2 (en)

Also Published As

Publication number Publication date
JP2000268856A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
US7683580B2 (en) Remaining-battery-capacity estimating apparatus, remaining-battery-capacity estimating method, and remaining-battery-capacity estimating computer program
US20170317491A1 (en) Electric storage apparatus and power path switch apparatus
US7479764B1 (en) Battery temperature management
JP6824614B2 (en) Deterioration judgment device and deterioration judgment method
JP7072607B2 (en) Effective Battery Cell Balancing Methods and Systems Using Duty Control
US20190044345A1 (en) Control device and method for charging a rechargeable battery
KR100818519B1 (en) Method and apparatus of controlling battery
JP2006337155A (en) Battery-monitoring device
GB2251346A (en) Battery charging circuit
EP1278072B1 (en) Device for judging life of auxiliary battery
JP4057193B2 (en) Abnormality detection method when using batteries in parallel
KR19990028876A (en) Control and Termination of Battery Charging Process
KR101902308B1 (en) battery management system
JP5518001B2 (en) Battery control device
JP4136166B2 (en) Method for detecting abnormal heating of sodium-sulfur battery and method for preventing damage using the same
JP7235423B2 (en) Methods, Battery Packs, Appliances, and Systems for Addressing Poor Contacts in Battery Packs
JP2010160026A (en) Electric power control apparatus for vehicle and method for estimating internal resistance of assembly battery
JP2009261246A (en) Battery system
JP2018050396A (en) Charging system
KR101742737B1 (en) Method for controlling sodium based secondary battery
US20230230788A1 (en) Relay control device and method of controlling relay control device
CN103138330B (en) Battery discharge system
KR20220047472A (en) Method and apparatus for calculating state of health resistance of battery
KR101736419B1 (en) Charging method for battery capable of prevent overcharge
JPH11355974A (en) Control of charging for storage battery and power supply equipment using the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

EXPY Cancellation because of completion of term