JP4135958B2 - Apparatus and method for measuring bulk density of pre-expanded particles and method for producing pre-expanded particles - Google Patents

Apparatus and method for measuring bulk density of pre-expanded particles and method for producing pre-expanded particles Download PDF

Info

Publication number
JP4135958B2
JP4135958B2 JP2006510932A JP2006510932A JP4135958B2 JP 4135958 B2 JP4135958 B2 JP 4135958B2 JP 2006510932 A JP2006510932 A JP 2006510932A JP 2006510932 A JP2006510932 A JP 2006510932A JP 4135958 B2 JP4135958 B2 JP 4135958B2
Authority
JP
Japan
Prior art keywords
bulk density
expanded particles
sample collection
particles
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006510932A
Other languages
Japanese (ja)
Other versions
JPWO2005087475A1 (en
Inventor
城 津川
恭司 宇久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2005087475A1 publication Critical patent/JPWO2005087475A1/en
Application granted granted Critical
Publication of JP4135958B2 publication Critical patent/JP4135958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/60Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N1/20Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials
    • G01N1/2035Devices for withdrawing samples in the liquid or fluent state for flowing or falling materials by deviating part of a fluid stream, e.g. by drawing-off or tapping

Description

本発明は、予備発泡装置で発泡させる発泡性熱可塑性樹脂の予備発泡粒子の嵩密度を自動的に測定するための装置および方法、ならびに、この測定方法を用いて予備発泡装置における発泡条件を自動調整することで、嵩密度が一定の予備発泡粒子を製造するための方法に関する。   The present invention relates to an apparatus and method for automatically measuring the bulk density of pre-expanded particles of a foamable thermoplastic resin to be foamed by a pre-foaming apparatus, and the foaming conditions in the pre-foaming apparatus are automatically measured using this measuring method. It is related with the method for manufacturing the pre-expanded particle | grains with constant bulk density by adjusting.

発泡性熱可塑性樹脂から発泡樹脂製品を製造するには、まず原料となる発泡性熱可塑性樹脂粒子(原料粒子)を予備発泡装置により所定の嵩密度まで予備発泡させ、これを成型機でさらに発泡させて成型体を成型している。この発泡樹脂製品の製造においては、前記予備発泡粒子の嵩密度を一定にすることが、成型機に供給される予備発泡粒子の量を安定化させ、成型体の品質を安定化させるために重要である。   In order to produce a foamed resin product from a foamable thermoplastic resin, first, foamable thermoplastic resin particles (raw material particles) as a raw material are prefoamed to a predetermined bulk density by a prefoaming device, and further foamed by a molding machine. Let the molded body be molded. In the production of foamed resin products, it is important to make the bulk density of the pre-foamed particles constant in order to stabilize the amount of pre-foamed particles supplied to the molding machine and to stabilize the quality of the molded body. It is.

一般的に、前記予備発泡粒子を製造する工程としては、発泡性熱可塑性樹脂からなる一定量の原料粒子を予備発泡装置の予備発泡加圧容器に供給して水蒸気などの加熱媒体により所定の発泡倍率まで発泡させるか、あるいは、原料粒子を、予備発泡加圧容器の投入口から水、分散剤さらには界面活性剤等の分散助剤とともに投入し、圧力設定器で発泡剤を投入するとともに前記加圧容器内を所定の圧力に調整し、該加圧容器に取り付けられたジャケットに蒸気を通して加圧容器内の混合物を所定の温度に調整し、所定の温度と圧力に到達すれば、加圧容器払い出しバルブを開いて加圧容器からノズルを通して排出することで発泡させる。このようにして得られた予備発泡粒子は分離器で水と分離され、予備発泡粒子貯槽に送られる。   In general, the step of producing the pre-foamed particles includes supplying a predetermined amount of raw material particles made of a foamable thermoplastic resin to a pre-foaming pressure vessel of a pre-foaming apparatus and performing predetermined foaming with a heating medium such as water vapor. Foaming up to a magnification, or raw material particles are introduced together with a dispersing aid such as water, a dispersing agent or a surfactant from a charging port of a prefoaming pressure vessel, and a foaming agent is charged with a pressure setting device. The inside of the pressurized container is adjusted to a predetermined pressure, steam is passed through a jacket attached to the pressurized container, the mixture in the pressurized container is adjusted to a predetermined temperature, and if the predetermined temperature and pressure are reached, the pressure is increased. Foaming is performed by opening the container discharge valve and discharging from the pressurized container through the nozzle. The pre-expanded particles thus obtained are separated from water by a separator and sent to a pre-expanded particle storage tank.

前記予備発泡粒子の嵩密度を調整する方法としては、予備発泡中の粒子を採取し、その嵩密度を測定し、目標値との乖離をもとに予備発泡装置の運転条件(例えば、予備発泡加圧容器への原料粒子の供給量、予備発泡加圧容器の圧力、温度等)を変更すれば良い。前記予備発泡粒子の嵩密度は、前記予備発泡装置で予備発泡後の水蒸気や水に濡れている予備発泡粒子を脱水し、これを嵩密度測定装置で測定する。例えば、予備発泡の終了後、水に濡れた予備発泡粒子を一定量サンプリングして、乾燥容器へ送り該乾燥容器内で乾燥空気供給装置から吹き込まれる乾燥空気によって10〜30秒程度で乾燥させ、これを自動倍率測定装置に送って、発泡倍率を自動的に測定する方法が提案されている(特許文献1:特開平6−80816号公報)。
この方法では、回分式の予備発泡装置に自動倍率測定装置を取り付け、演算で得られた発泡倍率と目標の発泡倍率との乖離から、次バッチの予備発泡粒子製造の原料粒子の供給量を変更して予備発泡粒子の発泡倍率を自動的に調整している。
特開平6−80816号公報
As a method for adjusting the bulk density of the pre-foamed particles, the pre-foamed particles are collected, the bulk density is measured, and the operating conditions of the pre-foaming device based on the deviation from the target value (for example, pre-foaming) What is necessary is just to change the supply amount of the raw material particle | grains to a pressurization container, the pressure of a pre-foaming pressurization container, temperature, etc.). The bulk density of the pre-expanded particles is determined by dehydrating the pre-foamed particles wetted with water vapor or water after pre-foaming with the pre-foaming apparatus, and measuring this with a bulk density measuring apparatus. For example, after completion of the pre-foaming, a predetermined amount of pre-foamed particles wetted with water is sampled, sent to the drying container and dried in about 10 to 30 seconds by dry air blown from the dry air supply device in the drying container, A method has been proposed in which this is sent to an automatic magnification measuring device to automatically measure the expansion ratio (Patent Document 1: Japanese Patent Laid-Open No. 6-80816).
In this method, an automatic magnification measuring device is attached to a batch-type pre-foaming device, and the supply amount of raw material particles for the production of pre-foamed particles in the next batch is changed from the difference between the foaming magnification obtained by the calculation and the target foaming magnification. Thus, the expansion ratio of the pre-expanded particles is automatically adjusted.
Japanese Patent Laid-Open No. 6-80816

前記従来公知の予備発泡粒子の自動倍率測定装置は、バッチ方式の発泡操作に適用され、測定結果に基づく発泡条件(原料粒子の供給量)の変更は、次バッチの予備発泡粒子の製造段階で実施されている。しかし、この方法では、バッチのサイズが小さい場合は発泡時間が短く、発泡中に予備発泡粒子の発泡倍率が測定できても、発泡中の条件を調整する前に発泡が終了してしまったり、発泡時間が短いとその間の嵩密度の変動が大きくないといったことから、発泡中に条件を調整するといったことはされてこなかった。その一方で、生産性を上げる目的で、バッチの容量を大きくすると、発泡時間が長くなり、発泡時間内で、発泡倍率が変動するといった問題がある。この問題を解決する方法として、嵩密度測定を実施し、その測定結果を見て発泡条件を調整して、狙いとする発泡倍率に調整することが考えられる。本発明が解決しようとする課題の一つは、予備発泡後の濡れた予備発泡粒子の嵩密度を短時間で測定する装置ならびに方法を提供することである。他の課題は、この予備発泡粒子の嵩密度の測定結果をもとに、発泡時間の間に発泡条件を調整し、嵩密度がそろった、即ち発泡倍率が安定した予備発泡粒子を製造することである。   The previously known automatic magnification measuring apparatus for pre-expanded particles is applied to a batch-type foaming operation, and the change of the foaming conditions (feeding amount of raw material particles) based on the measurement result is performed at the production stage of the pre-expanded particles of the next batch. It has been implemented. However, in this method, when the batch size is small, the foaming time is short, and even if the expansion ratio of the pre-expanded particles can be measured during foaming, the foaming may end before adjusting the conditions during foaming, When the foaming time is short, the fluctuation of the bulk density during that time is not large, so that the conditions have not been adjusted during foaming. On the other hand, if the batch capacity is increased for the purpose of increasing productivity, the foaming time becomes longer, and the foaming ratio varies within the foaming time. As a method for solving this problem, it is conceivable to measure the bulk density, adjust the foaming conditions by looking at the measurement result, and adjust the foaming ratio to the target. One of the problems to be solved by the present invention is to provide an apparatus and method for measuring the bulk density of wet pre-expanded particles after pre-expansion in a short time. Another problem is to produce pre-expanded particles having a uniform bulk density, that is, a stable expansion ratio, by adjusting the expansion conditions during the expansion time based on the measurement result of the bulk density of the pre-expanded particles. It is.

上記目的を達成するために、本発明にかかる予備発泡粒子の嵩密度の測定装置は、発泡性熱可塑性樹脂の予備発泡粒子の嵩密度を自動的に測定する装置であって、予備発泡装置で予備発泡された発泡性熱可塑性樹脂の予備発泡粒子を予備発泡装置から予備発泡粒子貯槽へ送るための配管から予備発泡粒子をサンプリングするため、前記配管の途中から分岐して設けたサンプル採取配管と、一端側が前記採取配管に接続され、他端には水やガスは透過させるが前記予備発泡粒子を透過させない構造を有しており、該他端側に送風機が接続されたサンプル採取容器と、前記サンプル採取容器の前記一端側に接続された乾燥機と、前記乾燥機に接続された嵩密度測定機とを備えている。   In order to achieve the above object, an apparatus for measuring the bulk density of pre-expanded particles according to the present invention is an apparatus for automatically measuring the bulk density of pre-expanded particles of a foamable thermoplastic resin. In order to sample the pre-foamed particles from the pipe for sending the pre-foamed foamed thermoplastic resin pre-foamed particles from the pre-foaming device to the pre-foamed particle storage tank, a sample collecting pipe branched from the middle of the pipe; , One end side is connected to the sampling pipe, the other end has a structure that allows water and gas to permeate but does not allow the pre-expanded particles to permeate, a sample collection container having a blower connected to the other end side, and A dryer connected to the one end side of the sample collection container; and a bulk density measuring machine connected to the dryer.

また、本発明にかかる予備発泡粒子の嵩密度の測定方法は、発泡性熱可塑性樹脂の予備発泡粒子の嵩密度を測定する方法であって、予備発泡装置で予備発泡され該予備発泡装置から予備発泡粒子貯槽へ送られる発泡性熱可塑性樹脂の予備発泡粒子の一部を、サンプル採取配管を介してサンプル採取容器に採取し、採取した予備発泡粒子を送風機により前記サンプル採取容器から乾燥機に排出して予備発泡粒子を気流乾燥したのち、乾燥した予備発泡粒子の嵩密度を嵩密度測定機により自動的に測定するというものである。   The method for measuring the bulk density of pre-expanded particles according to the present invention is a method for measuring the bulk density of pre-expanded particles of a foamable thermoplastic resin, which is pre-foamed by a pre-foaming device and pre-expanded from the pre-foaming device. Part of the pre-expanded particles of the foamable thermoplastic resin sent to the expanded particle storage tank is collected in a sample collection container through the sample collection pipe, and the collected pre-expanded particles are discharged from the sample collection container to the dryer by a blower. Then, after the pre-expanded particles are air-dried, the bulk density of the dried pre-expanded particles is automatically measured by a bulk density measuring machine.

前記本発明の測定方法では、前記送風機から供給される乾燥空気によりサンプリング容器から予備発泡粒子を乾燥機に排出することで、前記予備発泡粒子から脱水および/または乾燥する水分量を安定化させることができる。   In the measurement method of the present invention, the amount of water dehydrated and / or dried from the pre-expanded particles is stabilized by discharging the pre-expanded particles from the sampling container to the dryer by the dry air supplied from the blower. Can do.

また、前記サンプル採取配管、前記サンプル採取容器および前記乾燥機を三方弁に接続しておき、三方弁の方向を切り替えることで、前記サンプル採取配管を介してサンプル採取容器に予備発泡粒子を採取し、前記サンプル採取容器から前記乾燥機へ予備発泡粒子を排出するようにしてもよい。   In addition, the sample collection pipe, the sample collection container and the dryer are connected to a three-way valve, and pre-expanded particles are collected in the sample collection container via the sample collection pipe by switching the direction of the three-way valve. The pre-expanded particles may be discharged from the sample collection container to the dryer.

前記送風機からサンプル採取容器へ供給される空気を加熱する加熱機を設けておき、送風機によりサンプル採取容器から乾燥機へ予備発泡粒子を排出する際の乾燥空気を加熱するようにしてもよい。   A heater for heating the air supplied from the blower to the sample collection container may be provided, and the dry air when the pre-expanded particles are discharged from the sample collection container to the dryer by the blower may be heated.

さらに、前記嵩密度測定機に嵩密度比較演算装置を接続しておくことが好ましい。   Furthermore, it is preferable to connect a bulk density comparison calculation device to the bulk density measuring device.

また、本発明により所定の嵩密度の予備発泡粒子を製造する方法は、本発明の方法および装置を用いて嵩密度を自動的に測定し、測定結果を嵩密度演算装置で目標とする嵩密度と比較した結果を、生産される予備発泡粒子の嵩密度が一定になるように予備発泡装置にフィードバックして、発泡条件を自動的に調整して、原料粒子を予備発泡装置で予備発泡させるというものである。   In addition, the method for producing pre-expanded particles having a predetermined bulk density according to the present invention automatically measures the bulk density using the method and apparatus of the present invention, and sets the measurement result as a target bulk density with the bulk density arithmetic unit. The result of the comparison is fed back to the pre-foaming device so that the bulk density of the pre-foamed particles produced is constant, the foaming conditions are automatically adjusted, and the raw material particles are pre-foamed by the pre-foaming device. Is.

発泡条件の調整は、前記嵩密度比較演算装置からのフィードバックにより、予備発泡装置の設定圧力を調整することが好ましい。   The foaming conditions are preferably adjusted by adjusting the set pressure of the preliminary foaming device by feedback from the bulk density comparison arithmetic device.

本発明による予備発泡粒子の好ましい製造方法としては、発泡性熱可塑性樹脂粒子を、予備発泡装置の予備発泡加圧容器の投入口から水、分散剤等とともに投入し、圧力設定器で予備発泡加圧容器に発泡剤を投入し、予備発泡加圧容器内を所定の圧力、温度に調整し、ノズルを通して発泡させるとともに、前記嵩密度比較演算装置にて目標値と比較した結果を前記予備発泡装置の圧力設定器にフィードバックして予備発泡加圧容器内の圧力を調整する方法が挙げられる。   As a preferred method for producing pre-expanded particles according to the present invention, expandable thermoplastic resin particles are introduced together with water, a dispersing agent, and the like from an inlet of a pre-expanded pressure vessel of a pre-expanding device, and pre-foamed with a pressure setting device. A foaming agent is introduced into the pressure vessel, the inside of the prefoaming pressure vessel is adjusted to a predetermined pressure and temperature, and foamed through a nozzle, and the result of comparison with a target value by the bulk density comparison calculation device is compared with the prefoaming device. There is a method of adjusting the pressure in the pre-foaming pressurized container by feeding back to the pressure setting device.

本発明に係る予備発泡粒子の嵩密度測定装置および方法によれば、予備発泡装置から採取した、濡れた予備発泡粒子を、一旦、サンプル採取容器に採取することで、脱水乾燥させる予備発泡粒子の水分量が安定し、これを乾燥機に送って気流乾燥することで、乾燥時間が短縮される。これにより、短時間で精度の良い嵩密度測定が可能になる。従って、前記嵩密度の測定結果を予備発泡装置の運転条件にフィードバックすることで、所定の嵩密度の予備発泡粒子の製造が可能になる。   According to the apparatus and method for measuring the bulk density of pre-expanded particles according to the present invention, the pre-expanded particles to be dehydrated and dried by once collecting the wet pre-expanded particles collected from the pre-expanded apparatus in a sample collection container. The moisture amount is stabilized, and the drying time is shortened by sending it to a drier and air-drying it. Thereby, accurate bulk density measurement can be performed in a short time. Therefore, it is possible to produce pre-expanded particles having a predetermined bulk density by feeding back the measurement result of the bulk density to the operating conditions of the pre-expanding device.

また、前記サンプル採取配管、前記サンプル採取容器および前記乾燥機を三方弁に接続しておき、三方弁の方向を切り替えることで、前記サンプル採取配管を介してサンプル採取容器に予備発泡粒子を採取し、前記サンプル採取容器から前記乾燥機へ予備発泡粒子を排出するようにすれば、嵩密度測定装置の構成および操作を簡略化できる。   In addition, the sample collection pipe, the sample collection container and the dryer are connected to a three-way valve, and pre-expanded particles are collected in the sample collection container via the sample collection pipe by switching the direction of the three-way valve. If the pre-expanded particles are discharged from the sample collection container to the dryer, the configuration and operation of the bulk density measuring device can be simplified.

また、前記送風機からサンプル採取容器へ供給される空気を加熱する加熱機を設けておき、送風機によりサンプル採取容器から乾燥機へ予備発泡粒子を排出する際の乾燥空気を加熱するようにすれば、予備発泡粒子の乾燥をより短時間で行うことができる。   In addition, if a heater for heating the air supplied from the blower to the sample collection container is provided and the dry air when the pre-foamed particles are discharged from the sample collection container to the dryer by the blower is heated, The pre-expanded particles can be dried in a shorter time.

さらに、前記嵩密度測定機に嵩密度比較演算装置を接続しておくことにより、予備発泡装置への嵩密度の測定結果のフィードバックが容易になる。   Further, by connecting a bulk density comparison calculation device to the bulk density measuring device, it becomes easy to feed back the measurement result of the bulk density to the preliminary foaming device.

また、本発明に係る予備発泡粒子の製造方法によれば、予備発泡装置で発泡される予備発泡粒子の嵩密度を短時間で測定し、かつ予備発泡装置へフィードバックできることから、発泡時間の間に発泡条件を調整し、嵩密度がそろった、即ち発泡倍率が安定した予備発泡粒子を製造することができる。   Further, according to the method for producing pre-expanded particles according to the present invention, the bulk density of the pre-expanded particles expanded by the pre-expanding device can be measured in a short time and fed back to the pre-expanding device. By adjusting the foaming conditions, it is possible to produce pre-foamed particles having a uniform bulk density, that is, a stable foaming ratio.

前記発泡条件の調整として、前記嵩密度比較演算装置からのフィードバックにより、予備発泡装置の設定圧力を調整することで、発泡条件の迅速な調整が可能であり、予備発泡粒子の嵩密度の変動を小さくすることができる。
As the adjustment of the foaming conditions, by adjusting the set pressure of the preliminary foaming device by feedback from the bulk density comparison calculation device, the foaming conditions can be quickly adjusted, and the fluctuation of the bulk density of the preliminary foamed particles can be adjusted. Can be small.

図1は、本発明の一実施形態の自動嵩密度測定装置を予備発泡装置に適用した予備発泡粒子製造装置の全体フロー図である。FIG. 1 is an overall flow diagram of a pre-foamed particle manufacturing apparatus in which an automatic bulk density measuring apparatus according to an embodiment of the present invention is applied to a pre-foaming apparatus. 図2は、本発明の自動嵩密度測定装置の測定結果に基づき発泡中の発泡粒子の嵩密度を調整して製造した実施例の予備発泡粒子の嵩密度と、従来法により発泡中の発泡粒子の嵩密度を測定しながら製造した比較例の予備発泡粒子の嵩密度とを示すグラフである。FIG. 2 shows the bulk density of the pre-foamed particles of Examples produced by adjusting the bulk density of the foamed particles during foaming based on the measurement results of the automatic bulk density measuring apparatus of the present invention, and the foamed particles being foamed by the conventional method. It is a graph which shows the bulk density of the pre-expanded particle of the comparative example manufactured while measuring the bulk density.

符号の説明Explanation of symbols

1 予備発泡加圧容器
2 投入口
3 圧力設定器
4 加圧容器払い出しバルブ
5 ノズル
6 分離器
7 排水ポンプ
8 配管
9 サンプル採取配管
10 予備発泡装置
11 三方弁
12 サンプル採取容器
13 送風機
14 加熱機
15 乾燥機
16 嵩密度測定機
17 嵩密度比較演算装置
18 乾燥器払い出しバルブ
20 自動嵩密度測定装置
30 予備発泡粒子貯槽
DESCRIPTION OF SYMBOLS 1 Pre-foaming pressurization container 2 Input port 3 Pressure setting device 4 Pressurization container discharge valve 5 Nozzle 6 Separator 7 Drain pump 8 Piping 9 Sample collection piping 10 Prefoaming device 11 Three-way valve 12 Sample collection container 13 Blower 14 Heater 15 Dryer 16 Bulk density measuring device 17 Bulk density comparison calculation device 18 Dryer discharge valve 20 Automatic bulk density measuring device 30 Pre-foamed particle storage tank

以下、本発明を図1に基づいて説明する。図1は予備発泡装置10に自動嵩密度測定装置20を接続した予備発泡粒子製造装置全体のフローを模式的に示したものである。予備発泡装置10は、予備発泡加圧容器1、ノズル5、分離器6から構成される。予備発泡加圧容器1は投入口2、圧力設定器3、加圧容器払い出しバルブ4を備えている。分離器6は排水ポンプ7を備えている。   Hereinafter, the present invention will be described with reference to FIG. FIG. 1 schematically shows the flow of the entire pre-expanded particle manufacturing apparatus in which an automatic bulk density measuring apparatus 20 is connected to the pre-expanding apparatus 10. The preliminary foaming apparatus 10 includes a preliminary foaming pressurized container 1, a nozzle 5, and a separator 6. The pre-foamed pressurized container 1 includes an input port 2, a pressure setting device 3, and a pressurized container discharge valve 4. The separator 6 includes a drain pump 7.

予備発泡装置10により予備発泡粒子を製造する工程は以下の通りである。まず、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂、ポリスチレンなどのポリスチレン系樹脂などからなる発泡性熱可塑性樹脂粒子(原料粒子)を、投入口2から水、分散剤および界面活性剤等の分散助剤とともに予備発泡加圧容器1に投入し、その後、投入口2を閉め、圧力設定器3で発泡剤を投入するとともに、所定の圧力に調整する。次いで、予備発泡加圧容器1に取り付けられたジャケット(図示なし)に蒸気を通して予備発泡加圧容器1内の混合物を、所定の温度に調整し、所定の温度と圧力に到達すれば、加圧容器払い出しバルブ4を開いて、ノズル5を通して発泡させる。このようにして得られた予備発泡粒子は分離器6で水と分離される。分離された水は排水ポンプ7により排出され、予備発泡粒子は分離器6と予備発泡粒子貯槽30をつなぐ配管8を通って予備発泡粒子貯槽30に送られる。   The process of producing the pre-foamed particles by the pre-foaming apparatus 10 is as follows. First, expandable thermoplastic resin particles (raw material particles) made of, for example, a polyolefin resin such as polyethylene or polypropylene, or a polystyrene resin such as polystyrene, and the like are used to disperse water, a dispersant, a surfactant, and the like from the inlet 2. The pre-foaming pressure vessel 1 is charged together with the agent, and then the charging port 2 is closed, and the foaming agent is charged by the pressure setting device 3 and adjusted to a predetermined pressure. Next, steam is passed through a jacket (not shown) attached to the pre-foamed pressurized container 1 to adjust the mixture in the pre-foamed pressurized container 1 to a predetermined temperature and pressurize if the predetermined temperature and pressure are reached. The container discharge valve 4 is opened and foamed through the nozzle 5. The pre-expanded particles thus obtained are separated from water by the separator 6. The separated water is discharged by the drainage pump 7, and the pre-foamed particles are sent to the pre-foamed particle storage tank 30 through the pipe 8 connecting the separator 6 and the pre-foamed particle storage tank 30.

本発明の自動嵩密度測定装置20は、分離器6と予備発泡粒子貯槽30をつなぐ配管8の途中から分岐して設けた、予備発泡粒子をサンプリングするためのサンプル採取配管9と、一端が該予備発泡粒子を透過させない構造を有する一定容積のサンプル採取容器12と、乾燥機15とを備え、これらが、三方弁11に接続されている。サンプル採取容器12は、加熱機14を備えた送風機13を備えている。乾燥機15は、嵩密度比較演算装置17を備えた嵩密度測定機16に接続されている。   The automatic bulk density measuring device 20 of the present invention is provided with a sample collecting pipe 9 for sampling pre-foamed particles, which is branched from the middle of a pipe 8 connecting the separator 6 and the pre-foamed particle storage tank 30, and one end of the pipe A fixed-volume sample collection container 12 having a structure that does not allow the pre-expanded particles to pass therethrough and a dryer 15 are provided, and these are connected to the three-way valve 11. The sample collection container 12 includes a blower 13 including a heater 14. The dryer 15 is connected to a bulk density measuring machine 16 provided with a bulk density comparison calculation device 17.

自動嵩密度測定装置20による予備発泡粒子の測定は、以下のようにして行われる。予備発泡中に、三方弁11によりサンプル採取配管9とサンプル採取容器12とを連通させ、サンプル採取配管9と乾燥機15とは遮断して、分離器6と予備発泡粒子貯槽30の間の配管8から予備発泡粒子をサンプル採取配管9を通じ、三方弁11を経由してサンプル採取容器12に採取する。   The measurement of the pre-expanded particles by the automatic bulk density measuring device 20 is performed as follows. During the pre-foaming, the three-way valve 11 causes the sample collecting pipe 9 and the sample collecting container 12 to communicate with each other, the sample collecting pipe 9 and the dryer 15 are disconnected, and the pipe between the separator 6 and the pre-foamed particle storage tank 30. The pre-expanded particles are collected from the sample collection pipe 12 through the sample collection pipe 9 and the three-way valve 11.

三方弁11は、一般に用いられる三方ボール弁を用いることが出来る。市販されている三方ボール弁には、Lポート式とTポート式の2種類があるが、本発明ではLポート式を用いることが好ましい。これは、3方向の流体の方向転換を行なうためのボール弁で、L字型の流路を備えたボールを90度回転させることによって、2方弁を3個使用する代わりに3方弁なら1個で方向切り替えできるものである。三方弁の口径は、予備発泡粒子が閉塞しない大きさがあればよく、予備発泡粒子の直径が2mm程度であれば、10A(内径およそ10mm)以上、予備発泡粒子の直径が10mm程度であれば、50A(内径およそ50mm)以上で、閉塞することなく採取できる。三方ボール弁には、ボール部分の径が配管の径より小さいタイプと、両者が同じ径(フルボアと称される)ものがある。予備発泡粒子が閉塞しない限り、どちらのタイプでも使用する事ができる。   The three-way valve 11 can be a commonly used three-way ball valve. There are two types of commercially available three-way ball valves, an L port type and a T port type. In the present invention, it is preferable to use an L port type. This is a ball valve for changing the direction of fluid in three directions. By rotating a ball with an L-shaped flow path by 90 degrees, instead of using three two-way valves, The direction can be switched by one. The diameter of the three-way valve only needs to be large enough to prevent the pre-expanded particles from being blocked. If the diameter of the pre-expanded particles is about 2 mm, the diameter of the pre-expanded particles is about 10 mm or more. , 50A (inner diameter approximately 50 mm) or more, can be collected without clogging. Three-way ball valves include a type in which the diameter of the ball portion is smaller than the diameter of the pipe, and a type in which both have the same diameter (referred to as a full bore). Either type can be used as long as the pre-expanded particles are not blocked.

サンプル採取容器12の他端側(三方弁11を接続した側と反対側)には、メッシュmが設けられている。メッシュmは、予備発泡粒子を捕捉するが水およびガスを通過できるものであれば、線径ならびに目開きは限定されない。予備発泡装置10(予備発泡加圧容器1)の内圧により、予備発泡粒子と水ならびにガスが三方弁11を通過してサンプル採取容器12に流入し、流入した予備発泡粒子はメッシュmで捕捉され、水の一部とガスはメッシュmを通過し、さらに加熱機14と送風機13を逆流して外部へ放出される。このようにして、予備発泡装置10の内圧により、メッシュmで仕切られたサンプル採取容器12内の空間Aに一定量の予備発泡粒子が充填される。前記予備発泡装置10の内圧が予備発泡粒子をサンプル採取容器12内に充填するのに不十分な場合には、メッシュmを通してサンプル採取容器12内を減圧にすることで、サンプル採取容器12内への予備発泡粒子の充填をスムーズにすることができる。サンプル採取容器12の容量、すなわちメッシュmで仕切られた空間Aの容積は、10〜0.05L、より好ましくは3〜0.3L程度である。サンプル採取容器12の容量が大きすぎると予備発泡粒子の迅速な乾燥が困難になり、発泡時間の間に嵩密度の測定と測定結果のフィードバックができない場合があり、またサンプル採取容器12の容量が小さすぎる場合には嵩密度の測定精度が低下するので、好ましくない。   A mesh m is provided on the other end side of the sample collection container 12 (the side opposite to the side where the three-way valve 11 is connected). As long as mesh m captures pre-expanded particles but can pass water and gas, the wire diameter and mesh size are not limited. Due to the internal pressure of the pre-foaming device 10 (pre-foaming pressure vessel 1), the pre-foamed particles, water and gas pass through the three-way valve 11 and flow into the sample collection container 12, and the pre-foamed particles that flow in are captured by the mesh m. A part of the water and the gas pass through the mesh m, and further flow backward through the heater 14 and the blower 13 to be discharged to the outside. In this way, a predetermined amount of pre-expanded particles are filled into the space A in the sample collection container 12 partitioned by the mesh m by the internal pressure of the pre-expanding device 10. When the internal pressure of the pre-foaming device 10 is insufficient to fill the pre-expanded particles into the sample collection container 12, the pressure inside the sample collection container 12 is reduced through the mesh m to enter the sample collection container 12. The pre-expanded particles can be filled smoothly. The capacity of the sample collection container 12, that is, the volume of the space A partitioned by the mesh m is about 10 to 0.05L, more preferably about 3 to 0.3L. If the capacity of the sample collection container 12 is too large, it becomes difficult to quickly dry the pre-expanded particles, and the bulk density may not be measured during the foaming time and the measurement results may not be fed back. If it is too small, the measurement accuracy of the bulk density decreases, which is not preferable.

次ぎに、三方弁11を切り替えて、サンプル採取配管9とサンプル採取容器12とを遮断し、かつサンプル採取容器12と乾燥機15とを連通させ、送風機13で気流を発生させ、サンプル採取容器12の空間A内に採取、充填した予備発泡粒子を、該気流を加熱機14で加熱することで得られる乾燥空気で押し出し、乾燥機15に送るとともに、脱水乾燥させる。前記加熱機14は、一般的に用いられる空気加熱ヒータを用いることができる。加熱機14の例としては、シェル型ヒータ、ダクトヒータ、ねじ込みヒータなどが挙げられ、予備発泡粒子をサンプル採取容器12から乾燥機15へ送り、脱水乾燥させるのに必要とする風量と温度に応じて適当な方式と能力のものを選択すればよい。乾燥に使用する送風機13からの風量および加熱機14で調整される乾燥空気の温度は、予備発泡粒子の表面の水分量、乾燥空気の湿度、予備発泡粒子の樹脂組成、発泡剤の種類や量等に応じて設定すればよい。乾燥温度が低いと乾燥時間が長くなるので、この場合は送風機13からの風量を増すとよい。樹脂組成によっては、乾燥温度が低いと粒子が収縮してしまい、正しい嵩密度が測定できないことがある。このような場合は、予備発泡粒子が収縮を起こさない範囲で乾燥温度を高くすれば良い。   Next, the three-way valve 11 is switched to shut off the sample collection pipe 9 and the sample collection container 12, and the sample collection container 12 and the dryer 15 are communicated with each other. The pre-expanded particles collected and filled in the space A are extruded with dry air obtained by heating the air flow with the heater 14, sent to the dryer 15, and dehydrated and dried. The heater 14 may be a commonly used air heater. Examples of the heater 14 include a shell-type heater, a duct heater, a screw heater, and the like. Depending on the air volume and temperature required to send the pre-foamed particles from the sample collection container 12 to the dryer 15 for dehydration and drying. Select the one with the appropriate method and ability. The amount of air from the blower 13 used for drying and the temperature of the drying air adjusted by the heater 14 are the moisture content on the surface of the pre-foamed particles, the humidity of the dry air, the resin composition of the pre-foamed particles, and the type and amount of the foaming agent. What is necessary is just to set according to etc. Since drying time will become long if drying temperature is low, it is good to increase the air volume from the air blower 13 in this case. Depending on the resin composition, if the drying temperature is low, the particles shrink, and the correct bulk density may not be measured. In such a case, the drying temperature may be increased as long as the pre-expanded particles do not shrink.

サンプル採取容器12から予備発泡粒子が送られる乾燥機15は、一般的に粉粒体の乾燥に用いられる方式の乾燥機を用いることができる。乾燥機15での予備発泡粒子の滞留時間は、乾燥に必要な時間をとればよい。乾燥速度が速く、予備発泡粒子がサンプル採取容器12から乾燥機15にいたるまでの数秒で乾燥する場合には、気流乾燥あるいはフラッシュ乾燥と呼ばれる乾燥機を用いることができる。乾燥速度が遅い場合は、サイクロン乾燥機や流動層乾燥機などを用いることができる。乾燥機15を、サイクロン乾燥機のような、内部で乾燥空気と予備発泡粒子が回転するような構造にしておけば、送風している限り乾燥機内で予備発泡粒子が滞留し、乾燥が完了するまで必要な滞留時間を自在に確保することができる。ただし、過度に乾燥させると、表面に水分の無くなった予備発泡粒子は乾燥機15内部で帯電し、後述の嵩密度測定時に粒子同士が反発して、正しい嵩密度を測定できない場合がある。この場合、乾燥までに、予備発泡粒子に帯電防止剤を添加(噴霧)し、装置をアースしておくこと等により、正常に嵩密度を測定できる。帯電防止剤は、市販の帯電防止剤、界面活性剤等を使用する事ができる。乾燥粒子の帯電対策としては、乾燥に用いる空気を加湿しておくことも効果的である。   As the dryer 15 to which the pre-expanded particles are sent from the sample collection container 12, a dryer of a system generally used for drying powder particles can be used. The residence time of the pre-expanded particles in the dryer 15 may be a time required for drying. When the drying speed is fast and the pre-expanded particles are dried in a few seconds from the sample collection container 12 to the dryer 15, a dryer called air flow drying or flash drying can be used. When the drying speed is low, a cyclone dryer or a fluidized bed dryer can be used. If the dryer 15 has a structure in which dry air and pre-expanded particles rotate inside, such as a cyclone dryer, the pre-expanded particles stay in the dryer as long as the air is blown, and the drying is completed. The necessary residence time can be secured freely. However, when excessively dried, the pre-expanded particles whose surface has no moisture are charged inside the dryer 15 and the particles repel at the time of measuring the bulk density described later, so that the correct bulk density may not be measured. In this case, the bulk density can be measured normally by adding (spraying) an antistatic agent to the pre-expanded particles and grounding the device before drying. As the antistatic agent, commercially available antistatic agents, surfactants and the like can be used. As a countermeasure against electrification of dry particles, it is also effective to humidify the air used for drying.

乾燥した予備発泡粒子は、乾燥機15底部の払い出しバルブ18から嵩密度測定機16に投入される。嵩密度測定機16は、一定体積の容器にサンプルを採取し、このサンプルの重量を測定することで、嵩密度が計算できるようになっている。また、嵩密度測定機16は、測定の済んだサンプルを外部に排出する機構を備えている。嵩密度の測定結果は、嵩密度比較演算装置17で演算される。嵩密度比較演算装置17は、嵩密度測定機16から出力された嵩密度の測定結果の電気信号を、パソコンあるいはシーケンサなどに入力して、目標値と比較演算する。嵩密度比較演算装置17で演算され、目標の嵩密度と異なっている場合は、予備発泡装置10の圧力設定器3に新たな圧力設定値を設定する信号が送られる。嵩密度測定機16および嵩密度比較演算装置17は公知のものを用いることができる。
The dried pre-expanded particles are put into the bulk density measuring device 16 from the discharge valve 18 at the bottom of the dryer 15. The bulk density measuring device 16 can calculate the bulk density by collecting a sample in a container having a constant volume and measuring the weight of the sample. Further, the bulk density measuring device 16 includes a mechanism for discharging the measured sample to the outside. The measurement result of the bulk density is calculated by the bulk density comparison calculation device 17. The bulk density comparison calculation device 17 inputs the electrical signal of the measurement result of the bulk density output from the bulk density measuring device 16 into a personal computer or a sequencer, and performs a comparison calculation with the target value. When it is calculated by the bulk density comparison calculation device 17 and is different from the target bulk density, a signal for setting a new pressure set value is sent to the pressure setting device 3 of the preliminary foaming device 10. Known devices can be used for the bulk density measuring device 16 and the bulk density comparison calculation device 17.

(実施例1)
以下に実施例により本発明を更に説明するが、本発明はこの実施例に限定されるものではない。なお、以下の実施例中、「部」は「重量部」を表す。
(Example 1)
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples. In the following examples, “part” represents “part by weight”.

ポリオレフィン系樹脂予備発泡粒子の製造に、本発明を適用した例を挙げる。ポリオレフィン系樹脂であるエチレン−プロピレンランダム共重合体(密度0.91g/cm3、エチレン含有率3%、融点145℃、MI=5.5g/10分、曲げ弾性率1000MPa)100部に対し、無機充填剤としてタルク(平均粒径7μm)0.1部を添加し、50mmφ単軸押出機に供給し、溶融混練したのち、直径1.5mmφの円筒ダイより押し出し、水冷後カッターで切断し、円柱状のポリオレフィン系樹脂組成物からの樹脂粒子(ペレット)(1.8mg/粒)を得た。得られた樹脂粒子の融点は145℃、JIS K 7112により測定した密度0.90g/cm3であった。The example which applied this invention to manufacture of polyolefin resin pre-expanded particle is given. For 100 parts of ethylene-propylene random copolymer (density 0.91 g / cm 3 , ethylene content 3%, melting point 145 ° C., MI = 5.5 g / 10 min, flexural modulus 1000 MPa) which is a polyolefin resin, Add 0.1 part of talc (average particle size 7 μm) as an inorganic filler, supply it to a 50 mmφ single screw extruder, melt knead, extrude from a cylindrical die with a diameter of 1.5 mmφ, cut with a cutter after water cooling, Resin particles (pellets) (1.8 mg / particle) were obtained from the columnar polyolefin-based resin composition. The obtained resin particles had a melting point of 145 ° C. and a density of 0.90 g / cm 3 measured according to JIS K 7112.

得られた樹脂粒子100部(3000kg)、分散剤として第三リン酸カルシウム1.5部および分散助剤としてn−パラフィンスルホン酸ソーダ0.03部を、水300部と共に図1に示す予備発泡装置10の予備発泡加圧容器1に仕込んだ後、予備発泡加圧容器1内の水分散物を攪拌しながら、圧力設定器3からブタン12部を圧入し、140℃まで加熱した。このときの予備発泡加圧容器1内の圧力は約1.3MPaであった。そののち、嵩密度が45〜55g/Lになるように予備発泡加圧容器1内の圧力をブタンで保持しながら加圧容器払い出しバルブ4を開いて樹脂粒子および水系分散媒の混合物をノズル5から放出して、独立気泡構造を有する予備発泡粒子を得た。発泡した予備発泡粒子は、分離器6で水と分離し、250Aの配管8を通って、予備発泡粒子貯槽30に送った。   100 parts (3000 kg) of the obtained resin particles, 1.5 parts of tribasic calcium phosphate as a dispersing agent and 0.03 part of sodium n-paraffin sulfonate as a dispersing aid, together with 300 parts of water, the prefoaming apparatus 10 shown in FIG. Then, 12 parts of butane was press-fitted from the pressure setting device 3 and heated to 140 ° C. while stirring the aqueous dispersion in the pre-foaming pressure vessel 1. At this time, the pressure in the pre-foamed pressurized container 1 was about 1.3 MPa. After that, while maintaining the pressure in the pre-foamed pressurized container 1 with butane so that the bulk density is 45 to 55 g / L, the pressurized container discharge valve 4 is opened and the mixture of the resin particles and the aqueous dispersion medium is removed from the nozzle 5. To obtain pre-expanded particles having a closed cell structure. The foamed pre-expanded particles were separated from water by the separator 6 and sent to the pre-expanded particle storage tank 30 through the pipe 8 of 250A.

このとき、前記分離器6と予備発泡粒子貯留槽30とをつなぐ配管8の途中に接続した50Aのサンプル採取配管9を通じて予備発泡粒子をサンプリングした。サンプリングした予備発泡粒子は、50Aの三方弁11がサンプル採取配管9とサンプル採取容器12に開となったときに、サンプル採取配管9および三方弁11を経て、容量1.5Lのサンプル採取容器12の空間A内に充填された。10秒後に、予備発泡粒子の充填が完了した。   At this time, the pre-expanded particles were sampled through the 50 A sample collection pipe 9 connected in the middle of the pipe 8 connecting the separator 6 and the pre-foamed particle storage tank 30. The sampled pre-expanded particles pass through the sample collection pipe 9 and the three-way valve 11 when the 50A three-way valve 11 is opened to the sample collection pipe 9 and the sample collection container 12, and the sample collection container 12 having a capacity of 1.5L. The space A was filled. After 10 seconds, the pre-expanded particle filling was complete.

次に送風機13を運転し、加熱機14を50℃に加熱し、三方弁11を乾燥機15とサンプル採取容器12に開とした。送風機13からは5.0m3/分、静圧4.0kPaの乾燥空気が排出され、静圧でサンプル採取容器12に充填されていた予備発泡粒子は、三方弁11を通って、乾燥機15に送られた。送風開始後60秒で送風機13を停止し、乾燥機15底部の払い出しバルブ18を開けて、乾燥の完了した予備発泡粒子を公知の構造の嵩密度測定機16に落下、投入した。嵩密度測定機16では、容量1.0Lの計量カップに予備発泡粒子が投入されて一定体積が採取された。余剰の予備発泡粒子0.5Lは前記計量カップから溢れて外部に排出された。前記計量カップは計量器により吊り下げられており、予備発泡粒子の重量W(g)が測定され、予備発泡粒子の嵩密度が、W/1.0=W(g/L)と求められた。Next, the blower 13 was operated, the heater 14 was heated to 50 ° C., and the three-way valve 11 was opened to the dryer 15 and the sample collection container 12. Dry air of 5.0 m 3 / min and static pressure of 4.0 kPa is discharged from the blower 13, and the pre-expanded particles filled in the sample collection container 12 with static pressure pass through the three-way valve 11 and pass through the dryer 15. Sent to. 60 seconds after the start of air blowing, the air blower 13 was stopped, the discharge valve 18 at the bottom of the dryer 15 was opened, and the dried pre-expanded particles were dropped and put into the bulk density measuring device 16 having a known structure. In the bulk density measuring device 16, the pre-expanded particles were put into a measuring cup having a capacity of 1.0 L, and a certain volume was collected. Excess pre-expanded particles 0.5 L overflowed from the measuring cup and discharged to the outside. The measuring cup was suspended by a measuring instrument, the weight W (g) of the pre-expanded particles was measured, and the bulk density of the pre-expanded particles was determined as W / 1.0 = W (g / L). .

測定を終えた予備発泡粒子が前記計量カップの底部に設けられた排出弁から外部に排出され、嵩密度の測定が完了した。予備発泡粒子のサンプリングから2分後、嵩密度測定機16にサンプルの予備発泡粒子を投入後30秒で嵩密度の測定が完了した。次いで、アナログ信号入出力端子を内蔵したパソコンからなる公知の嵩密度比較演算装置17により測定結果と目標値を比較した。最初の2分目の嵩密度の測定値は、目標とする45〜55g/Lの中央値である50g/Lより小さい48g/Lであった。そこで、設定圧力を上げる信号を圧力設定器3に送った。その後も、2分ごとに予備発泡粒子の嵩密度を測定し、嵩密度を目標の中央値に近づけるように調整を続けた。65分間の発泡中に測定した嵩密度の測定結果を表1および図2に示す。表1および図2に示すように、予備発泡粒子の嵩密度は、目標とする45〜55g/Lにおさまっていた。   The pre-expanded particles that had been measured were discharged to the outside from a discharge valve provided at the bottom of the measuring cup, and the measurement of the bulk density was completed. Two minutes after sampling of the pre-expanded particles, measurement of the bulk density was completed 30 seconds after the sample pre-expanded particles were put into the bulk density measuring device 16. Next, the measurement result and the target value were compared by a known bulk density comparison calculation device 17 composed of a personal computer with a built-in analog signal input / output terminal. The measured value of the bulk density in the first 2 minutes was 48 g / L, which is smaller than 50 g / L, which is the target median value of 45 to 55 g / L. Therefore, a signal for increasing the set pressure was sent to the pressure setter 3. Thereafter, the bulk density of the pre-foamed particles was measured every 2 minutes, and the adjustment was continued so as to bring the bulk density closer to the target median value. Table 1 and FIG. 2 show the measurement results of the bulk density measured during foaming for 65 minutes. As shown in Table 1 and FIG. 2, the bulk density of the pre-expanded particles was within the target 45 to 55 g / L.

Figure 0004135958
Figure 0004135958

(比較例1)
嵩密度測定を、特開平6−80816号公報に記載の方法で測定したほかは実施例と同じ方法で、発泡を実施した。この方法だと、採取した予備発泡粒子のサンプルを乾燥機ですべて乾燥させるのに8分かかったため、嵩密度の測定には10分要した。嵩密度の測定結果を受けて10分毎に予備発泡条件を調整した結果、嵩密度の時間変化は表1および図2に示すとおりであった。サンプル採取から測定完了まで10分を要するため、嵩密度の調整が後手にまわり、精度の高い調整はできなかった。結果は、測定6点のうち3点が目標とする45〜55g/Lの範囲から外れた。
(Comparative Example 1)
Foaming was carried out by the same method as in the Examples except that the bulk density was measured by the method described in JP-A-6-80816. In this method, since it took 8 minutes to dry all the collected samples of pre-expanded particles with a dryer, it took 10 minutes to measure the bulk density. As a result of adjusting the preliminary foaming conditions every 10 minutes in response to the measurement result of the bulk density, the time change of the bulk density was as shown in Table 1 and FIG. Since it took 10 minutes from the sample collection to the completion of measurement, the bulk density was adjusted later and adjustment with high accuracy was not possible. As a result, three points out of the six measurement points were out of the target range of 45 to 55 g / L.

Claims (11)

発泡性熱可塑性樹脂の予備発泡粒子の嵩密度を自動的に測定する装置であって、予備発泡装置で予備発泡された発泡性熱可塑性樹脂の予備発泡粒子を前記予備発泡装置から予備発泡粒子貯槽へ送るための配管の途中から分岐して設けたサンプル採取配管と、一端側が前記サンプル採取配管に接続され他端側に水やガスは透過させるが前記予備発泡粒子を透過させない構造を有し該他端側に送風機が接続されたサンプル採取容器と、前記サンプル採取容器の前記一端側に接続された乾燥機と、前記乾燥機に接続された嵩密度測定機とを備えることを特徴とする自動嵩密度測定装置。  An apparatus for automatically measuring the bulk density of pre-expanded particles of an expandable thermoplastic resin, wherein the pre-expanded particles of the expandable thermoplastic resin pre-expanded by the pre-expand apparatus are stored in the pre-expanded particle storage tank. A sample collection pipe branched from the middle of the pipe for feeding to the pipe, and one end side is connected to the sample collection pipe and water and gas are permeated to the other end side but the pre-expanded particles are not permeated. A sample collecting container having a blower connected to the other end, a dryer connected to the one end of the sample collecting container, and a bulk density measuring machine connected to the dryer Bulk density measuring device. 前記サンプル採取配管、前記サンプル採取容器および前記乾燥機が三方弁に接続されている請求の範囲第1項に記載の自動嵩密度測定装置。  The automatic bulk density measuring apparatus according to claim 1, wherein the sample collection pipe, the sample collection container, and the dryer are connected to a three-way valve. 前記送風機からサンプル採取容器へ供給される空気を加熱する加熱機を備えている請求の範囲第1項または第2項に記載の自動嵩密度測定装置。  The automatic bulk density measuring apparatus according to claim 1 or 2, further comprising a heater for heating air supplied from the blower to the sample collection container. 前記嵩密度測定機が嵩密度比較演算装置を備えている請求の範囲第1項〜第3項のいずれか一項に記載の自動嵩密度測定装置。  The automatic bulk density measuring device according to any one of claims 1 to 3, wherein the bulk density measuring device includes a bulk density comparison operation device. 発泡性熱可塑性樹脂の予備発泡粒子の嵩密度を測定する方法であって、 予備発泡装置で予備発泡され該予備発泡装置から予備発泡粒子貯槽へ送られる発泡性熱可塑性樹脂の予備発泡粒子の一部を、サンプル採取配管を介してサンプル採取容器に採取し、採取した予備発泡粒子を送風機により前記サンプル採取容器から乾燥機に排出して予備発泡粒子を気流乾燥したのち、乾燥した予備発泡粒子の嵩密度を嵩密度測定機により自動的に測定する方法。  A method for measuring the bulk density of pre-expanded particles of an expandable thermoplastic resin, wherein the pre-expanded particles of the expandable thermoplastic resin are pre-expanded by a pre-expanding device and sent from the pre-expanding device to a pre-expanded particle storage tank. The sample is collected in a sample collection container through a sample collection pipe, and the collected pre-expanded particles are discharged from the sample collection container to the dryer by a blower, and the pre-expanded particles are air-dried, and then the pre-expanded particles are dried. A method of automatically measuring the bulk density with a bulk density measuring machine. 前記送風機から供給される乾燥空気によりサンプリング容器から予備発泡粒子を乾燥機に排出することで、前記予備発泡粒子から脱水および/または乾燥する水分量を安定化させる請求の範囲第5項に記載の測定方法。  6. The amount of water dehydrated and / or dried from the pre-expanded particles is stabilized by discharging the pre-expanded particles from the sampling container to the dryer with the dry air supplied from the blower. Measuring method. 三方弁の一方を前記サンプル採取配管に接続し、もう一方を前記サンプル採取容器に接続し、さらに残りの一方を前記乾燥機に接続し、三方弁の方向を切り替えることで、前記サンプル採取配管を介してサンプル採取容器に予備発泡粒子を採取し、前記サンプル採取容器から前記乾燥機へ予備発泡粒子を排出する請求の範囲第5項または第6項に記載の測定方法。  One of the three-way valves is connected to the sample collection pipe, the other is connected to the sample collection container, the other one is connected to the dryer, and the direction of the three-way valve is switched to change the sample collection pipe. The measurement method according to claim 5 or 6, wherein pre-expanded particles are collected in a sample collection container, and the pre-expanded particles are discharged from the sample collection container to the dryer. 前記送風機によりサンプル採取容器から乾燥機へ予備発泡粒子を排出する際の乾燥空気を加熱する請求の範囲第5項〜第7項のいずれか一項に記載の測定方法。  The measurement method according to any one of claims 5 to 7, wherein dry air is heated when the pre-expanded particles are discharged from the sample collection container to the dryer by the blower. 予備発泡装置から予備発泡粒子を連続的に排出しながら、前記排出された予備発泡粒子の嵩密度を請求の範囲第5項〜第8項のいずれか一項に記載の方法により測定し、該測定結果を嵩密度比較演算装置にて目標値と比較して、その結果を予備発泡装置にフィードバックすることで、予備発泡装置で予備発泡させている予備発泡粒子の発泡条件を調整することを特徴とする予備発泡粒子の製造方法。  While continuously discharging the pre-expanded particles from the pre-expanding device, the bulk density of the discharged pre-expanded particles is measured by the method according to any one of claims 5 to 8, The measurement result is compared with the target value by the bulk density comparison calculation device, and the result is fed back to the pre-foaming device to adjust the foaming conditions of the pre-foamed particles pre-foamed by the pre-foaming device. A method for producing pre-expanded particles. 前記嵩密度比較演算装置からのフィードバックにより予備発泡装置の設定圧力を調整する請求の範囲第9項に記載の製造方法。  The manufacturing method according to claim 9, wherein the set pressure of the pre-foaming device is adjusted by feedback from the bulk density comparison calculation device. 発泡性熱可塑性樹脂粒子を、予備発泡装置の予備発泡加圧容器の投入口から水、分散剤等とともに投入し、圧力設定器で予備発泡加圧容器に発泡剤を投入し、予備発泡加圧容器内を所定の圧力、温度に調整し、ノズルを通して発泡させるとともに、前記嵩密度比較演算装置にて目標値と比較した結果を前記予備発泡装置の圧力設定器にフィードバックして予備発泡加圧容器内の圧力を調整する請求の範囲第10項に記載の製造方法。  The foamable thermoplastic resin particles are introduced together with water, a dispersing agent, etc. from the inlet of the prefoaming pressurization container of the prefoaming device, and the foaming agent is put into the prefoaming pressurization container with the pressure setting device, and prefoaming pressurization is performed. The inside of the container is adjusted to a predetermined pressure and temperature and foamed through a nozzle, and the result of comparison with a target value by the bulk density comparison calculation device is fed back to the pressure setting device of the preliminary foaming apparatus, and the prefoaming pressure container The manufacturing method according to claim 10, wherein the internal pressure is adjusted.
JP2006510932A 2004-03-15 2005-03-08 Apparatus and method for measuring bulk density of pre-expanded particles and method for producing pre-expanded particles Expired - Fee Related JP4135958B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004072486 2004-03-15
JP2004072486 2004-03-15
PCT/JP2005/003933 WO2005087475A1 (en) 2004-03-15 2005-03-08 Bulk density measuring equipment and measuring method of prefoamed particle, and method for producing prefoamed particle

Publications (2)

Publication Number Publication Date
JPWO2005087475A1 JPWO2005087475A1 (en) 2008-01-24
JP4135958B2 true JP4135958B2 (en) 2008-08-20

Family

ID=34975418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006510932A Expired - Fee Related JP4135958B2 (en) 2004-03-15 2005-03-08 Apparatus and method for measuring bulk density of pre-expanded particles and method for producing pre-expanded particles

Country Status (2)

Country Link
JP (1) JP4135958B2 (en)
WO (1) WO2005087475A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680086B2 (en) * 2006-02-14 2011-05-11 株式会社カネカ Method for measuring bulk density of pre-expanded particles
JP6331323B2 (en) 2012-10-18 2018-05-30 株式会社カネカ Bulk density measuring device for pre-expanded particles and method for producing pre-expanded particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2808053B2 (en) * 1991-07-05 1998-10-08 東洋機械金属株式会社 Feedback-type foam molding method and foam molding system
JPH0680816A (en) * 1992-08-31 1994-03-22 Daikai Kogyo Kk Apparatus for automatic determination of expansion ratio
JP3098115B2 (en) * 1992-09-03 2000-10-16 東洋機械金属株式会社 Pre-foaming equipment
JP3205479B2 (en) * 1995-03-16 2001-09-04 積水化成品工業株式会社 Foam molded body manufacturing equipment
US6527993B1 (en) * 1998-11-12 2003-03-04 Sekisui Plastics Co., Ltd. Method for producing foamed-in-mold product of aromatic polyester based resin

Also Published As

Publication number Publication date
WO2005087475A1 (en) 2005-09-22
JPWO2005087475A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
US7989524B2 (en) Fiber-reinforced starch-based compositions and methods of manufacture and use
JP4680086B2 (en) Method for measuring bulk density of pre-expanded particles
JP4221408B2 (en) Method for producing thermoplastic resin foamable particles
JP2002501443A (en) Extrusion method and extrusion apparatus for microporous polymer
JP2005534733A (en) Method for producing expandable polystyrene
JP4135958B2 (en) Apparatus and method for measuring bulk density of pre-expanded particles and method for producing pre-expanded particles
TWI616301B (en) Device for measuring total density of pre-expanded particles and method for manufacturing pre-expanded particles
JP6535629B2 (en) Method of producing resin particles
JPH0198638A (en) Blowing agent composition for expanding thermoplastic resin
JP2023538623A (en) Production of high temperature polymer-based pellets by underwater pelletization at elevated water temperatures to produce (rigid) particle foams
JPWO2019187986A1 (en) Method and apparatus for manufacturing polyolefin-based resin foam particles
WO2022163433A1 (en) Manufacturing method and manufacturing device for foamed particles
JP2003261707A (en) Method for producing resin foam
US10442121B2 (en) Method and apparatus for manufacturing sustainable products with a blown, foam structure
KR100946241B1 (en) Dryer of coating apparatus
WO2023162963A1 (en) Foamed particle production method and production device
JP2004306567A (en) Pre-foaming method for obtaining pre-foamed thermoplastic resin particle
JP2023125583A (en) Manufacturing apparatus and manufacturing method for second-stage foamed particle
JPH0680816A (en) Apparatus for automatic determination of expansion ratio
CN113544202B (en) Polyolefin resin particles and use thereof
US20050035499A1 (en) Method for producing foamed structural parts that are mixed with vegetable carrier materials
JP3001309B2 (en) Feeding hopper for prefoaming machine
JPH0313306A (en) Prefoaming method at low expansion coefficient of foamable thermoplastic resin particle
CN116981553A (en) Process for preparing expanded thermoplastic elastomer particles
CN115648527A (en) Continuous preparation device and method for polymer foaming beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080528

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

R150 Certificate of patent or registration of utility model

Ref document number: 4135958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees