JP4135639B2 - NOVEL ORGANIC SILICON COMPOUND, OPTICALLY ACTIVE FORM, METHOD FOR PRODUCING THE ORGANIC SILICON COMPOUND, AND USE THEREOF - Google Patents

NOVEL ORGANIC SILICON COMPOUND, OPTICALLY ACTIVE FORM, METHOD FOR PRODUCING THE ORGANIC SILICON COMPOUND, AND USE THEREOF Download PDF

Info

Publication number
JP4135639B2
JP4135639B2 JP2003573004A JP2003573004A JP4135639B2 JP 4135639 B2 JP4135639 B2 JP 4135639B2 JP 2003573004 A JP2003573004 A JP 2003573004A JP 2003573004 A JP2003573004 A JP 2003573004A JP 4135639 B2 JP4135639 B2 JP 4135639B2
Authority
JP
Japan
Prior art keywords
naphthyl
formula
substituent
group
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003573004A
Other languages
Japanese (ja)
Other versions
JPWO2003074536A1 (en
Inventor
洋慈 堀江
昭憲 北村
貴義 内田
仁治 藤田
祇生 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Publication of JPWO2003074536A1 publication Critical patent/JPWO2003074536A1/en
Application granted granted Critical
Publication of JP4135639B2 publication Critical patent/JP4135639B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/02Pitching yeast
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/48Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/20Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common

Description

<技術分野>
本発明は、有機合成の中間体などに有用な新規な有機ケイ素化合物に関するものであり、特に有機ケイ素化合物の光学活性体に関する。また、該有機ケイ素化合物を用いた光学異性体を分割することに関する。
<背景技術>
有機ケイ素化合物が有機合成において有用な化合物であることはよく知られている。例えば、炭素−炭素結合生成反応におけるビニルシラン、アリルシラン、シリルエノールエーテルの利用(例えば、Colvin,E.W.“Silicon Reagents in Organic Synthesis,”Academic Press,London,1988.)や、保護基としての活用は、精密有機合成において欠くことのできないツールとして定着している(例えば、Green,T.W.;Wuts,P.G.M.“Protective Groups in Organic Synthesis,”3rd.Ed.,Wiley−Interscience,NY,1999,p.113−148.)。特に、トリメチルシリル基に代表される(トリ)アルキル型の有機ケイ素化合物の誘導体が多数合成され、それらの利用について、非常に活発な研究がなされている。
数多く知られている(トリ)アルキル基を有する有機ケイ素化合物において、ケイ素原子に結合した隣接炭素原子が不斉炭素であり、その立体配置が明らかなアルキルハロゲノシラン類は、林らのオレフィンおよびスチレン類の不斉ヒドロシリル化に関する報告(特開平05−017491号、特開平06−199875号など)および南井らの報告(特開平7−291940号公報、特開平7−330786号公報)の中でわずかに知られているだけである。
また、従来のラセミ体アルコール化合物の光学分割方法としては、ラセミ体アルコール化合物をマンデル酸等の光学活性な酸と反応させてエステル誘導体(ジアステレオマー混合物)とし、クロマトグラフィーなどにより分割する方法などが知られている(例えば、Ernest L.Eliel;Samuel H.Wilen;Michael P.Doyle,“Basic Stereochemistry”,Wiley−Interscience,NY,2001,p.220−223.)。しかし、この方法では、対象アルコールによってはエステル化の反応収率が低いといった欠点がある。
<発明の開示>
本発明の目的は、医・農薬分野における有機合成の中間原料、不斉合成補助剤、光学分割剤、あるいは無機材料の表面処理剤などに有用な新規な有機ケイ素化合物およびその光学活性体を提供することである。
本発明者らは、上記課題を解決すべく鋭意研究を行った結果、下記式(1)で表される新規な有機ケイ素化合物が効率よく光学分割することができ、それらの光学活性体が有機合成の中間原料などに有用であることを見出し、本発明を完成するに至った。
すなわち本発明は、下記式(1)および下記式(4)で表される有機ケイ素化合物およびこれらの光学活性体である。そして、これらの光学活性体を用いた光学異性体の分割する方法である。

Figure 0004135639
式(1)中、ArおよびArはそれぞれ異なっていて、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Rは分岐があってもよい炭素数1〜6個のアルキル基または置換基があってもよいフェニル基を示し、Xはハロゲン原子を示す。
Figure 0004135639
式(4)中、ArおよびArはそれぞれ異なっていて、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Rは分岐があってもよい炭素数1〜6個のアルキル基または置換基があってもよいフェニル基を示し、Rはアルコール化合物由来のものを示す。
本発明者らは、前記式(1)で表される有機ケイ素化合物の光学活性体を、例えばラセミ体アルコール化合物と反応させて前記式(4)で表される化合物のジアステレオマー混合物とすることにより、晶析などにより光学分割することができることを見出した(このジアステレオマー混合物の結晶性は一般に良い)。また、上記ジアステレオマー混合物はアキラルな分離カラムを用いたクロマトグラフィーにより光学分割することができることを見出した。前記式(1)の化合物とラセミ体アルコール化合物との反応は、温和な条件下で定量的に進行させることができる。
<発明を実施するための最良の形態>
本発明における有機ケイ素化合物は、前記式(1)で表される化合物であり、式(1)において、ArおよびArはそれぞれ異なっているものである。式(1)のArは、置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基、または置換基があってもよい2−ナフチル基のいずれかを示し、Arは、置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基、または置換基があってもよい2−ナフチル基のいずれかを示し、Rは分岐があってもよい炭素数1〜6のアルキル基または置換もしくは非置換のフェニル基を示し、Xはハロゲン原子を示す。これらの中でも、式(1)の製造の容易さなどの面から、ArおよびArのいずれかが置換基があってもよいフェニル基である化合物が好ましい。また、式(1)の製造の容易さ、および反応性が優れるという理由で、Xは塩素原子または臭素原子であることが好ましい。
上記のAr並びにArのフェニル基、1−ナフチル基および2−ナフチル基等の置換基としては、アルキル基、アルコキシ基、アセトキシ基、シリルオキシ基、ハロゲン原子、アリール基、ビニル基およびアリル基などのアルケニル基、エチニル基、エポキシ基、ジアルキルアミノ基、並びにアシル基などが例示できる。置換基としてのアルキル基は、好ましくは炭素数1〜20で特に好ましくは炭素数1〜6個のアルキル基が例示できる。置換基としてのアルコキシ基は、好ましくは炭素数1〜20で特に好ましくは炭素数1〜6のアルコキシ基が例示できる。置換基としてのアセトキシ基の炭素数は、2〜20で特に好ましくは炭素数2〜6のものが例示できる。置換基としてのシリルオキシ基に結合しているアルキル基としては、炭素数1〜20で特に好ましくは炭素数1〜6個のアルキル基が例示できる。置換基としてのハロゲン原子は、好ましくはフッ素原子、塩素原子または臭素原子が例示できる。置換基としてのアリール基は、更にアルキル基または/およびアルコキシ基が結合していても良いものが例示できる。置換基としてのビニル基およびアリル基などのアルケニル基は、炭素数2〜20で好ましくは炭素数2〜8が例示できる。置換基としてはエチニル基が例示できる。置換基としてのエポキシ基は、炭素数2〜6のものが例示できる。置換基としてのジアルキルアミノ基は、炭素数1〜20で特に好ましくは炭素数1〜6個のアルキル基が例示できる。置換基としてのアシル基は、炭素数1〜20で特に好ましくは炭素数1〜6個のアルキル基が例示できる。これら例示したが、置換基としてこれらに限定されるものではない。
式(1)は、下記式(2)で表される化合物に炭素数1〜6のアルキルリチウムを反応させた後、下記式(3)で表される化合物と反応させて得ることができる。
Figure 0004135639
式(2)中のArおよびArはそれぞれ異なっていて、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示す。
Figure 0004135639
式(3)中、Rは分岐があってもよい炭素数1〜6個のアルキル基または置換基があってもよいフェニル基を示し、Xはハロゲン原子を示す。
本発明におけるもう一方の有機ケイ素化合物は、前記式(4)で表される化合物であり、この化合物は前記式(1)で表される化合物とアルコシキドおよび水酸基などを有するアルコール化合物とから製造することができる。式(4)におけるAr、ArおよびRは式(1)と同様なものであり、Rはアルコール化合物等の由来のもので特に限定はなく、例えば分岐があってもよい炭素数1〜20のアルキル基、炭素数5〜20の脂環アルキル基または炭素数8〜20のカルボキシル基が付いていてもよいアラアルキル基などを示す。
以下、前記式(1)で表される有機ケイ素化合物は[(1−ナフチル)フェニルメチル]ジメチルシリルクロリドを代表例とし、前記式(4)で表される有機ケイ素化合物は[(1−ナフチル)フェニルメチル]ジメチルシリルアルコキシドを代表例として説明する。
前記式(1)で表される有機ケイ素化合物の代表例である[(1−ナフチル)フェニルメチル]ジメチルシリルクロリドは、例えば、以下の方法で製造することができる。
1−ブロモナフタレン、マグネシウムおよびテトラヒドロフランより調製した1−ナフタレンマグネシウムブロミド溶液とベンジルクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)とをテトラヒドロフラン(THF)溶液中で反応させて、式(2)の一例である(1−ナフチル)フェニルメタンを得る。
次に、上記で得られた(1−ナフチル)フェニルメタンをn−ブチルリチウムで代表される炭素数1〜6のアルキルリチウム等の有機金属試薬を用いてメタル化し、これに式(3)の一例であるジメチルジクロロシランとを反応させることにより、前記式(1)で表される[(1−ナフチル)フェニルメチル]ジメチルシリルクロリドを得ることができる。これらの反応において、メタル化の際の温度は重要であり、−78℃〜室温の範囲、望ましくは0℃付近で行うと良好に反応が進行する。
さらに、上記で得られた[(1−ナフチル)フェニルメチル]ジメチルシリルクロリドをイミダゾール、4−ジメチルアミノピリジン、トリエチルアミンおよびジイソプロピルエチルアミン等の存在下、アルコール化合物またはアルコキシド化合物(例えばナトリウムアルコキシドあるいはリチウムアルコキシド等)等と反応させることにより、前記式(4)で表される[(1−ナフチル)フェニルメチル]ジメチルシリルアルコキシドが得られる。
なお、アルコール化合物のアルカリ金属またはアルカリ土類金属とで置換したアルコキシドと式(1)との反応では、イミダゾールなどが必ずしも必要ではない。
次に上記有機ケイ素化合物の光学活性体の製造方法について説明する。
光学活性体の製造方法として、好ましい方法として、次の1)〜3)の方法が挙げられるが、これらの方法に限定されるわけではない。
1)上記の式(1)とアルコール化合物との反応によって得られたアルコキシドは、光学活性カラムを用いたHPLC(ダイセル化学工業(株)編,“Application Guide for chiral column selection 2nd Ed.”を参照)を用いた分取により、両異性体(エナンチオマー)が容易に光学分割され、各々の異性体を得ることができる。
2)光学活性なアルコール化合物と反応させて得られるアルコキシド、例えば(S)−マンデル酸メチルエステル誘導体を、シリカゲルカラムを用いた順相HPLC分取により、両異性体(ジアステレオマー)に光学分割することができる。3)前記(S)−マンデル酸メチルエステル誘導体をジアステレオマーの溶解度の差を利用した晶析法により光学分割することができる。このとき用いる溶媒としては、限定する必要はないが、n−ヘキサン、シクロヘキサン、石油エーテル、n−ヘプタンなどの炭化水素、あるいはこれら炭化水素と酢酸エチルエステルとの混合液、アセトニトリル、ジエチルエーテル、メタノール、エタノール、2−プロパノール、1−ブタノール、あるいはこれらとクロロホルムとの混合液などが挙げられる。これらの中でも、炭化水素と酢酸エチルエステル、特にn−ヘキサンと酢酸エチルエステルとの混合液、あるいはメタノールとクロロホルムの混合液を用いると、容易に光学分割することができ好ましい。
上記のいずれかの方法で光学分割した(S)−マンデル酸メチルエステルの誘導体は、過酸化水素水を用いた酸化反応、いわゆる玉尾酸化反応(玉尾皓平,有機合成化学協会誌,1988,46,861−878.)を利用すれば、立体選択的に立体保持した状態で(1−ナフチル)フェニルメタノールへと誘導できる。該方法で得られた(1−ナフチル)フェニルメタノールの旋光度を測定し、文献値と比較することにより、(S)−マンデル酸メチルエステル誘導体の(1−ナフチル)フェニルメチル基の絶対配置を決定した。
従って、光学分割をしたアルコキシドであるメトキシドや(S)−マンデル酸メチルエステル誘導体を、ハロゲン化、例えば塩化アセチルや塩化ベンゾイルと反応させて塩素化することにより、立体配置が明らかな[(1−ナフチル)フェニルメチル]ジメチルシリルハライドを得ることができる。このときの反応溶媒として、ジエチルエーテル、テトラヒドロフラン、ジクロロメタン、クロロホルム、トルエンなどの有機溶媒を用いることもできる。また、触媒量の塩化亜鉛や塩化アルミニウムを添加すると塩素化反応は加速される(Tamao,K.;Yamauchi,T.;Ito,Y.,Chem.Lett.,1987,171−174.)。
(S)−マンデル酸メチルエステル誘導体の塩素化反応においては、前記触媒を利用することにより、反応を早くすることができる。また(S)−マンデル酸メチルエステル誘導体の場合、反応の進行に伴い遊離した(S)−マンデル酸メチルエステルは、(S)−アセチルマンデル酸メチルエステルとして、ほぼ定量的に回収することができる。
なお、上述の一連の反応および分離は(1−ナフチル)フェニルメチル基に限ったものでなく、前記式(1)および前記式(4)で表される有機ケイ素化合物の全てにおいて適用可能なものである。また、塩化チオニルや塩化水素などを用いても前記式(4)で表される化合物を前記式(1)で表される化合物へと変換することができる。
ラセミ体アルコール化合物は、式(4)で表される化合物へと誘導し、晶析やクロマトグラフィーなどによって光学分割することができる。晶析用の再結晶溶媒としては、限定する必要はないが、n−ヘキサン、シクロヘキサン、石油エーテル、n−ヘプタンなどの炭化水素、あるいはこれら炭化水素と酢酸エチルエステルとの混合液、アセトニトリル、ジエチルエーテル、メタノール、エタノール、2−プロパノール、1−ブタノール、あるいはこれらとクロロホルムとの混合液、トルエン、酢酸エチルエステルなどが挙げられる。クロマトグラフィーに用いる担体としては、シリカゲルのような順相系の担体やODSのような逆相系担体などが例示することができる。クロマトグラフィーに用いる溶媒としては、限定する必要はないが、n−ヘキサンやこれと2−プロパノールあるいは酢酸エチルエステルとの混合溶媒などが挙げられ、好ましくはn−ヘキサンと2−プロパノールの混合溶媒である。
シリルクロリドと反応するものであれば、本発明の化合物を光学分割剤として適用することができる。
式(1)と反応させることのできるアルコール化合物としては、1〜3級水酸基を有しているものであれば用いることができ、更に1〜2級水酸基を有するものが好ましく、特に2級水酸基を有するものが好ましい。そしてこのアルコール化合物としては、分岐があってもよい炭素数1〜20のアルキル基、炭素数5〜20の脂環アルキル基または炭素数8〜20のカルボキシル基が付いていてもよいアラアルキル基などが付いたものが例示でき、特に制限がなく使用できる。このアルコール化合物の例として、メタノール、エタノール、2−プロパノール、2−ブタノールの他、2−オクタノール、メントール、ボルネオールおよびマンデル酸エステルなどの光学活性アルコールであっても良い。更にテトラヒドロフラン(THF)に水酸基が結合したTHFアルコール類、テトラヒドロ−3−フランメタノールのようなTHFにアルキルアルコールが結合したTHFアルキルアルコール類、フランにアルキルアルコールが結合したフランアルコール類、1−フェニルエタノールなどのような芳香族化合物がアルキルアルコールが結合した芳香族アルキルアルコール類、テトラヒドロ−1−ナフトールのような一部飽和されたナフトール類やアントラノール類、1−ハイドロキシ−2−ジメチル−γ−ラクトンやメバロン酸のラクトンのような水酸基を有するラクトン類、ピペリジン環に水酸基が結合またはアルキルアルコールが結合したピペリジンアルコール類、アミノアルコール類、ピリジン環にアルキルアルコールが結合したピリジンアルコール類、グリシドのようなオキシラン基が結合したアルキルアルコール類、メントールのようなテルペンアルコール類、アリルアルコール類、プロパルギルアルコール類、およびフェノール類等が例示することができる。
光学分割した式(4)で表される化合物は、通常の脱シリル化条件により光学活性アルコール化合物へ変換することができる。たとえば、限定する必要はないが、テトラブチルアンモニウムフルオリドなどのフッ化物イオンを作用させると、温和な条件下で容易に光学活性アルコールが得られる。また、塩化水素などの酸を作用させることもできる。
<実施例>
以下、本発明を参考例および実施例によって具体的に説明するが、本発明はこれら実施例に限定されるものではない。また、特に断りがない限り、アルゴン雰囲気あるいはアルゴン気流下、および市販の脱水溶媒を用いて各反応を実施した。シリカゲルカラムクロマトグラフィーは和光純薬工業(株)製ワコーゲルC−200を使用して実施した。化学式中の「*」印は、光学活性体であることを示す。
また、H−NMRは、重クロロホルム溶媒中、テトラメチルシランを内部標準として用いて測定し、そのケミカルシフト(δ/ppm)を示した。薄層クロマトグラフィーはMerck社製Kieselgel 60 F254を使用した。さらに、分析に用いた順相HPLCおよびキラルHPLCは以下記載の条件で測定した。また、Mはモル濃度を、Nは規定度を表す。
○順相HPLC分析
分析装置:Waters社製LC−Module 1plus
分析カラム:野村化学社製シリカゲルカラムDevelosil60−5
(4.6mmI.D.×250mm+ガードカラム10mm).
移動相:n−ヘキサン/酢酸エチルエステル(v/v),
A:98/2,またはB:95/5,
流速:1.0ml/min.
○キラルHPLC分析
分析装置:Waters社製LC−Module 1plus
分析カラム:ダイセル化学工業社製セルロース誘導体カラムChiralcel OD(4.6mmI.D.×250mm+ガードカラム50mm).
移動相:n−ヘキサン/2−プロパノール(v/v):100/0.05,
流 速:1.0ml/min.
<合成例1>(1−ナフチル)フェニルメタンの合成
1−ブロモナフタレン(150ml,1.08mol)、マグネシウム(29.17g,1.2mol)およびテトラヒドロフラン(THF,1.5L)より調製した1−ナフタレンマグネシウムブロミド溶液をベンジルクロリド(137ml,1.2mol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(5.2g,5mmol)を含むTHF(500ml)溶液に30分かけて滴下し、室温で1終夜攪拌した。蒸留水(50ml)を加え反応を停止し、溶媒を減圧留去した。1N塩酸(500ml)を加え、エーテル(3×500ml)で抽出した。有機層は1N塩酸(500ml)、蒸留水(2×500ml)、飽和食塩水(500ml)で順次洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、溶媒を減圧留去し、残渣を減圧蒸留(0.2mmHg)した。140〜150℃の留分(220g)をエタノールから再結晶して(1−ナフチル)フェニルメタン(163.9g,収率70%)を得た。この合成は、下記反応式を参照。下記にこの融点とH−NMRシグナルを示す。
Figure 0004135639
mp:61.5℃.
H−NMR:δ8.05−7.95(m,1H),7.90−7.82(m,1H),7.79−7.72(m,1H),7.51−7.37(m,1H),7.35−7.14(m,1H),4.43(s,2H).
<実施例1>
○[(1−ナフチル)フェニルメチル]ジメチルクロロシランの合成
合成例1で合成した(1−ナフチル)フェニルメタン(163g,0.75mol)のTHF(800ml)溶液を−78℃に冷却した。この溶液に10M n−ブチルリチウムヘキサン溶液(82.5ml,0.825mol)を30分かけて滴下した。滴下終了後そのままの温度で30分、室温まで昇温して1時間攪拌しリチウム塩を調製した。別にジメチルジクロロシラン(273ml,2.25mol)をn−ヘキサン(1L)に溶解し−78℃に冷却した。この溶液に先のリチウム塩溶液を加え、室温に昇温して1終夜攪拌した。生成した塩化リチウムをろ過し、ろ過液中の溶媒を減圧留去した。溶媒留去後の残渣を減圧蒸留して[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(199.4g,収率85%)を得た。この合成は、下記反応式を参照。下記にこの沸点とH−NMRシグナルを示す。
Figure 0004135639
bp:153−155℃/0.2mmHg
H−NMR:δ8.15−8.02(m,1H),7.87−7.67(m,3H),7.53−7.05(m,9H),4.55(s,1H),0.51(s,3H),0.48(s,3H).
<実施例2>
○O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの合成
Ebbersらの報告(Ebbers,E.J.;Ariaans,G.J.A.;Bruggink,A.;Zwanenburg,B.Tetrahedron Asymmetry,1999,10,3701−3718.)を参考に合成した(S)−マンデル酸メチルエステル([α] 26+144.3°(c=1.5,CHOH),116.3g,0.70mol)とイミダゾール(54.46g,0.80mol)とを含むN,N−ジメチルホルムアミド(DMF,1L)溶液に、実施例1で合成した[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(199.4g,0.64mol)を投入し、室温で1終夜攪拌した。反応終了後、反応液を氷浴で冷却した飽和炭酸水素ナトリウム水溶液(1L)に入れて中和し、n−ヘキサン/酢酸エチルエステル(1/1(v/v),1Lで1回,500mlで3回)で抽出した。得られた有機層を飽和炭酸水素ナトリウム水溶液(500ml)、蒸留水(500mlで2回)、飽和食塩水(500mlで2回)で順次洗浄し、無水硫酸ナトリウムで乾燥した。この溶液をろ過した後、ろ液の溶媒を減圧留去し、O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(ジアステレオマー混合物,粗精製品280g)を得た。この合成は、下記反応式を参照。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.13−8.03(m,1H),7.86−7.66(m,3H),7.51−7.02(m,13H),4.99(s,0.5H),4.96(s,0.5H),4.38(s,0.5H),4.34(s,0.5H),3.61(s,1.5H),3.58(s,1.5H),0.21(s,1.5H),0.18(s,1.5H),0.17(s,1.5H),0.15(s,1.5H).
また、この粗精製品の順相HPLCの分析チャートを図1に示す。
得られた粗精製品はn−ヘキサン/酢酸エチルエステル(95/5(v/v),1.5L)から再結晶し、107.8gの高純度品(400MHz H−NMRによるジアステレオマー過剰率88.4%de)を得た。更にこの結晶をn−ヘキサン/酢酸エチルエステル(90/10(v/v),1.0L)から再結晶し、95.4gの尚純度ジアステレオマー(400MHz H−NMRによるジアステレオマー過剰率99%de、[(1−ナフチル)フェニルメチル]ジメチルクロロシランに対する収率34%)を得た。下記にこの融点、比旋光度とH−NMRシグナルを示す。
mp:113℃.
比旋光度:[α] 23+38.6°(c=1.03,CHCl).
H−NMR:δ8.12−8.03(m,1H),7.88−7.67(m,3H),7.49−7.02(m,13H),4.99(s,1H),4.34(s,1H),3.61(s,3H),0.21(s,3H),0.15(s,3H).
○O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(高純度ジアステレオマー)の玉尾酸化反応による絶対配置の決定
上記で得たO−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの高純度ジアステレオマー(400MHz H−NMRによるジアステレオマー過剰率99%de,2.20g,5mmol)、炭酸水素カリウム(1.50g,15mmol)、フッ化カリウム(0.87g,15mmol)を含むメタノール/THF(1/1(v/v),40ml)懸濁液を0℃に冷却した。この懸濁液に30%過酸化水素水を0.5mlずつ6回(25mmol)に分けて加え、室温に昇温して2日間攪拌した。反応液を0℃に冷却し、飽和チオ硫酸ナトリウム水溶液を1mlずつ10回に分けて加え、そのままの温度で30分攪拌した。反応液はセライトを通してろ過し、セライトをエーテル(25mlで4回)で洗浄した。集めたろ液を飽和食塩水(50ml)、蒸留水(50ml)、飽和食塩水(50ml)で順次洗浄して、無水硫酸ナトリウムで乾燥した。この溶液をろ過後、ろ液の溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=10/1(v/v))で精製して、(1−ナフチル)フェニルメタノール(0.95g,収率81%)を得た。この反応については、下記反応式を参照。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.05−8.00(m,1H),7.89−7.77(m,2H),7.62(d,J=6.8Hz,1H),7.52−7.37(m,2H),7.35−7.22(m,2H),6.51(d,J=4.0Hz,1H),2.37(d,J=4.0Hz,1H).
得られたアルコール体の比旋光度は[α] 28+58.7°(c=0.82,C)であり、文献値{[α] 25+59.5°(c=0.82,C),Seebach D.;Beck,A.K.;Roggo,S.;Wonnacott,A.Chem.Ber.,1985,118,3673−3682.}との比較から、得られた(1−ナフチル)フェニルメタノールがR配置であることが判った。この反応、いわゆる玉尾酸化反応は立体保持で進行することが広く知られている(玉尾皓平,有機合成化学協会誌,1988,46,861−878.)。従って,用いたO−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルのジアステレオマーはR配置であると決定した。
<実施例3>
○(R)−[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(NAP(R)−Cl)の合成
実施例2で合成した(R)−O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(95.36g,0.216mol)にアセチルクロリド(80ml,1.13mol)を加えた懸濁液を0℃に冷却し、0.5Mの塩化亜鉛THF溶液(0.86ml,0.43mmol)を加えた。これを室温に昇温して1時間攪拌すると、反応液は均一となった。さらに1終夜攪拌した。過剰に用いた塩化アセチルを減圧留去した後、n−ヘキサン(50ml)とアセトン(5ml)を加え、45分間攪拌した。溶媒を減圧留去した後、残渣を減圧蒸留して、(R)−[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(60.9g,収率91%)を得た。この合成は、下記反応式を参照。下記にこの沸点、融点と比旋光度を示す。
Figure 0004135639
bp:158−160℃/0.3mmHg.
mp:73.5−76.0℃.
比旋光度:[α] 23−10.6°(c=1.02,CHCl).
○(R)−O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの再合成による(R)−[(1−ナフチル)フェニルメチル]ジメチルクロロシランの立体配置の確認
実施例2に記載した方法に従い、(S)−マンデル酸メチル([α] 26+144.3°(c=1.5,CHOH),0.83g,5mmol)、イミダゾール(0.34g,5mmol)と(R)−[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(1.48g,4.8mmol)、およびDMF(10ml)より、(R)−O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの粗精製品(1.83g,収率87%)を得た。この合成は、下記反応式を参照。
Figure 0004135639
この粗精製品のH−NMRを測定したところ、先に示した光学分割した高純度ジアステレオマーの(R)−O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルのそれと一致し、(S)−O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルに由来するシグナル(δ4.96(s),4.38(s),3.58(s),0.18(s),0.17(s))は検出されなかった。このことから、アセチルクロリドを用いた塩素化反応が、立体保持で進行していることが明らかとなった。
<実施例4>
○(R)−[(1−ナフチル)フェニルメチル]ジメチルメトキシシランの合成 [(1−ナフチル)フェニルメチル]ジメチルクロロシラン(6.21g,20mmol,400MHz H−NMRによる光学純度の推定値99%ee(R))のDMF(30ml)溶液に、イミダゾール(2.04g,30mmol)、メタノール(1.22ml,30mmol)を加え、室温で2時間攪拌した。反応液に飽和炭酸水素ナトリウム水溶液(50ml)を加え、n−ヘキサン/酢酸エチルエステル(1/1(v/v),3×50ml)で抽出した。有機層を蒸留水(50ml)、飽和食塩水(50ml)で順次洗浄し、無水硫酸ナトリウムで乾燥した。ろ過後、溶媒留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=100/3(v/v))で精製し、(R)−[(1−ナフチル)フェニルメチル]ジメチルメトキシシラン(5.73g,収率93%)を得た。この合成は、下記反応式を参照。下記にこの比旋光度とH−NMRシグナルを示す。
Figure 0004135639
比旋光度:[α]23 −8.1°(c=1.01,CHCl).
H−NMR:δ8.15−8.06(m,1H),7.87−7.69(m,3H),7.51−7.02(m,8H),4.34(s,1H),3.35(s,3H),0.18(s,3H),0.18(s,3H).
ラセミ体の[(1−ナフチル)フェニルメチル]ジメチルメトキシシランのキラルHPLC分析チャートを図8に、(R)−[(1−ナフチル)フェニルメチル]ジメチルメトキシシランのキラルHPLC分析チャートを図9に示す。
<合成例2>(2−ナフチル)フェニルメタン(下記式(6))の合成
○(2−ナフチル)フェニルメタノール(下記式(5))の合成
2−ナフトアルデヒド(15.6g,100mmol)を含むTHF(40ml)溶液中に1−ブロモベンゼン(11.6ml,110mmol)、マグネシウム(2.8g,115mmol)およびTHF(40ml)より調製したフェニルマグネシウムブロミド溶液を80分間かけて滴下し、その後、室温で1終夜攪拌した。この反応液に塩化アンモニウム(18.72g,350mmol)の水溶液(100ml)を加えて反応を停止させ、酢酸エチルエステルを加えて溶媒抽出した。この有機層は飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この溶液をろ過した後、ろ液の溶媒を減圧留去し、(2−ナフチル)フェニルメタノール(23.26g,粗精製品,収率99%)を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ7.86−7.74(m,4H),7.44−7.21(m,8H),6.02(d,J=3.4Hz,1H),2.25(d,J=3.4Hz,1H).
○(2−ナフチル)フェニルメタン(下記式(6))の合成
ヨウ化ナトリウム(2.362g,15.76mmol)を含むアセトニトリル(5ml)懸濁液にトリメチルクロロシラン(2.0ml,15.76mmol)を添加し、室温で15分間攪拌した後、氷浴下で冷却した。ここに上記合成した(2−ナフチル)フェニルメタノール(式(5)、1.172g,5mmol)のアセトニトリル(6ml)溶液を30分かけて滴下した。滴下終了後、室温に昇温し1終夜攪拌した。反応溶液に水酸化ナトリウム(700mg、17.5mmol)水溶液を滴下し反応を停止し、酢酸エチルエステルを加えて抽出した。この有機層は、チオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。この溶液をろ過した後、ろ液の溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=90/10(v/v))で精製し、(2−ナフチル)フェニルメタン(950mg,収率87%)を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ7.80−7.74(m,3H),7.63(s,1H),7.44−7.39(m,2H),7.33−7.18(m,6H),4.15(s,2H).
<実施例5>
○[(2−ナフチル)フェニルメチル]ジメチルクロロシラン(下記式(7))の合成
合成例2で合成した(2−ナフチル)フェニルメタン(式(6)、218mg,1mmol)のTHF(2ml)溶液を0℃に冷却した。この溶液に1.57M n−ブチルリチウムヘキサン溶液(660μl,1.04mmol)を滴下した。滴下終了後そのままの温度で3時間攪拌しリチウム塩を調製した。別にジメチルジクロロシラン(800μl,6.6mmol)をn−ヘキサン(2ml)に溶解し、−78℃に冷却した。この溶液に先のリチウム塩溶液を加え、そのままの温度で2時間攪拌した後、室温に昇温して1終夜攪拌した。生成した塩化リチウムをろ過し、ろ液中の溶媒を減圧留去して、[(2−ナフチル)フェニルメチル]ジメチルクロロシラン(式(7))を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ7.80−7.75(m,4H),7.47−7.19(m,8H),3.94(s,1H),0.45(s,6H).
この[(2−ナフチル)フェニルメチル]ジメチルクロロシランは精製せず、このまま次反応に用いた。
<実施例6>
○O−[(2−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(下記式(8))の合成
(S)−マンデル酸メチル([α] 26+144.3°(c=1.5,CHOH),166.2mg,1mmol)とイミダゾール(102.1mg,1.5mmol)を含むDMF(2ml)溶液に、実施例5で合成した[(2−ナフチル)フェニルメチル]ジメチルクロロシラン(式(7))のDMF溶液(2ml)を添加して、室温で1終夜攪拌した。この反応液を氷浴で冷却した飽和炭酸水素ナトリウム溶液に注ぎ入れ、n−ヘキサン/酢酸エチルエステルで抽出した。この有機層を飽和炭酸水素ナトリウム溶液、蒸留水、および飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。その後ろ過し、ろ液中の溶媒を減圧留去し、この残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=95/5〜90/10(v/v))で精製し、O−[(2−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(式(8)、ジアステレオマー混合物,312mg,(2−ナフチル)フェニルメタンに対する収率71%)を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ7.79−7.67(m,4H),7.48−7.20(m,12H),7.18−7.10(m,1H),5.01(s,1H),3.77(s,1H),3.61(s,1.5H),3.60(s,1.5H),0.16(s,3H),0.12(s,3H).
O−[(2−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(式(8))の順相HPLCの分析チャートを図2に示す。
<合成例3>(1−ナフチル)(2−ナフチル)メタン(下記式(10))の合成
○(1−ナフチル)(2−ナフチル)メタノール(下記式(9))の合成
1−ブロモナフタレン(13.8ml,99mmol)、マグネシウム(2.53g,104mmol)およびTHF(40ml)より調製した1−ナフタレンマグネシウムブロミド溶液を、2−ナフトアルデヒド(14.06g,90mmol)を含むTHF(40ml)溶液中に30分間かけて滴下し、その後、室温で1終夜攪拌した。反応液に塩化アンモニウム(18.72g,350mmol)の水溶液(100ml)を加えて反応を停止させ、酢酸エチルエステル(150ml)を加えて抽出した。この有機層は飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。この有機層は乾燥後、ろ過し、ろ液中の溶媒を減圧留去し、(1−ナフチル)(2−ナフチル)メタノール(式(9)、20.67g,粗精製品,収率98%)を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.06(d,J=8.3Hz,1H),7.88−7.73(m,6H),7.60(d,J=7.1Hz,1H),7.46−7.21(m,6H),6.62(s,1H),2.54(s,1H).
○(1−ナフチル)(2−ナフチル)メタン(下記式(10))の合成
ヨウ化ナトリウム(2.362g,15.75mmol)を含むアセトニトリル(10ml)懸濁液に、トリメチルクロロシラン(2.0ml,15.76mmol)を添加し、室温で15分間攪拌した後、氷浴下で15分間攪拌した。ここに上記合成した(1−ナフチル)(2−ナフチル)メタノール(式(9)、1.42g,5mmol)のアセトニトリル(15ml)溶液を1時間かけて滴下した。滴下終了後、反応液は室温に昇温して、1終夜攪拌した。その後、反応溶液に水酸化ナトリウム(700mg、17.5mmol)水溶液(10ml)を滴下して反応を停止させ、酢酸エチルエステルで抽出した。この有機層はチオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。この有機層は、ろ過し、ろ液中の溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=95/5(v/v))で精製して、(1−ナフチル)(2−ナフチル)メタン(式(10)、951mg,収率71%)を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.05(d,J=7.6Hz,1H),7.89−7.60(m,6H),7.48−7.34(m,7H),4.61(s,2H).
<実施例7>
○[(1−ナフチル)(2−ナフチル)メチル]ジメチルクロロシラン(下記式(11))の合成
合成例3で合成した(1−ナフチル)(2−ナフチル)メタン(式(10)、286.4mg,1mmol)のTHF(2ml)溶液を氷浴で冷却した。この溶液に1.57M n−ブチルリチウムヘキサン溶液(660μl,1.04mmol)を滴下した。滴下終了後、反応液は、そのままの温度で2.5時間攪拌し、リチウム塩を調製した。別にジメチルジクロロシラン(800μl,6.6mmol)をn−ヘキサン(2ml)に溶解し、−78℃に冷却した。この溶液に先のリチウム塩溶液を加え、そのままの温度で1時間、室温に昇温して1終夜攪拌した。反応液中に生成した塩化リチウムをろ過し、ろ液中の溶媒を減圧留去し、[(1−ナフチル)(2−ナフチル)メチル]ジメチルクロロシラン(式(11))を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.12(m,1H),7.84−7.70(m,6H),7.52−7.36(m,7H),4.72(s,1H),0.55(s,3H),0.52(s,3H).
[(1−ナフチル)(2−ナフチル)メチル]ジメチルクロロシランは精製せず、このまま次反応に用いた。
<実施例8>
○O−[(1−ナフチル)(2−ナフチル)メチル]ジメチルシリル−(S)−マンデル酸メチル(下記式(12))の合成
(S)−マンデル酸メチル([α] 26+144.3°(c=1.5,CHOH),166.2mg,1mmol)とイミダゾール(102.1mg,1.5mmol)を含むDMF(2ml)溶液に、実施例7で合成した[(1−ナフチル)(2−ナフチル)メチル]ジメチルクロロシラン(式(11))のDMF(2ml)溶液を加え、室温で1終夜攪拌した。反応液を氷浴で冷却した飽和炭酸水素ナトリウム水溶液に注ぎ入れ、n−ヘキサン/酢酸エチルエステル(1/1(v/v),100ml)で抽出した。この有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。乾燥した有機層をろ過後、ろ液中の溶媒を減圧留去し、O−[(1−ナフチル)(2−ナフチル)メチル]ジメチルシリル−(S)−マンデル酸メチル(式(12)、ジアステレオマー混合物,粗精製品402mg,(1−ナフチル)(2−ナフチル)メタンに対する収率82%)を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.11(d,J=8.6Hz,1H),7.92−7.25(m,18H),5.00(s,0.5H),4.99(s,0.5H),4.56(s,0.5H),4.561(s,0.5H),3.60(s,1.5H),3.55(s,1.5H),0.25(s,1.5H),0.22(s,1.5H),0.20(s,1.5H),0.18(s,1.5H).
O−[(1−ナフチル)(2−ナフチル)メチル]ジメチルシリル−(S)−マンデル酸メチルの順相HPLCの分析チャートを図3に示す。
<合成例4>(2−メトキシ−1−ナフチル)フェニルメタンの合成
○1−ブロモ−2−メトキシナフタレンの合成
水素化ナトリウム(60〜72%含有,14.78g)を石油エーテルで洗浄し、THF(100ml)に懸濁した。これに1−ブロモ−2−ナフトール(75g,336mmol)のTHF溶液(100ml)を室温で1.5時間かけて滴下し、そのまま1時間かき混ぜた。ここにヨウ化メチル(42ml,675mmol)を室温で加えてかきまぜた後、そのまま1終夜静置し、さらに6時間加熱還流した。この反応液に精製水と酢酸エチルエステルとを加えて抽出し、この有機層(1.6L)は飽和食塩水で洗浄した。その後、有機層を無水硫酸ナトリウムで乾燥した後、ろ過し、ろ液から溶媒を減圧留去した。この残渣をシリカゲルカラムクロマトグラフィー(クロロホルム)に供し、1−ブロモ−2−メトキシナフタレン(80.6g,収率100%)を得た。この合成は、下記反応式を参照。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.22(d,J=8.5Hz,1H),7.81−7.76(m,2H),7.57−7.53(m,1H),7.40−7.36(m,1H),7.25(d,J=9.0Hz,1H),4.01(s,3H).
○(2−メトキシ−1−ナフチル)フェニルメタンの合成
1−ブロモ−2−メトキシナフタレン(89.9g,379mmol、上記のようにして合成したもの)、マグネシウム(18.5g,759mmol)、1,2−ジブロモエタン(1ml、11.6mmol)およびTHF(700ml)より調製した2−メトキシ−1−ナフチルマグネシウムブロミド溶液をベンジルブロミド(90ml,757mmol)、およびテトラキス(トリフェニルホスフィン)パラジウム(0)(5.88g,5.09mmol)を含むTHF(100ml)溶液に42分間かけて滴下し、71時間加熱還流後、室温で更に2日間攪拌した。この反応液を飽和塩化アンモニウム水溶液中に入れ、エーテルで抽出した。この有機層(1.4L)は、飽和塩化アンモニウム水溶液、純水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。乾燥後、ろ過し、ろ液から溶媒を減圧留去し、残渣にn−ヘキサンを加えてかき混ぜた後(150mlで2回)、固体をろ取した。この固体をシリカゲルカラムクロマトグラフィー(クロロホルム)に供し、(2−メトキシ−1−ナフチル)フェニルメタン(51.8g,収率55%)を得た。この合成は、下記反応式を参照。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ7.90(d,J=8.5Hz,1H),7.81−7.78(m,2H),7.42−7.11(m,8H),4.48(s,2H),3.93(s,3H).
<実施例9>
○[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシランの合成
合成例4で合成した(2−メトキシ−1−ナフチル)フェニルメタン(51.6g,208mmol)のTHF(207ml)溶液を0℃に冷却した。この溶液に1.58M n−ブチルリチウムヘキサン溶液(138ml,218mmol)を加えた後、そのままの温度で3時間攪拌しリチウム塩を調製した。別途、ジメチルジクロロシラン(76ml,627mmol)をn−ヘキサン(207ml)に溶解し0℃に冷却した。この溶液に先のリチウム塩溶液を加えた後、そのままの温度で2時間、室温で1終夜攪拌した。生成した塩化リチウムをろ過し、溶媒を減圧留去して[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシランを得た。この合成は、下記反応式を参照。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ7.97(d,J=8.8Hz,1H),7.83−7.77(m,2H),7.43−7.05(m,8H),4.50(s,1H),3.95(s,3H),0.39(s,3H),0.36(s,3H).
ここで得たものは精製せずに、O−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルの合成に用いた。
<実施例10>
○O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの合成
(S)−マンデル酸メチル([α] 26=+144.3°(c=1.5,CHOH),34.5g,208mmol)とイミダゾール(21.2g,311mmol)を含むDMF(130ml)溶液を0℃に冷却し、ここに先の実施例9で合成した[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシランのDMF(255ml)溶液を0℃に冷却して添加した後、室温で1終夜静置した。この反応液に純水(1.6L)とn−ヘキサン/酢酸エチルエステル(1/1(v/v),1L)とを加えて抽出した。この有機層を純水(2×1.2L)、飽和食塩水(1L)で順次洗浄し、この有機層は、無水硫酸ナトリウムで乾燥した。乾燥後、ろ過し、ろ液中の溶媒を減圧留去し、O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(ジアステレオマー混合物,粗精製品94.0g,粗収率96%)を得た。この合成は、下記反応式を参照。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ7.99−7.76(m,3H),7.50−7.02(m,13H),5.17(s,0.5H),5.16(s,0.5H),4.44(s,0.5H),4.37(s,0.5H),3.92(s,1.5H),3.90(m,1.5H),3.663(s,1.5H),3.657(s,1.5H),0.12(s,1.5H),0.096(s,1.5H),0.06(s,1.5H),−0.03(s,1.5H).
O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの順相HPLCの分析チャートを図4に示す。
<実施例12>
○O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(粗精製品、ジアステレオマー混合物)の光学分割
実施例11で合成したO−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの粗精製品(ジアステレオマー混合物)54.42gをクロロホルム/メタノール混合溶媒(1/13(v/v))654mlに加熱溶解後、室温で1終夜静置して結晶化し、結晶17.61g(HPLC分析によるジアステレオマー過剰率44.9%de、回収率32%)を得た。このものを、クロロホルム/メタノール混合溶媒(1/13(v/v))140mlから同様に再結晶し、高純度ジアステレオマーの針状結晶10.05g(HPLC分析によるジアステレオマー過剰率98.7%de、回収率18%)を得た。下記にこのH−NMRシグナルを示す。
H−NMR:δ7.98(d,J=8.5Hz,1H),7.79−7.76(m,2H),7.44−7.00(m,13H),5.16(s,1H),4.44(s,1H),3.92(s,3H),3.660(s,3H),0.095(s,3H),0.06(s,3H).
上記、1回目の結晶化のろ液から溶媒を減圧留去して得られた残渣にクロロホルム/メタノール混合溶媒(1/13(v/v))546mlを用いて結晶化を行い、もう一方の高純度ジアステレオマーの板状結晶8.94g(HPLC分析によるジアステレオマー過剰率99.3%de、回収率16%)を得た。下記にこのH−NMRシグナルを示す。
H−NMR:δ7.91(d,J=8.5Hz,1H),7.80−7.76(m,2H),7.50−7.02(m,13H),5.17(s,1H),4.37(s,1H),3.90(s,3H),3.665(s,3H),0.12(s,3H),−0.03(s,3H).
<実施例13>
○[(2−メトキシ−1−ナフチル)フェニルメチル]ジフェニルクロロシラン(式(13))の合成
合成例4で合成した(2−メトキシ−1−ナフチル)フェニルメタン(248.3mg,1mmol)のTHF(2ml)溶液を氷浴で冷却した。この溶液に1.58M n−ブチルリチウムヘキサン溶液(660μl,1.05mmol)を滴下した。滴下終了後そのままの温度で1時間攪拌しリチウム塩を調製した。別途、ジメチルジクロロシラン(800μl,6.6mmol)をn−ヘキサン(2ml)に溶解し、−78℃で冷却した。この溶液に先のリチウム塩溶液を加え、室温に昇温して1終夜攪拌した。この反応液から溶媒を除去し、n−ヘキサンで固体を洗浄し、[(2−メトキシ−1−ナフチル)フェニルメチル]ジフェニルクロロシラン(式(13)、粗精製品)を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ7.98(d,J=8.8Hz,1H),7.80−7.05(m,25H),5.13(s,1H)3.31(s,3H).
ここで合成した[(2−メトキシ−1−ナフチル)フェニルメチル]ジフェニルクロロシランは精製せず、このまま次反応に用いた。
<実施例14>
○O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジフェニルシリル−(S)−マンデル酸メチル(下記式(14))の合成
(S)−マンデル酸メチル([α] 26+144.3°(c=1.5,CHOH),549mg,3.3mmol)とイミダゾール(306mg,4.5mmol)を含むDMF(2ml)溶液に、実施例13のようにして合成した[(2−メトキシ−1−ナフチル)フェニルメチル]ジフェニルクロロシランのDMF(2ml)溶液を加え、室温で1終夜攪拌した。この反応液を氷浴で冷却した飽和炭酸水素ナトリウム水溶液中に注ぎ入れ、n−ヘキサン/酢酸エチルエステル(1/1(v/v),100ml)で抽出した。この有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。乾燥後、ろ過し、ろ液中の溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=95/5〜90/10(v/v))で精製してO−[(2−メトキシ−1−ナフチル)フェニルメチル]ジフェニルシリル−(S)−マンデル酸メチル(式(14)、253mg,(2−メトキシ−1−ナフチル)フェニルメタンに対する収率48%)を得た。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.01−7.90(m,1H),7.78−7.69(m,2H),7.41−7.00(m,18H),5.17(s,0.5H),5.14(s,0.5H),5.02(s,0.5H),4.95(s,0.5H),3.33(s,1.5H),3.32(s,1.5H),3.30(s,1.5H),3.23(s,1.5H).
O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジフェニルシリル−(S)−マンデル酸メチルの順相HPLCの分析チャートを図5に示す。
<合成例5>(1−ナフチル)(2−メトキシフェニル)メタンの合成
1−ブロモアニソール(65g,348mmol)、マグネシウム(11.0g,452mmol)、1,2−ジブロモエタン(1ml、11.6mmol)およびTHF(300ml)より調製した2−メトキシフェニルマグネシウムブロミド溶液を1−(クロロメチル)ナフタレン(67.5g,382mmol)、およびテトラキス(トリフェニルホスフィン)パラジウム(0)(2.0g,1.75mmol)を含むTHF(50ml)溶液に約70分間かけて滴下し、室温で1終夜攪拌した。更にテトラキス(トリフェニルホスフィン)パラジウム(0)(1.0g,0.87mmol)を加え、室温で約105時間、加熱還流下で約12.5時間反応させた。この反応液を飽和塩化アンモニウム水溶液中に入れ、エーテルで抽出した。この有機層(500ml)は、飽和塩化アンモニウム水溶液、純水、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥した。乾燥後、ろ過し、ろ液中の溶媒を減圧留去し、残渣に石油エーテルを加えてかき混ぜた後、ろ過した(150mlで2回)。ろ液から溶媒を減圧留去し、残渣を2回減圧蒸留して、(1−ナフチル)(2−メトキシフェニル)メタンを140〜164℃/0.07mmHgの留分(28.7g,収率33%)として得た。この合成は、下記反応式を参照。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.00−7.98(m,1H),7.86−7.84(m,1H),7.74(d,J=8.3Hz,1H),7.46−7.37(m,3H),7.24−7.16(m,2H),6.92−6.90(m,1H),6.84−6.75(m,2H),4.42(s,2H),3.87(s,3H).
<実施例15>
○[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルクロロシランの合成
先に示した実施例と同様に、合成例5で合成した(1−ナフチル)(2−メトキシフェニル)メタン(28.4g,114mmol)のTHF(114ml)溶液と1.58M n−ブチルリチウムヘキサン溶液(73ml,115mol)からリチウム塩を調製し、これとジメチルジクロロシラン(42ml,346mmol)のn−ヘキサン(114ml)溶液とを反応させて、[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルクロロシランを得た。この合成は、下記反応式を参照。また、下記にN−NMRのシグナルを示す。
Figure 0004135639
H−NMR:δ8.17−8.15(m,1H),7.83−7.79(m,2H),7.72(d,J=8.1Hz,1H),7.47−7.41(m,3H),7.21−7.19(m,1H),7.13−7.09(m,1H),6.89(d,J=8.1Hz,1H),6.81−6.78(m,1H),5.10(s,1H),3.95(s,3H),0.47(s,3H),0.46(s,3H).
ここで合成した[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルクロロシランは、精製せずに、O−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルの合成に用いた。
<実施例16>
○O−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルの合成
(S)−マンデル酸メチル([α] 26+144.3°(c=1.5,CHOH),19.0g,114mmol)とイミダゾール(11.7g,172mmol)とを含むDMF(70ml)溶液と、実施例15のようにして合成した[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルクロロシランのDMF溶液(140ml)とを反応させ、O−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチル(ジアステレオマー混合物,粗精製品56.2g)を得た。この合成は、下記反応式を参照。このうち11.2gをシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=90/10(v/v))に供し、高純度品8.4g(回収率75%,HPLCによるジアステレオマー過剰率5.3%de)を得た。また、下記にN−NMRのシグナルを示す。
Figure 0004135639
H−NMR:δ8.17−8.15(m,1H),7.97−7.91(m,1H),7.79−7,76(m,1H),7.69−7.66(m,1H),7.43−7.15(m,9H),7.10−7.03(m,1H),6.86−6.66(m,2H),5.02(s,0.5H),4.98(s,0.5H),4.89(s,1H),3.88(s,1.5H),3.87(m,1.5H),3.60(s,1.5H),3.58(s,1.5H),0.19(s,1.5H),0.13(s,1.5H),0.12(s,3H).
O−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルの順相HPLCの分析チャートを図6に示す。
<実施例17>
○O−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルのHPLCによる光学分割
先の実施例で得られた(R)−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルおよび(S)−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルのジアステレオマー混合物(より強く吸着するジアステレオマーの過剰率 5.3%de)45.7mgをシリカゲルカラム(野村化学社製DEVELOSIL、粒子径5μm、内径0.46cm、長さ25cm)により下記の条件で、より弱く吸着するジアステレオマー18.3mg(ジアステレオマー過剰率99.8%de、回収率85%)と、より強く吸着するジアステレオマー21.0mg(ジアステレオマー過剰率95.2%de、回収率87%)とを得た。
・シリカゲルカラムクロマトの条件
移動相:n−ヘキサン/酢酸エチルエステル=97/3(体積比),
流速:1.0ml/min,
検出:UV254nm,温度:30℃,
サンプル注入量:50.8mg/ml×150μl.
・より弱く吸着するジアステレオマーのN−NMRのシグナルを下記に示す。
H−NMR:δ8.16(m,1H),7.97(dd,J=7.1/1.0Hz,1H),7.78(m,1H),7.68(d,J=8.3Hz,1H),7.44−7.24(m,8H),7.16(dd,J=7.6/1.7Hz,1H),7.05(m,1H),6.82(dd,J=7.4/1.0Hz,1H),6.68(td,J=7.4/1.0Hz,1H),5.02(s,1H),4.88(s,1H),3.88(s,3H),3.60(s,3H),0.19(s,3H),0.13(s,3H).
・より強く吸着するジアステレオマーのN−NMRのシグナルを下記に示す。
H−NMR:δ8.16(m,1H),7.92(dd,J=7.2/1.1Hz,1H),7.78(m,1H),7.67(d,J=8.3Hz,1H),7.43−7.24(m,9H),7.80(m,1H),6.85(dd,J=8.2/1.1Hz,1H),6.76(td,J=7.6/1.2Hz,1H),4.97(s,1H),4.88(s,1H),3.87(s,3H),3.58(s,3H),0.14(s,3H),0.12(s,3H).
<合成例6>(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メタン(下記式(16))の合成
○(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メタノール(下記式(15))の合成
2−ブロモアニソール(7.5ml,60mmol)、マグネシウム(1.53g,63mmol)およびTHF(15ml)より調製したマグネシウムブロミド溶液を2−メトキシ−1−ナフトアルデヒド(9.31g,50mmol)を含むTHF(10ml)溶液中に20分間かけて滴下し、室温で2時間攪拌した。この反応液に飽和塩化アンモニウム水溶液を加えて反応を停止しさせた。これに、飽和食塩水を加え、酢酸エチルエステル(200ml)で抽出した。この有機層は飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液中の溶媒を減圧留去し、(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メタノール(式(15)、粗精製品,14.68g)を定量的に得た。下記にこのN−NMRのシグナルを示す。
Figure 0004135639
H−NMR:δ8.17(d,J=8.5Hz,1H),7.84(d,J=9.0Hz,1H),7.78(d,J=7.8Hz,1H),7.45−7.22(m,3H),7.06(d,J=6.8Hz,1H),6.97−6.77(m,3H),4.45,(d,J=13.0Hz,1H),3.94(s,3H),3.90(s,3H).
○(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メタン(下記式(16))の合成
ヨウ化ナトリウム4.721g(31.5mmol)を含むクロロホルム(10ml)懸濁液にトリメチルクロロシラン(4.0ml,31.5mmol)を添加し、室温で15分間攪拌した後、氷浴で冷却した。ここに先に合成した(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メタノール(2.9435g,10mmol)のクロロホルム(12ml)溶液を1時間かけて滴下した。滴下終了後、反応液は室温に昇温して1終夜攪拌した。この反応液中に水酸化ナトリウム(1400mg、35mmol)水溶液(10ml)を滴下し反応を停止しさせ、酢酸エチルエステルで抽出をした。この有機層はチオ硫酸ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。乾燥後、ろ過し、ろ液中から溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=90/10(v/v))で精製し、(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メタン(式(16),2.0g,収率72%)を得た。下記にこのN−NMRのシグナルを示す。
Figure 0004135639
H−NMR:δ7.83−7.76(m,3H),7.38−7.27(m,3H),7.12(m,1H),6.90(d,J=8.1Hz,1H),6.66(m,1H),6.56(d,J=7.3Hz,1H),4.31,(s,2H),3.97(s,3H),3.92(s,3H).
<実施例18>
○[(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メチル]ジメチルクロロシラン(下記式(17))の合成
合成例6で合成した(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メタン(278.4mg,1mmol)のTHF(2ml)溶液を氷浴で冷却した。この溶液に1.58M n−ブチルリチウムヘキサン溶液(640μl,1.0mmol)を滴下した。滴下終了後そのままの温度で1時間攪拌しリチウム塩を調製した。別にジメチルジクロロシラン(800μl,6.6mmol)をn−ヘキサン(2ml)に溶解し氷浴で冷却した。この溶液に先のリチウム塩溶液を加え、室温に昇温して1終夜攪拌した。生成した反応液中の塩化リチウムをろ過し、ろ液中の溶媒を減圧留去し、[(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メチル]ジメチルクロロシラン(式(17))を得た。下記にこのN−NMRのシグナルを示す。
Figure 0004135639
H−NMR:δ8.16(d,J=8.8Hz,1H),7.84−7.73(m,2H),7.45−7.27(m,4H),7.04−6.65(m,3H),5.05(s,1H),3.99(s,3H),3.96(s,3H),0.48(s,3H),0.38(s,3H).
この[(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メチル]ジメチルクロロシランは精製せず、このまま次反応に用いた。
<実施例19>
○O−[(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチル(下記式(18))の合成
(S)−マンデル酸メチル([α] 26+144.3°(c=1.5,CHOH),83mg,0.5mmol)とイミダゾール(51mg,0.75mmol)を含むDMF(2ml)溶液に、実施例18で得た[(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メチル]ジメチルクロロシランのDMF(2ml)溶液を添加し、室温で1終夜攪拌した。この反応液は氷浴で冷却した飽和炭酸水素ナトリウム水溶液中に注ぎ入れ、n−ヘキサン/酢酸エチルエステル(1/1(v/v),100ml)で抽出した。この有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥後、ろ過し、ろ液中の溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=95/5(v/v))で精製してO−[(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチル(式(18),ジアステレオマー混合物,91mg,(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メタンに対する収率12%)を得た。下記にこのN−NMRのシグナルを示す。
Figure 0004135639
H−NMR:δ8.12(d,J=8.1Hz,1H),7.74−7.68(m,2H),7.42−7.20(m,8H),7.09−6.96(m,2H),6.80(m,1H),6.68(m,1H),5.12(s,0.5H),5.05(s,0.5H)4.88(s,1H),3.93(s,1.5H),3.91(s,1.5H),3.81(s,1.5H),3.74(s,1.5H),3.57(s,1.5H),3.50(s,1.5H),0.21(s,1.5H),0.16(s,1.5H),0.09(s,1.5H),0.05(s,1.5H).
O−[(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチル(式(18))の順相HPLCの分析チャートを図7に示す。
<実施例20>
○[(2−メトキシ−1−ナフチル)−(1−ナフチル)メチル]ジメチルクロロシラン(下記式(19))の合成
(2−メトキシ−1−ナフチル)−(1−ナフチル)メタン(895.1mg,3mmol)のTHF(3ml)溶液を氷浴で冷却した。この溶液に1.57M n−ブチルリチウムヘキサン溶液(2.0ml,3.15mmol)を滴下した。滴下終了後そのままの温度で1時間攪拌しリチウム塩を調製した。別にジメチルジクロロシラン(1.8ml,15mmol)をn−ヘキサン(5ml)に溶解し、氷浴で冷却した。この溶液に先のリチウム塩溶液を加え、室温に昇温して1時間攪拌した。生成した反応液中の塩化リチウムをろ過し、ろ液中の溶媒を減圧留去し、[(2−メトキシ−1−ナフチル)−(1−ナフチル)メチル]ジメチルクロロシラン(式(19))を得た。下記にこのN−NMRのシグナルを示す。この(2−メトキシ−1−ナフチル)−(1−ナフチル)メタンは合成例4の(2−メトキシ−1−ナフチル)フェニルメタンと同様にして合成することができる。
Figure 0004135639
H−NMR:δ8.81(m,1H),8.06−7.21(m,12H),5.32,(s,1H),4.05(s,3H),0.48(s,3H),0.43(s,3H).
ここで得た[(2−メトキシ−1−ナフチル)−(1−ナフチル)メチル]ジメチルクロロシラン(式(19))は精製せず、このまま次反応に用いた。
<実施例21>
○O−[(2−メトキシ−1−ナフチル)−(1−ナフチル)メチル]ジメチルシリル−(S)−マンデル酸メチル(下記式(20))の合成
(S)−マンデル酸メチル([α] 26+144.3°(c=1.5,CHOH),499mg,3mmol)とイミダゾール(306mg,4.5mmol)を含むDMF(3ml)溶液に、((2−メトキシ−1−ナフチル)−(1−ナフチル)メチル)ジメチルシリルクロリドのDMF(3ml)溶液を投入し、室温で1終夜攪拌した。この反応液を氷浴で冷却した飽和炭酸水素ナトリウム水溶液中に注ぎ入れ、n−ヘキサン/酢酸エチルエステル(1/1(v/v),100ml)で抽出した。この有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。乾燥後、ろ過し、ろ液中の溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=95/5〜92/8(v/v))で精製し、[(2−メトキシ−1−ナフチル)−(1−ナフチル)メチル]ジメチルシリル−(S)−マンデル酸メチル(式(20))の2つのジアステレオマー(TLCのRf値0.51と0.43のもの)を得た。下記にこれらのH−NMRシグナルを示す。
Figure 0004135639
・Rf=0.51(クロロホルム)
H−NMR:δ8.78(m,1H),7.98−7.73(m,4H),7.57(d,J=8.8Hz,1H),7.44−7.14(m,12H),5.26(s,1H),4.96(s,1H),4.01(s,3H),3.62(s,3H),0.21(s,3H),−0.03(s,3H).
・Rf=0.43(クロロホルム)
H−NMR:δ8.75(m,1H),7.98−7.71(m,4H),7.58−7.14(m,13H),5.23(s,1H),4.90(s,1H),3.97(s,3H),3.47(s,3H),0.03(s,3H),0.02(s,3H).
<実施例22>
○(+)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシラン((+)−NOMe−NAP−Cl)の合成
実施例10で合成したO−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルを実施例12のように光学分割して得た一方のジアステレオマー[H−NMR:δ7.98(d,J=8.5Hz,1H),7.79−7.76(m,2H),7.44−7.00(m,13H),5.16(s,1H),4.44(s,1H),3.92(s,3H),3.660(s,3H),0.095(s,3H),0.06(s,3H)、HPLC分析によるジアステレオマー過剰率>98%de](115.2g,245mmol)に塩化アセチル(60.9ml,857mmol)と塩化水素の1.0Mジエチルエーテル溶液(17.1ml,17.1mmol)とを加え、氷浴中で良く混合した後、室温で2日間静置した。析出した結晶をアルゴン雰囲気下ろ取し、ジエチルエーテル、次いでヘキサンで順次洗浄した後、残留溶媒を減圧留去して、[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシランの一方のエナンチオマー(59.9g、収率72%)を得た。この合成は、下記反応式を参照。下記にこのN−NMRのシグナルと比旋光度を示す。
Figure 0004135639
H−NMR:δ7.97(d,J=8.5Hz,1H),7.84−7.77(m,2H),7.44−7.06(m,8H),4.50(s,1H),3.98(s,3H),0.39(s,3H),0.37(s,3H).
[α] 28+149.3°(c1.0,CHCl).
<実施例23>
○(−)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシランの合成
実施例22と同様にして、O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルのもう一方のジアステレオマー[H−NMR:δ7.91(d,J=8.5Hz,1H),7.80−7.76(m,2H),7.50−7.02(m,13H),5.17(s,1H),4.37(s,1H),3.90(s,3H),3.665(s,3H),0.12(s,3H),−0.03(s,3H)、HPLC分析によるジアステレオマー過剰率>99%de](103.3g,219mmol)から、[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシランのもう一方のエナンチオマー(51.2g、収率68%)を得た。この合成は、上記反応式を参照。下記にこのN−NMRのシグナルと比旋光度を示す。
H−NMR:δ7.97(d,J=8.5Hz,1H),7.84−7.77(m,2H),7.44−7.06(m,8H),4.50(s,1H),3.98(s,3H),0.39(s,3H),0.37(s,3H).
[α] 28−151.6°(c1.0,CHCl).
<実施例24>
○(+)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシランのメトキシ誘導体の合成
実施例22で合成した(+)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシラン(0.341g,1mmol)をDMF1mlとクロロホルム0.5mlとに溶解し、これをイミダゾール(0.103g,1.5mmol)とメタノール(0.08ml,2mmol)を含むクロロホルム溶液(3.8ml)に室温で加え、良く混合した後、一晩静置した。この反応液にヘキサン/酢酸エチル(1/1(v/v))と水とを加えて分液抽出し、この有機層を純水および飽和食塩水で順次洗浄し、無水硫酸ナトリウムを加えて乾燥した。ろ過後、ろ液中の溶媒を減圧留去して、[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルメトキシシシランの一方のエナンチオマー(0.276g、収率82%)を得た。この合成は、下記反応式を参照。下記にこのN−NMRのシグナルを示す。
Figure 0004135639
H−NMR:δ7.99(d,J=8.8Hz,1H),7.81−7.77(m,2H),7.40−7.01(m,8H),4.39(s,1H),3.93(s,3H),3.50(s,3H),0.09(s,3H),−0.01(s,3H).
このエナンチオマーの鏡像異性体過剰率をキラルHPLC分析で測定した結果、99%ee以上であった。
<実施例25>
○(−)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシランのメトキシ誘導体の合成
実施例24と同様にして[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルメトキシシシランのもう一方のエナンチオマー(0.279g、収率82%)を得た。下記にこのN−NMRのシグナルを示す。
H−NMR:δ7.99(d,J=8.5Hz,1H),7.81−7.77(m,2H),7.41−7.02(m,8H),4.39(s,1H),3.93(s,3H),3.50(s,3H),0.09(s,3H),−0.01(s,3H).
このエナンチオマーの鏡像異性体過剰率をキラルHPLC分析で測定した結果、99%ee以上であった。
<実施例26>
○(+)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシランのセカンダリーブトキシ誘導体の合成
イミダゾール(0.717g,10.5mmol)と2−ブタノール(0.65ml,7.1mmol)をクロロホルム(7ml)に溶解し氷冷した。ここに(+)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシラン(2.39g,7mmol)のクロロホルム溶液(7ml)を加え、良く混合した後、室温で一晩静置した。一晩静置した反応液は飽和食塩水で洗浄した後、無水硫酸ナトリウムを加えて乾燥した。乾燥後、ろ過し、ろ液中の溶媒を減圧留去して淡黄色固体の標記化合物(2.48g,収率94%,ジアステレオマー混合物)を得た。この合成は、下記反応式を参照。下記にこのN−NMRのシグナルを示す。
Figure 0004135639
H−NMR:δ8.01−7.99(m,1H),7.79−7.76(m,2H),7.39−7.01(m,8H),4.43(br,1H),3.91(s,3H),3.76−3.69(m,1H),1.59−1.39(m,2H),1.18(d,J=6.1Hz,1.5H),1.07(d,J=6.1Hz,1.5H),0.89(t,J=7.4Hz,1.5H),0.84(t,J=7.4Hz,1.5H),0.10(s,1.5H),0.09(s,1.5H),−0.03(s,1.5H),−0.04(s,1.5H).
<実施例27〜39>
○(+)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシランのアルコキシ誘導体の合成
実施例26と同様にして(+)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシランと表1および表2に記載のアルコール化合物とを反応させて種々のアルコキシドを合成した。これらの合成は、下記反応式を参照。なお、これらの反応条件および収率を表1および表2に、H−NMRのδ値は表3および表4に記載した。なお、実施例37における収率は、シリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=8/2)で精製したものから算出した。また、実施例38における収率は、シリカゲルカラムクロマトグラフィー(n−ヘキサン/酢酸エチルエステル=7/3〜6/4)で精製したものから算出した。
Figure 0004135639
<実施例40>
○(−)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシランのメントール誘導体の合成
実施例26と同様にして(−)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシラン(実施例23にて作製)とメントールとを反応させてメントール誘導体を合成した。なお、これらの反応条件および収率を表2に、H−NMRのδ値は表4に記載した。
Figure 0004135639
Figure 0004135639
Figure 0004135639
Figure 0004135639
<実施例41>
実施例3で合成した(R)−[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(NAP(R)−Cl)を用いて2−ブタノール誘導体下記式(21)を合成した。この合成方法は、溶媒として用いたクロロホルムをDMFに変更した以外は実施例26と同様にして実施した。収率は、82%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.15−8.08(m,1H),7.87−7.78(m,2H),7.75−7.68(m,1H),7.51−7.37(m,3H),7.34−7.28(m,2H),7.22−7.14(m,2H),7.10−7.03(m,1H),4.30&4.29(s,1H),3.655&3.650(sext,J=6.0Hz,1H),1.50−1.30(m,2H),1.027&1.023(d,J=6.0Hz,3H),0.78&0.63(t,J=7.2Hz,3H),0.17(s,1.5H),0.16(s,1.5H),0.153(s,1.5H),0.149(s,1.5H).
<実施例42>
実施例41と同様に操作してglycidol誘導体下記式(22)を合成した。収率は、49%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.14−8.07(m,1H),7.86−7.79(m,1H),7.77−7.70(m,2H),7.51−7.38(m,3H),7.32−7.26(m,2H),7.24−7.17(m,2H),7.12−7,03(m,1H),4.37&4.36(s,1H),3.76−3.65(m,1H),3.56−3.44(m,1H),3.06−2.95(m,1H),2.73−2.66(m,1H),2.55−2.47(m,1H),0.21(s,6H).
<実施例43>
実施例41と同様に操作して下記式(23)を合成した。収率は、73%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.11−8.00(m,1H),7.85−7.63(m,5H),7.49−7.03(m,16H),5.67&5.65(s,1H),4.37&4.36(s,1H),0.21(s,1,5H),0.20(s,1,5H),0.163(s,1,5H),0.158(s,1,5H).
<実施例44>
実施例41と同様に操作して下記式(24)を合成した。収率は、83%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.13−8.06(m,1H),7.85−7.70(m,3H),7.52−7.38(m,3H),7.33−7.17(m,4H),7.12−7.04(m,1H),4.32(s,1H),4.26−4.18(m,1H),3.95−3.85(m,1H),3.81−3.71(m,1H),3.68−3.51(m,2H),1.91−1.65(m,2H),0.21(s,1,5H),0.20(s,1,5H),0.189(s,1,5H),0.186(s,1,5H).
<実施例45>
実施例41と同様に操作してPantoyl lactoneの誘導体下記式(25)を合成した。収率は、54%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.18−8.08(m,1H),7.93−7.64(m,3H),7.53−7.16(m,7H),7.13−7.04(m,1H),4.55(s,0.5H),4.36(s,0.5H),4.00−3.90(m,2H),3.81(dd,J=8.8,1.6Hz,1H),0.99(s,1.5H),0.97(s,1.5H),0.95(s,1.5H),0.91(s,1.5H),0.34(s,1.5H),0.31(s,1.5H),0.275(s,1.5H),0.272(s,1.5H).
<実施例46>
実施例41と同様に操作して下記式(26)を合成した。収率は、93%であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.12−8.05(m,1H),7.85−7.68(m,3H),7.49−7.03(m,13H),4.73(q,J=6.4Hz,0.5H),4.71(q,J=6.4Hz,0.5H),4.31(s,0.5H),4.28(s,0.5H),1.35(d,J=6.4Hz,1.5H),1.34(d,J=6.4Hz,1.5H),0.13,0.10&0.09(s,6H).
<実施例47>
実施例41と同様に操作して下記式(27)を合成した。収率は、54%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.11−8.02(m,1H),7.87−7.66(m,3H),7.51−7.03(m,10H),6.79(d,J=8.4Hz,1H),6.75(d,J=8.4Hz,1H),4.69(q,J=6.4Hz,0.5H),4.68(q,J=6.4Hz,0.5H),4.30(s,0.5H),4.25(s,0.5H),3.78(s,1.5H),3.75(s,1.5H),1.33(d,J=6.4Hz,1.5H),1.32(d,J=6.4Hz,1.5H),0.11(s,1,5H),0.10(s,1,5H),0.08(s,1,5H),0.01(s,1,5H).
<実施例48>
実施例41と同様に操作して1,2,3,4−tetrahydro−naphthol誘導体下記式(28)を合成した。収率は、100%であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.17−8.07(m,1H),7.90−7.67(m,3H),7.51−7.01(m,12H),4.83−4.70(m,1H),4.36&4.35(s,1H),2.90−2.51(m,2H),2.02−1.57(m,4H),0.26(s,3H),0.25(s,3H).
<実施例49>
実施例41と同様に操作して1−(4−pyridyl)ethanol誘導体下記式(29)を合成した。収率は、47%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.50−8.39(m,2H),8.14−8.04(m,1H),7.88−7.68(m,3H),7.52−7.38(m,3H),7.34−7.02(m,7H),4.68&4.64(q,J=6.4Hz,1H),4.34&4.33(s,1H),1.318&1.316(d,J=6.4Hz,3H),0.18(s,1.5H),0.16(s,3H),0.15(s,1.5H).
<実施例50>
実施例41と同様に操作して1−(2−pyridyl)ethanol誘導体下記式(30)を合成した。収率は、77%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.49−8.37(m,1H),8.16−8.04(m,1H),7.88−7.67(m,3H),7.59−7.00(m,11H),4.87&4.85(q,J=6.4Hz,1H),4.37&4.35(s,1H),1.40(d,J=6.4Hz,3H),0.19(s,1.5H),0.17(s,1.5H),0.16(s,1.5H),0.13(s,1.5H).
<実施例51>
実施例41と同様に操作して1−(2−furyl)ethanol誘導体下記式(31)を合成した。収率は、92%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.14−8.05(m,1H),7.88−7.67(m,3H),7.50−7.37(m,3H),7.37−7.23(m,3H),7.23−7.13(m,2H),7.13−7.03(m,1H),6.28&6.24(dd,J=3.2,1.8Hz,1H),6.07&6.04(d,J=3.2Hz,1H),4.78&4.75(q,J=6.4Hz,1H),4.35&4.30(s,1H),1.41&1.40(d,J=6.4Hz,3H),0.16,0.125&0.122(s,6H).
<実施例52>
実施例41と同様に操作して下記式(32)を合成した。収率は、95%であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.14−8.06(m,1H),7.87−7.67(m,3H),7.52−7.37(m,3H),7.34−7.14(m,4H),7.11−7.01(m,1H),4.33(s,1H),3.71−3.58(m,1H),2.80−2.65(m,2H),2.34&2.33(q,J=7.2Hz,2H),1.84−1.57(m,4H),1.51−1.34(m,1H),1.25−1.10(m,1H),1.01&0.97(d,J=7.2Hz,3H),0.19&0.18(s,6H).
<実施例53>
実施例41と同様に操作して下記式(33)を合成した。収率は、93%であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.17−8.05(m,1H),7.90−7.68(m,3H),7.54−7.35(m,3H),7.35−7.15(m,4H),7.12−7.03(m,1H),4.35&4.34(s,1H),3.65&3.60(dd,J=10.4,4.4Hz,1H),3.37&3.33(dd,J=10.4,6.0Hz,1H),2.83−2.70(m,1H),2.184&2.178(s,3H),2.05−1.95(m,1H),1.88−1.42(m,5H),1.23−1.08(m,2H),0.186,0.183&0.178(s,6H).
<実施例54>
○(S)−[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(NAP(S)−Cl)の合成
実施例2で合成したO−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルからR体のO−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルを得た母液から、S体を分離した。このS体を実施例3と同様に操作して、(S)−[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(NAP(S)−Cl)を得た。
<実施例55>
実施例54で合成した(S)−[(1−ナフチル)フェニルメチル]ジメチルクロロシラン(NAP(S)−Cl)を用いて下記式(34)を合成した。この合成方法は、溶媒として用いたクロロホルムをDMFに変更した以外は実施例26と同様にして実施した。収率は、89%(シリカゲルカラムクロマトグラフィーで精製したものから算出)であった。下記にこのH−NMRシグナルを示す。
Figure 0004135639
H−NMR:δ8.09−8.00(m,1H),7.85−7.66(m,3H),7.46−7.35(m,3H),7.30−7.04(m,12H),6.81−6.68(m,2H),5.63&5,62(s,1H),4.30&4.29(s,1H),3.76&3.74(s,3H),0.10(s,1.5H),0.09(s,3H),0.08(s,1.5H).
<実施例56>
実施例46で合成した式(26)を用いて結晶化による光学分割を行った。これは、試料を結晶化溶媒に加熱溶解した後、密閉し、室温(r.t.)または4℃に静置した。結晶が析出した後、母液をデカンテーションした除去して結晶を得た。この結晶は、減圧下、乾燥させた。なお、結晶化溶媒は、ノルマルヘキサン(HXと略す)、石油エーテル(PEと略す)、イソプロパノール(i−PrOHと略す)、エタノール(EtOHと略す)およびノルマルブタノール(n−BuOHと略す)を使用した。
この結果を表5に記載した。表5における収率は、用いた試料の半量を100%とした(ジアステレオマーが等量づつ含有していると想定した)。ジアステレオマー過剰率(%de)とは、光学分割後のジアステレオマー(AおよびBとする)の量比から算出した。即ち、AおよびBのモル分率をそれぞれD1およびD2とし、D1>D2とすると、下記式から算出した。
ジアステレオマー過剰率(%de)=[(D1−D2)/(D1+D2)]×100
また、分割効率は下記式から算出した。
分割効率=[収率]×[ジアステレオマー過剰率]÷100
Figure 0004135639
<実施例57>
実施例48で合成した式(28)を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表6に示す。なお、表6のEntry6は、表6のEntry3の母液から溶媒を留去して得られた残渣を用いて結晶化させたものであり、表6のEntry7は、表6のEntry4の母液から溶媒を留去して得られた残渣を用いて結晶化させたものである。表6のEntry6および表6のEntry7における%deのマイナスの値は、析出したジアステレオマーが表6のEntry1から表6のEntry5で優先的に析出したジアステレオマーと逆転したことを表す。
Figure 0004135639
<実施例58>
実施例47で合成した式(27)を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表7に示す。
Figure 0004135639
<実施例59>
実施例50で合成した式(30)を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表8に示す。なお、結晶化溶媒欄に記載のEtOH/HOは、エタノール(1ml)に溶解後、水(0.4ml)を添加したものを示す。
Figure 0004135639
<実施例60>
実施例49で合成した式(29)を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表9に示す。なお、結晶化溶媒欄に記載のiPrOは、ジイソプロピルエーテルを示す。
Figure 0004135639
<実施例61>
実施例51で合成した式(31)を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表10に示す。なお、結晶化溶媒欄に記載のEtOH/HOは、エタノール(1ml)に溶解後、水(0.1ml)を添加したものを示す。
Figure 0004135639
<実施例62>
実施例28で合成した化合物を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表11に示す。なお、結晶化溶媒欄に記載のMeOHはメタノールを、CHClはクロロホルムを、AEは酢酸エチルエステルを示す。また、Entry1においてMeOH+CHClとは、誘導体を2mlのメタノールと0.5mlのクロロホルムに溶解ことを示す。Entry2〜4も同様な操作を行った。また、Entry7はn−HexaneとAcOEtとの40:1の混合溶媒を用いた。
Figure 0004135639
<実施例63>
実施例30で合成した化合物を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表12に示す。なお、結晶化溶媒欄に記載の表示は実施例62と同様なものである。
Figure 0004135639
<実施例64>
実施例31で合成した化合物を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表13に示す。
Figure 0004135639
<実施例65>
実施例35で合成した化合物を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表14に示す。なお、結晶化溶媒欄に記載の表示は実施例62と同様なものである。表14−Entry4における%deのマイナスの値は、優先的に析出したジアステレオマーが、他の場合に優先的に析出したジアステレオマーと逆転したことを表す。
Figure 0004135639
<実施例66>
実施例36で合成した化合物を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表15に示す。なお、結晶化溶媒欄に記載のEt2Oは、ジエチルエーテルを、c−Hexaneはシクロヘキサンを示す。結晶化温度欄の4℃→r.t.との記載は、4℃で結晶を析出させた後、室温で放置したことを示す。表15のEntry1および表15のEntry3における%deのマイナスの値は、優先的に析出したジアステレオマーが、他の場合に優先的に析出したジアステレオマーと逆転したことを表す。
Figure 0004135639
<実施例67>
実施例37で合成した化合物を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表16に示す。なお、結晶化溶媒欄に記載の表示は実施例62と同様なものである。
Figure 0004135639
<実施例68>
実施例38で合成した化合物を用いて、実施例56と同様に結晶化による光学分割を行った。この結果を表17に示す。なお、結晶化溶媒欄に記載の表示は実施例62および実施例66と同様なものである。
Figure 0004135639
<実施例69>
実施例26〜実施例32および実施例37で合成したアルコキシド((+)−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルクロロシシラン(NOMeNAP−Cl)と各種ラセミ体アルコール化合物とから合成したもの)を用いて高速液体クロマトグラフィー(HPLC)によりジアステレオマーの分離を行った。この結果、2つのジアステレオマーを十分に分離することが出来た。これらの結果を表12に示す。なお、表12に記載の容量比(k’)、分離係数(α)および分離度(Rs)の定義については下記に記載する。
○HPLCの条件
・装置:Waters社製(LC−M1)
・分析カラム:野村化学製シリカゲルカラムDevelosil60−5
(4.6mmI.D.×250mm+ガードカラム10mm)
・移動相:n−ヘキサン/酢酸エチル(v/v)
A:95/5,B:98/2,C:99/1またはD:100/0.5・流速:1.0ml/min
・検出器:紫外線検出、波長254nm
○容量比(k’)、分離係数(α)および分離度(Rs)の定義
アルコキシドをHPLCで分析し、得られる2本の検出ピークについて、それぞれの溶出時間リテンションタイム(t1、t2)、ピーク幅(時間:tw1、tw2)求めた。同時に、固定相に保持されない溶媒の保持時間(t0)も求めた。
Figure 0004135639
Figure 0004135639
<実施例70>光学活性1−フェニルエタノールの取得
実施例46で合成した式(26)のジアステレオマー混合物1.994gをn−ヘキサン10mlから再結晶して得た結晶を、さらにn−ヘキサン10mlからの再結晶により光学分割し、高純度ジアステレオマー0.561g(ジアステレオマー混合物の半量を100%とした場合の収率56%)を得た。
H−NMR:δ8.12−8.05(m,1H),7.85−7.68(m,3H),7.49−7.03(m,13H),4.73(q,J=6.4Hz,1H),4.31(s,1H),1.34(d,J=6.4Hz,3H),0.13(s,3H),0.09(s,3H).
H−NMR分析により求めたジアステレオマー過剰率は91.9%deであった。
得られた高純度ジアステレオマー0.199gをTHF1.5mlに溶解し、ここにテトラブチルアンモニウムフルオリドの1.0M THF溶液0.5mlを加え、しばらくかき混ぜた後、室温で一終夜静置した。一終夜後、溶媒を減圧留去して得られた残渣をシリカゲルカラムクロマトグラフィーに供し、光学活性1−フェニルエタノール35mg(R体、収率57%)を得た。キラルHPLC分析の結果、このものの光学純度は93.6%eeであった。
<産業上の利用可能性>
本発明によって得られる一連の新規有機ケイ素化合物は不斉炭素を有し、かつその立体配置が明らかであるという特徴を有する。このため有機合成、特に不斉合成に関わるの中間原料、不斉合成補助剤、光学分割剤として有用であり、その他に無機化合物の表面処理剤、ポリマーの改質剤、あるいはポリマー樹脂の構成成分として有用である。
【図面の簡単な説明】
第1図は、O−[(1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチル(ジアステレオマー混合物)の順相HPLC分析チャートを示す。
第2図は、O−[(2−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの順相HPLC分析チャートを示す。
第3図は、O−[(1−ナフチル)(2−ナフチル)メチル]ジメチルシリル−(S)−マンデル酸メチルの順相HPLC分析チャートを示す。
第4図は、O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジメチルシリル−(S)−マンデル酸メチルの順相HPLC分析チャートを示す。
第5図は、O−[(2−メトキシ−1−ナフチル)フェニルメチル]ジフェニルシリル−(S)−マンデル酸メチルの順相HPLC分析チャートを示す。
第6図は、O−[(1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルの順相HPLC分析チャートを示す。
第7図は、O−[(2−メトキシ−1−ナフチル)(2−メトキシフェニル)メチル]ジメチルシリル−(S)−マンデル酸メチルの順相HPLC分析チャートを示す。
第8図は、[(1−ナフチル)フェニルメチル]ジメチルメトキシシラン(ラセミ体)のキラルHPLC分析チャートを示す。
第9図は、(R)−[(1−ナフチル)フェニルメチル]ジメチルメトキシシランのキラルHPLC分析チャートを示す。
これらの図の縦軸(AU)は吸光度を、横軸は溶出時間を示す。<Technical field>
The present invention relates to a novel organosilicon compound useful as an intermediate for organic synthesis, and more particularly to an optically active substance of an organosilicon compound. The present invention also relates to resolution of optical isomers using the organosilicon compound.
<Background technology>
It is well known that organosilicon compounds are useful compounds in organic synthesis. For example, use of vinyl silane, allyl silane, silyl enol ether in carbon-carbon bond formation reaction (for example, Colvin, EW “Silicon Reagents in Organic Synthesis,” Academic Press, London, 1988.) Has become established as an indispensable tool in precision organic synthesis (eg, Green, TW; Wuts, PGM, “Protective Groups in Organic Synthesis,” 3rd. Ed., Wiley-Interscience). , NY, 1999, p. 113-148.). In particular, many derivatives of (tri) alkyl-type organosilicon compounds represented by trimethylsilyl groups have been synthesized, and very active research has been conducted on their use.
In many known organosilicon compounds having a (tri) alkyl group, the adjacent carbon atom bonded to the silicon atom is an asymmetric carbon, and the alkylhalogenosilanes whose steric configuration is clear are the olefins and styrenes of Hayashi et al. Among the reports on the asymmetric hydrosilylation of aldehydes (JP-A Nos. 05-017481, JP-A 06-199875, etc.) and reports by Minamii et al. (JP-A Nos. 7-291940 and 7-330786) Is only known to.
As a conventional optical resolution method for racemic alcohol compounds, a racemic alcohol compound is reacted with an optically active acid such as mandelic acid to form an ester derivative (diastereomer mixture), which is then resolved by chromatography or the like. (E.g., Ernest L. Eliel; Samuel H. Wilen; Michael P. Doyle, "Basic Stereochemistry", Wiley-Interscience, NY, 2001, p. 220-223.). However, this method has a drawback that the reaction yield of esterification is low depending on the target alcohol.
<Disclosure of invention>
An object of the present invention is to provide a novel organosilicon compound useful for an intermediate raw material for organic synthesis, an asymmetric synthesis auxiliary agent, an optical resolution agent, or a surface treatment agent for inorganic materials in the medical and agrochemical field, and an optically active substance thereof. It is to be.
As a result of intensive studies to solve the above-mentioned problems, the present inventors can efficiently optically resolve novel organosilicon compounds represented by the following formula (1), and those optically active substances are organic The present invention was completed by finding it useful as an intermediate material for synthesis.
That is, this invention is the organosilicon compound represented by following formula (1) and following formula (4), and these optically active substances. And it is a method of resolving optical isomers using these optically active substances.
Figure 0004135639
In formula (1), Ar1And Ar2Are different, Ar1Represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent, and Ar2Represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent, and R1Represents an optionally branched alkyl group having 1 to 6 carbon atoms or an optionally substituted phenyl group, and X represents a halogen atom.
Figure 0004135639
In formula (4), Ar1And Ar2Are different, Ar1Represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent, and Ar2Represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent, and R1Represents an alkyl group having 1 to 6 carbon atoms which may be branched or a phenyl group which may have a substituent, and R2Indicates an alcohol compound-derived one.
The present inventors react the optically active form of the organosilicon compound represented by the formula (1) with, for example, a racemic alcohol compound to obtain a diastereomeric mixture of the compound represented by the formula (4). Thus, it was found that optical resolution can be achieved by crystallization or the like (the crystallinity of this diastereomer mixture is generally good). The present inventors have also found that the diastereomeric mixture can be optically resolved by chromatography using an achiral separation column. The reaction between the compound of formula (1) and the racemic alcohol compound can be quantitatively advanced under mild conditions.
<Best Mode for Carrying Out the Invention>
The organosilicon compound in the present invention is a compound represented by the formula (1), and in the formula (1), Ar1And Ar2Are different. Ar in formula (1)1Represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent, or a 2-naphthyl group which may have a substituent, and Ar2Represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent, or a 2-naphthyl group which may have a substituent, and R1Represents an optionally branched alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted phenyl group, and X represents a halogen atom. Among these, from the viewpoint of ease of production of the formula (1), Ar1And Ar2A compound in which either is a phenyl group which may have a substituent is preferable. X is preferably a chlorine atom or a bromine atom because of the ease of production of formula (1) and excellent reactivity.
Ar above1And Ar2As substituents such as phenyl group, 1-naphthyl group and 2-naphthyl group, alkyl group, alkoxy group, acetoxy group, silyloxy group, halogen atom, aryl group, alkenyl group such as vinyl group and allyl group, and ethynyl group , Epoxy group, dialkylamino group, acyl group and the like. The alkyl group as a substituent is preferably an alkyl group having 1 to 20 carbon atoms and particularly preferably 1 to 6 carbon atoms. The alkoxy group as a substituent is preferably an alkoxy group having 1 to 20 carbon atoms and particularly preferably 1 to 6 carbon atoms. The acetoxy group as a substituent has 2 to 20 carbon atoms, particularly preferably those having 2 to 6 carbon atoms. Examples of the alkyl group bonded to the silyloxy group as a substituent include an alkyl group having 1 to 20 carbon atoms and particularly preferably 1 to 6 carbon atoms. The halogen atom as a substituent is preferably a fluorine atom, a chlorine atom or a bromine atom. Examples of the aryl group as the substituent include those further bonded to an alkyl group and / or an alkoxy group. Examples of the alkenyl group such as a vinyl group and an allyl group as a substituent include 2 to 20 carbon atoms, preferably 2 to 8 carbon atoms. Examples of the substituent include an ethynyl group. Examples of the epoxy group as a substituent include those having 2 to 6 carbon atoms. Examples of the dialkylamino group as a substituent include an alkyl group having 1 to 20 carbon atoms and particularly preferably 1 to 6 carbon atoms. The acyl group as a substituent can be exemplified by an alkyl group having 1 to 20 carbon atoms and particularly preferably 1 to 6 carbon atoms. Although these have been exemplified, the substituent is not limited thereto.
Formula (1) can be obtained by reacting a compound represented by the following formula (2) with an alkyl lithium having 1 to 6 carbon atoms and then reacting with a compound represented by the following formula (3).
Figure 0004135639
Ar in formula (2)1And Ar2Are different, Ar1Represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent, and Ar2Represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent.
Figure 0004135639
In formula (3), R1Represents an optionally branched alkyl group having 1 to 6 carbon atoms or an optionally substituted phenyl group, and X represents a halogen atom.
The other organosilicon compound in the present invention is a compound represented by the above formula (4), and this compound is produced from the compound represented by the above formula (1) and an alcohol compound having an alkoxide and a hydroxyl group. be able to. Ar in formula (4)1, Ar2And R1Is the same as in formula (1) and R2Is derived from an alcohol compound or the like, and is not particularly limited. For example, an alkyl group having 1 to 20 carbon atoms, an alicyclic alkyl group having 5 to 20 carbon atoms, or a carboxyl group having 8 to 20 carbon atoms which may be branched may be used. An araalkyl group which may be attached is shown.
Hereinafter, the organosilicon compound represented by the formula (1) is represented by [(1-naphthyl) phenylmethyl] dimethylsilyl chloride, and the organosilicon compound represented by the formula (4) is represented by [(1-naphthyl ) Phenylmethyl] dimethylsilylalkoxide will be described as a representative example.
[(1-Naphtyl) phenylmethyl] dimethylsilyl chloride, which is a representative example of the organosilicon compound represented by the formula (1), can be produced, for example, by the following method.
Example of Formula (2) by reacting 1-naphthalene magnesium bromide solution prepared from 1-bromonaphthalene, magnesium and tetrahydrofuran with benzyl chloride and tetrakis (triphenylphosphine) palladium (0) in tetrahydrofuran (THF) solution (1-naphthyl) phenylmethane is obtained.
Next, (1-naphthyl) phenylmethane obtained above is metallized using an organic metal reagent such as alkyllithium having 1 to 6 carbon atoms typified by n-butyllithium. [(1-Naphtyl) phenylmethyl] dimethylsilyl chloride represented by the formula (1) can be obtained by reacting with dimethyldichlorosilane, which is an example. In these reactions, the temperature at the time of metallization is important, and the reaction proceeds satisfactorily when carried out in the range of −78 ° C. to room temperature, preferably around 0 ° C.
Further, the [(1-naphthyl) phenylmethyl] dimethylsilyl chloride obtained above is used in the presence of imidazole, 4-dimethylaminopyridine, triethylamine, diisopropylethylamine and the like in an alcohol compound or an alkoxide compound (for example, sodium alkoxide or lithium alkoxide). ) And the like, [(1-naphthyl) phenylmethyl] dimethylsilylalkoxide represented by the formula (4) is obtained.
In the reaction of the alkoxide substituted with the alkali metal or alkaline earth metal of the alcohol compound and the formula (1), imidazole or the like is not necessarily required.
Next, the manufacturing method of the optically active substance of the said organosilicon compound is demonstrated.
Preferred methods for producing the optically active substance include the following methods 1) to 3), but are not limited to these methods.
1) As for the alkoxide obtained by the reaction of the above formula (1) with an alcohol compound, refer to HPLC using an optically active column ("Daicel Chemical Industry Co., Ltd.," Application Guide for chiral column selection 2nd Ed. "). Both isomers (enantiomers) can be easily optically resolved by fractionation using), and each isomer can be obtained.
2) An alkoxide obtained by reacting with an optically active alcohol compound, for example, (S) -mandelic acid methyl ester derivative is optically resolved into both isomers (diastereomers) by normal phase HPLC fractionation using a silica gel column. can do. 3) The (S) -mandelic acid methyl ester derivative can be optically resolved by a crystallization method using the difference in solubility of diastereomers. The solvent used at this time is not limited, but hydrocarbons such as n-hexane, cyclohexane, petroleum ether, n-heptane, or a mixed solution of these hydrocarbons and ethyl acetate, acetonitrile, diethyl ether, methanol. , Ethanol, 2-propanol, 1-butanol, or a mixture of these with chloroform. Among these, it is preferable to use a mixed solution of hydrocarbon and ethyl acetate, particularly n-hexane and ethyl acetate, or a mixed solution of methanol and chloroform, because optical resolution can be easily performed.
The derivative of (S) -mandelic acid methyl ester optically resolved by any of the above methods is an oxidation reaction using hydrogen peroxide, so-called Tamao oxidation reaction (Shinpei Tamao, Journal of Synthetic Organic Chemistry, 1988,46, 861-878. ) Can be induced to (1-naphthyl) phenylmethanol in a stereoselectively stereoretained state. The absolute configuration of the (1-naphthyl) phenylmethyl group of the (S) -mandelic acid methyl ester derivative was determined by measuring the optical rotation of (1-naphthyl) phenylmethanol obtained by this method and comparing it with the literature values. Were determined.
Therefore, the steric configuration is clear by chlorinating methoxide or (S) -mandelic acid methyl ester derivative, which is an optically resolved alkoxide, by reacting with halogenation, for example, acetyl chloride or benzoyl chloride [(1- Naphthyl) phenylmethyl] dimethylsilyl halide can be obtained. As the reaction solvent at this time, an organic solvent such as diethyl ether, tetrahydrofuran, dichloromethane, chloroform, or toluene can also be used. Further, when a catalytic amount of zinc chloride or aluminum chloride is added, the chlorination reaction is accelerated (Tamao, K .; Yamauchi, T .; Ito, Y., Chem. Lett., 1987, 171-174.).
In the chlorination reaction of the (S) -mandelic acid methyl ester derivative, the reaction can be accelerated by using the catalyst. In the case of the (S) -mandelic acid methyl ester derivative, the (S) -mandelic acid methyl ester liberated as the reaction proceeds can be recovered almost quantitatively as (S) -acetylmandelic acid methyl ester. .
The series of reactions and separations described above are not limited to the (1-naphthyl) phenylmethyl group, but can be applied to all of the organosilicon compounds represented by the formula (1) and the formula (4). It is. In addition, the compound represented by the formula (4) can be converted into the compound represented by the formula (1) by using thionyl chloride, hydrogen chloride, or the like.
The racemic alcohol compound can be derived into a compound represented by the formula (4) and optically resolved by crystallization, chromatography or the like. The recrystallization solvent for crystallization is not limited, but hydrocarbons such as n-hexane, cyclohexane, petroleum ether, n-heptane, or a mixed solution of these hydrocarbons and ethyl acetate, acetonitrile, diethyl Examples include ether, methanol, ethanol, 2-propanol, 1-butanol, or a mixture of these with chloroform, toluene, and ethyl acetate. Examples of the carrier used for chromatography include a normal phase carrier such as silica gel and a reverse phase carrier such as ODS. Although it is not necessary to limit as a solvent used for chromatography, n-hexane, the mixed solvent of this and 2-propanol or acetic acid ethyl ester, etc. are mentioned, Preferably it is a mixed solvent of n-hexane and 2-propanol. is there.
Any compound capable of reacting with silyl chloride can be used as the optical resolving agent.
As the alcohol compound that can be reacted with the formula (1), any alcohol compound having a primary to secondary hydroxyl group can be used, and those having a primary to secondary hydroxyl group are preferred. Those having the following are preferred. And as this alcohol compound, the C1-C20 alkyl group which may be branched, the C5-C20 alicyclic alkyl group, or the araalkyl group which may have C8-C20 carboxyl group, etc. Can be used without limitation. As an example of this alcohol compound, optically active alcohols such as 2-octanol, menthol, borneol and mandelic acid ester may be used in addition to methanol, ethanol, 2-propanol and 2-butanol. Further, THF alcohols having a hydroxyl group bonded to tetrahydrofuran (THF), THF alkyl alcohols having an alkyl alcohol bonded to THF such as tetrahydro-3-furanmethanol, furan alcohols having an alkyl alcohol bonded to furan, 1-phenylethanol Aromatic alkyl alcohols to which an aromatic compound such as alkyl alcohol is bonded, partially saturated naphthols and anthranols such as tetrahydro-1-naphthol, 1-hydroxy-2-dimethyl-γ-lactone And lactones having a hydroxyl group such as lactones of mevalonic acid, piperidine alcohols in which a hydroxyl group is bonded to the piperidine ring or an alkyl alcohol, amino alcohols, and pyridines in which an alkyl alcohol is bonded to the pyridine ring. Emissions alcohols, alkyl alcohols oxirane group is bonded, such as glycidic, terpene alcohols such as menthol, allyl alcohol, propargyl alcohol, and phenol and the like can be exemplified.
The optically resolved compound represented by the formula (4) can be converted into an optically active alcohol compound under ordinary desilylation conditions. For example, although it is not necessary to limit, when a fluoride ion such as tetrabutylammonium fluoride is allowed to act, an optically active alcohol can be easily obtained under mild conditions. In addition, an acid such as hydrogen chloride can be allowed to act.
<Example>
EXAMPLES Hereinafter, although a reference example and an Example demonstrate this invention concretely, this invention is not limited to these Examples. Unless otherwise specified, each reaction was carried out under an argon atmosphere or an argon stream and using a commercially available dehydrated solvent. Silica gel column chromatography was performed using Wako Gel C-200 manufactured by Wako Pure Chemical Industries. “*” In the chemical formula indicates an optically active substance.
Also,1H-NMR was measured using tetramethylsilane as an internal standard in deuterated chloroform solvent and showed its chemical shift (δ / ppm). Thin layer chromatography was performed by Merck Kieselgel 60 F.254It was used. Furthermore, normal phase HPLC and chiral HPLC used in the analysis were measured under the conditions described below. M represents the molar concentration, and N represents the normality.
○ Normal phase HPLC analysis
Analyzer: Waters LC-Module 1plus
Analysis column: silica gel column Develosil 60-5 manufactured by Nomura Chemical Co., Ltd.
(4.6 mm ID × 250 mm + guard column 10 mm).
Mobile phase: n-hexane / ethyl acetate (v / v),
A: 98/2 or B: 95/5
Flow rate: 1.0 ml / min.
○ Chiral HPLC analysis
Analyzer: Waters LC-Module 1plus
Analysis column: Cellulose derivative column Chiralcel OD (4.6 mm ID × 250 mm + guard column 50 mm) manufactured by Daicel Chemical Industries.
Mobile phase: n-hexane / 2-propanol (v / v): 100 / 0.05,
Flow rate: 1.0 ml / min.
<Synthesis Example 1> Synthesis of (1-naphthyl) phenylmethane
A solution of 1-naphthalene magnesium bromide prepared from 1-bromonaphthalene (150 ml, 1.08 mol), magnesium (29.17 g, 1.2 mol) and tetrahydrofuran (THF, 1.5 L) was converted to benzyl chloride (137 ml, 1.2 mol). The solution was added dropwise to a THF (500 ml) solution containing tetrakis (triphenylphosphine) palladium (0) (5.2 g, 5 mmol) over 30 minutes and stirred at room temperature overnight. Distilled water (50 ml) was added to stop the reaction, and the solvent was distilled off under reduced pressure. 1N hydrochloric acid (500 ml) was added and extracted with ether (3 × 500 ml). The organic layer was washed successively with 1N hydrochloric acid (500 ml), distilled water (2 × 500 ml) and saturated brine (500 ml), and dried over anhydrous magnesium sulfate. After filtration, the solvent was distilled off under reduced pressure, and the residue was distilled under reduced pressure (0.2 mmHg). A fraction (220 g) at 140 to 150 ° C. was recrystallized from ethanol to obtain (1-naphthyl) phenylmethane (163.9 g, yield 70%). For this synthesis, see the reaction formula below. Below is the melting point1H-NMR signal is shown.
Figure 0004135639
mp: 61.5 ° C.
1H-NMR: δ 8.05-7.95 (m, 1H), 7.90-7.82 (m, 1H), 7.79-7.72 (m, 1H), 7.51-7.37. (M, 1H), 7.35-7.14 (m, 1H), 4.43 (s, 2H).
<Example 1>
-Synthesis of [(1-naphthyl) phenylmethyl] dimethylchlorosilane
A THF (800 ml) solution of (1-naphthyl) phenylmethane (163 g, 0.75 mol) synthesized in Synthesis Example 1 was cooled to −78 ° C. To this solution, a 10M n-butyllithium hexane solution (82.5 ml, 0.825 mol) was added dropwise over 30 minutes. After completion of the dropwise addition, the temperature was kept at the same temperature for 30 minutes, and the temperature was raised to room temperature and stirred for 1 hour to prepare a lithium salt. Separately, dimethyldichlorosilane (273 ml, 2.25 mol) was dissolved in n-hexane (1 L) and cooled to -78 ° C. The previous lithium salt solution was added to this solution, and the mixture was warmed to room temperature and stirred overnight. The produced lithium chloride was filtered, and the solvent in the filtrate was distilled off under reduced pressure. The residue after evaporation of the solvent was distilled under reduced pressure to obtain [(1-naphthyl) phenylmethyl] dimethylchlorosilane (199.4 g, yield 85%). For this synthesis, see the reaction formula below. Below this boiling point and1H-NMR signal is shown.
Figure 0004135639
bp: 153-155 ° C / 0.2mmHg
1H-NMR: δ 8.15-8.02 (m, 1H), 7.87-7.67 (m, 3H), 7.53-7.05 (m, 9H), 4.55 (s, 1H) ), 0.51 (s, 3H), 0.48 (s, 3H).
<Example 2>
O Synthesis of methyl O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate
Synthesized with reference to a report by Ebers et al. (Ebers, EJ; Ariaans, GA, Bruggink, A .; Zwanenburg, B. Tetrahedron Asymmetry, 1999, 10, 3701-3718.) -Mandelic acid methyl ester ([α]D 26+ 144.3 ° (c = 1.5, CH3OH), 116.3 g, 0.70 mol) and imidazole (54.46 g, 0.80 mol) in an N, N-dimethylformamide (DMF, 1 L) solution synthesized in Example 1 [(1-naphthyl ) Phenylmethyl] dimethylchlorosilane (199.4 g, 0.64 mol) was added and stirred at room temperature for 1 night. After completion of the reaction, the reaction solution was neutralized by adding to a saturated aqueous sodium hydrogen carbonate solution (1 L) cooled in an ice bath, and once with 500 ml of n-hexane / ethyl acetate (1/1 (v / v), 1 L). 3 times). The obtained organic layer was washed successively with a saturated aqueous sodium hydrogen carbonate solution (500 ml), distilled water (twice with 500 ml) and saturated brine (twice with 500 ml), and dried over anhydrous sodium sulfate. After filtering this solution, the solvent of the filtrate was distilled off under reduced pressure to obtain methyl O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate (diastereomer mixture, crude product 280 g). Obtained. For this synthesis, see the reaction formula below. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.13-8.03 (m, 1H), 7.86-7.66 (m, 3H), 7.51-7.02 (m, 13H), 4.99 (s, 0) .5H), 4.96 (s, 0.5H), 4.38 (s, 0.5H), 4.34 (s, 0.5H), 3.61 (s, 1.5H), 58 (s, 1.5H), 0.21 (s, 1.5H), 0.18 (s, 1.5H), 0.17 (s, 1.5H), 0.15 (s, 1. 5H).
An analysis chart of normal phase HPLC of this crude product is shown in FIG.
The obtained crude product was recrystallized from n-hexane / ethyl acetate (95/5 (v / v), 1.5 L) to give 107.8 g of a high-purity product (400 MHz1The diastereomeric excess by H-NMR was 88.4% de). Further, this crystal was recrystallized from n-hexane / ethyl acetate (90/10 (v / v), 1.0 L), and 95.4 g of a pure diastereomer (400 MHz)1The diastereomer excess by H-NMR was 99% de, and the yield was 34% based on [(1-naphthyl) phenylmethyl] dimethylchlorosilane. Below is the melting point, specific rotation and1H-NMR signal is shown.
mp: 113 ° C.
Specific rotation: [α]D 23+ 38.6 ° (c = 1.03, CHCl3).
1H-NMR: δ 8.12-8.03 (m, 1H), 7.88-7.67 (m, 3H), 7.49-7.02 (m, 13H), 4.99 (s, 1H) ), 4.34 (s, 1H), 3.61 (s, 3H), 0.21 (s, 3H), 0.15 (s, 3H).
Determination of absolute configuration by Tamao oxidation reaction of methyl O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate (high purity diastereomer)
High purity diastereomer (400 MHz of methyl O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate obtained above1Methanol / THF (1/1) containing diastereomeric excess by H-NMR 99% de, 2.20 g, 5 mmol), potassium hydrogen carbonate (1.50 g, 15 mmol), potassium fluoride (0.87 g, 15 mmol) (V / v), 40 ml) The suspension was cooled to 0 ° C. To this suspension was added 30% hydrogen peroxide solution in 0.5 ml portions (25 mmol), and the mixture was warmed to room temperature and stirred for 2 days. The reaction solution was cooled to 0 ° C., a saturated aqueous sodium thiosulfate solution was added in 10 ml portions and stirred at the same temperature for 30 minutes. The reaction was filtered through celite and the celite was washed with ether (4 x 25 ml). The collected filtrate was washed successively with saturated brine (50 ml), distilled water (50 ml) and saturated brine (50 ml), and dried over anhydrous sodium sulfate. After filtering this solution, the solvent of the filtrate was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 10/1 (v / v)) to obtain (1-naphthyl). Phenylmethanol (0.95 g, 81% yield) was obtained. For this reaction, see the reaction formula below. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.05-8.00 (m, 1H), 7.89-7.77 (m, 2H), 7.62 (d, J = 6.8 Hz, 1H), 7.52-7 .37 (m, 2H), 7.35-7.22 (m, 2H), 6.51 (d, J = 4.0 Hz, 1H), 2.37 (d, J = 4.0 Hz, 1H) .
The specific rotation of the obtained alcohol is [α].D 28+ 58.7 ° (c = 0.82, C6H6) And literature value {[α]D 25+ 59.5 ° (c = 0.82, C6H6), Seebach D .; Beck, A .; K. Rogo, S .; Wonnacott, A .; Chem. Ber. 1985, 118, 3673-3682. }, It was found that the obtained (1-naphthyl) phenylmethanol has an R configuration. This reaction, the so-called Tamao oxidation reaction, is widely known to proceed by steric retention (Kyohei Tamao, Journal of Synthetic Organic Chemistry, 1988, 46, 861-878.). Therefore, the diastereomer of methyl O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate used was determined to be in the R configuration.
<Example 3>
○ (R)-[(1-Naphtyl) phenylmethyl] dimethylchlorosilane (NAP)*Synthesis of (R) -Cl)
(R) -O-[(1-Naphtyl) phenylmethyl] dimethylsilyl- (S) -mandelate (95.36 g, 0.216 mol) synthesized in Example 2 and acetyl chloride (80 ml, 1.13 mol) The suspension added with was cooled to 0 ° C., and 0.5 M zinc chloride THF solution (0.86 ml, 0.43 mmol) was added. When this was raised to room temperature and stirred for 1 hour, the reaction solution became uniform. The mixture was further stirred overnight. After excess acetyl chloride was distilled off under reduced pressure, n-hexane (50 ml) and acetone (5 ml) were added, and the mixture was stirred for 45 minutes. After the solvent was distilled off under reduced pressure, the residue was distilled under reduced pressure to obtain (R)-[(1-naphthyl) phenylmethyl] dimethylchlorosilane (60.9 g, yield 91%). For this synthesis, see the reaction formula below. The boiling point, melting point and specific rotation are shown below.
Figure 0004135639
bp: 158-160 ° C./0.3 mmHg.
mp: 73.5-76.0 ° C.
Specific rotation: [α]D 23-10.6 ° (c = 1.02, CHCl3).
Confirmation of the configuration of (R)-[(1-naphthyl) phenylmethyl] dimethylchlorosilane by resynthesis of (R) -O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate methyl
According to the method described in Example 2, methyl (S) -mandelate ([α]D 26+ 144.3 ° (c = 1.5, CH3OH), 0.83 g, 5 mmol), imidazole (0.34 g, 5 mmol), (R)-[(1-naphthyl) phenylmethyl] dimethylchlorosilane (1.48 g, 4.8 mmol), and DMF (10 ml). , (R) -O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -methyl mandelate (1.83 g, yield 87%) was obtained. For this synthesis, see the reaction formula below.
Figure 0004135639
Of this crude product1When H-NMR was measured, it was in agreement with that of the optically resolved high-purity diastereomer (R) -O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate shown above. , (S) -O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate methyl signal (δ 4.96 (s), 4.38 (s), 3.58 (s ), 0.18 (s), 0.17 (s)) were not detected. This revealed that the chlorination reaction using acetyl chloride proceeds with steric retention.
<Example 4>
Synthesis of (R)-[(1-naphthyl) phenylmethyl] dimethylmethoxysilane [(1-naphthyl) phenylmethyl] dimethylchlorosilane (6.21 g, 20 mmol, 400 MHz1I-imidazole (2.04 g, 30 mmol) and methanol (1.22 ml, 30 mmol) were added to a DMF (30 ml) solution of an estimated optical purity of 99% ee (R) by H-NMR, and the mixture was stirred at room temperature for 2 hours. . A saturated aqueous sodium hydrogen carbonate solution (50 ml) was added to the reaction mixture, and the mixture was extracted with n-hexane / ethyl acetate (1/1 (v / v), 3 × 50 ml). The organic layer was washed successively with distilled water (50 ml) and saturated brine (50 ml), and dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off, and the residue was purified by silica gel column chromatography (n-hexane / acetic acid ethyl ester = 100/3 (v / v)) and (R)-[(1-naphthyl) phenylmethyl] dimethyl. Methoxysilane (5.73 g, yield 93%) was obtained. For this synthesis, see the reaction formula below. Below is the specific rotation and1H-NMR signal is shown.
Figure 0004135639
Specific rotation: [α]23 D−8.1 ° (c = 1.01, CHCl3).
1H-NMR: δ 8.15-8.06 (m, 1H), 7.87-7.69 (m, 3H), 7.51-7.02 (m, 8H), 4.34 (s, 1H) ), 3.35 (s, 3H), 0.18 (s, 3H), 0.18 (s, 3H).
FIG. 8 shows a chiral HPLC analysis chart of racemic [(1-naphthyl) phenylmethyl] dimethylmethoxysilane, and FIG. 9 shows a chiral HPLC analysis chart of (R)-[(1-naphthyl) phenylmethyl] dimethylmethoxysilane. Show.
Synthesis Example 2 Synthesis of (2-naphthyl) phenylmethane (the following formula (6))
○ Synthesis of (2-naphthyl) phenylmethanol (the following formula (5))
Phenylmagnesium prepared from 1-bromobenzene (11.6 ml, 110 mmol), magnesium (2.8 g, 115 mmol) and THF (40 ml) in a THF (40 ml) solution containing 2-naphthaldehyde (15.6 g, 100 mmol) The bromide solution was added dropwise over 80 minutes and then stirred overnight at room temperature. An aqueous solution (100 ml) of ammonium chloride (18.72 g, 350 mmol) was added to the reaction solution to stop the reaction, and ethyl acetate was added to perform solvent extraction. This organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After filtering this solution, the solvent of the filtrate was distilled off under reduced pressure to obtain (2-naphthyl) phenylmethanol (23.26 g, crude product, yield 99%). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.86-7.74 (m, 4H), 7.44-7.21 (m, 8H), 6.02 (d, J = 3.4 Hz, 1H), 2.25 (d , J = 3.4 Hz, 1H).
○ Synthesis of (2-naphthyl) phenylmethane (Formula (6) below)
Trimethylchlorosilane (2.0 ml, 15.76 mmol) was added to a suspension of sodium iodide (2.362 g, 15.76 mmol) in acetonitrile (5 ml), stirred at room temperature for 15 minutes, and then cooled in an ice bath. did. A solution of (2-naphthyl) phenylmethanol (formula (5), 1.172 g, 5 mmol) synthesized above in acetonitrile (6 ml) was added dropwise over 30 minutes. After completion of the dropwise addition, the mixture was warmed to room temperature and stirred overnight. An aqueous solution of sodium hydroxide (700 mg, 17.5 mmol) was added dropwise to the reaction solution to stop the reaction, and ethyl acetate was added for extraction. This organic layer was washed successively with an aqueous sodium thiosulfate solution and saturated brine, and dried over anhydrous magnesium sulfate. After filtering this solution, the solvent of the filtrate was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 90/10 (v / v)) to obtain (2-naphthyl). Phenylmethane (950 mg, 87% yield) was obtained. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.80-7.74 (m, 3H), 7.63 (s, 1H), 7.44-7.39 (m, 2H), 7.33-7.18 (m, 6H) ), 4.15 (s, 2H).
<Example 5>
○ Synthesis of [(2-naphthyl) phenylmethyl] dimethylchlorosilane (the following formula (7))
A solution of (2-naphthyl) phenylmethane (Formula (6), 218 mg, 1 mmol) synthesized in Synthesis Example 2 in THF (2 ml) was cooled to 0 ° C. To this solution, 1.57 M n-butyllithium hexane solution (660 μl, 1.04 mmol) was added dropwise. After completion of dropping, the mixture was stirred at the same temperature for 3 hours to prepare a lithium salt. Separately, dimethyldichlorosilane (800 μl, 6.6 mmol) was dissolved in n-hexane (2 ml) and cooled to −78 ° C. The previous lithium salt solution was added to this solution, and the mixture was stirred at the same temperature for 2 hours, then warmed to room temperature and stirred overnight. The produced lithium chloride was filtered, and the solvent in the filtrate was distilled off under reduced pressure to obtain [(2-naphthyl) phenylmethyl] dimethylchlorosilane (formula (7)). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.80-7.75 (m, 4H), 7.47-7.19 (m, 8H), 3.94 (s, 1H), 0.45 (s, 6H).
This [(2-naphthyl) phenylmethyl] dimethylchlorosilane was used for the next reaction without purification.
<Example 6>
Synthesis of methyl O-[(2-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate (following formula (8))
(S) -methyl mandelate ([α]D 26+ 144.3 ° (c = 1.5, CH3OH), 166.2 mg, 1 mmol) and imidazole (102.1 mg, 1.5 mmol) in a DMF (2 ml) solution [(2-naphthyl) phenylmethyl] dimethylchlorosilane (formula (7 )) In DMF (2 ml) was added and stirred overnight at room temperature. The reaction solution was poured into a saturated sodium bicarbonate solution cooled in an ice bath and extracted with n-hexane / ethyl acetate. This organic layer was washed successively with a saturated sodium hydrogen carbonate solution, distilled water and saturated brine, and dried over anhydrous sodium sulfate. Thereafter, the mixture was filtered, and the solvent in the filtrate was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 95/5 to 90/10 (v / v)), and O- Methyl [(2-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate (Formula (8), diastereomeric mixture, 312 mg, 71% yield based on (2-naphthyl) phenylmethane) was obtained. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.79-7.67 (m, 4H), 7.48-7.20 (m, 12H), 7.18-7.10 (m, 1H), 5.01 (s, 1H) ), 3.77 (s, 1H), 3.61 (s, 1.5H), 3.60 (s, 1.5H), 0.16 (s, 3H), 0.12 (s, 3H) .
FIG. 2 shows an analysis chart of normal phase HPLC of methyl O-[(2-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate (formula (8)).
<Synthesis Example 3> Synthesis of (1-naphthyl) (2-naphthyl) methane (the following formula (10))
○ Synthesis of (1-naphthyl) (2-naphthyl) methanol (the following formula (9))
A 1-naphthalene magnesium bromide solution prepared from 1-bromonaphthalene (13.8 ml, 99 mmol), magnesium (2.53 g, 104 mmol) and THF (40 ml) was added to THF containing 2-naphthaldehyde (14.06 g, 90 mmol). (40 ml) was added dropwise to the solution over 30 minutes and then stirred at room temperature for 1 night. An aqueous solution (100 ml) of ammonium chloride (18.72 g, 350 mmol) was added to the reaction solution to stop the reaction, and acetic acid ethyl ester (150 ml) was added for extraction. This organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. This organic layer is dried and filtered, and the solvent in the filtrate is distilled off under reduced pressure to give (1-naphthyl) (2-naphthyl) methanol (formula (9), 20.67 g, crude product, yield 98%. ) Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.06 (d, J = 8.3 Hz, 1H), 7.88-7.73 (m, 6H), 7.60 (d, J = 7.1 Hz, 1H), 7.46 -7.21 (m, 6H), 6.62 (s, 1H), 2.54 (s, 1H).
○ Synthesis of (1-naphthyl) (2-naphthyl) methane (following formula (10))
Trimethylchlorosilane (2.0 ml, 15.76 mmol) was added to a suspension of sodium iodide (2.362 g, 15.75 mmol) in acetonitrile (10 ml), stirred at room temperature for 15 minutes, and then in an ice bath. Stir for 15 minutes. A solution of the above synthesized (1-naphthyl) (2-naphthyl) methanol (formula (9), 1.42 g, 5 mmol) in acetonitrile (15 ml) was added dropwise over 1 hour. After completion of the dropwise addition, the reaction solution was warmed to room temperature and stirred overnight. Thereafter, an aqueous solution (10 ml) of sodium hydroxide (700 mg, 17.5 mmol) was dropped into the reaction solution to stop the reaction, and the mixture was extracted with acetic acid ethyl ester. This organic layer was washed successively with an aqueous sodium thiosulfate solution and saturated brine, and dried over anhydrous magnesium sulfate. The organic layer was filtered, the solvent in the filtrate was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (n-hexane / acetic acid ethyl ester = 95/5 (v / v)) to obtain (1 -Naphthyl) (2-naphthyl) methane (Formula (10), 951 mg, 71% yield) was obtained. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.05 (d, J = 7.6 Hz, 1H), 7.89-7.60 (m, 6H), 7.48-7.34 (m, 7H), 4.61 (s , 2H).
<Example 7>
○ Synthesis of [(1-naphthyl) (2-naphthyl) methyl] dimethylchlorosilane (the following formula (11))
A solution of (1-naphthyl) (2-naphthyl) methane (formula (10), 286.4 mg, 1 mmol) synthesized in Synthesis Example 3 in THF (2 ml) was cooled in an ice bath. To this solution, 1.57 M n-butyllithium hexane solution (660 μl, 1.04 mmol) was added dropwise. After completion of dropping, the reaction solution was stirred at the same temperature for 2.5 hours to prepare a lithium salt. Separately, dimethyldichlorosilane (800 μl, 6.6 mmol) was dissolved in n-hexane (2 ml) and cooled to −78 ° C. The previous lithium salt solution was added to this solution, and the mixture was allowed to warm to room temperature for 1 hour at the same temperature and stirred overnight. Lithium chloride produced in the reaction solution was filtered, and the solvent in the filtrate was distilled off under reduced pressure to obtain [(1-naphthyl) (2-naphthyl) methyl] dimethylchlorosilane (formula (11)). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.12 (m, 1H), 7.84-7.70 (m, 6H), 7.52-7.36 (m, 7H), 4.72 (s, 1H), 0. 55 (s, 3H), 0.52 (s, 3H).
[(1-Naphtyl) (2-naphthyl) methyl] dimethylchlorosilane was not purified and used in the next reaction as it was.
<Example 8>
Synthesis of O-[(1-naphthyl) (2-naphthyl) methyl] dimethylsilyl- (S) -mandelate methyl (following formula (12))
(S) -methyl mandelate ([α]D 26+ 144.3 ° (c = 1.5, CH3[(1-naphthyl) (2-naphthyl) methyl] dimethylchlorosilane synthesized in Example 7 in a DMF (2 ml) solution containing OH), 166.2 mg, 1 mmol) and imidazole (102.1 mg, 1.5 mmol). A solution of (formula (11)) in DMF (2 ml) was added and stirred at room temperature for 1 night. The reaction solution was poured into a saturated aqueous solution of sodium bicarbonate cooled in an ice bath and extracted with n-hexane / ethyl acetate (1/1 (v / v), 100 ml). The organic layer was washed successively with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. After filtering the dried organic layer, the solvent in the filtrate was distilled off under reduced pressure, and methyl O-[(1-naphthyl) (2-naphthyl) methyl] dimethylsilyl- (S) -mandelate (formula (12), A diastereomer mixture, 402 mg of a crude product, (yield 82% based on (1-naphthyl) (2-naphthyl) methane) was obtained. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.11 (d, J = 8.6 Hz, 1H), 7.92-7.25 (m, 18H), 5.00 (s, 0.5H), 4.99 (s, 0) .5H), 4.56 (s, 0.5H), 4.561 (s, 0.5H), 3.60 (s, 1.5H), 3.55 (s, 1.5H),. 25 (s, 1.5H), 0.22 (s, 1.5H), 0.20 (s, 1.5H), 0.18 (s, 1.5H).
FIG. 3 shows a normal phase HPLC analysis chart of O-[(1-naphthyl) (2-naphthyl) methyl] dimethylsilyl- (S) -mandelate methyl.
<Synthesis Example 4> Synthesis of (2-methoxy-1-naphthyl) phenylmethane
-Synthesis of 1-bromo-2-methoxynaphthalene
Sodium hydride (containing 60-72%, 14.78 g) was washed with petroleum ether and suspended in THF (100 ml). To this was added dropwise a THF solution (100 ml) of 1-bromo-2-naphthol (75 g, 336 mmol) at room temperature over 1.5 hours, and the mixture was stirred as it was for 1 hour. Methyl iodide (42 ml, 675 mmol) was added thereto and stirred at room temperature, and then left to stand for 1 night, and further heated under reflux for 6 hours. The reaction solution was extracted with purified water and acetic acid ethyl ester, and the organic layer (1.6 L) was washed with saturated brine. Then, after drying an organic layer with anhydrous sodium sulfate, it filtered, and the solvent was depressurizingly distilled from the filtrate. This residue was subjected to silica gel column chromatography (chloroform) to obtain 1-bromo-2-methoxynaphthalene (80.6 g, yield 100%). For this synthesis, see the reaction formula below. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.22 (d, J = 8.5 Hz, 1H), 7.81-7.76 (m, 2H), 7.57-7.53 (m, 1H), 7.40-7 .36 (m, 1H), 7.25 (d, J = 9.0 Hz, 1H), 4.01 (s, 3H).
-Synthesis of (2-methoxy-1-naphthyl) phenylmethane
1-bromo-2-methoxynaphthalene (89.9 g, 379 mmol, synthesized as described above), magnesium (18.5 g, 759 mmol), 1,2-dibromoethane (1 ml, 11.6 mmol) and THF ( 2-Methoxy-1-naphthylmagnesium bromide solution prepared from (700 ml) THF (100 ml) containing benzyl bromide (90 ml, 757 mmol) and tetrakis (triphenylphosphine) palladium (0) (5.88 g, 5.09 mmol) The solution was added dropwise over 42 minutes, heated under reflux for 71 hours, and stirred at room temperature for another 2 days. This reaction solution was placed in a saturated aqueous ammonium chloride solution and extracted with ether. This organic layer (1.4 L) was washed successively with a saturated aqueous ammonium chloride solution, pure water and saturated brine, and dried over anhydrous sodium sulfate. After drying, the mixture was filtered, and the solvent was removed from the filtrate under reduced pressure. After adding n-hexane to the residue and stirring (twice with 150 ml), the solid was collected by filtration. This solid was subjected to silica gel column chromatography (chloroform) to obtain (2-methoxy-1-naphthyl) phenylmethane (51.8 g, yield 55%). For this synthesis, see the reaction formula below. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.90 (d, J = 8.5 Hz, 1H), 7.81-7.78 (m, 2H), 7.42-7.11 (m, 8H), 4.48 (s , 2H), 3.93 (s, 3H).
<Example 9>
○ Synthesis of [(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane
A solution of (2-methoxy-1-naphthyl) phenylmethane (51.6 g, 208 mmol) synthesized in Synthesis Example 4 in THF (207 ml) was cooled to 0 ° C. A 1.58M n-butyllithium hexane solution (138 ml, 218 mmol) was added to this solution, and then stirred at that temperature for 3 hours to prepare a lithium salt. Separately, dimethyldichlorosilane (76 ml, 627 mmol) was dissolved in n-hexane (207 ml) and cooled to 0 ° C. The above lithium salt solution was added to this solution, followed by stirring at the same temperature for 2 hours and at room temperature for 1 night. The produced lithium chloride was filtered, and the solvent was distilled off under reduced pressure to obtain [(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane. For this synthesis, see the reaction formula below. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.97 (d, J = 8.8 Hz, 1H), 7.83-7.77 (m, 2H), 7.43-7.05 (m, 8H), 4.50 (s , 1H), 3.95 (s, 3H), 0.39 (s, 3H), 0.36 (s, 3H).
The product obtained here was used for the synthesis of methyl O-[(1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate without purification.
<Example 10>
O Synthesis of methyl O-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate
(S) -methyl mandelate ([α]D 26= + 144.3 ° (c = 1.5, CH3OH), 34.5 g, 208 mmol) and imidazole (21.2 g, 311 mmol) in DMF (130 ml) solution was cooled to 0 ° C., and synthesized here in Example 9 [(2-methoxy-1- A solution of naphthyl) phenylmethyl] dimethylchlorosilane in DMF (255 ml) was added after cooling to 0 ° C., and then allowed to stand at room temperature for 1 night. The reaction solution was extracted with pure water (1.6 L) and n-hexane / acetic acid ethyl ester (1/1 (v / v), 1 L). The organic layer was washed successively with pure water (2 × 1.2 L) and saturated brine (1 L), and the organic layer was dried over anhydrous sodium sulfate. After drying, the mixture was filtered, and the solvent in the filtrate was distilled off under reduced pressure. Methyl O-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate (diastereomer mixture, crude 94.0 g product, 96% crude yield). For this synthesis, see the reaction formula below. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.9-7.76 (m, 3H), 7.50-7.02 (m, 13H), 5.17 (s, 0.5H), 5.16 (s, 0.5H) ), 4.44 (s, 0.5H), 4.37 (s, 0.5H), 3.92 (s, 1.5H), 3.90 (m, 1.5H), 3.663 ( s, 1.5H), 3.657 (s, 1.5H), 0.12 (s, 1.5H), 0.096 (s, 1.5H), 0.06 (s, 1.5H) , -0.03 (s, 1.5H).
FIG. 4 shows a normal phase HPLC analysis chart of O-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylsilyl- (S) -methyl mandelate.
<Example 12>
O Optical resolution of O-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate methyl (crude product, diastereomeric mixture)
54.42 g of a crude product (diastereomer mixture) of O-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate methyl compound synthesized in Example 11 was mixed with chloroform / methanol mixed solvent. (1/13 (v / v)) After being dissolved in 654 ml by heating, the mixture was allowed to stand overnight at room temperature for crystallization, and 17.61 g of crystals (diastereomer excess 44.9% de by HPLC analysis, recovery rate 32% ) This was recrystallized in the same manner from 140 ml of a chloroform / methanol mixed solvent (1/13 (v / v)), and 10.05 g of high-purity diastereomeric needle-like crystals (excess ratio of diastereomer 98.98 by HPLC analysis). 7% de, recovery rate 18%). Below this1H-NMR signal is shown.
1H-NMR: δ 7.98 (d, J = 8.5 Hz, 1H), 7.79-7.76 (m, 2H), 7.44-7.00 (m, 13H), 5.16 (s , 1H), 4.44 (s, 1H), 3.92 (s, 3H), 3.660 (s, 3H), 0.095 (s, 3H), 0.06 (s, 3H).
The residue obtained by distilling off the solvent from the filtrate of the first crystallization under reduced pressure was crystallized using 546 ml of a chloroform / methanol mixed solvent (1/13 (v / v)), and the other As a result, 8.94 g of a high-purity diastereomer plate-like crystal (diastereomer excess 99.3% de by HPLC analysis, recovery 16%) was obtained. Below this1H-NMR signal is shown.
1H-NMR: δ 7.91 (d, J = 8.5 Hz, 1H), 7.80-7.76 (m, 2H), 7.50-7.02 (m, 13H), 5.17 (s , 1H), 4.37 (s, 1H), 3.90 (s, 3H), 3.665 (s, 3H), 0.12 (s, 3H), -0.03 (s, 3H).
<Example 13>
○ Synthesis of [(2-methoxy-1-naphthyl) phenylmethyl] diphenylchlorosilane (formula (13))
A solution of (2-methoxy-1-naphthyl) phenylmethane (248.3 mg, 1 mmol) synthesized in Synthesis Example 4 in THF (2 ml) was cooled in an ice bath. A 1.58M n-butyllithium hexane solution (660 μl, 1.05 mmol) was added dropwise to this solution. After completion of dropping, the mixture was stirred at the same temperature for 1 hour to prepare a lithium salt. Separately, dimethyldichlorosilane (800 μl, 6.6 mmol) was dissolved in n-hexane (2 ml) and cooled at −78 ° C. The previous lithium salt solution was added to this solution, and the mixture was warmed to room temperature and stirred overnight. The solvent was removed from the reaction solution, and the solid was washed with n-hexane to obtain [(2-methoxy-1-naphthyl) phenylmethyl] diphenylchlorosilane (formula (13), crude product). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.98 (d, J = 8.8 Hz, 1H), 7.80-7.05 (m, 25H), 5.13 (s, 1H) 3.31 (s, 3H).
The [(2-methoxy-1-naphthyl) phenylmethyl] diphenylchlorosilane synthesized here was used for the next reaction without purification.
<Example 14>
Synthesis of O-[(2-methoxy-1-naphthyl) phenylmethyl] diphenylsilyl- (S) -mandelate methyl (following formula (14))
(S) -methyl mandelate ([α]D 26+ 144.3 ° (c = 1.5, CH3OH), 549 mg, 3.3 mmol) and imidazole (306 mg, 4.5 mmol) in a DMF (2 ml) solution synthesized as in Example 13 [(2-methoxy-1-naphthyl) phenylmethyl] diphenyl A solution of chlorosilane in DMF (2 ml) was added, and the mixture was stirred at room temperature overnight. The reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution cooled in an ice bath, and extracted with n-hexane / ethyl acetate (1/1 (v / v), 100 ml). The organic layer was washed successively with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. After drying, the mixture is filtered, the solvent in the filtrate is distilled off under reduced pressure, and the residue is purified by silica gel column chromatography (n-hexane / acetic acid ethyl ester = 95/5 to 90/10 (v / v)). -[(2-Methoxy-1-naphthyl) phenylmethyl] diphenylsilyl- (S) -mandelate methyl (formula (14), 253 mg, 48% yield based on (2-methoxy-1-naphthyl) phenylmethane) Obtained. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.01-7.90 (m, 1H), 7.78-7.69 (m, 2H), 7.41-7.00 (m, 18H), 5.17 (s, 0 .5H), 5.14 (s, 0.5H), 5.02 (s, 0.5H), 4.95 (s, 0.5H), 3.33 (s, 1.5H), 32 (s, 1.5H), 3.30 (s, 1.5H), 3.23 (s, 1.5H).
FIG. 5 shows a normal phase HPLC analysis chart of O-[(2-methoxy-1-naphthyl) phenylmethyl] diphenylsilyl- (S) -methyl mandelate.
<Synthesis Example 5> Synthesis of (1-naphthyl) (2-methoxyphenyl) methane
A 2-methoxyphenylmagnesium bromide solution prepared from 1-bromoanisole (65 g, 348 mmol), magnesium (11.0 g, 452 mmol), 1,2-dibromoethane (1 ml, 11.6 mmol) and THF (300 ml) (Chloromethyl) naphthalene (67.5 g, 382 mmol) and tetrakis (triphenylphosphine) palladium (0) (2.0 g, 1.75 mmol) in THF (50 ml) solution was added dropwise over about 70 minutes, And stirred overnight. Further, tetrakis (triphenylphosphine) palladium (0) (1.0 g, 0.87 mmol) was added, and the mixture was allowed to react at room temperature for about 105 hours and heated under reflux for about 12.5 hours. This reaction solution was placed in a saturated aqueous ammonium chloride solution and extracted with ether. This organic layer (500 ml) was washed successively with a saturated aqueous ammonium chloride solution, pure water and saturated brine, and dried over anhydrous sodium sulfate. After drying, the mixture was filtered, and the solvent in the filtrate was distilled off under reduced pressure. Petroleum ether was added to the residue and stirred, followed by filtration (twice with 150 ml). The solvent was distilled off from the filtrate under reduced pressure, the residue was distilled twice under reduced pressure, and (1-naphthyl) (2-methoxyphenyl) methane was distilled at 140 to 164 ° C./0.07 mmHg (28.7 g, yield). 33%). For this synthesis, see the reaction formula below. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.00-7.98 (m, 1H), 7.86-7.84 (m, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.46-7. .37 (m, 3H), 7.24-7.16 (m, 2H), 6.92-6.90 (m, 1H), 6.84-6.75 (m, 2H), 4.42 (S, 2H), 3.87 (s, 3H).
<Example 15>
-Synthesis of [(1-naphthyl) (2-methoxyphenyl) methyl] dimethylchlorosilane
In the same manner as in the previous examples, (1-naphthyl) (2-methoxyphenyl) methane (28.4 g, 114 mmol) synthesized in Synthesis Example 5 in THF (114 ml) and 1.58 M n-butyllithium hexane were used. A lithium salt was prepared from a solution (73 ml, 115 mol), and this was reacted with a solution of dimethyldichlorosilane (42 ml, 346 mmol) in n-hexane (114 ml) to give [(1-naphthyl) (2-methoxyphenyl) methyl. Dimethylchlorosilane was obtained. For this synthesis, see the reaction formula below. Also, below1N-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.17-8.15 (m, 1H), 7.83-7.79 (m, 2H), 7.72 (d, J = 8.1 Hz, 1H), 7.47-7 .41 (m, 3H), 7.21-7.19 (m, 1H), 7.13-7.09 (m, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6 81-6.78 (m, 1H), 5.10 (s, 1H), 3.95 (s, 3H), 0.47 (s, 3H), 0.46 (s, 3H).
The [(1-naphthyl) (2-methoxyphenyl) methyl] dimethylchlorosilane synthesized here was not purified, and O-[(1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S)- Used for the synthesis of methyl mandelate.
<Example 16>
O Synthesis of methyl O-[(1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate
(S) -methyl mandelate ([α]D 26+ 144.3 ° (c = 1.5, CH3OH), 19.0 g, 114 mmol) and imidazole (11.7 g, 172 mmol) and a DMF (70 ml) solution and [(1-naphthyl) (2-methoxyphenyl) methyl synthesized as in Example 15. ] Reaction with a DMF solution of dimethylchlorosilane (140 ml), and methyl O-[(1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate (diastereomer mixture, crude product 56 .2 g) was obtained. For this synthesis, see the reaction formula below. Of these, 11.2 g was subjected to silica gel column chromatography (n-hexane / acetic acid ethyl ester = 90/10 (v / v)), and 8.4 g of high-purity product (recovery rate 75%, diastereomeric excess by HPLC). 5.3% de) was obtained. Also, below1N-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.17-8.15 (m, 1H), 7.97-7.91 (m, 1H), 7.79-7, 76 (m, 1H), 7.69-7.66. (M, 1H), 7.43-7.15 (m, 9H), 7.10-7.03 (m, 1H), 6.86-6.66 (m, 2H), 5.02 (s 0.5H), 4.98 (s, 0.5H), 4.89 (s, 1H), 3.88 (s, 1.5H), 3.87 (m, 1.5H), 3. 60 (s, 1.5H), 3.58 (s, 1.5H), 0.19 (s, 1.5H), 0.13 (s, 1.5H), 0.12 (s, 3H) .
FIG. 6 shows a normal phase HPLC analysis chart of O-[(1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate methyl.
<Example 17>
O Optical resolution of O-[(1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -methyl mandelate by HPLC
The (R)-[(1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate methyl and (S)-[(1-naphthyl) (2- Methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate methyl diastereomer mixture (excess ratio of more strongly adsorbed diastereomer 5.3% de) 45.7 mg of silica gel column (DEVELOSIL manufactured by Nomura Chemical Co., Ltd.) (Diameter 5 μm, inner diameter 0.46 cm, length 25 cm), the diastereomer 18.3 mg (diastereomer excess 99.8% de, recovery rate 85%) adsorbed weakly under the following conditions: As a result, 21.0 mg of diastereomer to be adsorbed (diastereomer excess 95.2% de, recovery 87%) was obtained.
・ Silica gel column chromatography conditions
Mobile phase: n-hexane / ethyl acetate = 97/3 (volume ratio),
Flow rate: 1.0 ml / min,
Detection: UV254 nm, temperature: 30 ° C.
Sample injection amount: 50.8 mg / ml × 150 μl.
・ Diastereomers that adsorb weaker1N-NMR signals are shown below.
1H-NMR: δ 8.16 (m, 1H), 7.97 (dd, J = 7.1 / 1.0 Hz, 1H), 7.78 (m, 1H), 7.68 (d, J = 8) .3 Hz, 1 H), 7.44-7.24 (m, 8 H), 7.16 (dd, J = 7.6 / 1.7 Hz, 1 H), 7.05 (m, 1 H), 6.82 (Dd, J = 7.4 / 1.0 Hz, 1H), 6.68 (td, J = 7.4 / 1.0 Hz, 1H), 5.02 (s, 1H), 4.88 (s, 1H), 3.88 (s, 3H), 3.60 (s, 3H), 0.19 (s, 3H), 0.13 (s, 3H).
・ Diastereomers that adsorb more strongly1N-NMR signals are shown below.
1H-NMR: δ 8.16 (m, 1H), 7.92 (dd, J = 7.2 / 1.1 Hz, 1H), 7.78 (m, 1H), 7.67 (d, J = 8 .3 Hz, 1H), 7.43-7.24 (m, 9H), 7.80 (m, 1H), 6.85 (dd, J = 8.2 / 1.1 Hz, 1H), 6.76. (Td, J = 7.6 / 1.2 Hz, 1H), 4.97 (s, 1H), 4.88 (s, 1H), 3.87 (s, 3H), 3.58 (s, 3H) ), 0.14 (s, 3H), 0.12 (s, 3H).
Synthesis Example 6 Synthesis of (2-methoxy-1-naphthyl) (2-methoxyphenyl) methane (the following formula (16))
○ Synthesis of (2-methoxy-1-naphthyl) (2-methoxyphenyl) methanol (the following formula (15))
A magnesium bromide solution prepared from 2-bromoanisole (7.5 ml, 60 mmol), magnesium (1.53 g, 63 mmol) and THF (15 ml) was added to THF containing 2-methoxy-1-naphthaldehyde (9.31 g, 50 mmol). (10 ml) The solution was added dropwise over 20 minutes and stirred at room temperature for 2 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution to stop the reaction. To this was added saturated brine, and the mixture was extracted with acetic acid ethyl ester (200 ml). This organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. After drying, the mixture is filtered, and the solvent in the filtrate is distilled off under reduced pressure to quantitatively determine (2-methoxy-1-naphthyl) (2-methoxyphenyl) methanol (formula (15), crude product, 14.68 g). I got it. Below this1N-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.17 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7 .45-7.22 (m, 3H), 7.06 (d, J = 6.8 Hz, 1H), 6.97-6.77 (m, 3H), 4.45, (d, J = 13) .0Hz, 1H), 3.94 (s, 3H), 3.90 (s, 3H).
○ Synthesis of (2-methoxy-1-naphthyl) (2-methoxyphenyl) methane (the following formula (16))
Trimethylchlorosilane (4.0 ml, 31.5 mmol) was added to a chloroform (10 ml) suspension containing 4.721 g (31.5 mmol) of sodium iodide, stirred at room temperature for 15 minutes, and then cooled in an ice bath. A chloroform (12 ml) solution of (2-methoxy-1-naphthyl) (2-methoxyphenyl) methanol (2.9435 g, 10 mmol) synthesized earlier was added dropwise over 1 hour. After completion of the dropwise addition, the reaction solution was warmed to room temperature and stirred for 1 night. An aqueous solution (10 ml) of sodium hydroxide (1400 mg, 35 mmol) was dropped into the reaction solution to stop the reaction, and extraction was performed with acetic acid ethyl ester. This organic layer was washed successively with an aqueous sodium thiosulfate solution and saturated brine, and dried over anhydrous magnesium sulfate. After drying, the mixture was filtered, and the solvent was distilled off from the filtrate under reduced pressure. The residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 90/10 (v / v)), and (2-methoxy- 1-naphthyl) (2-methoxyphenyl) methane (formula (16), 2.0 g, yield 72%) was obtained. Below this1N-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.83-7.76 (m, 3H), 7.38-7.27 (m, 3H), 7.12 (m, 1H), 6.90 (d, J = 8.1 Hz) , 1H), 6.66 (m, 1H), 6.56 (d, J = 7.3 Hz, 1H), 4.31, (s, 2H), 3.97 (s, 3H), 3.92 (S, 3H).
<Example 18>
○ Synthesis of [(2-methoxy-1-naphthyl) (2-methoxyphenyl) methyl] dimethylchlorosilane (the following formula (17))
A solution of (2-methoxy-1-naphthyl) (2-methoxyphenyl) methane (278.4 mg, 1 mmol) synthesized in Synthesis Example 6 in THF (2 ml) was cooled in an ice bath. To this solution, a 1.58 M n-butyllithium hexane solution (640 μl, 1.0 mmol) was added dropwise. After completion of dropping, the mixture was stirred at the same temperature for 1 hour to prepare a lithium salt. Separately, dimethyldichlorosilane (800 μl, 6.6 mmol) was dissolved in n-hexane (2 ml) and cooled in an ice bath. The previous lithium salt solution was added to this solution, and the mixture was warmed to room temperature and stirred overnight. Lithium chloride in the produced reaction solution was filtered, and the solvent in the filtrate was distilled off under reduced pressure to obtain [(2-methoxy-1-naphthyl) (2-methoxyphenyl) methyl] dimethylchlorosilane (formula (17)). Obtained. Below this1N-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.16 (d, J = 8.8 Hz, 1H), 7.84-7.73 (m, 2H), 7.45-7.27 (m, 4H), 7.04-6 .65 (m, 3H), 5.05 (s, 1H), 3.99 (s, 3H), 3.96 (s, 3H), 0.48 (s, 3H), 0.38 (s, 3H).
This [(2-methoxy-1-naphthyl) (2-methoxyphenyl) methyl] dimethylchlorosilane was used for the next reaction without purification.
<Example 19>
Synthesis of O-[(2-methoxy-1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate methyl (following formula (18))
(S) -methyl mandelate ([α]D 26+ 144.3 ° (c = 1.5, CH3OH), 83 mg, 0.5 mmol) and imidazole (51 mg, 0.75 mmol) in DMF (2 ml) solution [(2-methoxy-1-naphthyl) (2-methoxyphenyl) methyl obtained in Example 18]. ] A solution of dimethylchlorosilane in DMF (2 ml) was added and stirred at room temperature overnight. The reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution cooled in an ice bath and extracted with n-hexane / ethyl acetate (1/1 (v / v), 100 ml). The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. After drying, the mixture is filtered, the solvent in the filtrate is distilled off under reduced pressure, and the residue is purified by silica gel column chromatography (n-hexane / acetic acid ethyl ester = 95/5 (v / v)) to obtain O-[(2 -Methoxy-1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate methyl (formula (18), diastereomeric mixture, 91 mg, (2-methoxy-1-naphthyl) (2- (Methoxyphenyl) methane yield 12%). Below this1N-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.12 (d, J = 8.1 Hz, 1H), 7.74-7.68 (m, 2H), 7.42-7.20 (m, 8H), 7.09-6 .96 (m, 2H), 6.80 (m, 1H), 6.68 (m, 1H), 5.12 (s, 0.5H), 5.05 (s, 0.5H) 4.88 (S, 1H), 3.93 (s, 1.5H), 3.91 (s, 1.5H), 3.81 (s, 1.5H), 3.74 (s, 1.5H), 3.57 (s, 1.5H), 3.50 (s, 1.5H), 0.21 (s, 1.5H), 0.16 (s, 1.5H), 0.09 (s, 1.5H), 0.05 (s, 1.5H).
FIG. 7 shows an analysis chart of normal phase HPLC of O-[(2-methoxy-1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -methyl mandelate (formula (18)).
<Example 20>
O Synthesis of [(2-methoxy-1-naphthyl)-(1-naphthyl) methyl] dimethylchlorosilane (the following formula (19))
A solution of (2-methoxy-1-naphthyl)-(1-naphthyl) methane (895.1 mg, 3 mmol) in THF (3 ml) was cooled in an ice bath. To this solution was added 1.57M n-butyllithium hexane solution (2.0 ml, 3.15 mmol) dropwise. After completion of dropping, the mixture was stirred at the same temperature for 1 hour to prepare a lithium salt. Separately, dimethyldichlorosilane (1.8 ml, 15 mmol) was dissolved in n-hexane (5 ml) and cooled in an ice bath. The lithium salt solution was added to this solution, and the mixture was warmed to room temperature and stirred for 1 hour. Lithium chloride in the produced reaction solution was filtered, and the solvent in the filtrate was distilled off under reduced pressure to obtain [(2-methoxy-1-naphthyl)-(1-naphthyl) methyl] dimethylchlorosilane (formula (19)). Obtained. Below this1N-NMR signal is shown. This (2-methoxy-1-naphthyl)-(1-naphthyl) methane can be synthesized in the same manner as (2-methoxy-1-naphthyl) phenylmethane in Synthesis Example 4.
Figure 0004135639
1H-NMR: δ 8.81 (m, 1H), 8.06-7.21 (m, 12H), 5.32, (s, 1H), 4.05 (s, 3H), 0.48 (s , 3H), 0.43 (s, 3H).
The [(2-methoxy-1-naphthyl)-(1-naphthyl) methyl] dimethylchlorosilane (formula (19)) obtained here was used for the next reaction without purification.
<Example 21>
Synthesis of O-[(2-methoxy-1-naphthyl)-(1-naphthyl) methyl] dimethylsilyl- (S) -mandelate methyl (following formula (20))
(S) -methyl mandelate ([α]D 26+ 144.3 ° (c = 1.5, CH3OH), 499 mg, 3 mmol) and imidazole (306 mg, 4.5 mmol) in DMF (3 ml) solution, ((2-methoxy-1-naphthyl)-(1-naphthyl) methyl) dimethylsilyl chloride in DMF (3 ml) ) The solution was added and stirred overnight at room temperature. The reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution cooled in an ice bath, and extracted with n-hexane / ethyl acetate (1/1 (v / v), 100 ml). The organic layer was washed with a saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous sodium sulfate. After drying, the mixture was filtered, the solvent in the filtrate was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (n-hexane / ethyl acetate = 95/5 to 92/8 (v / v)). Two diastereomers of (2-methoxy-1-naphthyl)-(1-naphthyl) methyl] dimethylsilyl- (S) -methyl mandelate (formula (20)) (TLC Rf values 0.51 and 0. 43). Below these1H-NMR signal is shown.
Figure 0004135639
・ Rf = 0.51 (chloroform)
1H-NMR: δ 8.78 (m, 1H), 7.98-7.73 (m, 4H), 7.57 (d, J = 8.8 Hz, 1H), 7.44-7.14 (m , 12H), 5.26 (s, 1H), 4.96 (s, 1H), 4.01 (s, 3H), 3.62 (s, 3H), 0.21 (s, 3H), − 0.03 (s, 3H).
・ Rf = 0.43 (chloroform)
1H-NMR: δ 8.75 (m, 1H), 7.98-7.71 (m, 4H), 7.58-7.14 (m, 13H), 5.23 (s, 1H), 4. 90 (s, 1H), 3.97 (s, 3H), 3.47 (s, 3H), 0.03 (s, 3H), 0.02 (s, 3H).
<Example 22>
Synthesis of (+)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane ((+)-NOMe-NAP-Cl)
One diastereomer obtained by optical resolution of methyl O-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate synthesized in Example 10 as in Example 12 [1H-NMR: δ 7.98 (d, J = 8.5 Hz, 1H), 7.79-7.76 (m, 2H), 7.44-7.00 (m, 13H), 5.16 (s , 1H), 4.44 (s, 1H), 3.92 (s, 3H), 3.660 (s, 3H), 0.095 (s, 3H), 0.06 (s, 3H), HPLC Analytical diastereomeric excess> 98% de] (115.2 g, 245 mmol) and acetyl chloride (60.9 ml, 857 mmol) and 1.0 M diethyl ether solution of hydrogen chloride (17.1 ml, 17.1 mmol). In addition, after mixing well in an ice bath, the mixture was allowed to stand at room temperature for 2 days. The precipitated crystals were collected by filtration under an argon atmosphere, washed successively with diethyl ether and then hexane, and then the residual solvent was distilled off under reduced pressure to obtain one enantiomer of [(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane ( 59.9 g, 72% yield). For this synthesis, see the reaction formula below. Below this1N-NMR signal and specific rotation are shown.
Figure 0004135639
1H-NMR: δ 7.97 (d, J = 8.5 Hz, 1H), 7.84-7.77 (m, 2H), 7.44-7.06 (m, 8H), 4.50 (s , 1H), 3.98 (s, 3H), 0.39 (s, 3H), 0.37 (s, 3H).
[Α]D 28+ 149.3 ° (c1.0, CHCl3).
<Example 23>
O Synthesis of (-)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane
Analogously to Example 22, another diastereomer of O-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate methyl [1H-NMR: δ 7.91 (d, J = 8.5 Hz, 1H), 7.80-7.76 (m, 2H), 7.50-7.02 (m, 13H), 5.17 (s , 1H), 4.37 (s, 1H), 3.90 (s, 3H), 3.665 (s, 3H), 0.12 (s, 3H), -0.03 (s, 3H), From the diastereomeric excess> 99% de] (103.3 g, 219 mmol) by HPLC analysis, the other enantiomer of [(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane (51.2 g, yield 68). %). For this synthesis, see the above reaction scheme. Below this1N-NMR signal and specific rotation are shown.
1H-NMR: δ 7.97 (d, J = 8.5 Hz, 1H), 7.84-7.77 (m, 2H), 7.44-7.06 (m, 8H), 4.50 (s , 1H), 3.98 (s, 3H), 0.39 (s, 3H), 0.37 (s, 3H).
[Α]D 28-151.6 ° (c1.0, CHCl3).
<Example 24>
O Synthesis of methoxy derivatives of (+)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane
(+)-[(2-Methoxy-1-naphthyl) phenylmethyl] dimethylchlorosisilane (0.341 g, 1 mmol) synthesized in Example 22 was dissolved in 1 ml of DMF and 0.5 ml of chloroform. To a chloroform solution (3.8 ml) containing 0.103 g (1.5 mmol) and methanol (0.08 ml, 2 mmol) at room temperature, mixed well, and allowed to stand overnight. Hexane / ethyl acetate (1/1 (v / v)) and water were added to the reaction solution and subjected to separation and extraction. The organic layer was washed successively with pure water and saturated brine, and anhydrous sodium sulfate was added. Dried. After filtration, the solvent in the filtrate was distilled off under reduced pressure to obtain one enantiomer of [(2-methoxy-1-naphthyl) phenylmethyl] dimethylmethoxysilane (0.276 g, yield 82%). For this synthesis, see the reaction formula below. Below this1N-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 7.9 (d, J = 8.8 Hz, 1H), 7.81-7.77 (m, 2H), 7.40-7.01 (m, 8H), 4.39 (s , 1H), 3.93 (s, 3H), 3.50 (s, 3H), 0.09 (s, 3H), -0.01 (s, 3H).
The enantiomeric excess of this enantiomer was measured by chiral HPLC analysis and found to be 99% ee or higher.
<Example 25>
○ Synthesis of methoxy derivatives of (-)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane
In the same manner as in Example 24, the other enantiomer (0.279 g, yield 82%) of [(2-methoxy-1-naphthyl) phenylmethyl] dimethylmethoxysilane was obtained. Below this1N-NMR signal is shown.
1H-NMR: δ 7.9 (d, J = 8.5 Hz, 1H), 7.81-7.77 (m, 2H), 7.41-7.02 (m, 8H), 4.39 (s , 1H), 3.93 (s, 3H), 3.50 (s, 3H), 0.09 (s, 3H), -0.01 (s, 3H).
The enantiomeric excess of this enantiomer was measured by chiral HPLC analysis and found to be 99% ee or higher.
<Example 26>
○ Synthesis of secondary butoxy derivatives of (+)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane
Imidazole (0.717 g, 10.5 mmol) and 2-butanol (0.65 ml, 7.1 mmol) were dissolved in chloroform (7 ml) and cooled on ice. A chloroform solution (7 ml) of (+)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosisilane (2.39 g, 7 mmol) was added thereto, mixed well, and then allowed to stand overnight at room temperature. did. The reaction solution allowed to stand overnight was washed with saturated brine, dried over anhydrous sodium sulfate. After drying, the mixture was filtered, and the solvent in the filtrate was distilled off under reduced pressure to obtain the title compound as a pale yellow solid (2.48 g, yield 94%, diastereomer mixture). For this synthesis, see the reaction formula below. Below this1N-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.01-7.99 (m, 1H), 7.79-7.76 (m, 2H), 7.39-7.01 (m, 8H), 4.43 (br, 1H) ), 3.91 (s, 3H), 3.76-3.69 (m, 1H), 1.59-1.39 (m, 2H), 1.18 (d, J = 6.1 Hz, 1 .5H), 1.07 (d, J = 6.1 Hz, 1.5H), 0.89 (t, J = 7.4 Hz, 1.5H), 0.84 (t, J = 7.4 Hz, 1.5H), 0.10 (s, 1.5H), 0.09 (s, 1.5H), -0.03 (s, 1.5H), -0.04 (s, 1.5H) .
<Examples 27 to 39>
O Synthesis of alkoxy derivatives of (+)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane
In the same manner as in Example 26, various alkoxides were synthesized by reacting (+)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosilane and the alcohol compounds described in Tables 1 and 2. . For the synthesis of these, see the following reaction formula. These reaction conditions and yields are shown in Tables 1 and 2.1H-NMR δ values are shown in Tables 3 and 4. The yield in Example 37 was calculated from the product purified by silica gel column chromatography (n-hexane / acetic acid ethyl ester = 8/2). Moreover, the yield in Example 38 was computed from what was refine | purified by the silica gel column chromatography (n-hexane / acetic acid ethyl ester = 7 / 3-6 / 4).
Figure 0004135639
<Example 40>
O Synthesis of menthol derivatives of (-)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosisilane
In the same manner as in Example 26, (-)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosisilane (prepared in Example 23) and menthol were reacted to synthesize a menthol derivative. These reaction conditions and yields are shown in Table 2.1H-NMR δ values are listed in Table 4.
Figure 0004135639
Figure 0004135639
Figure 0004135639
Figure 0004135639
<Example 41>
(R)-[(1-Naphtyl) phenylmethyl] dimethylchlorosilane (NAP) synthesized in Example 3*(R) -Cl) was used to synthesize 2-butanol derivative represented by the following formula (21). This synthesis method was carried out in the same manner as in Example 26 except that chloroform used as a solvent was changed to DMF. The yield was 82% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.15-8.08 (m, 1H), 7.87-7.78 (m, 2H), 7.75-7.68 (m, 1H), 7.51-7.37. (M, 3H), 7.34-7.28 (m, 2H), 7.22-7.14 (m, 2H), 7.10-7.03 (m, 1H), 4.30 & 4.29 (S, 1H), 3.655 & 3.650 (sext, J = 6.0 Hz, 1H), 1.50-1.30 (m, 2H), 1.027 & 1.023 (d, J = 6.0 Hz, 3H), 0.78 & 0.63 (t, J = 7.2 Hz, 3H), 0.17 (s, 1.5H), 0.16 (s, 1.5H), 0.153 (s, 1.H). 5H), 0.149 (s, 1.5H).
<Example 42>
The same operation as in Example 41 was carried out to synthesize a glycidol derivative represented by the following formula (22). The yield was 49% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.14-8.07 (m, 1H), 7.86-7.79 (m, 1H), 7.77-7.70 (m, 2H), 7.51-7.38. (M, 3H), 7.32-7.26 (m, 2H), 7.24-7.17 (m, 2H), 7.12-7, 03 (m, 1H), 4.37 & 4.36 (S, 1H), 3.76-3.65 (m, 1H), 3.56-3.44 (m, 1H), 3.06-2.95 (m, 1H), 2.73-2 .66 (m, 1H), 2.55-2.47 (m, 1H), 0.21 (s, 6H).
<Example 43>
The same operation as in Example 41 was performed to synthesize the following formula (23). The yield was 73% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.11-8.00 (m, 1H), 7.85-7.63 (m, 5H), 7.49-7.03 (m, 16H), 5.67 & 5.65 (s , 1H), 4.37 & 4.36 (s, 1H), 0.21 (s, 1, 5H), 0.20 (s, 1, 5H), 0.163 (s, 1, 5H),. 158 (s, 1, 5H).
<Example 44>
The following formula (24) was synthesized in the same manner as in Example 41. The yield was 83% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.13-8.06 (m, 1H), 7.85-7.70 (m, 3H), 7.52-7.38 (m, 3H), 7.33-7.17. (M, 4H), 7.12-7.04 (m, 1H), 4.32 (s, 1H), 4.26-4.18 (m, 1H), 3.95-3.85 (m , 1H), 3.81-3.71 (m, 1H), 3.68-3.51 (m, 2H), 1.91-1.65 (m, 2H), 0.21 (s, 1 , 5H), 0.20 (s, 1, 5H), 0.189 (s, 1, 5H), 0.186 (s, 1, 5H).
<Example 45>
In the same manner as in Example 41, a derivative of Pantoyl lactone represented by the following formula (25) was synthesized. The yield was 54% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.18-8.08 (m, 1H), 7.93-7.64 (m, 3H), 7.53-7.16 (m, 7H), 7.13-7.04. (M, 1H), 4.55 (s, 0.5H), 4.36 (s, 0.5H), 4.00-3.90 (m, 2H), 3.81 (dd, J = 8 .8, 1.6 Hz, 1 H), 0.99 (s, 1.5 H), 0.97 (s, 1.5 H), 0.95 (s, 1.5 H), 0.91 (s, 1 .5H), 0.34 (s, 1.5H), 0.31 (s, 1.5H), 0.275 (s, 1.5H), 0.272 (s, 1.5H).
<Example 46>
The following formula (26) was synthesized in the same manner as in Example 41. The yield was 93%. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.12-8.05 (m, 1H), 7.85-7.68 (m, 3H), 7.49-7.03 (m, 13H), 4.73 (q, J = 6.4 Hz, 0.5 H), 4.71 (q, J = 6.4 Hz, 0.5 H), 4.31 (s, 0.5 H), 4.28 (s, 0.5 H), 1 .35 (d, J = 6.4 Hz, 1.5H), 1.34 (d, J = 6.4 Hz, 1.5H), 0.13, 0.10 & 0.09 (s, 6H).
<Example 47>
The following formula (27) was synthesized in the same manner as in Example 41. The yield was 54% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.11-8.02 (m, 1H), 7.87-7.66 (m, 3H), 7.51-7.03 (m, 10H), 6.79 (d, J = 8.4 Hz, 1H), 6.75 (d, J = 8.4 Hz, 1H), 4.69 (q, J = 6.4 Hz, 0.5H), 4.68 (q, J = 6. 4 Hz, 0.5 H), 4.30 (s, 0.5 H), 4.25 (s, 0.5 H), 3.78 (s, 1.5 H), 3.75 (s, 1.5 H) , 1.33 (d, J = 6.4 Hz, 1.5H), 1.32 (d, J = 6.4 Hz, 1.5H), 0.11 (s, 1, 5H), 0.10 ( s, 1,5H), 0.08 (s, 1,5H), 0.01 (s, 1,5H).
<Example 48>
In the same manner as in Example 41, a 1,2,3,4-tetrahydro-naphthol derivative represented by the following formula (28) was synthesized. The yield was 100%. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.17-8.07 (m, 1H), 7.90-7.67 (m, 3H), 7.51-7.01 (m, 12H), 4.83-4.70. (M, 1H), 4.36 & 4.35 (s, 1H), 2.90-2.51 (m, 2H), 2.02-1.57 (m, 4H), 0.26 (s, 3H) ), 0.25 (s, 3H).
<Example 49>
In the same manner as in Example 41, 1- (4-pyridyl) ethanol derivative represented by the following formula (29) was synthesized. The yield was 47% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.50-8.39 (m, 2H), 8.14-8.04 (m, 1H), 7.88-7.68 (m, 3H), 7.52-7.38 (M, 3H), 7.34-7.02 (m, 7H), 4.68 & 4.64 (q, J = 6.4 Hz, 1H), 4.34 & 4.33 (s, 1H), 1.318 & 1 .316 (d, J = 6.4 Hz, 3H), 0.18 (s, 1.5H), 0.16 (s, 3H), 0.15 (s, 1.5H).
<Example 50>
The same operation as in Example 41 was performed to synthesize the 1- (2-pyridyl) ethanol derivative represented by the following formula (30). The yield was 77% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.49-8.37 (m, 1H), 8.16-8.04 (m, 1H), 7.88-7.67 (m, 3H), 7.59-7.00. (M, 11H), 4.87 & 4.85 (q, J = 6.4 Hz, 1H), 4.37 & 4.35 (s, 1H), 1.40 (d, J = 6.4 Hz, 3H), 0 .19 (s, 1.5H), 0.17 (s, 1.5H), 0.16 (s, 1.5H), 0.13 (s, 1.5H).
<Example 51>
1- (2-furyl) ethanol derivative The following formula (31) was synthesized in the same manner as in Example 41. The yield was 92% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.14-8.05 (m, 1H), 7.88-7.67 (m, 3H), 7.50-7.37 (m, 3H), 7.37-7.23. (M, 3H), 7.23-7.13 (m, 2H), 7.13-7.03 (m, 1H), 6.28 & 6.24 (dd, J = 3.2, 1.8 Hz, 1H), 6.07 & 6.04 (d, J = 3.2 Hz, 1H), 4.78 & 4.75 (q, J = 6.4 Hz, 1H), 4.35 & 4.30 (s, 1H), 1. 41 & 1.40 (d, J = 6.4 Hz, 3H), 0.16, 0.125 & 0.122 (s, 6H).
<Example 52>
The following formula (32) was synthesized in the same manner as in Example 41. The yield was 95%. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.14-8.06 (m, 1H), 7.87-7.67 (m, 3H), 7.52-7.37 (m, 3H), 7.34-7.14 (M, 4H), 7.11-7.01 (m, 1H), 4.33 (s, 1H), 3.71-3.58 (m, 1H), 2.80-2.65 (m , 2H), 2.34 & 2.33 (q, J = 7.2 Hz, 2H), 1.84-1.57 (m, 4H), 1.51-1.34 (m, 1H), 1.25 -1.10 (m, 1H), 1.01 & 0.97 (d, J = 7.2 Hz, 3H), 0.19 & 0.18 (s, 6H).
<Example 53>
The following formula (33) was synthesized in the same manner as in Example 41. The yield was 93%. Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.17-8.05 (m, 1H), 7.90-7.68 (m, 3H), 7.54-7.35 (m, 3H), 7.35-7.15. (M, 4H), 7.12-7.03 (m, 1H), 4.35 & 4.34 (s, 1H), 3.65 & 3.60 (dd, J = 10.4, 4.4 Hz, 1H) 3.37 & 3.33 (dd, J = 10.4, 6.0 Hz, 1H), 2.83-2.70 (m, 1H), 2.184 & 2.178 (s, 3H), 2.05- 1.95 (m, 1H), 1.88-1.42 (m, 5H), 1.23-1.08 (m, 2H), 0.186, 0.183 & 0.178 (s, 6H).
<Example 54>
○ (S)-[(1-Naphtyl) phenylmethyl] dimethylchlorosilane (NAP)*Synthesis of (S) -Cl)
R-form O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandel from methyl O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate synthesized in Example 2 Form S was separated from the mother liquor from which methyl acid was obtained. This S-form was operated in the same manner as in Example 3 to obtain (S)-[(1-naphthyl) phenylmethyl] dimethylchlorosilane (NAP*(S) -Cl) was obtained.
<Example 55>
(S)-[(1-Naphtyl) phenylmethyl] dimethylchlorosilane (NAP) synthesized in Example 54*The following formula (34) was synthesized using (S) -Cl). This synthesis method was carried out in the same manner as in Example 26 except that chloroform used as a solvent was changed to DMF. The yield was 89% (calculated from the product purified by silica gel column chromatography). Below this1H-NMR signal is shown.
Figure 0004135639
1H-NMR: δ 8.09-8.00 (m, 1H), 7.85-7.66 (m, 3H), 7.46-7.35 (m, 3H), 7.30-7.04 (M, 12H), 6.81-6.68 (m, 2H), 5.63 & 5,62 (s, 1H), 4.30 & 4.29 (s, 1H), 3.76 & 3.74 (s, 3H ), 0.10 (s, 1.5H), 0.09 (s, 3H), 0.08 (s, 1.5H).
<Example 56>
Using the formula (26) synthesized in Example 46, optical resolution by crystallization was performed. In this method, the sample was heated and dissolved in a crystallization solvent, sealed, and allowed to stand at room temperature (rt) or 4 ° C. After the crystals precipitated, the mother liquor was removed by decantation to obtain crystals. The crystals were dried under reduced pressure. As the crystallization solvent, normal hexane (abbreviated as HX), petroleum ether (abbreviated as PE), isopropanol (abbreviated as i-PrOH), ethanol (abbreviated as EtOH) and normal butanol (abbreviated as n-BuOH) were used. did.
The results are shown in Table 5. The yields in Table 5 were taken as 100% of half of the sample used (assuming that diastereomers are contained in equal amounts). The diastereomeric excess (% de) was calculated from the quantitative ratio of diastereomers (referred to as A and B) after optical resolution. That is, when the molar fractions of A and B were D1 and D2, respectively, and D1> D2, it was calculated from the following formula.
Diastereomeric excess (% de) = [(D1−D2) / (D1 + D2)] × 100
Further, the division efficiency was calculated from the following formula.
Resolution efficiency = [yield] × [diastereomeric excess] ÷ 100
Figure 0004135639
<Example 57>
Using the formula (28) synthesized in Example 48, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 6. Entry 6 in Table 6 was crystallized using the residue obtained by distilling off the solvent from the mother liquor of Entry 3 in Table 6. Entry 7 in Table 6 was changed from the mother liquor in Entry 4 in Table 6 to the solvent. Is crystallized using the residue obtained by distilling off. The negative value of% de in Entry 6 in Table 6 and Entry 7 in Table 6 indicates that the precipitated diastereomer was reversed from the diastereomer preferentially precipitated in Entry 1 in Table 6 to Entry 5 in Table 6.
Figure 0004135639
<Example 58>
Using the formula (27) synthesized in Example 47, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 7.
Figure 0004135639
<Example 59>
Using the formula (30) synthesized in Example 50, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 8. In addition, EtOH / H described in the crystallization solvent column2O shows the thing which added water (0.4 ml) after melt | dissolving in ethanol (1 ml).
Figure 0004135639
<Example 60>
Using the formula (29) synthesized in Example 49, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 9. In addition, iPr described in the crystallization solvent column2O represents diisopropyl ether.
Figure 0004135639
<Example 61>
Using formula (31) synthesized in Example 51, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 10. In addition, EtOH / H described in the crystallization solvent column2O shows the thing which added water (0.1 ml) after melt | dissolving in ethanol (1 ml).
Figure 0004135639
<Example 62>
Using the compound synthesized in Example 28, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 11. In addition, MeOH described in the crystallization solvent column is methanol, CHCl.3Indicates chloroform, and AE indicates ethyl acetate. In Entry 1, MeOH + CHCl3Indicates that the derivative is dissolved in 2 ml of methanol and 0.5 ml of chloroform. Entry 2-4 performed the same operation. For Entry 7, a 40: 1 mixed solvent of n-hexane and AcOEt was used.
Figure 0004135639
<Example 63>
Using the compound synthesized in Example 30, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 12. The indication in the crystallization solvent column is the same as in Example 62.
Figure 0004135639
<Example 64>
Using the compound synthesized in Example 31, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 13.
Figure 0004135639
<Example 65>
Using the compound synthesized in Example 35, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 14. The indication in the crystallization solvent column is the same as in Example 62. The negative value of% de in Table 14-Entry 4 indicates that the preferentially precipitated diastereomer was reversed from the preferentially precipitated diastereomer.
Figure 0004135639
<Example 66>
Using the compound synthesized in Example 36, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 15. In addition, Et2O described in the crystallization solvent column represents diethyl ether, and c-hexane represents cyclohexane. 4 ° C. → r. t. The description indicates that the crystals were deposited at 4 ° C. and then allowed to stand at room temperature. A negative value of% de in Entry 1 in Table 15 and Entry 3 in Table 15 indicates that the preferentially precipitated diastereomer was reversed from the preferentially precipitated diastereomer in other cases.
Figure 0004135639
<Example 67>
Using the compound synthesized in Example 37, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 16. The indication in the crystallization solvent column is the same as in Example 62.
Figure 0004135639
<Example 68>
Using the compound synthesized in Example 38, optical resolution by crystallization was performed in the same manner as in Example 56. The results are shown in Table 17. The indications in the crystallization solvent column are the same as those in Example 62 and Example 66.
Figure 0004135639
<Example 69>
From the alkoxide ((+)-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylchlorosisilane (NOMeNAP-Cl) synthesized in Examples 26 to 32 and Example 37 and various racemic alcohol compounds The diastereomers were separated by high performance liquid chromatography (HPLC). As a result, the two diastereomers could be sufficiently separated. These results are shown in Table 12. The definitions of the volume ratio (k ′), separation factor (α) and degree of separation (Rs) listed in Table 12 are described below.
○ HPLC conditions
・ Apparatus: Waters (LC-M1)
Analysis column: Nomura Chemical silica gel column Develosil 60-5
(4.6 mm ID × 250 mm + guard column 10 mm)
Mobile phase: n-hexane / ethyl acetate (v / v)
A: 95/5, B: 98/2, C: 99/1 or D: 100 / 0.5, flow rate: 1.0 ml / min
-Detector: UV detection, wavelength 254nm
○ Definition of volume ratio (k ′), separation factor (α) and degree of separation (Rs)
The alkoxide was analyzed by HPLC, and the two detection peaks obtained were determined for their respective elution time retention times (t1, t2) and peak widths (time: tw1, tw2). At the same time, the retention time (t0) of the solvent not retained in the stationary phase was also determined.
Figure 0004135639
Figure 0004135639
<Example 70> Acquisition of optically active 1-phenylethanol
Crystals obtained by recrystallizing 1.994 g of the diastereomeric mixture of the formula (26) synthesized in Example 46 from 10 ml of n-hexane were further optically resolved by recrystallization from 10 ml of n-hexane to obtain high-purity dia 0.561 g of stereomer (yield 56% when half of the diastereomer mixture was taken as 100%) was obtained.
1H-NMR: δ 8.12-8.05 (m, 1H), 7.85-7.68 (m, 3H), 7.49-7.03 (m, 13H), 4.73 (q, J = 6.4 Hz, 1H), 4.31 (s, 1H), 1.34 (d, J = 6.4 Hz, 3H), 0.13 (s, 3H), 0.09 (s, 3H).
1The diastereomeric excess determined by 1 H-NMR analysis was 91.9% de.
0.199 g of the obtained high-purity diastereomer was dissolved in 1.5 ml of THF, 0.5 ml of a 1.0 M THF solution of tetrabutylammonium fluoride was added thereto, and the mixture was stirred for a while and then allowed to stand overnight at room temperature. . After overnight, the residue obtained by evaporating the solvent under reduced pressure was subjected to silica gel column chromatography to obtain 35 mg of optically active 1-phenylethanol (R isomer, yield 57%). As a result of chiral HPLC analysis, the optical purity of this product was 93.6% ee.
<Industrial applicability>
A series of novel organosilicon compounds obtained by the present invention have the characteristics of having an asymmetric carbon and clear configuration. For this reason, it is useful as an intermediate raw material, an asymmetric synthesis auxiliary agent, and an optical resolution agent for organic synthesis, particularly asymmetric synthesis. In addition, surface treatment agents for inorganic compounds, polymer modifiers, or constituent components of polymer resins Useful as.
[Brief description of the drawings]
FIG. 1 shows a normal phase HPLC analysis chart of O-[(1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate methyl (a mixture of diastereomers).
FIG. 2 shows a normal phase HPLC analysis chart of O-[(2-naphthyl) phenylmethyl] dimethylsilyl- (S) -methyl mandelate.
FIG. 3 shows a normal phase HPLC analysis chart of O-[(1-naphthyl) (2-naphthyl) methyl] dimethylsilyl- (S) -mandelate methyl.
FIG. 4 shows a normal phase HPLC analysis chart of methyl O-[(2-methoxy-1-naphthyl) phenylmethyl] dimethylsilyl- (S) -mandelate.
FIG. 5 shows a normal phase HPLC analysis chart of methyl O-[(2-methoxy-1-naphthyl) phenylmethyl] diphenylsilyl- (S) -mandelate.
FIG. 6 shows a normal phase HPLC analysis chart of methyl O-[(1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate.
FIG. 7 shows a normal phase HPLC analysis chart of O-[(2-methoxy-1-naphthyl) (2-methoxyphenyl) methyl] dimethylsilyl- (S) -mandelate methyl.
FIG. 8 shows a chiral HPLC analysis chart of [(1-naphthyl) phenylmethyl] dimethylmethoxysilane (racemate).
FIG. 9 shows a chiral HPLC analysis chart of (R)-[(1-naphthyl) phenylmethyl] dimethylmethoxysilane.
In these figures, the vertical axis (AU) represents absorbance, and the horizontal axis represents elution time.

Claims (11)

下記式(1)で表される有機ケイ素化合物。
Figure 0004135639
式(1)中、ArおよびArはそれぞれ異なっていて、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Rは分岐があってもよい炭素数1〜6個のアルキル基または置換基があってもよいフェニル基を示し、Xはハロゲン原子を示す。
An organosilicon compound represented by the following formula (1).
Figure 0004135639
In formula (1), Ar 1 and Ar 2 are different from each other, and Ar 1 may have a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a substituent which may have 2 -Represents a naphthyl group, Ar 2 represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent, and R 1 represents a branched group An optionally substituted alkyl group having 1 to 6 carbon atoms or an optionally substituted phenyl group is shown, and X represents a halogen atom.
下記式(2)で表される化合物を炭素数1〜6個のアルキルリチウムと反応させた後、下記式(3)で表される化合物と反応させることを特徴とする請求項1記載の式(1)の製造方法。
Figure 0004135639
式(2)中、ArおよびArはそれぞれ異なっていて、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示す。
Figure 0004135639
式(3)中、Rは分岐があってもよい炭素数1〜6個のアルキル基または置換基があってもよいフェニル基を示し、Xはハロゲン原子を示す。
The compound represented by the following formula (2) is reacted with an alkyl lithium having 1 to 6 carbon atoms and then reacted with a compound represented by the following formula (3). The manufacturing method of (1).
Figure 0004135639
In formula (2), Ar 1 and Ar 2 are different from each other, and Ar 1 may have a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a substituent which may have 2 -A naphthyl group, Ar 2 represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent.
Figure 0004135639
In formula (3), R 1 represents a C 1-6 alkyl group which may be branched or a phenyl group which may have a substituent, and X represents a halogen atom.
下記式(4)で表される有機ケイ素化合物。
Figure 0004135639
式(4)中、ArおよびArはそれぞれ異なっていて、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Arは置換基があってもよいフェニル基、置換基があってもよい1−ナフチル基または置換基があってもよい2−ナフチル基を示し、Rは分岐があってもよい炭素数1〜6個のアルキル基または置換基があってもよいフェニル基を示し、Rはアルコール化合物由来のものを示す。
An organosilicon compound represented by the following formula (4).
Figure 0004135639
In Formula (4), Ar 1 and Ar 2 are different from each other, and Ar 1 may have a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a substituent which may have 2 -Represents a naphthyl group, Ar 2 represents a phenyl group which may have a substituent, a 1-naphthyl group which may have a substituent or a 2-naphthyl group which may have a substituent, and R 1 represents a branched group An optionally substituted alkyl group having 1 to 6 carbon atoms or an optionally substituted phenyl group is shown, and R 2 is derived from an alcohol compound.
請求項1記載の式(1)の光学活性体。The optically active substance of formula (1) according to claim 1. 請求項3記載の式(4)の光学活性体。The optically active substance of the formula (4) according to claim 3. 請求項1記載の式(1)の光学活性体を用いる光学分割剤。An optical resolution agent using the optically active substance of formula (1) according to claim 1. 請求項1記載の式(1)の光学活性体を用いる光学異性体の分割方法。A method for resolving optical isomers using the optically active substance of formula (1) according to claim 1. ラセミ体アルコール化合物と請求項4記載の式(1)の光学活性体とを反応させて式(4)で表されるジアステレオマー混合物としたものによる、ラセミ体アルコール化合物の光学異性体を分割する方法。The optical isomer of the racemic alcohol compound is resolved by reacting the racemic alcohol compound with the optically active form of the formula (1) according to claim 4 to obtain a diastereomeric mixture represented by the formula (4). how to. 請求項8記載のラセミ体アルコール化合物の光学異性体を分割する方法であって、晶析により光学分割することを特徴とする方法。A method for resolving an optical isomer of a racemic alcohol compound according to claim 8, wherein the optical isomer is resolved by crystallization. 請求項8記載のラセミ体アルコール化合物の光学異性体を分割する方法であって、クロマトグラフィーにより光学分割することを特徴とする方法。A method for resolving an optical isomer of a racemic alcohol compound according to claim 8, wherein the optical isomer is resolved by chromatography. 請求項10記載のラセミ体アルコール化合物のクロマトグラフィーにより光学分割する方法であって、アキラルな分離カラムを用いることを特徴とする方法。A method for optical resolution by chromatography of a racemic alcohol compound according to claim 10, wherein an achiral separation column is used.
JP2003573004A 2002-03-05 2003-03-05 NOVEL ORGANIC SILICON COMPOUND, OPTICALLY ACTIVE FORM, METHOD FOR PRODUCING THE ORGANIC SILICON COMPOUND, AND USE THEREOF Expired - Fee Related JP4135639B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002059421 2002-03-05
JP2002059421 2002-03-05
PCT/JP2003/002548 WO2003074536A1 (en) 2002-03-05 2003-03-05 Novel organosilicon compound, optically active isomers thereof, process for producing the organosilicon compound, and use thereof

Publications (2)

Publication Number Publication Date
JPWO2003074536A1 JPWO2003074536A1 (en) 2005-06-30
JP4135639B2 true JP4135639B2 (en) 2008-08-20

Family

ID=27784746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003573004A Expired - Fee Related JP4135639B2 (en) 2002-03-05 2003-03-05 NOVEL ORGANIC SILICON COMPOUND, OPTICALLY ACTIVE FORM, METHOD FOR PRODUCING THE ORGANIC SILICON COMPOUND, AND USE THEREOF

Country Status (3)

Country Link
JP (1) JP4135639B2 (en)
AU (1) AU2003221313A1 (en)
WO (1) WO2003074536A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070099034A (en) * 2005-02-25 2007-10-08 테바 파마슈티컬 인더스트리즈 리미티드 Process of purifying tadalafil
JP2010037307A (en) * 2008-08-08 2010-02-18 Shin-Etsu Chemical Co Ltd Process for producing dialkyldichlorosilane compound

Also Published As

Publication number Publication date
JPWO2003074536A1 (en) 2005-06-30
AU2003221313A1 (en) 2003-09-16
WO2003074536A1 (en) 2003-09-12

Similar Documents

Publication Publication Date Title
JP2008540557A (en) Process for producing phenol-type 4-biphenylylazetidin-2-one
WO2008106900A1 (en) Method of manufacturing (3r, 4s) -1- (4-fluorophenyl) -3- [ (3s) -3- (4 -fluorophenyl) -3-hydroxypropyl) ] -4- (4-hyd roxyphenyl) -2-azetidinone
EA016650B1 (en) Process for carbonyl asymmetric alkylation
JPH05125051A (en) Synthesis of substituted (quinolin-2-yl- methoxy)phenyl acetic acid with uniform stereostructure
Nagao et al. Enantioselective trifluoromethylation of ketones with (trifluoromethyl) trimethylsilane catalyzed by chiral quaternary ammonium phenoxides
CN100560555C (en) A kind of synthetic 1, the method for 3-two replacement-4-alkene-1-cyclo-pentanone compounds
JP4135639B2 (en) NOVEL ORGANIC SILICON COMPOUND, OPTICALLY ACTIVE FORM, METHOD FOR PRODUCING THE ORGANIC SILICON COMPOUND, AND USE THEREOF
WO2003042180A9 (en) Process for producing optically active oxoheptenoic acid ester
US4841081A (en) Method of optically resolving a racemate or a diastereomeric mixture of glycidyl compound
JPS611681A (en) Epimerization of 3,4,5,6-tetrahydro-2h-pyran-2-one in c6
KR20060051371A (en) A process for preparing for imidazopyran derivatives
JP4135638B2 (en) Novel organosilicon compound, process for producing the same, and optically active substance of the organosilicon compound
US11603337B2 (en) Method for producing optically active substance, optically active substance, method for producing chiral molecule, and chiral molecule
JPH023793B2 (en)
JP2014151285A (en) New optically active imidazoline-phosphoric acid catalyst and derivative thereof
JP3808931B2 (en) Optically active 4,5-diphenyl-1,3-dialkyl-2-halogenoimidazolinium halogenide
JP3988528B2 (en) Process for producing optically active 5-hydroxy-3-ketoester
JP3201998B2 (en) Method for producing (S) -benzoxazine derivative and method for racemizing (R) -benzoxazine derivative
JP5787399B2 (en) Novel asymmetric catalyst, optically active carboxylic acid ester, optically active alcohol, and method for producing optically active carboxylic acid
JP2620533B2 (en) New amino acid derivatives
JP2009215196A (en) Method for producing optically active perfluoroalkyl secondary alcohol derivative
JP3796964B2 (en) Method for producing 4-nitroester compound
JP4747748B2 (en) Preparation of imidazopyran derivatives
JP2005154276A (en) New organosilicon compound and optically active substance of the organosilicon compound
JP4085601B2 (en) Process for producing optically active pyridyl alcohols

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees