JP4135596B2 - Organic photoreceptor, process cartridge, image forming apparatus and image forming method - Google Patents

Organic photoreceptor, process cartridge, image forming apparatus and image forming method Download PDF

Info

Publication number
JP4135596B2
JP4135596B2 JP2003304312A JP2003304312A JP4135596B2 JP 4135596 B2 JP4135596 B2 JP 4135596B2 JP 2003304312 A JP2003304312 A JP 2003304312A JP 2003304312 A JP2003304312 A JP 2003304312A JP 4135596 B2 JP4135596 B2 JP 4135596B2
Authority
JP
Japan
Prior art keywords
charging
image
intermediate layer
organic photoreceptor
image forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003304312A
Other languages
Japanese (ja)
Other versions
JP2005077458A (en
Inventor
剛士 下田
景之 友寄
裕文 早田
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Business Technologies Inc
Original Assignee
Konica Minolta Business Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Business Technologies Inc filed Critical Konica Minolta Business Technologies Inc
Priority to JP2003304312A priority Critical patent/JP4135596B2/en
Publication of JP2005077458A publication Critical patent/JP2005077458A/en
Application granted granted Critical
Publication of JP4135596B2 publication Critical patent/JP4135596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、電子写真方式の画像形成に用いる有機感光体、プロセスカートリッジ、画像形成装置及び画像形成方法に関し、更に詳しくは、複写機やプリンターの分野で用いられる電子写真方式の画像形成に用いる有機感光体(以後、単に感光体とも云う)、プロセスカートリッジ、画像形成装置及び画像形成方法に関するものである。   The present invention relates to an organic photoreceptor, a process cartridge, an image forming apparatus, and an image forming method used for electrophotographic image formation. More specifically, the present invention relates to an organic photoconductor used for electrophotographic image formation used in the field of copying machines and printers. The present invention relates to a photoconductor (hereinafter also simply referred to as a photoconductor), a process cartridge, an image forming apparatus, and an image forming method.

有機感光体はセレン系感光体、アモルファスシリコン感光体のような無機感光体に比して素材の選択の幅が広いこと、環境適性に優れていること、生産コストが安いこと等の大きなメリットがあり、近年無機感光体に代わって電子写真感光体の主流となっている。   Organic photoconductors have great advantages such as wide selection of materials, excellent environmental suitability and low production costs compared to inorganic photoconductors such as selenium photoconductors and amorphous silicon photoconductors. In recent years, electrophotographic photoreceptors have become the mainstream in place of inorganic photoreceptors.

他方カールソン法に基づく画像形成方法においては、電子写真感光体上に帯電、静電潜像を形成し、トナー画像を形成した後、該トナー画像を転写紙に転写し、これを定着して最終画像が形成される。   On the other hand, in the image forming method based on the Carlson method, a charged, electrostatic latent image is formed on an electrophotographic photosensitive member, and a toner image is formed. Then, the toner image is transferred to a transfer paper, fixed, and finally processed. An image is formed.

上記帯電手段の部材として従来代表的に用いられている帯電部材はコロナ放電器が最もよく知られている。コロナ放電器は安定した帯電を行えるという利点を有する。しかし、コロナ放電器は高電圧を印加しなければならないため、イオン化された酸素、オゾン、水分、酸化窒素化合物等の発生量が多いため、有機感光体(以後感光体とも云う)の劣化を招いたり、人体に悪影響を及ぼす等の問題点を有している。   A corona discharger is the best known charging member that has been used as a member of the charging means. The corona discharger has an advantage that stable charging can be performed. However, since a high voltage must be applied to the corona discharger, a large amount of ionized oxygen, ozone, moisture, nitric oxide compound, etc. is generated, which causes deterioration of the organic photoreceptor (hereinafter also referred to as a photoreceptor). Or have problems such as adversely affecting the human body.

そこで、近年、コロナ放電器を利用しない接触帯電方式を利用することが検討されている。具体的には帯電部材である磁気ブラシや導電性ローラに電圧を印加して、被帯電体である感光体に接触させ、感光体表面を所定の電位に帯電させるものである。このような接触帯電方式を用いればコロナ放電器を用いた非接触帯電方式と比較して低電圧化がはかれ、オゾン発生量も減少する。   Therefore, in recent years, use of a contact charging method that does not use a corona discharger has been studied. Specifically, a voltage is applied to a magnetic brush or a conductive roller that is a charging member to bring it into contact with a photosensitive member that is a member to be charged, and the surface of the photosensitive member is charged to a predetermined potential. If such a contact charging method is used, the voltage can be lowered and the amount of ozone generated can be reduced as compared with a non-contact charging method using a corona discharger.

接触帯電方法は、感光体に102〜1010Ω・cm程度の抵抗を持つ帯電部材に、直流もしくは交流を重畳した直流電圧を印加し、感光体に加圧当接させ、電荷を付与する方法である。この帯電方法は、パッシェンの法則に従い、帯電部材から被帯電体への放電によって行われるため、あるしきい値以上の電圧を印加することによって帯電が開始される。この接触帯電方法は、コロナ帯電方法と比較すると、帯電部材への印加電圧が低くなり、オゾン及び窒素酸化物の発生量が減少する。 In the contact charging method, a direct current or a direct current on which an alternating current is superimposed is applied to a charging member having a resistance of about 10 2 to 10 10 Ω · cm on the photosensitive member, and the photosensitive member is pressed and brought into contact with the photosensitive member to apply a charge. Is the way. Since this charging method is performed by discharging from the charging member to the member to be charged in accordance with Paschen's law, charging is started by applying a voltage equal to or higher than a certain threshold value. In this contact charging method, compared to the corona charging method, the voltage applied to the charging member is lowered, and the generation amount of ozone and nitrogen oxides is reduced.

しかしながら、帯電ローラ等との直接接触により、有機感光体表面に繰り返し帯電を行なうと、接触摩耗により有機感光体表面に小さな凹凸や汚染等が発生し、その結果、該凹凸部や汚染等の部分に電荷が集中し、絶縁破壊や黒ポチ等の画像欠陥の発生を引き起こしやすく、画像ボケも発生しやすい。特に高温高湿、低温低湿等の厳しい条件下でこれらの問題が発生しやすい。   However, if the surface of the organic photoreceptor is repeatedly charged by direct contact with a charging roller or the like, small unevenness or contamination occurs on the surface of the organic photoreceptor due to contact wear. Electric charges are concentrated on the surface, causing image defects such as dielectric breakdown and black spots, and image blurring. In particular, these problems are likely to occur under severe conditions such as high temperature and high humidity and low temperature and low humidity.

又、前記接触帯電と共に感光体上の残留トナーを除去するクリーニングブレードを用いないクリーニングレスの画像形成装置が公開されている(特許文献1)。該画像形成装置は、前記帯電手段の他に、補助帯電手段を備えており、補助帯電手段は、残留トナーを帯電し、現像手段での残留トナーの回収効率を高める作用を有するが、反面、補助帯電手段を設けることにより、前記した絶縁破壊や黒ポチが発生しやすい。   Further, a cleaningless image forming apparatus that does not use a cleaning blade that removes residual toner on the photosensitive member together with the contact charging has been disclosed (Patent Document 1). The image forming apparatus includes an auxiliary charging unit in addition to the charging unit, and the auxiliary charging unit has an action of charging the residual toner and increasing the recovery efficiency of the residual toner in the developing unit. By providing the auxiliary charging means, the aforementioned dielectric breakdown and black spots are likely to occur.

前記した絶縁破壊や黒ポチ等の画像欠陥の発生を防止する為に、導電性支持体のアルミ基体表面をアルマイト加工処理し、有機感光体の電荷リークに対する抵抗力を強め、例え感光層に発生した凹凸や汚染等が発生しても、導電性支持体からの電荷リークを防止することが提案されている(特許文献2)。   In order to prevent the occurrence of image defects such as dielectric breakdown and black spots as described above, the surface of the aluminum substrate of the conductive support is anodized to increase the resistance to charge leakage of the organic photoconductor, for example in the photosensitive layer. It has been proposed to prevent charge leakage from the conductive support even if unevenness, contamination, etc. occur (Patent Document 2).

しかしながらアルマイト加工処理のアルミ基体を用いた有機感光体はアルマイト加工処理とその後の経時条件のわずかな変動でアルマイト層が変質し、前記した電荷リークの防止効果が安定して得られにくいと云う問題の他に、アルマイト層と感光層との間が電荷トラップサイトとなりやすく、長期的な使用により、徐々に残留電位が蓄積する傾向が認められる。
特開2000−199990号公報 特開平5−80567号公報
However, organophotoreceptors using anodized aluminum substrates have the problem that the alumite layer is altered by slight changes in anodizing and subsequent aging conditions, and the above-described effect of preventing charge leakage is difficult to obtain stably. In addition, a charge trap site is easily formed between the alumite layer and the photosensitive layer, and a residual potential tends to be gradually accumulated over a long period of use.
JP 2000-199990 A Japanese Patent Laid-Open No. 5-80567

本発明は、オゾンや窒素酸化物の発生量が少なく、低電力である帯電方法を用いて、さらに長期的に安定した画像形成を行うことが出来る有機感光体、プロセスカートリッジ、画像形成装置及び画像形成方法を提供することである。   The present invention relates to an organic photoreceptor, a process cartridge, an image forming apparatus, and an image which can perform stable image formation over a long period of time by using a charging method with low generation amount of ozone and nitrogen oxide and low power. It is to provide a forming method.

又、本発明の目的は、接触帯電方式の画像形成装置に用いられる有機感光体において、繰り返し使用中に発生しやすい電子写真特性(感度や残留電位等)の劣化を防止し、絶縁破壊や黒ポチ等の画像欠陥の発生を防止し、鮮鋭性が良好な長期的に安定した画像形成を行うことが出来る有機感光体、該有機感光体を用いたプロセスカートリッジ、画像形成装置及び画像形成方法を提供することである。   Another object of the present invention is to prevent deterioration of electrophotographic characteristics (sensitivity, residual potential, etc.) that are likely to occur during repeated use in an organic photoreceptor used in a contact charging type image forming apparatus, and to prevent dielectric breakdown or blackness. An organic photoreceptor capable of preventing image defects such as spots and forming a long-term stable image with good sharpness, a process cartridge, an image forming apparatus and an image forming method using the organic photoreceptor Is to provide.

本発明者等は鋭意検討の結果、接触帯電方式、特に接触帯電手段と接触帯電補助手段の両方を有する画像形成装置で発生しやすい前記絶縁破壊や画像ボケは、接触帯電手段や接触帯電補助手段が有機感光体に接触することにより、有機感光体に発生する電荷リークや電荷の横方向への拡散によることを見いだし本発明を完成した。即ち、本発明の画像形成装置に用いられる有機感光体は導電性支持体からのフリーキャリアの注入を防止し、且つ感光層の膜厚を厚くしないことが重要であることを見出し本発明を完成した。即ち、本発明の目的は、下記構成のいずれかを採ることにより達成される。
(請求項1)
有機感光体上に帯電部材を接触させて帯電する帯電手段、該有機感光体に静電潜像を形成する露光手段、該静電潜像をトナー像に顕像化する現像手段、該トナー像を転写材に転写する転写手段、前記帯電手段より上流に位置していて、該有機感光体面上のトナーを帯電する少なくとも1つ以上の補助帯電手段を有する画像形成装置に用いられる有機感光体において、導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有し、該中間層がニオブ元素を100ppm〜2.0質量%含有するアナターゼ形酸化チタン顔料を含有し且つ膜厚が5〜25μmであり、電荷輸送層の膜厚が5〜20μmであることを特徴とする有機感光体。
(請求項2)
前記アナターゼ形酸化チタン顔料の数平均一次粒子が5〜400nmであることを特徴とする請求項1に記載の有機感光体。
(請求項3)
前記中間層に融解熱0〜40J/gで、且つ吸水率5質量%以下のポリアミド樹脂を含有することを特徴とする請求項1又は2に記載の有機感光体。
(請求項4)
前記中間層の体積抵抗が10 8 Ω・cm以上であることを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。
(請求項5)
前記中間層の膜厚が7〜15μmであることを特徴とする請求項1〜4のいずれか1項に記載の有機感光体。
(請求項6)
有機感光体上に帯電部材を接触させて帯電する帯電手段、該有機感光体に静電潜像を形成する露光手段、該静電潜像をトナー像に顕像化する現像手段、該トナー像を転写材に転写する転写手段、前記帯電手段より上流に位置していて、該有機感光体面上のトナーを帯電する少なくとも1つ以上の補助帯電手段を有する画像形成装置に用いられるプロセスカートリッジにおいて、導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有し、該中間層がニオブ元素を100ppm〜2.0質量%含有するアナターゼ形酸化チタン顔料を含有し且つ膜厚が5〜25μm、中間層の膜厚が5〜25μm、電荷輸送層の膜厚が5〜20μmである有機感光体と前記帯電手段、現像手段、転写手段、補助帯電手段の少なくとも1つとが一体的に支持され、画像形成装置本体に着脱自在に装着されていることを特徴とするプロセスカートリッジ。
(請求項7)
有機感光体上に帯電部材を接触させて帯電する帯電手段、該有機感光体に静電潜像を形成する露光手段、該静電潜像をトナー像に顕像化する現像手段、該トナー像を転写材に転写する転写手段、前記帯電手段より上流に位置していて、該有機感光体面上のトナーを帯電する少なくとも1つ以上の補助帯電手段を有する画像形成装置において、該有機感光体が導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有し、該中間層がニオブ元素を100ppm〜2.0質量%含有するアナターゼ形酸化チタン顔料を含有し且つ膜厚が5〜25μm、電荷輸送層の膜厚が5〜20μmであることを特徴とする画像形成装置。
(請求項8)
請求項7の画像形成装置を用いて、電子写真画像を形成することを特徴とする画像形成方法。
As a result of intensive studies, the present inventors have determined that the dielectric breakdown and image blur that are likely to occur in an image forming apparatus having both a contact charging unit and particularly a contact charging unit and a contact charging auxiliary unit are the contact charging unit and the contact charging auxiliary unit. As a result of contact with the organic photoreceptor, the present inventors have found that charge leakage generated in the organic photoreceptor and diffusion of charges in the lateral direction have been found. That is, the organic photoreceptor used in the image forming apparatus of the present invention has found that it is important to prevent the injection of free carriers from the conductive support and not to increase the thickness of the photosensitive layer, thereby completing the present invention. did. That is, the object of the present invention is achieved by adopting one of the following configurations.
(Claim 1)
Charging means for charging by bringing a charging member into contact with the organic photoreceptor, exposure means for forming an electrostatic latent image on the organic photoreceptor, developing means for developing the electrostatic latent image into a toner image, the toner image In an organic photoconductor used in an image forming apparatus having at least one auxiliary charging unit that is located upstream of the charging unit and charges toner on the surface of the organic photoconductor And having at least an intermediate layer, a charge generation layer, and a charge transport layer on the conductive support, the intermediate layer containing anatase-type titanium oxide pigment containing niobium element at 100 ppm to 2.0 mass%, and having a film thickness An organic photoreceptor having a thickness of 5 to 25 μm and a charge transport layer thickness of 5 to 20 μm.
(Claim 2)
The organophotoreceptor according to claim 1, wherein the number average primary particles of the anatase-type titanium oxide pigment are 5 to 400 nm .
(Claim 3)
3. The organic photoreceptor according to claim 1, wherein the intermediate layer contains a polyamide resin having a heat of fusion of 0 to 40 J / g and a water absorption of 5% by mass or less .
(Claim 4)
The organic photoreceptor according to claim 1, wherein the intermediate layer has a volume resistance of 10 8 Ω · cm or more .
(Claim 5)
The organic photoreceptor according to claim 1, wherein the intermediate layer has a thickness of 7 to 15 μm .
(Claim 6)
Charging means for charging by bringing a charging member into contact with the organic photoreceptor, exposure means for forming an electrostatic latent image on the organic photoreceptor, developing means for developing the electrostatic latent image into a toner image, the toner image In a process cartridge used in an image forming apparatus having at least one auxiliary charging unit that is located upstream of the charging unit and charges the toner on the surface of the organic photoreceptor, The conductive support has at least an intermediate layer, a charge generation layer, and a charge transport layer. The intermediate layer contains an anatase-type titanium oxide pigment containing niobium element in an amount of 100 ppm to 2.0 mass%, and has a thickness of 5 An organic photoreceptor having a thickness of ˜25 μm, an intermediate layer thickness of 5-25 μm, and a charge transport layer thickness of 5-20 μm is integrated with at least one of the charging means, developing means, transfer means, and auxiliary charging means. Is lifting, the process cartridge characterized in that it is detachably attached to the image forming apparatus main body.
(Claim 7)
Charging means for charging by bringing a charging member into contact with the organic photoreceptor, exposure means for forming an electrostatic latent image on the organic photoreceptor, developing means for developing the electrostatic latent image into a toner image, the toner image In an image forming apparatus having at least one auxiliary charging unit that is located upstream of the charging unit and charges toner on the surface of the organic photosensitive member, the organic photosensitive member The conductive support has at least an intermediate layer, a charge generation layer, and a charge transport layer. The intermediate layer contains an anatase-type titanium oxide pigment containing niobium element in an amount of 100 ppm to 2.0 mass%, and has a thickness of 5 An image forming apparatus having a thickness of ˜25 μm and a charge transport layer thickness of 5˜20 μm.
(Claim 8)
An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 7.

本発明の有機感光体、プロセスカートリッジ、画像形成装置及び画像形成方法を用いることにより、接触帯電方式で発生しやすい低温低湿、高温高湿での残留電位の上昇や帯電電位の変動を防止し、又絶縁破壊や画像欠陥を防止し、画像濃度、カブリ、鮮鋭性が良好な電子写真画像を提供することができる。   By using the organophotoreceptor, process cartridge, image forming apparatus, and image forming method of the present invention, low temperature and low humidity, which are likely to occur in the contact charging method, increase in residual potential at high temperature and high humidity and fluctuation of the charged potential are prevented, In addition, dielectric breakdown and image defects can be prevented, and an electrophotographic image having good image density, fog, and sharpness can be provided.

本発明の有機感光体は導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有し、該中間層がニオブ元素を100ppm〜2.0質量%含有するアナターゼ形酸化チタン顔料を含有し且つ膜厚が5〜25μmであり、電荷輸送層の膜厚が5〜20μmであることを特徴とする。 The organophotoreceptor of the present invention comprises at least an intermediate layer, a charge generation layer, and a charge transport layer on a conductive support, and the intermediate layer contains anatase-type titanium oxide pigment containing 100 ppm to 2.0% by mass of niobium element. And the film thickness is 5 to 25 μm, and the film thickness of the charge transport layer is 5 to 20 μm.

本発明の有機感光体は上記構造を有することにより、接触帯電手段及び補助帯電手段を有する画像形成装置に用いても、絶縁破壊や黒ポチの発生が防止され、且つ鮮鋭性が良好な電子写真画像を提供することができる。   The organophotoreceptor of the present invention has the structure described above, so that even when used in an image forming apparatus having a contact charging means and an auxiliary charging means, an electrophotography having excellent sharpness can be prevented from causing dielectric breakdown and black spots. Images can be provided.

接触帯電方式に用いられる有機感光体は、前記したように有機感光体に発生した小さな凹凸や汚染等の部分に電荷が集中しやすく、その結果、絶縁破壊や黒ポチ等の画像欠陥の発生を引き起こしやすく、画像ボケも発生しやすい。このような接触帯電特有の電荷の集中を防止するには、感光層の単位膜厚当たりの電界強度を小さくし、例え感光体表面に小さな凹凸や汚染が発生しても電荷リークを防止することが重要である。本発明は感光層の単位膜厚当たりの電界強度を小さくするため、有機感光体を導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有する構成とし、該中間層の膜厚が5〜25μm、電荷輸送層の膜厚が5〜20μmとすることにより、感光層、特に電荷輸送層の電界強度を小さくすることにより、絶縁破壊や黒ポチを防止し、併せて、残留電位や帯電電位が安定した鮮鋭性が良好な有機感光体を提供できる。   As described above, the organic photoreceptor used in the contact charging method tends to concentrate electric charges on the small unevenness or contamination generated on the organic photoreceptor, and as a result, the occurrence of image defects such as dielectric breakdown and black spots. It is easy to cause, and it is easy to generate image blur. In order to prevent the concentration of electric charges peculiar to contact charging, the electric field intensity per unit film thickness of the photosensitive layer is reduced, and charge leakage is prevented even if small irregularities or contamination occurs on the surface of the photosensitive member. is important. In the present invention, in order to reduce the electric field strength per unit film thickness of the photosensitive layer, the organic photoreceptor is configured to have at least an intermediate layer, a charge generation layer, and a charge transport layer on a conductive support, and the film thickness of the intermediate layer By reducing the electric field strength of the photosensitive layer, particularly the charge transport layer, the dielectric breakdown and black spots can be prevented, and the residual potential can be reduced. In addition, it is possible to provide an organic photoreceptor having a stable charge potential and good sharpness.

中間層の膜厚が5μm未満では、絶縁破壊や黒ポチが発生しやすく、25μmを超えると、画像ボケが発生しやすく、鮮鋭性が劣化しやすい。一方、電荷輸送層の膜厚が5μm未満だと絶縁破壊や黒ポチが発生しやすく、20μmを超えると、画像ボケが発生しやすく、鮮鋭性が劣化しやすい。中間層の膜厚は7〜15μmがより好ましい。又、電荷輸送層の膜厚は8〜18μmがより好ましい。   If the film thickness of the intermediate layer is less than 5 μm, dielectric breakdown and black spots are likely to occur, and if it exceeds 25 μm, image blur tends to occur and sharpness tends to deteriorate. On the other hand, when the thickness of the charge transport layer is less than 5 μm, dielectric breakdown and black spots are likely to occur, and when it exceeds 20 μm, image blur is likely to occur and sharpness is likely to deteriorate. The thickness of the intermediate layer is more preferably 7 to 15 μm. The thickness of the charge transport layer is more preferably 8 to 18 μm.

本発明の中間層は金属酸化物粒子を含有することが好ましい。金属酸化物粒子しては、例えば、酸化セリウム、酸化クロム、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化錫、酸化ジルコニウム、酸化鉄、酸化チタンなどが挙げられる。これらの中でも、酸化チタン(TiO2)、酸化亜鉛(ZnO)、酸化アルミニウム(Al23)、酸化ジルコニウム(ZrO2)が好ましく、特に酸化チタンが特に好ましく用いられる。 The intermediate layer of the present invention preferably contains metal oxide particles. Examples of the metal oxide particles include cerium oxide, chromium oxide, aluminum oxide, magnesium oxide, silicon oxide, tin oxide, zirconium oxide, iron oxide, and titanium oxide. Among these, titanium oxide (TiO 2 ), zinc oxide (ZnO), aluminum oxide (Al 2 O 3 ), and zirconium oxide (ZrO 2 ) are preferable, and titanium oxide is particularly preferably used.

又、これらの金属酸化物粒子は、例えばチタンカップリング剤、シランカップリング剤、高分子脂肪酸又はその金属塩等の疎水化処理剤により疎水化されたものが好ましい。   These metal oxide particles are preferably those hydrophobized with a hydrophobizing agent such as a titanium coupling agent, a silane coupling agent, a polymer fatty acid, or a metal salt thereof.

これらの金属酸化物粒子を中間層に含有させることにより、接触帯電により発生しやすい絶縁破壊や黒ポチ等の画像欠陥、画像ボケの発生を防止し、長期的に安定した性能を有する有機感光体を提供することができる。   By including these metal oxide particles in the intermediate layer, an organic photoreceptor having long-term stable performance is prevented by preventing the occurrence of dielectric defects, image defects such as black spots, and image blur that are likely to occur due to contact charging. Can be provided.

金属酸化物粒子は数平均一次粒子径が5〜400nmの範囲の微粒子が好ましい。特に、10nm〜200nmが好ましい。数平均一次粒子径とは、微粒子を透過型電子顕微鏡観察によって10000倍に拡大し、ランダムに100個の粒子を一次粒子として観察し、画像解析によってフェレ方向平均径としての測定値である。   The metal oxide particles are preferably fine particles having a number average primary particle diameter in the range of 5 to 400 nm. In particular, 10 nm to 200 nm is preferable. The number average primary particle diameter is a measured value as the average diameter in the ferret direction by image analysis by magnifying fine particles 10,000 times by transmission electron microscope observation, randomly observing 100 particles as primary particles.

前記酸化チタン粒子は、結晶形としては、アナターゼ形、ルチル形、ブルッカイト形及びアモルファス形等があるが、中でもアナターゼ形酸化チタン顔料が本発明の粒子として最も好ましい。   The titanium oxide particles include anatase, rutile, brookite, and amorphous forms as crystal forms. Among them, anatase form titanium oxide pigment is most preferable as the particles of the present invention.

本発明では中間層にニオブ元素を100ppm〜2.0質量%含有するアナターゼ形酸化チタン顔料を含有させる。アナターゼ形酸化チタン顔料中にニオブ元素を上記範囲内で含有させることにより、アナターゼ形酸化チタン顔料の整流特性が長期間の感光体使用中も安定して発揮され、絶縁破壊や黒ポチの発生を防止し、温湿度の環境条件が変化しても、帯電特性や感度特性の変化が小さい。 The present invention is contained anatase type titanium oxide pigment containing 100ppm~2.0 wt% niobium in the intermediate layer. By including the niobium element in the above range in the anatase-type titanium oxide pigment, the rectification characteristics of the anatase-type titanium oxide pigment are stably demonstrated even during long-term use of the photoreceptor, and dielectric breakdown and black spots are generated. Even if the environmental conditions of temperature and humidity change, the change in charging characteristics and sensitivity characteristics is small.

アナターゼ形酸化チタン顔料のニオブ元素の含有量は300ppm〜1.8質量%がより好ましい。   The content of niobium element in the anatase titanium oxide pigment is more preferably 300 ppm to 1.8% by mass.

本発明のアナターゼ形酸化チタン粒子全体のニオブ元素濃度はICP(誘導結合プラズマ発光分析法)による定量分析により分析できる。   The concentration of niobium element in the whole anatase-type titanium oxide particles of the present invention can be analyzed by quantitative analysis by ICP (inductively coupled plasma emission spectrometry).

本発明のアナターゼ形酸化チタン顔料は公知の硫酸法で製造することができる。即ち、硫酸チタン、硫酸チタニルを含む溶液を加熱して加水分解させ含水二酸化チタンスラリーを作製し、該二酸化チタンスラリーを脱水焼成して得られる。以下、ニオブ元素を含有したアナターゼ形酸化チタン顔料の製造方法を記載する。   The anatase-type titanium oxide pigment of the present invention can be produced by a known sulfuric acid method. That is, it is obtained by heating and hydrolyzing a solution containing titanium sulfate and titanyl sulfate to produce a hydrous titanium dioxide slurry, and dehydrating and firing the titanium dioxide slurry. Hereinafter, the manufacturing method of the anatase type titanium oxide pigment containing a niobium element is described.

まず、硫酸チタニル水溶液を加水分解して得た含水二酸化チタンスラリーに、硫酸ニオブ(水溶性のニオブ化合物)を添加する。添加量は、スラリー中のチタン量(二酸化チタン換算)に対し、ニオブイオンとして0.15〜5質量%の硫酸ニオブが適当である。具体的には、(i)硫酸チタニル水溶液に硫酸ニオブをニオブイオンとして0.15〜5質量%加えたものを加水分解して得た含水二酸化チタンスラリー、あるいは(ii)硫酸チタニル水溶液を加水分解して得た含水二酸化チタンスラリーに、硫酸ニオブをニオブイオンとして0.15〜5質量%加えたスラリーを用いることができる。   First, niobium sulfate (water-soluble niobium compound) is added to a hydrous titanium dioxide slurry obtained by hydrolyzing a titanyl sulfate aqueous solution. The addition amount is suitably 0.15 to 5 mass% niobium sulfate as niobium ions with respect to the amount of titanium in the slurry (in terms of titanium dioxide). Specifically, (i) hydrous titanium dioxide slurry obtained by hydrolyzing 0.15 to 5% by mass of niobium sulfate as niobium ion to titanyl sulfate aqueous solution, or (ii) hydrolyzing titanyl sulfate aqueous solution A slurry obtained by adding 0.15 to 5% by mass of niobium sulfate as niobium ions to the hydrous titanium dioxide slurry obtained as described above can be used.

上記ニオブイオン等を含む含水二酸化チタンスラリーを脱水して焼成する。焼成温度は一般に850〜1100℃が適当である。焼成温度が850℃未満では焼成が十分に行われない。また、1100℃を上回ると粒子の焼結が生じ、顔料の分散性が著しく損なわれる。スラリーに加えられたニオブイオンは焼成中に粒子表面に偏析し、ニオブ酸化物として表面層に多く含まれる。この製造方法により、一次粒子の平均粒径が0.01〜10μmであって、ニオブ元素を100ppm〜2質量%含有したアナターゼ形酸化チタン顔料を得ることができる。   The hydrous titanium dioxide slurry containing the niobium ions and the like is dehydrated and fired. In general, the firing temperature is suitably 850 to 1100 ° C. When the firing temperature is less than 850 ° C., firing is not sufficiently performed. On the other hand, if the temperature exceeds 1100 ° C., the particles are sintered and the dispersibility of the pigment is significantly impaired. Niobium ions added to the slurry are segregated on the particle surface during firing, and are contained in the surface layer in a large amount as niobium oxide. By this production method, an anatase-type titanium oxide pigment having an average primary particle diameter of 0.01 to 10 μm and containing 100 ppm to 2 mass% of niobium element can be obtained.

尚、四塩化チタンを用いて、ガス焼結法により酸化チタン顔料を形成する方法もあり、この場合、原料のガス成分に他の金属ハロゲン成分を持ち込まなければ、ニオブ等の他の金属元素の含有量をゼロ(ほとんど含有しない)としたアナターゼ酸化チタン顔料を作製することもできる。   There is also a method of forming a titanium oxide pigment by gas sintering using titanium tetrachloride. In this case, unless other metal halogen components are brought into the raw gas component, other metal elements such as niobium are used. An anatase titanium oxide pigment having a content of zero (substantially not contained) can also be produced.

本発明のアナターゼ形酸化チタンはアナターゼ化度は90〜100%が好ましい。上記方法により、アナターゼ化度がほぼ100%のアナターゼ形酸化チタンを作製することができる。又、この範囲のニオブ元素を含有するアナターゼ形酸化チタンを含有する本発明の中間層は、整流性が良好且つ安定して達成され、本発明の前記したような効果が良好に達成される。   The anatase-type titanium oxide of the present invention preferably has an anatase degree of 90 to 100%. By the above method, anatase-type titanium oxide having an anatase degree of almost 100% can be produced. Further, the intermediate layer of the present invention containing the anatase-type titanium oxide containing niobium element in this range has a good rectifying property and is stably achieved, and the above-described effects of the present invention are well achieved.

ここで、アナターゼ化度とは、酸化チタンの粉末X線回析において、アナターゼの最強干渉線(面指数101)の強度IAとルチルの最強干渉線(面指数110)の強度IRを測定し、以下の式で求められる値である。
アナターゼ化度(%)=100/(1+1.265×IR/IA)
アナターゼ化度を90〜100%の範囲に作製するには、酸化チタンの作製において、チタン化合物として硫酸チタン、硫酸チタニルを含む溶液を加熱して加水分解させるとアナターゼ化度がほぼ100%のアナターゼ形酸化チタンが得られる。又、四塩化チタン水溶液をアルカリを用いて中和すればアナターゼ化度が高いアナターゼ形酸化チタンが得られる。
Here, the anatase degree is determined by measuring the intensity IA of the strongest interference line of anatase (plane index 101) and the intensity IR of the strongest interference line of rutile (plane index 110) in powder X-ray diffraction of titanium oxide, It is a value obtained by the following formula.
Degree of anataseization (%) = 100 / (1 + 1.265 × IR / IA)
In order to prepare the anatase degree in the range of 90 to 100%, in the preparation of titanium oxide, an anatase having an anatase degree of almost 100% is obtained by heating and hydrolyzing a solution containing titanium sulfate and titanyl sulfate as a titanium compound. A shaped titanium oxide is obtained. Further, when an aqueous solution of titanium tetrachloride is neutralized with an alkali, anatase-type titanium oxide having a high degree of anatase formation can be obtained.

アナターゼ形酸化チタン顔料は、反応性有機ケイ素化合物による表面処理を行うことが好ましい。反応性有機ケイ素化合物によるアナターゼ形酸化チタン顔料の表面処理は以下の様な湿式法で行うことできる。尚、反応性有機ケイ素化合物の表面処理とは、処理液に反応性有機ケイ素化合物を用いることを意味する。   The anatase titanium oxide pigment is preferably subjected to a surface treatment with a reactive organosilicon compound. The surface treatment of the anatase titanium oxide pigment with the reactive organosilicon compound can be performed by the following wet method. The surface treatment of the reactive organosilicon compound means that a reactive organosilicon compound is used for the treatment liquid.

即ち、有機溶剤や水に対して前記反応性有機ケイ素化合物を溶解または懸濁させた液に前記アナターゼ形酸化チタン顔料を添加し、この混合液を数分から1昼夜程度メディア分散する。そして場合によっては混合液に加熱処理を施した後に、濾過等の工程を経た後乾燥し、表面を有機ケイ素化合物で被覆したアナターゼ形酸化チタン顔料を得る。なお、有機溶剤や水に対して酸化チタンを分散させた懸濁液に前記反応性有機ケイ素化合物を添加しても構わない。   That is, the anatase-type titanium oxide pigment is added to a solution obtained by dissolving or suspending the reactive organosilicon compound in an organic solvent or water, and this mixed solution is dispersed in a medium for several minutes to one day. And depending on the case, after heat-processing a liquid mixture, it passes through processes, such as filtration, It dries, and the anatase type titanium oxide pigment which coat | covered the surface with the organosilicon compound is obtained. Note that the reactive organosilicon compound may be added to a suspension in which titanium oxide is dispersed in an organic solvent or water.

尚、前記表面処理に用いられる反応性有機ケイ素化合物の量は、前記表面処理時の仕込量にてアナターゼ形酸化チタン顔料100質量部に対し、反応性有機ケイ素化合物を0.1〜10質量部、更に好ましくは0.1〜5質量部用いることが好ましい。表面処理量が上記範囲よりも少ないと表面処理効果が十分に付与されず、中間層内における酸化チタン粒子の整流作用や分散性等が悪くなる。また、表面処理量が上記範囲を超えてしまうと、電子写真特性を劣化させ、その結果残留電位上昇や帯電電位の低下を招いてしまう。   The amount of the reactive organosilicon compound used for the surface treatment is 0.1 to 10 parts by mass of the reactive organosilicon compound with respect to 100 parts by mass of the anatase-type titanium oxide pigment in the amount charged in the surface treatment. More preferably, 0.1 to 5 parts by mass is used. When the surface treatment amount is less than the above range, the surface treatment effect is not sufficiently imparted, and the rectifying action and dispersibility of the titanium oxide particles in the intermediate layer are deteriorated. Further, when the surface treatment amount exceeds the above range, the electrophotographic characteristics are deteriorated, and as a result, the residual potential is increased and the charged potential is decreased.

本発明で用いられる反応性有機ケイ素化合物としては下記一般式(1)で表される有機ケイ素化合物が挙げられるが、酸化チタン表面の水酸基等の反応性基と縮合反応をする化合物であれば、下記化合物に限定されない。   Examples of the reactive organosilicon compound used in the present invention include an organosilicon compound represented by the following general formula (1), and any compound that undergoes a condensation reaction with a reactive group such as a hydroxyl group on the titanium oxide surface, It is not limited to the following compounds.

一般式(1)
(R)n−Si−(X)4-n
(式中、Siはケイ素原子、Rは該ケイ素原子に炭素が直接結合した形の有機基を表し、Xは加水分解性基を表し、nは0〜3の整数を表す。)
一般式(1)で表される有機ケイ素化合物において、Rで示されるケイ素に炭素が直接結合した形の有機基としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、ドデシル等のアルキル基、フェニル、トリル、ナフチル、ビフェニル等のアリール基、γ−グリシドキシプロピル、β−(3,4−エポキシシクロヘキシル)エチル等の含エポキシ基、γ−アクリロキシプロピル、γ−メタアクリロキシプロピルの含(メタ)アクリロイル基、γ−ヒドロキシプロピル、2,3−ジヒドロキシプロピルオキシプロピル等の含水酸基、ビニル、プロペニル等の含ビニル基、γ−メルカプトプロピル等の含メルカプト基、γ−アミノプロピル、N−β(アミノエチル)−γ−アミノプロピル等の含アミノ基、γ−クロロプロピル、1,1,1−トリフロオロプロピル、ノナフルオロヘキシル、パーフルオロオクチルエチル等の含ハロゲン基、その他ニトロ、シアノ置換アルキル基を挙げられる。また、Xの加水分解性基としてはメトキシ、エトキシ等のアルコキシ基、ハロゲン基、アシルオキシ基が挙げられる。
General formula (1)
(R) n -Si- (X) 4-n
(In the formula, Si represents a silicon atom, R represents an organic group in which carbon is directly bonded to the silicon atom, X represents a hydrolyzable group, and n represents an integer of 0 to 3.)
In the organosilicon compound represented by the general formula (1), the organic group in which carbon is directly bonded to the silicon represented by R includes alkyl such as methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl and dodecyl. Group, aryl group such as phenyl, tolyl, naphthyl, biphenyl, epoxy-containing group such as γ-glycidoxypropyl, β- (3,4-epoxycyclohexyl) ethyl, γ-acryloxypropyl, γ-methacryloxypropyl (Meth) acryloyl group, hydroxyl group such as γ-hydroxypropyl and 2,3-dihydroxypropyloxypropyl, vinyl group such as vinyl and propenyl, mercapto group such as γ-mercaptopropyl, γ-aminopropyl, Amino-containing groups such as N-β (aminoethyl) -γ-aminopropyl, γ-chloropropyl, , 1,1-tri fluoroalkyl propyl, nonafluorohexyl, halogen-containing groups such as perfluorooctylethyl, other nitro, and cyano-substituted alkyl group. Examples of the hydrolyzable group for X include alkoxy groups such as methoxy and ethoxy, halogen groups, and acyloxy groups.

また、一般式(1)で表される有機ケイ素化合物は、単独でも良いし、2種以上組み合わせて使用しても良い。   Moreover, the organosilicon compound represented by the general formula (1) may be used alone or in combination of two or more.

また、一般式(1)で表される有機ケイ素化合物の具体的化合物で、nが2以上の場合、複数のRは同一でも異なっていても良い。同様に、nが2以下の場合、複数のXは同一でも異なっていても良い。又、一般式(1)で表される有機ケイ素化合物を2種以上を用いるとき、R及びXはそれぞれの化合物間で同一でも良く、異なっていても良い。   Moreover, in the specific compound of the organosilicon compound represented by the general formula (1), when n is 2 or more, a plurality of R may be the same or different. Similarly, when n is 2 or less, the plurality of Xs may be the same or different. Moreover, when using 2 or more types of organosilicon compounds represented by General formula (1), R and X may be the same between each compound, and may differ.

又、好ましい反応性有機ケイ素化合物としてはポリシロキサン化合物が挙げられる。特にメチルハイドロジェンポリシロキサンが好ましい。該ポリシロキサン化合物の分子量は1000〜20000のものが一般に入手しやすく、又、黒ポチ発生防止機能も良好である。   Moreover, a polysiloxane compound is mentioned as a preferable reactive organosilicon compound. In particular, methyl hydrogen polysiloxane is preferred. The polysiloxane compound having a molecular weight of 1000 to 20000 is generally easily available, and has a good function to prevent occurrence of black spots.

本発明の酸化チタンの表面処理の他の1つはフッ素原子を有する有機ケイ素化合物により表面処理を施された酸化チタン粒子である。該フッ素原子を有する有機ケイ素化合物による表面処理、前記した湿式法で行うのが好ましい。   Another surface treatment of the titanium oxide of the present invention is titanium oxide particles that have been surface treated with an organosilicon compound having a fluorine atom. It is preferable to perform the surface treatment with the organosilicon compound having a fluorine atom and the wet method described above.

尚、本発明において酸化チタン粒子表面が反応性有機ケイ素化合物により被覆されていることは、光電子分光法(ESCA)、オージェ電子分光法(Auger)、2次イオン質量分析法(SIMS)や拡散反射FI−IR等の表面分析手法を複合することによって確認されるものである。   In the present invention, the surface of the titanium oxide particles is coated with a reactive organosilicon compound because photoelectron spectroscopy (ESCA), Auger electron spectroscopy (Auger), secondary ion mass spectrometry (SIMS), and diffuse reflection. This is confirmed by combining surface analysis techniques such as FI-IR.

上記アナターゼ形酸化チタン顔料の表面処理の他の1つは、アルミナ、シリカ、及びジルコニアから選ばれる少なくとも1種類以上の表面処理が挙げられる。   Another one of the surface treatments of the anatase-type titanium oxide pigment includes at least one kind of surface treatment selected from alumina, silica, and zirconia.

このアルミナ処理、シリカ処理、ジルコニア処理とはアナターゼ形酸化チタン表面にアルミナ、シリカ、或いはジルコニアを析出させる処理を云い、これらの表面に析出したアルミナ、シリカ、ジルコニアにはアルミナ、シリカ、ジルコニアの水和物も含まれる。   The alumina treatment, silica treatment, and zirconia treatment are treatments for precipitating alumina, silica, or zirconia on the surface of anatase-type titanium oxide. The alumina, silica, and zirconia deposited on these surfaces are water of alumina, silica, zirconia Japanese products are also included.

なお、アルミナ及びシリカの処理は同時に行っても良いが、特にアルミナ処理を最初に行い、次いでシリカ処理を行うことが好ましい。また、アルミナとシリカの処理をそれぞれ行う場合のアルミナ及びシリカの処理量は、アルミナよりもシリカの多いものが好ましい。   The treatment of alumina and silica may be performed simultaneously, but it is particularly preferable to perform the alumina treatment first and then the silica treatment. Further, the amount of treatment of alumina and silica when treating alumina and silica is preferably higher than that of alumina.

アナターゼ形酸化チタンのアルミナ、シリカ、及びジルコニア等の金属酸化物による表面処理は湿式法で行うことができる。例えば、シリカ、又はアルミナの表面処理を行ったアナターゼ形酸化チタンは以下の様に作製することができる。   The surface treatment of anatase titanium oxide with a metal oxide such as alumina, silica, and zirconia can be performed by a wet method. For example, anatase-type titanium oxide subjected to surface treatment of silica or alumina can be produced as follows.

アナターゼ形酸化チタンを用いる場合、酸化チタン粒子(数平均一次粒子径:50nm)を50〜350g/Lの濃度で水中に分散させて水性スラリーとし、これに水溶性のケイ酸塩又は水溶性のアルミニウム化合物を添加する。その後、アルカリ又は酸を添加して中和し、酸化チタン粒子の表面にシリカ、又はアルミナを析出させる。続いて濾過、洗浄、乾燥を行い目的の表面処理酸化チタンを得る。前記水溶性のケイ酸塩としてケイ酸ナトリウムを使用した場合には、硫酸、硝酸、塩酸等の酸で中和することができる。一方、水溶性のアルミニウム化合物として硫酸アルミニウムを用いたときは水酸化ナトリウムや水酸化カリウム等のアルカリで中和することができる。   When anatase type titanium oxide is used, titanium oxide particles (number average primary particle size: 50 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry. Add aluminum compound. Thereafter, alkali or acid is added for neutralization, and silica or alumina is precipitated on the surface of the titanium oxide particles. Subsequently, filtration, washing, and drying are performed to obtain the target surface-treated titanium oxide. When sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid or hydrochloric acid. On the other hand, when aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.

なお、上記表面処理に用いられる金属酸化物の量は、前記表面処理時の仕込量にて酸化チタン粒子100質量部に対して、0.1〜50質量部、更に好ましくは1〜10質量部の金属酸化物が用いられる。尚、前述のアルミナとシリカを用いた場合も例えばアナターゼ形酸化チタン粒子の場合、酸化チタン粒子100質量部に対して各々1〜10質量部用いることが好ましく、アルミナよりもシリカの量が多いことが好ましい。   In addition, the amount of the metal oxide used for the surface treatment is 0.1 to 50 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the titanium oxide particles in the amount charged in the surface treatment. These metal oxides are used. In the case of using alumina and silica as described above, for example, in the case of anatase-type titanium oxide particles, it is preferable to use 1 to 10 parts by mass with respect to 100 parts by mass of titanium oxide particles, and the amount of silica is larger than that of alumina. Is preferred.

又、本発明の中間層は実質的に絶縁層であることが好ましい。ここで絶縁層とは、体積抵抗が1×108以上である。本発明の中間層及び保護層の体積抵抗は1×108〜1015Ω・cmが好ましく、1×109〜1014Ω・cmがより好ましく、更に好ましくは、2×109〜1×1013Ω・cmである。体積抵抗は下記のようにして測定できる。 Moreover, it is preferable that the intermediate layer of the present invention is an insulating layer substantially. Here, the insulating layer has a volume resistance of 1 × 10 8 or more. The volume resistance of the intermediate layer and the protective layer of the present invention is preferably 1 × 10 8 to 10 15 Ω · cm, more preferably 1 × 10 9 to 10 14 Ω · cm, and further preferably 2 × 10 9 to 1 ×. 10 13 Ω · cm. The volume resistance can be measured as follows.

測定条件;JIS:C2318−1975に準ずる。   Measurement conditions: According to JIS: C2318-1975.

測定器:三菱油化社製Hiresta IP
測定条件:測定プローブ HRS
印加電圧:500V
測定環境:30±2℃、80±5RH%
体積抵抗が1×108未満では中間層の電荷ブロッキング性が低下し、黒ポチの発生が増大し、有機感光体の電位保持性も劣化し、良好な画質が得られない。一方1015Ω・cmより大きいと繰り返し画像形成で残留電位が増大しやすく、良好な画質が得られない。
Measuring instrument: Hiresta IP manufactured by Mitsubishi Yuka
Measurement conditions: Measurement probe HRS
Applied voltage: 500V
Measurement environment: 30 ± 2 ℃, 80 ± 5RH%
If the volume resistance is less than 1 × 10 8 , the charge blocking property of the intermediate layer decreases, the occurrence of black spots increases, the potential holding property of the organic photoreceptor deteriorates, and good image quality cannot be obtained. On the other hand, if it is greater than 10 15 Ω · cm, the residual potential tends to increase in repeated image formation, and good image quality cannot be obtained.

本発明の中間層を形成するために作製する中間層塗布液は前記表面処理酸化チタン等の金属酸化物粒子、バインダー樹脂、分散溶媒等から構成される。   The intermediate layer coating solution prepared for forming the intermediate layer of the present invention is composed of metal oxide particles such as surface-treated titanium oxide, a binder resin, a dispersion solvent, and the like.

本発明の中間層は、バインダー樹脂100質量部に対し、金属酸化物粒子を10〜10,000質量部、好ましくは50〜1,000質量部の割合で含有させる。該金属酸化物粒子をこの範囲で用いることにより、該金属酸化物粒子の分散性を良好に保つことができ、絶縁破壊や黒ポチが発生せず、電位変動が小さい良好な中間層を形成することができる。   The intermediate layer of the present invention contains 10 to 10,000 parts by mass, preferably 50 to 1,000 parts by mass of metal oxide particles with respect to 100 parts by mass of the binder resin. By using the metal oxide particles in this range, the dispersibility of the metal oxide particles can be kept good, no dielectric breakdown or black spots occur, and a good intermediate layer with little potential fluctuation is formed. be able to.

一方、これらの粒子を分散し、中間層の層構造を形成するバインダー樹脂としては、粒子の良好な分散性を得る為にポリアミド樹脂が好ましいが、特に以下に示すポリアミド樹脂が好ましい。   On the other hand, the binder resin in which these particles are dispersed to form the layer structure of the intermediate layer is preferably a polyamide resin in order to obtain good dispersibility of the particles, but the polyamide resin shown below is particularly preferable.

即ち、本発明の中間層にはバインダー樹脂に融解熱0〜40J/gで、且つ吸水率5質量%以下のポリアミド樹脂が好ましい。該融解熱は0〜30J/gがより好ましく、0〜20J/gが最も好ましい。一方、前記吸水率が5質量%を超えると、中間層中の含水率が上昇し、絶縁破壊や黒ポチが発生しやすく、残留電位の上昇、カブリの発生等、電子写真特性も低下しやすい。該吸水率は4質量%以下がより好ましい。   That is, the intermediate layer of the present invention is preferably a polyamide resin having a heat of fusion of 0 to 40 J / g and a water absorption of 5% by mass or less. The heat of fusion is more preferably 0 to 30 J / g, and most preferably 0 to 20 J / g. On the other hand, when the water absorption rate exceeds 5% by mass, the moisture content in the intermediate layer increases, dielectric breakdown and black spots are likely to occur, and electrophotographic characteristics such as increased residual potential and fogging are also likely to deteriorate. . The water absorption is more preferably 4% by mass or less.

上記樹脂の融解熱はDSC(示差走査熱量測定:Differential Scanning Calorimetory)にて測定する。但し、DSCの測定値と同じ測定値が得られれば、DSC測定法にこだわらない。該融解熱はDSC昇温時の吸熱ピーク面積から求める。   The heat of fusion of the resin is measured by DSC (Differential Scanning Calorimetry). However, if the same measurement value as the DSC measurement value is obtained, the DSC measurement method is not particular. The heat of fusion is determined from the endothermic peak area when the DSC temperature rises.

一方、樹脂の吸水率は水中浸漬法による質量変化又はカールフィッシャー法により求める。   On the other hand, the water absorption rate of the resin is determined by mass change by the water immersion method or by the Karl Fischer method.

本発明の中間層のバインダー樹脂としてはアルコール可溶性ポリアミド樹脂が好ましい。有機感光体の中間層のバインダー樹脂としては、中間層を均一な膜厚で形成するために、溶媒溶解性の優れた樹脂が必要とされている。このようなアルコール可溶性のポリアミド樹脂としては、前記した6−ナイロン等のアミド結合間の炭素鎖の少ない化学構造から構成される共重合ポリアミド樹脂やメトキシメチル化ポリアミド樹脂が知られているが、これらの樹脂は吸水率が高く、このようなポリアミドを用いた中間層は環境依存性が高くなる傾向にあり、その結果、たとえば高温高湿や低温低湿下の帯電特性や感度等が変化しやすく、絶縁破壊や黒ポチも発生しやすい。   The binder resin for the intermediate layer of the present invention is preferably an alcohol-soluble polyamide resin. As the binder resin for the intermediate layer of the organic photoreceptor, a resin having excellent solvent solubility is required in order to form the intermediate layer with a uniform film thickness. As such an alcohol-soluble polyamide resin, a copolymerized polyamide resin or a methoxymethylated polyamide resin composed of a chemical structure with few carbon chains between amide bonds such as 6-nylon described above is known. This resin has a high water absorption rate, and the intermediate layer using such a polyamide tends to be highly environment-dependent. As a result, for example, charging characteristics and sensitivity under high temperature and high humidity and low temperature and low humidity are likely to change. Dielectric breakdown and black spots are also likely to occur.

本発明のアルコール可溶性ポリアミド樹脂には、上記のような欠点を改良し、融解熱0〜40J/gで、且つ吸水率5質量%以下の特性を与えることにより、従来のアルコール可溶性ポリアミド樹脂の欠点を改良し、外部環境が変化しても、又有機感光体の長時間連続使用を行っても、良好な電子写真画像を得ることができる。   The alcohol-soluble polyamide resin of the present invention improves the above-described drawbacks, and gives the characteristics of a heat of fusion of 0 to 40 J / g and a water absorption of 5% by mass or less. Thus, even if the external environment changes or the organic photoreceptor is used continuously for a long time, a good electrophotographic image can be obtained.

以下、融解熱0〜40J/gで、且つ吸水率5質量%以下の特性を有するアルコール可溶性ポリアミド樹脂について説明する。   Hereinafter, the alcohol-soluble polyamide resin having a heat of fusion of 0 to 40 J / g and a water absorption of 5% by mass or less will be described.

前記アルコール可溶性ポリアミド樹脂としては、アミド結合間の炭素数が7〜30の繰り返し単位構造を全繰り返し単位構造の40〜100モル%含有するポリアミド樹脂が好ましい。   The alcohol-soluble polyamide resin is preferably a polyamide resin containing a repeating unit structure having 7 to 30 carbon atoms between amide bonds in an amount of 40 to 100 mol% of the entire repeating unit structure.

ここで、アミド結合間の炭素数が7〜30の繰り返し単位構造について説明する。前記繰り返し単位構造とはポリアミド樹脂を形成するアミド結合単位を意味する。このことを、繰り返し単位構造がアミノ基とカルボン酸基の両方を持つ化合物の縮合により形成されるポリアミド樹脂(タイプA)と、ジアミノ化合物とジカルボン酸化合物の縮合で形成されるポリアミド樹脂(タイプB)の両方の例で説明する。   Here, a repeating unit structure having 7 to 30 carbon atoms between amide bonds will be described. The repeating unit structure means an amide bond unit forming a polyamide resin. This is because a polyamide resin (type A) formed by condensation of a compound having a repeating unit structure having both an amino group and a carboxylic acid group, and a polyamide resin (type B) formed by condensation of a diamino compound and a dicarboxylic acid compound. ) In both examples.

即ち、タイプAの繰り返し単位構造は一般式(2)で表され、Xに含まれる炭素数が繰り返し単位構造におけるアミド結合単位の炭素数である。一方タイプBの繰り返し単位構造は一般式(3)で表され、Yに含まれる炭素数もZに含まれる炭素数も、各々繰り返し単位構造におけるアミド結合単位の炭素数である。   That is, the repeating unit structure of type A is represented by the general formula (2), and the carbon number contained in X is the carbon number of the amide bond unit in the repeating unit structure. On the other hand, the type B repeating unit structure is represented by the general formula (3), and the number of carbon atoms contained in Y and the number of carbon atoms contained in Z are the carbon number of the amide bond unit in the repeating unit structure.

Figure 0004135596
Figure 0004135596

一般式(2)中、R1は水素原子、置換又は無置換のアルキル基、Xは置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を示し、lは自然数を示す。 In general formula (2), R 1 is a hydrogen atom, a substituted or unsubstituted alkyl group, X is a substituted or unsubstituted alkylene group, a group containing a divalent cycloalkane, a divalent aromatic group, and these A mixed structure is shown, and l is a natural number.

Figure 0004135596
Figure 0004135596

一般式(3)中、R2、R3は各水素原子、置換又は無置換のアルキル基、Y、Zは各置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を示し、m、nは自然数を示す。 In general formula (3), R 2 and R 3 are each hydrogen atom, a substituted or unsubstituted alkyl group, Y and Z are each substituted or unsubstituted alkylene group, a group containing a divalent cycloalkane, and a divalent group. And m and n are natural numbers.

前記のごとく、炭素数が7〜30の繰り返し単位構造は置換又は無置換の、アルキレン基、2価のシクロアルカンを含む基、2価の芳香族基及びこれらの混合構造を有する化学構造等が挙げられるが、これらの中で2価のシクロアルカンを含む基を有する化学構造が好ましい。   As described above, the repeating unit structure having 7 to 30 carbon atoms includes a substituted or unsubstituted alkylene group, a group containing a divalent cycloalkane, a divalent aromatic group, and a chemical structure having a mixed structure thereof. Among them, a chemical structure having a group containing a divalent cycloalkane is preferable.

本発明のポリアミド樹脂は繰り返し単位構造のアミド結合間の炭素数が7〜30であるが、好ましくは9〜25、更には11〜20が良い。またアミド結合間の炭素数が7〜30の繰り返し単位構造が全繰り返し単位構造中に占める比率は40〜100モル%、好ましくは60〜100モル%、更には80〜100モル%が良い。   The polyamide resin of the present invention has 7 to 30 carbon atoms between amide bonds in the repeating unit structure, preferably 9 to 25, more preferably 11 to 20. The proportion of the repeating unit structure having 7 to 30 carbon atoms between amide bonds in the entire repeating unit structure is 40 to 100 mol%, preferably 60 to 100 mol%, more preferably 80 to 100 mol%.

前記炭素数が7より小だと、ポリアミド樹脂の吸湿性が大きく、電子写真特性、特に繰り返し使用時の電位の湿度依存性が大きく、更に黒ポチ等の画像欠陥が発生しやすい。30より大であるとポリアミド樹脂の塗布溶媒への溶解が悪くなり、中間層の塗布膜形成に適さない。   When the carbon number is less than 7, the hygroscopicity of the polyamide resin is large, the electrophotographic characteristics, particularly the humidity dependency of the potential during repeated use is large, and image defects such as black spots are likely to occur. If it is larger than 30, the dissolution of the polyamide resin in the coating solvent becomes worse, and it is not suitable for forming a coating film of the intermediate layer.

又、アミド結合間の炭素数が7〜30の繰り返し単位構造が全繰り返し単位構造中に占める比率が40モル%より小さいと、上記効果が小さくなる。   Further, when the ratio of the repeating unit structure having 7 to 30 carbon atoms between amide bonds to the entire repeating unit structure is smaller than 40 mol%, the above effect is reduced.

本発明の好ましいポリアミド樹脂としては下記一般式(4)で示される繰り返し単位構造を有するポリアミドが挙げられる。   A preferable polyamide resin of the present invention includes a polyamide having a repeating unit structure represented by the following general formula (4).

Figure 0004135596
Figure 0004135596

一般式(4)中、Y1は2価のアルキル置換されたシクロアルカンを含む基、Z1はメチレン基、mは1〜3、nは3〜20を示す。 In General Formula (4), Y 1 is a group containing a divalent alkyl-substituted cycloalkane, Z 1 is a methylene group, m is 1 to 3, and n is 3 to 20.

上記一般式(4)中、Y1の2価のアルキル置換されたシクロアルカンを含む基は下記化学構造が好ましい。即ち、Y1が下記化学構造を有する本発明のポリアミド樹脂は、黒ポチ改善効果が著しい。 In the general formula (4), the group containing a divalent alkyl-substituted cycloalkane of Y 1 preferably has the following chemical structure. That is, the polyamide resin of the present invention in which Y 1 has the following chemical structure has a remarkable effect of improving black spots.

Figure 0004135596
Figure 0004135596

上記化学構造において、Aは単結合、炭素数1〜4のアルキレン基を示し、R4は置換基で、アルキル基を示し、pは1〜5の自然数を示す。但し、複数のR4は同一でも、異なっていても良い。 In the above chemical structure, A represents a single bond and an alkylene group having 1 to 4 carbon atoms, R 4 represents a substituent, represents an alkyl group, and p represents a natural number of 1 to 5. However, the plurality of R 4 may be the same or different.

本発明のポリアミド樹脂の具体例としては下記のような例が挙げられる。   Specific examples of the polyamide resin of the present invention include the following examples.

Figure 0004135596
Figure 0004135596

Figure 0004135596
Figure 0004135596

Figure 0004135596
Figure 0004135596

上記具体例中の()内の%は繰り返し単位構造のアミド結合間の炭素数が7以上の繰り返し単位構造の比率(モル%)を示す。   In the above specific examples, “%” in parentheses indicates the ratio (mol%) of the repeating unit structure having 7 or more carbon atoms between amide bonds in the repeating unit structure.

上記具体例の中でも、一般式(4)の繰り返し単位構造を有するN−1〜N−4のポリアミド樹脂が特に好ましい。   Among the above specific examples, N-1 to N-4 polyamide resins having a repeating unit structure of the general formula (4) are particularly preferable.

又、本発明のポリアミド樹脂の分子量は数平均分子量で5,000〜80,000が好ましく、10,000〜60,000がより好ましい。数平均分子量が5,000以下だと中間層の膜厚の均一性が劣化し、本発明の効果が十分に発揮されにくい。一方、80,000より大きいと、樹脂の溶媒溶解性が低下しやすく、中間層中に凝集樹脂が発生しやすく、黒ポチ等の画像欠陥が発生しやすい。   The molecular weight of the polyamide resin of the present invention is preferably 5,000 to 80,000 in terms of number average molecular weight, and more preferably 10,000 to 60,000. When the number average molecular weight is 5,000 or less, the uniformity of the film thickness of the intermediate layer is deteriorated, and the effects of the present invention are not sufficiently exhibited. On the other hand, if it is larger than 80,000, the solvent solubility of the resin tends to be lowered, and an aggregated resin is likely to be generated in the intermediate layer, and image defects such as black spots are likely to occur.

本発明のポリアミド樹脂はその一部が既に市販されており、例えばダイセル・デグサ(株)社製のベスタメルトX1010、X4685等の商品名で販売されて、一般的なポリアミドの合成法で作製することができるが、以下に合成例の一例を挙げる。   A part of the polyamide resin of the present invention is already on the market. For example, it is sold under the trade name such as Vestamelt X1010, X4585 manufactured by Daicel Degussa Co., Ltd., and is prepared by a general polyamide synthesis method. An example of synthesis is given below.

例示ポリアミド樹脂(N−1)の合成
攪拌機、窒素、窒素導入管、温度計、脱水管等を備えた重合釜にラウリルラクタム215質量部、3−アミノメチル−3,5,5−トリメチルシクロヘキシルアミン112質量部、1,12−ドデカンシカルボン酸153質量部及び水2質量部を混合し、加熱加圧下、水を留出させながら9時間反応させた。重合物を取り出し、C13−NMRにより共重合組成を求めたところ、N−1の組成と一致した。尚、上記合成された共重合のメルトフローインデックス(MFI)は(230℃/2.16kg)の条件で、5g/10minであった。
Synthesis of exemplified polyamide resin (N-1) 215 parts by mass of lauryl lactam, 3-aminomethyl-3,5,5-trimethylcyclohexylamine in a polymerization kettle equipped with a stirrer, nitrogen, nitrogen introduction tube, thermometer, dehydration tube, etc. 112 parts by mass, 153 parts by mass of 1,12-dodecanedicarboxylic acid and 2 parts by mass of water were mixed and reacted for 9 hours while distilling water under heating and pressure. When the polymer was taken out and the copolymer composition was determined by C 13 -NMR, it coincided with the composition of N-1. The melt flow index (MFI) of the synthesized copolymer was 5 g / 10 min under the condition of (230 ° C./2.16 kg).

本発明のポリアミド樹脂を溶解し、塗布液を作製する溶媒としては、エタノール、n−プロピルアルコール、イソプロピルアルコール、n−ブタノール、t−ブタノール、sec−ブタノール等の炭素数2〜4のアルコール類が好ましく、ポリアミドの溶解性と作製された塗布液の塗布性の点で優れている。これらの溶媒は全溶媒中に30〜100質量%、好ましくは40〜100質量%、更には50〜100質量%が好ましい。前記溶媒と併用し、好ましい効果を得られる助溶媒としては、メタノール、ベンジルアルコール、トルエン、メチレンクロライド、シクロヘキサノン、テトラヒドロフラン等が挙げられる。   Solvents for dissolving the polyamide resin of the present invention to prepare a coating solution include alcohols having 2 to 4 carbon atoms such as ethanol, n-propyl alcohol, isopropyl alcohol, n-butanol, t-butanol, sec-butanol and the like. Preferably, it is excellent in the solubility of polyamide and the applicability of the prepared coating solution. These solvents are 30 to 100% by mass, preferably 40 to 100% by mass, and more preferably 50 to 100% by mass in the total solvent. Examples of co-solvents that can be used in combination with the above-mentioned solvent to obtain preferable effects include methanol, benzyl alcohol, toluene, methylene chloride, cyclohexanone, and tetrahydrofuran.

一方、電荷輸送層の構成は公知の構成を用いて得ることができる。電荷輸送物質及びバインダーを適切に選択して、電荷輸送層を形成することが必要である。   On the other hand, the structure of the charge transport layer can be obtained using a known structure. It is necessary to select the charge transport material and binder appropriately to form the charge transport layer.

電荷輸送物質(CTM)としては、例えばトリフェニルアミン誘導体、ヒドラゾン化合物、スチリル化合物、ベンジジン化合物、ブタジエン化合物などを併用して用いることができる。これら電荷輸送物質は通常、適当なバインダー樹脂中に溶解して層形成が行われる。   As the charge transport material (CTM), for example, a triphenylamine derivative, a hydrazone compound, a styryl compound, a benzidine compound, a butadiene compound, or the like can be used in combination. These charge transport materials are usually dissolved in a suitable binder resin to form a layer.

電荷輸送層(CTL)に用いられる樹脂としては、例えばポリスチレン、アクリル樹脂、メタクリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリビニルブチラール樹脂、エポキシ樹脂、ポリウレタン樹脂、フェノール樹脂、ポリエステル樹脂、アルキッド樹脂、ポリカーボネート樹脂、シリコーン樹脂、メラミン樹脂並びに、これらの樹脂の繰り返し単位構造のうちの2つ以上を含む共重合体樹脂。又これらの絶縁性樹脂の他、ポリ−N−ビニルカルバゾール等の高分子有機半導体が挙げられる。   Examples of the resin used for the charge transport layer (CTL) include polystyrene, acrylic resin, methacrylic resin, vinyl chloride resin, vinyl acetate resin, polyvinyl butyral resin, epoxy resin, polyurethane resin, phenol resin, polyester resin, alkyd resin, and polycarbonate. Resin, silicone resin, melamine resin, and copolymer resin containing two or more of repeating unit structures of these resins. In addition to these insulating resins, high molecular organic semiconductors such as poly-N-vinylcarbazole can be used.

これらCTLのバインダーとして最も好ましいものはポリカーボネート樹脂である。ポリカーボネート樹脂はCTMの分散性、電子写真特性を良好にすることにおいて、最も好ましい。バインダー樹脂と電荷輸送物質との割合は、バインダー樹脂100質量部に対し10〜200質量部が好ましい。   Most preferred as a binder for these CTLs is a polycarbonate resin. The polycarbonate resin is most preferable in improving the dispersibility and electrophotographic characteristics of CTM. The ratio of the binder resin to the charge transport material is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the binder resin.

又、電荷輸送層には酸化防止剤を含有させることが好ましい。該酸化防止剤とは、その代表的なものは有機感光体中ないしは有機感光体表面に存在する自動酸化性物質に対して、光、熱、放電等の条件下で酸素の作用を防止ないし、抑制する性質を有する物質である。   The charge transport layer preferably contains an antioxidant. Typical examples of the antioxidants are those that prevent the action of oxygen under conditions of light, heat, discharge, etc. on auto-oxidizing substances present in the organic photoreceptor or on the surface of the organic photoreceptor, It is a substance that has the property of inhibiting.

次に、上記のような中間層、電荷輸送層を有する有機感光体の層構成について記載する。   Next, the layer structure of the organic photoreceptor having the above intermediate layer and charge transport layer will be described.

本発明の有機感光体とは電子写真感光体の構成に必要不可欠な電荷発生機能及び電荷輸送機能の少なくとも一方の機能を有機化合物に持たせて構成された電子写真感光体を意味し、公知の有機電荷発生物質又は有機電荷輸送物質から構成された感光体、電荷発生機能と電荷輸送機能を高分子錯体で構成した感光体等公知の有機電子写真感光体を全て含有する。   The organic photoconductor of the present invention means an electrophotographic photoconductor constituted by giving an organic compound at least one of a charge generation function and a charge transport function indispensable for the constitution of the electrophotographic photoconductor. It contains all known organic electrophotographic photoreceptors such as a photoreceptor composed of an organic charge generating material or an organic charge transport material, a photoreceptor composed of a polymer complex with a charge generating function and a charge transport function.

以下に本発明に用いられる有機感光体の構成について記載する。   The constitution of the organic photoreceptor used in the present invention is described below.

導電性支持体
感光体に用いられる導電性支持体としてはシート状、円筒状のどちらを用いても良いが、画像形成装置をコンパクトに設計するためには円筒状導電性支持体の方が好ましい。
Conductive Support The conductive support used for the photoreceptor may be either a sheet or a cylinder, but a cylindrical conductive support is preferred for designing an image forming apparatus compactly. .

円筒状導電性支持体とは回転することによりエンドレスに画像を形成できるに必要な円筒状の支持体を意味し、真直度で0.1mm以下、振れ0.1mm以下の範囲にある導電性の支持体が好ましい。この真直度及び振れの範囲を超えると、良好な画像形成が困難になる。   Cylindrical conductive support means a cylindrical support necessary for forming an endless image by rotating. Conductivity is within a range of 0.1 mm or less in straightness and 0.1 mm or less in deflection. A support is preferred. Exceeding the range of straightness and shake makes it difficult to form a good image.

導電性の材料としてはアルミニウム、ニッケルなどの金属ドラム、又はアルミニウム、酸化錫、酸化インジュウムなどを蒸着したプラスチックドラム、又は導電性物質を塗布した紙・プラスチックドラムを使用することができる。導電性支持体としては常温で比抵抗103Ωcm以下が好ましい。 As the conductive material, a metal drum such as aluminum or nickel, a plastic drum deposited with aluminum, tin oxide, indium oxide or the like, or a paper / plastic drum coated with a conductive substance can be used. The conductive support preferably has a specific resistance of 10 3 Ωcm or less at room temperature.

本発明で用いられる導電性支持体は、その表面に封孔処理されたアルマイト膜が形成されたものを用いても良い。   As the conductive support used in the present invention, one having an alumite film that has been sealed on the surface thereof may be used.

中間層
本発明においては導電性支持体と感光層の間に、前記バリヤー機能を備えた中間層を設ける。
Intermediate Layer In the present invention, an intermediate layer having the barrier function is provided between the conductive support and the photosensitive layer.

感光層
本発明の感光体の感光層構成は前記中間層上に電荷発生機能と電荷輸送機能を1つの層に持たせた単層構造の感光層構成でも良いが、より好ましくは感光層の機能を電荷発生層(CGL)と電荷輸送層(CTL)に分離した構成をとるのがよい。機能を分離した構成を取ることにより繰り返し使用に伴う残留電位増加を小さく制御でき、その他の電子写真特性を目的に合わせて制御しやすい。負帯電用の感光体では中間層の上に電荷発生層(CGL)、その上に電荷輸送層(CTL)の構成を取ることが好ましい。正帯電用の感光体では前記層構成の順が負帯電用感光体の場合の逆となる。本発明の最も好ましい感光層構成は前記機能分離構造を有する負帯電感光体構成である。
Photosensitive layer The photosensitive layer configuration of the photoreceptor of the present invention may be a single-layer photosensitive layer configuration in which the intermediate layer has a charge generation function and a charge transport function in one layer, but more preferably the function of the photosensitive layer. The charge generation layer (CGL) and the charge transport layer (CTL) may be separated from each other. By adopting a configuration in which the functions are separated, an increase in the residual potential due to repeated use can be controlled to be small, and other electrophotographic characteristics can be easily controlled according to the purpose. In the negatively charged photoconductor, it is preferable that a charge generation layer (CGL) is formed on the intermediate layer and a charge transport layer (CTL) is formed thereon. In the positively charged photoconductor, the order of the layer configuration is the reverse of that in the negatively charged photoconductor. The most preferred photosensitive layer structure of the present invention is a negatively charged photoreceptor structure having the function separation structure.

以下に機能分離負帯電感光体の感光層構成について説明する。   The structure of the photosensitive layer of the function-separated negatively charged photoreceptor will be described below.

電荷発生層
電荷発生層には電荷発生物質(CGM)を含有する。その他の物質としては必要によりバインダー樹脂、その他添加剤を含有しても良い。
Charge generation layer The charge generation layer contains a charge generation material (CGM). Other substances may contain a binder resin and other additives as necessary.

電荷発生物質(CGM)としては公知の電荷発生物質(CGM)を用いることができる。例えばフタロシアニン顔料、アゾ顔料、ペリレン顔料、アズレニウム顔料などを用いることができる。これらの中で繰り返し使用に伴う残留電位増加を最も小さくできるCGMは複数の分子間で安定な凝集構造をとりうる結晶構造を有するものであり、具体的には特定の結晶構造を有するフタロシアニン顔料、ペリレン顔料のCGMが挙げられる。例えばCu−Kα線に対するブラッグ角2θの27.2°に最大ピークを有するチタニルフタロシアニン、同2θの7.5°、28.7°に顕著な回折ピークを有するチタニルフタロシン、同2θの12.4に最大ピークを有するベンズイミダゾールペリレン等のCGMは繰り返し使用に伴う劣化がほとんどなく、残留電位増加小さくすることができる。   A known charge generation material (CGM) can be used as the charge generation material (CGM). For example, a phthalocyanine pigment, an azo pigment, a perylene pigment, an azulenium pigment, or the like can be used. Among these, CGM which can minimize the increase in residual potential due to repeated use has a crystal structure capable of taking a stable aggregate structure among a plurality of molecules, specifically, a phthalocyanine pigment having a specific crystal structure, CGM of a perylene pigment is mentioned. For example, titanyl phthalocyanine having a maximum peak at a Bragg angle 2θ of 27.2 ° with respect to the Cu—Kα ray, titanyl phthalocyanine having remarkable diffraction peaks at 7.5 ° and 28.7 ° of the same 2θ, and 12.2 of the same 2θ. CGM such as benzimidazole perylene having a maximum peak at 4 has almost no deterioration due to repeated use, and the residual potential can be increased and decreased.

電荷発生層にCGMの分散媒としてバインダーを用いる場合、バインダーとしては公知の樹脂を用いることができるが、最も好ましい樹脂としてはホルマール樹脂、ブチラール樹脂、シリコーン樹脂、シリコーン変性ブチラール樹脂、フェノキシ樹脂等が挙げられる。バインダー樹脂と電荷発生物質との割合は、バインダー樹脂100質量部に対し20〜600質量部が好ましい。これらの樹脂を用いることにより、繰り返し使用に伴う残留電位増加を最も小さくできる。電荷発生層の膜厚は0.01μm〜1μmが好ましい。0.01μm未満では十分な感度特性が得られず、残留電位が上昇しやすい。一方、1μmを超えると絶縁破壊や黒ポチが発生しやすい。   When a binder is used as a CGM dispersion medium in the charge generation layer, a known resin can be used as the binder, but the most preferred resins include formal resin, butyral resin, silicone resin, silicone-modified butyral resin, phenoxy resin, and the like. Can be mentioned. The ratio of the binder resin to the charge generating material is preferably 20 to 600 parts by mass with respect to 100 parts by mass of the binder resin. By using these resins, the increase in residual potential associated with repeated use can be minimized. The thickness of the charge generation layer is preferably 0.01 μm to 1 μm. If the thickness is less than 0.01 μm, sufficient sensitivity characteristics cannot be obtained, and the residual potential tends to increase. On the other hand, if it exceeds 1 μm, dielectric breakdown and black spots are likely to occur.

電荷輸送層
本発明の電荷輸送層には前記した膜厚が、5〜20μmの電荷輸送層を用いる。該膜厚が5μm未満では、絶縁破壊や黒ポチ等が発生しやすく、20μmを超えると画像がボケやすく鮮鋭性が劣化しやすい。
Charge transport layer The charge transport layer of the present invention is a charge transport layer having a film thickness of 5 to 20 μm. If the film thickness is less than 5 μm, dielectric breakdown, black spots, etc. are likely to occur, and if it exceeds 20 μm, the image tends to be blurred and sharpness tends to deteriorate.

上記では本発明の最も好ましい感光体の層構成を例示したが、本発明では上記以外の感光体層構成でも良い。   In the above, the most preferable layer structure of the photoreceptor of the present invention is exemplified, but in the present invention, a photoreceptor layer structure other than the above may be used.

中間層、電荷発生層、電荷輸送層等の層形成に用いられる溶媒又は分散媒としては、n−ブチルアミン、ジエチルアミン、エチレンジアミン、イソプロパノールアミン、トリエタノールアミン、トリエチレンジアミン、N,N−ジメチルホルムアミド、アセトン、メチルエチルケトン、メチルイソプロピルケトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、1,2−ジクロロプロパン、1,1,2−トリクロロエタン、1,1,1−トリクロロエタン、トリクロロエチレン、テトラクロロエタン、テトラヒドロフラン、ジオキソラン、ジオキサン、メタノール、エタノール、ブタノール、イソプロパノール、酢酸エチル、酢酸ブチル、ジメチルスルホキシド、メチルセロソルブ等が挙げられる。本発明はこれらに限定されるものではないが、ジクロロメタン、1,2−ジクロロエタン、メチルエチルケトン等が好ましく用いられる。また、これらの溶媒は単独或いは2種以上の混合溶媒として用いることもできる。   Solvents or dispersion media used to form layers such as intermediate layers, charge generation layers, and charge transport layers include n-butylamine, diethylamine, ethylenediamine, isopropanolamine, triethanolamine, triethylenediamine, N, N-dimethylformamide, acetone , Methyl ethyl ketone, methyl isopropyl ketone, cyclohexanone, benzene, toluene, xylene, chloroform, dichloromethane, 1,2-dichloroethane, 1,2-dichloropropane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, trichloroethylene, Tetrachloroethane, tetrahydrofuran, dioxolane, dioxane, methanol, ethanol, butanol, isopropanol, ethyl acetate, butyl acetate, dimethyl sulfoxide, methyl cello Lube, and the like. Although this invention is not limited to these, Dichloromethane, 1, 2- dichloroethane, methyl ethyl ketone, etc. are used preferably. These solvents may be used alone or as a mixed solvent of two or more.

又、これらの各層の塗布溶液は塗布工程に入る前に、塗布溶液中の異物や凝集物を除去するために、金属フィルター、メンブランフィルター等で濾過することが好ましい。例えば、日本ポール社製のプリーツタイプ(HDC)、デプスタイプ(プロファイル)、セミデプスタイプ(プロファイルスター)等を塗布液の特性に応じて選択し、濾過をすることが好ましい。   Further, the coating solution for each layer is preferably filtered with a metal filter, a membrane filter or the like in order to remove foreign matters and aggregates in the coating solution before entering the coating step. For example, it is preferable to select a pleat type (HDC), a depth type (profile), a semi-depth type (profile star), etc., manufactured by Nippon Pole Co., Ltd. according to the characteristics of the coating solution and perform filtration.

次に有機感光体を製造するための塗布加工方法としては、浸漬塗布、スプレー塗布、円形量規制型塗布等の塗布加工法が用いられる。なお保護層は前記円形量規制型塗布加工方法を用いるのが最も好ましい。前記円形量規制型塗布については例えば特開昭58−189061号公報に詳細に記載されている。   Next, as a coating processing method for manufacturing the organic photoreceptor, a coating processing method such as dip coating, spray coating, circular amount regulation type coating or the like is used. It is most preferable to use the circular amount regulation type coating method for the protective layer. The circular amount regulation type coating is described in detail in, for example, Japanese Patent Application Laid-Open No. 58-189061.

次に、本発明の接触帯電方式を用いた画像形成装置について説明する。   Next, an image forming apparatus using the contact charging method of the present invention will be described.

図1は、本発明に係る接触帯電方式を用いた画像形成装置1の断面概略図である。画像形成装置1は内部に、感光体カートリッジ2、現像カートリッジ3、外部からの画像信号に基づいて変調されたレーザビームを偏向させながら射出する露光装置4、記録紙を供給する給紙装置5、転写ローラ6、定着器7および排紙トレイ8が配設されている。   FIG. 1 is a schematic cross-sectional view of an image forming apparatus 1 using a contact charging method according to the present invention. The image forming apparatus 1 includes a photosensitive cartridge 2, a developing cartridge 3, an exposure device 4 that emits a laser beam modulated based on an image signal from the outside while deflecting, a paper feeding device 5 that supplies recording paper, A transfer roller 6, a fixing device 7 and a paper discharge tray 8 are provided.

感光体カートリッジ2は、内部に円筒体の外周面に有機光導電材料の薄膜層を形成して成る感光体21、帯電ブラシ22等を備えている。現像カートリッジ3は、内部に図示せぬ現像スリーブ、攪拌ローラ、およびトナーとキャリアが収容されたトナータンクを備えており、現像スリーブには図示せぬ現像電源から現像バイアスが印加される。両カートリッジには、画像形成装置1への着脱の際に機械的接触による不具合が発生するのを防止するために、画像形成装置1への挿入時には閉状態とされ、画像形成装置1からの取り出し時には開状態とされる図示せぬ保護カバーが設けられている。   The photoconductor cartridge 2 includes a photoconductor 21 formed by forming a thin film layer of an organic photoconductive material on the outer peripheral surface of a cylindrical body, a charging brush 22 and the like. The developing cartridge 3 includes a developing sleeve (not shown), a stirring roller, and a toner tank in which toner and a carrier are accommodated. A developing bias is applied to the developing sleeve from a developing power source (not shown). Both cartridges are closed when inserted into the image forming apparatus 1 in order to prevent problems caused by mechanical contact when the cartridge is attached to or detached from the image forming apparatus 1, and are removed from the image forming apparatus 1. A protective cover (not shown) that is sometimes opened is provided.

画像形成プロセスは周知であるため、以下に、簡略に示すに留める。まず、感光体21表面は帯電ブラシ22により所定の電圧で均一に帯電される。露光装置4は、変調されたレーザビーム(図中に破線矢印で示す)を発生し、このレーザビームを図示せぬポリゴンミラーにより偏向して、感光体21上を偏向走査し、前記帯電面に画像情報に応じた静電潜像を順次に形成していく。トナータンク内のトナーは、攪拌ローラで攪拌された後、現像スリーブ上に供給され、感光体21との対向部で、前記静電潜像に対応したトナー像を形成する。同時に、感光体21表面の露光を受けていない部分(非画像部)に存在する残留トナーは、現像スリーブに印加される現像バイアス電圧と感光体21の表面電位との電位差を利用して、現像カートリッジに静電力により回収される。一方、トナー像は、感光体21と対向して配設されている転写ローラ6によって、記録紙上に静電転写される。なお、記録紙は給紙装置5から図中実線矢印で示される搬送路に沿って運ばれてくる。次いで、この記録紙は定着器7に搬送され、ここで未定着トナー像が記録紙上に熱定着される。最後に、所望の画像を形成した記録紙は、排紙トレイ8より排出される。以上一連のプロセスを繰り返すことで、原稿の複製が多量かつ高速にできるわけである。   Since the image forming process is well known, only a brief description will be given below. First, the surface of the photoreceptor 21 is uniformly charged with a predetermined voltage by the charging brush 22. The exposure device 4 generates a modulated laser beam (indicated by a broken arrow in the figure), deflects the laser beam by a polygon mirror (not shown), deflects and scans the surface of the photosensitive member 21, and applies it to the charged surface. An electrostatic latent image corresponding to image information is sequentially formed. The toner in the toner tank is stirred by a stirring roller and then supplied onto the developing sleeve to form a toner image corresponding to the electrostatic latent image at a portion facing the photoreceptor 21. At the same time, residual toner existing in a portion (non-image portion) that has not been exposed on the surface of the photoconductor 21 is developed using the potential difference between the developing bias voltage applied to the developing sleeve and the surface potential of the photoconductor 21. The cartridge is recovered by electrostatic force. On the other hand, the toner image is electrostatically transferred onto the recording paper by the transfer roller 6 disposed facing the photoconductor 21. Note that the recording paper is conveyed from the paper feeding device 5 along a conveyance path indicated by a solid line arrow in the figure. Next, the recording paper is conveyed to the fixing device 7 where the unfixed toner image is heat-fixed on the recording paper. Finally, the recording paper on which a desired image is formed is discharged from the paper discharge tray 8. By repeating the above-described series of processes, a large amount of original can be duplicated at high speed.

帯電ブラシ22の上流側には、感光体上の残留トナーに感光体の帯電極性と同極性に帯電させるプレ帯電フィルム24(シート状の部材、感光体上の帯電ムラを均一化する部材、同時に残留トナーも帯電する:本発明のトナーを帯電する補助帯電手段)、帯電ならし部材25、26(スポンジ状の部材、感光体上の帯電ムラを均一化する部材、同時に残留トナーも帯電する:本発明のトナーを帯電する補助帯電手段)が設置されており、これら帯電ブラシ、プレ帯電フィルム、帯電ならし部材は感光体に接触している。又、帯電ブラシは感光体の回転によって感光体との接触部に送られてきた残留トナーを機械的に撹拌し、判読不可能な状態となるまで感光体表面に拡散させる。また、帯電ブラシは、感光体の帯電極性と反対の極性(逆極性)の残留トナーを静電的に吸着して回収し、感光体の帯電極性と同極性(正規の極性)に帯電させて感光体表面に吐出する。   On the upstream side of the charging brush 22, a pre-charge film 24 (sheet-like member, member for uniformizing charging unevenness on the photosensitive member, and simultaneously charging the residual toner on the photosensitive member with the same polarity as the charging polarity of the photosensitive member at the same time) Residual toner is also charged: auxiliary charging means for charging the toner of the present invention, charging leveling members 25 and 26 (sponge-like members, members for equalizing uneven charging on the photosensitive member, and residual toner are also simultaneously charged: Auxiliary charging means for charging the toner of the present invention is provided, and the charging brush, pre-charging film, and charging leveling member are in contact with the photoreceptor. Further, the charging brush mechanically agitates the residual toner sent to the contact portion with the photosensitive member by the rotation of the photosensitive member, and diffuses it on the surface of the photosensitive member until it becomes unreadable. The charging brush electrostatically adsorbs and collects residual toner having the opposite polarity (reverse polarity) to the charging polarity of the photoconductor, and charges it to the same polarity (regular polarity) as the charging polarity of the photoconductor. Discharge onto the surface of the photoreceptor.

図2は、画像形成装置1に着脱自在な感光体カートリッジ2の断面概略図である。感光体カートリッジ2は、開閉可能な(図示されず)保護カバー付きケーシング28内に、像担持体としての感光体21、この感光体21の周りに当接配置された帯電ブラシ22、帯電ブラシ22に所定電圧を印加する電源接続部材23、プレ帯電フィルム24、帯電ならし部材(スポンジ状の帯電部材)25、26、電源接続部材27を収容する。尚、保護カバー付きケーシング28には図示されていない露光光入射窓、現像手段取り付け口及び画像形成装置に装着時に保護カバーが開放し、感光体と転写手段が近接或いは接触する機構を有する。   FIG. 2 is a schematic cross-sectional view of a photosensitive cartridge 2 that is detachable from the image forming apparatus 1. The photosensitive member cartridge 2 includes a photosensitive member 21 as an image carrier, a charging brush 22 disposed in contact with the photosensitive member 21, and a charging brush 22 in a casing 28 with a protective cover that can be opened and closed (not shown). A power connection member 23 for applying a predetermined voltage, a pre-charge film 24, charging leveling members (sponge-like charging members) 25 and 26, and a power connection member 27 are accommodated. The casing 28 with a protective cover has a mechanism in which the protective cover is opened when attached to an exposure light incident window, a developing means attachment port, and an image forming apparatus (not shown), and the photosensitive member and the transfer means come close to or contact each other.

感光体21は図示せぬ駆動装置により図中矢印方向に回転する。帯電ブラシ22は、毛状の繊維からなる導電糸をブラシ支持体に植設したものである。この帯電ブラシ22は感光体21の表面に接触した状態で、図示せぬ駆動装置により図中矢印方向、つまり感光体21との接触部において、感光体21回転方向に対して同方向に回転する。画像形成時には、帯電ブラシ22に図示せぬ帯電電源より電圧が印加され、これによって感光体21表面を均一に所定極性に帯電させる。一方、非画像形成時には、帯電電源より前記画像形成時と逆の極性の電圧が帯電ブラシ22に印加される。なお、トナーの帯電極性は、画像形成時の帯電電圧の極性と同一である。よって非画像形成時に、帯電ブラシ22内に蓄積されたトナーを静電的反発力により、感光体21上に吐出させることができる。   The photosensitive member 21 is rotated in the direction of the arrow in the drawing by a driving device (not shown). The charging brush 22 is obtained by implanting conductive yarn made of hairy fibers on a brush support. The charging brush 22 is in contact with the surface of the photosensitive member 21 and is rotated in the same direction as the rotational direction of the photosensitive member 21 in the direction of the arrow in the drawing, that is, in the contact portion with the photosensitive member 21 by a driving device (not shown). . During image formation, a voltage is applied to the charging brush 22 from a charging power source (not shown), thereby charging the surface of the photoconductor 21 uniformly to a predetermined polarity. On the other hand, at the time of non-image formation, a voltage having a polarity opposite to that at the time of image formation is applied to the charging brush 22 from the charging power source. The charging polarity of the toner is the same as the polarity of the charging voltage at the time of image formation. Therefore, at the time of non-image formation, the toner accumulated in the charging brush 22 can be ejected onto the photoreceptor 21 by electrostatic repulsion.

プレ帯電フィルム24は感光体上の残留トナーに、現像手段で回収されやすいように、正規の極性を付与する為に設けられている。帯電ならし部材25、26もプレ帯電フィイル無と同様な機能を有するが、同時に、残留トナーを感光体上で拡散させる機能、帯電ブラシ22による感光体上に帯電ムラを補う機能も有している。   The pre-charge film 24 is provided to give a normal polarity to the residual toner on the photoreceptor so that it can be easily collected by the developing means. The charge leveling members 25 and 26 have the same function as that of the precharge film, but at the same time, have a function of diffusing residual toner on the photoconductor and a function of compensating for charging unevenness on the photoconductor by the charging brush 22. Yes.

尚、上記画像形成装置は、モノクロのレーザプリンタを示したが、カラーのレーザプリンタやコピーにも同様に適用可能である。   The image forming apparatus is a monochrome laser printer, but can be similarly applied to a color laser printer or a copy.

又、前記画像形成装置は、好ましい例として、クリーナレスの画像形成装置を例示したが、即ち、感光体上の残留トナーを除去又は回収する為の主機能を有するクリーニング装置、或いはクリーニング部材(例えばクリーニングブレード等)を有しないクリーナレスの画像形成装置を例示したが、残留トナーを回収するための専用のクリーニング装置を備える画像形成装置であってもよい。即ち、本発明は、クリーナレス型でない画像形成装置にも適用することができる。   The image forming apparatus is exemplified by a cleanerless image forming apparatus as a preferred example, that is, a cleaning apparatus having a main function for removing or collecting residual toner on the photosensitive member, or a cleaning member (for example, Although a cleanerless image forming apparatus having no cleaning blade or the like has been exemplified, an image forming apparatus including a dedicated cleaning device for collecting residual toner may be used. That is, the present invention can also be applied to an image forming apparatus that is not a cleanerless type.

以下、実施例を挙げて本発明を詳細に説明するが、本発明の態様はこれに限定されない。但し、下記文中の「部」は「質量部」を示す。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail, the aspect of this invention is not limited to this. However, “part” in the following text indicates “part by mass”.

以下のようにして、評価に用いる感光体を作製した。   A photoreceptor used for evaluation was produced as follows.

感光体1の作製
中間層1
洗浄済み円筒状アルミニウム基体(切削加工により表面粗さRz:1.0μmに加工した)上に、下記中間層塗布液を浸漬塗布法で塗布し、乾燥膜厚10μmの中間層1を形成した。
Preparation of photoreceptor 1 Intermediate layer 1
The following intermediate layer coating solution was applied by a dip coating method onto a washed cylindrical aluminum substrate (processed to a surface roughness Rz: 1.0 μm by cutting) to form an intermediate layer 1 having a dry film thickness of 10 μm.

下記中間層分散液を同じ混合溶媒にて二倍に希釈し、一夜静置後に濾過(フィルター;日本ポール社製リジメッシュフィルター公称濾過精度:5ミクロン、圧力;50kPa)し、中間層塗布液を作製した。   The following intermediate layer dispersion was diluted twice with the same mixed solvent, and allowed to stand overnight, then filtered (filter; rigesh mesh filter made by Nihon Pall Corporation, nominal filtration accuracy: 5 microns, pressure: 50 kPa), and the intermediate layer coating solution was Produced.

(中間層分散液の作製)
バインダー樹脂:(例示ポリアミドN−1) 1部
ニオブ元素を0.5質量%含有したアナターゼ形酸化チタンA1(一次粒径35nm;表面処理は、メチルハイドロジェンポリシロキサン処理) 3.0部
イソプロピルアルコール 10部
上記成分を混合し、サンドミル分散機を用い、10時間、バッチ式にて分散して、中間層分散液を作製した。
(Preparation of intermediate layer dispersion)
Binder resin: (Exemplary polyamide N-1) 1 part Anatase type titanium oxide A1 containing 0.5% by mass of niobium element (primary particle size 35 nm; surface treatment is treated with methyl hydrogen polysiloxane ) 3.0 parts Isopropyl alcohol 10 parts The above components were mixed and dispersed in a batch system for 10 hours using a sand mill disperser to prepare an intermediate layer dispersion.

電荷発生層
下記成分を混合し、サンドミル分散機を用いて分散し、電荷発生層塗布液を調製した。この塗布液を浸漬塗布法で塗布し、前記中間層の上に乾燥膜厚0.3μmの電荷発生層を形成した。
Charge generation layer The following components were mixed and dispersed using a sand mill disperser to prepare a charge generation layer coating solution. This coating solution was applied by a dip coating method to form a charge generation layer having a dry film thickness of 0.3 μm on the intermediate layer.

B形オキシチタニルフタロシアニン(Cu−Kα特性X線によるX線回折のスペクトルで、ブラッグ角(2θ±0.2°)7.5°、28.7°に顕著な回折ピークを有するチタニルフタロシン顔料) 20部
ポリビニルブチラール(BX−1、積水化学(株)社製) 10部
メチルエチルケトン 700部
シクロヘキサノン 300部
電荷輸送層
下記成分を混合し、溶解して電荷輸送層塗布液を調製した。この塗布液を前記電荷発生層の上に浸漬塗布法で塗布し、乾燥膜厚15μmの電荷輸送層を形成し、感光体1を作製した。
Form B oxytitanyl phthalocyanine (X-ray diffraction spectrum by Cu-Kα characteristic X-ray, titanyl phthalosine pigment having remarkable diffraction peaks at Bragg angles (2θ ± 0.2 °) of 7.5 ° and 28.7 °) ) 20 parts polyvinyl butyral (BX-1, manufactured by Sekisui Chemical Co., Ltd.) 10 parts methyl ethyl ketone 700 parts cyclohexanone 300 parts Charge transport layer The following components were mixed and dissolved to prepare a charge transport layer coating solution. This coating solution was applied onto the charge generation layer by a dip coating method to form a charge transport layer having a dry film thickness of 15 μm.

電荷輸送物質(4−メトキシ−4′−(4−メチル−α−フェニルスチリル)トリフェニルアミン) 70部
ポリカーボネート樹脂「ユーピロン−Z300」(三菱ガス化学社製)
100部
酸化防止剤(下記化合物A) 2部
テトラヒドロフラン/トルエン(体積比8/2) 750部
感光体2〜18の作製
アルミニウム基体の表面粗さRz、中間層の粒子、バインダー樹脂、乾燥膜厚、電荷輸送層の電荷輸送物質及び膜厚等を表1のように変更した以外は感光体1と同様にして感光体2〜18を作製した。
Charge transport material (4-methoxy-4 ′-(4-methyl-α-phenylstyryl) triphenylamine) 70 parts Polycarbonate resin “Iupilon-Z300” (manufactured by Mitsubishi Gas Chemical Company)
100 parts Antioxidant (compound A below) 2 parts Tetrahydrofuran / toluene (volume ratio 8/2) 750 parts Preparation of photoreceptors 2 to 18 Surface roughness Rz of aluminum substrate, particles of intermediate layer, binder resin, dry film thickness Photoconductors 2 to 18 were prepared in the same manner as the photoconductor 1 except that the charge transport material and the film thickness of the charge transport layer were changed as shown in Table 1.

尚、前記感光体1〜18の作製と同時に、各感光体の中間層塗布液を用いて、アルミ蒸着したポリエチレンテレフタレート支持体上に各中間層塗布液を塗布し、前記感光体の乾燥条件と同じ条件で乾燥膜厚10μmの中間層を形成して体積抵抗測定用試料を作製し、各中間層の体積抵抗を測定した。その結果、感光体1〜18の中間層の体積抵抗は全て1×108Ω・cm以上であった。 At the same time as the production of the photoconductors 1 to 18, the intermediate layer coating solution was applied onto an aluminum-deposited polyethylene terephthalate support using the intermediate layer coating solution of each photoconductor. An intermediate layer having a dry film thickness of 10 μm was formed under the same conditions to prepare a volume resistance measurement sample, and the volume resistance of each intermediate layer was measured. As a result, the volume resistances of the intermediate layers of the photoreceptors 1 to 18 were all 1 × 10 8 Ω · cm or more.

Figure 0004135596
Figure 0004135596

Figure 0004135596
Figure 0004135596

表中、
A1はニオブ元素を0.5質量%含有したアナターゼ形酸化チタン(アナターゼ化度:100%)
A2はニオブ元素を1.0質量%含有したアナターゼ形酸化チタン(アナターゼ化度:95%)
A3はニオブ元素を300ppm含有したアナターゼ形酸化チタン(アナターゼ化度:100%)
A4はニオブ元素を1.8質量%含有したアナターゼ形酸化チタン(アナターゼ化度:92%)
A5はニオブ元素を含有しないアナターゼ形酸化チタン(アナターゼ化度:94%:ニオブ元素含有量10ppm以下)
Zは酸化亜鉛
ALはアルミナ(Al23
Zrは酸化ジルコニウム(ZrO2
尚、表中、表面処理とは粒子の表面に施した表面処理に用いた物質を示す。
In the table,
A1 is anatase type titanium oxide containing 0.5% by mass of niobium element (degree of anatase conversion: 100%)
A2 is anatase-type titanium oxide containing 1.0% by mass of niobium element (anatase degree: 95%)
A3 is anatase titanium oxide containing 300 ppm of niobium element (degree of anatase conversion: 100%)
A4 is anatase-type titanium oxide containing 1.8% by mass of niobium element (degree of anatase conversion: 92%)
A5 is anatase-type titanium oxide containing no niobium element (degree of anatase conversion: 94%: niobium element content of 10 ppm or less)
Z is zinc oxide AL is alumina (Al 2 O 3 )
Zr is zirconium oxide (ZrO 2 )
In the table, “surface treatment” refers to the substance used for the surface treatment applied to the surface of the particles.

又、表中の融解熱、吸水率の測定は以下のようにして行った。   The heat of fusion and water absorption in the table were measured as follows.

融解熱の測定条件
測定機:島津製作所「島津熱流速示差走査熱量計DSC−50」を用いて測定した。
Measurement conditions of heat of fusion Measuring machine: Measured using Shimadzu Corporation “Shimadzu heat flow rate differential scanning calorimeter DSC-50”.

測定条件:測定試料を上記測定機に設定し、室温(24℃)から測定開始、200℃迄5℃/分で昇温し、次いで室温まで5℃/分で冷却する。これを2回連続で行い、2回めの昇温時の融解による吸熱ピーク面積より融解熱を算出する。   Measurement conditions: The measurement sample is set in the above-mentioned measuring machine, measurement is started from room temperature (24 ° C.), the temperature is raised to 200 ° C. at 5 ° C./min, and then cooled to room temperature at 5 ° C./min. This is repeated twice, and the heat of fusion is calculated from the endothermic peak area due to melting during the second temperature increase.

吸水率の測定条件
測定対象の試料を70〜80℃で3〜4時間で十分に乾燥させ、その質量を精密に秤量する。次に、20℃に維持したイオン交換水に試料を投入し、一定時間経過後に引き上げ試料表面の水を清潔な布で拭き取り、質量を測定する。以上の操作を質量増が飽和するまで繰り返し、その結果得られた試料の増加質量(増加分)を初期の質量で除した値を吸水率とした。
Measurement condition of water absorption rate The sample to be measured is sufficiently dried at 70 to 80 ° C. for 3 to 4 hours, and its mass is accurately weighed. Next, the sample is put into ion-exchanged water maintained at 20 ° C., and after a certain period of time, the sample surface is pulled up and wiped off with a clean cloth to measure the mass. The above operation was repeated until the increase in mass was saturated, and the value obtained by dividing the increased mass (increase) of the resulting sample by the initial mass was taken as the water absorption rate.

表中、炭素数が7以上の単位構造の比率とは、繰り返し単位構造のアミド結合間の炭素数が7以上の繰り返し単位構造の比率(モル%)を示す。又、N−12はメトキシメチル化ナイロン6(アミド結合間の炭素数は5であり、メトキシメチル化度は25%)
評価
以上のようにして得た感光体1〜18を基本的に図1、2に記載の構造を有するEPSONLP−2400(エプソン(株)販売:A4紙16枚/分のプリンター)に各々装着し、高温高湿(30℃80%RH)と低温低湿(10℃20%RH)の環境下で、それぞれ評価項目を変えて評価した。評価結果を表2に示す。
In the table, the ratio of the unit structure having 7 or more carbon atoms refers to the ratio (mol%) of the repeating unit structure having 7 or more carbon atoms between amide bonds in the repeating unit structure. N-12 is methoxymethylated nylon 6 (carbon number between amide bonds is 5, methoxymethylation degree is 25%)
Evaluation Each of the photoreceptors 1 to 18 obtained as described above is basically mounted on an EPSONLP-2400 (Epson Co., Ltd. sales: printer with 16 sheets of A4 paper / min) having the structure shown in FIGS. The evaluation items were changed in an environment of high temperature and high humidity (30 ° C., 80% RH) and low temperature and low humidity (10 ° C., 20% RH). The evaluation results are shown in Table 2.

帯電条件
プレ帯電フィルム:800〜850V
帯電ならし部材:800〜850V
ブラシ帯電部材:800〜850V
露光条件
露光部電位目標:−50V未満にする露光量に設定。
Charging conditions Pre-charged film: 800-850V
Charge leveling member: 800-850V
Brush charging member: 800-850V
Exposure condition Exposure part potential target: Set to an exposure amount to be less than -50V.

露光ビーム:ドット密度600dpi(dpiとは2.54cm当たりのドット数)の像露光を行った。レーザは780nmの半導体レーザを使用。   Exposure beam: Image exposure with a dot density of 600 dpi (dpi is the number of dots per 2.54 cm) was performed. The laser uses a 780 nm semiconductor laser.

現像条件:非磁性一成分現像剤を用いた反転現像。   Development conditions: Reversal development using a non-magnetic one-component developer.

評価項目及び評価方法
評価項目及び評価基準
残留電位の評価(べた黒画像の電位変化)
低温低湿(10℃20%RH)、高温高湿(HH:30℃80%RH)環境下で、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にある画像をA4で1枚間欠モードにて1万枚の印刷を行い、初期と1万枚後の現像位置でのべた黒画像部の電位変化(|ΔV|)を評価した。|ΔV|が小さい方が繰り返し残留電位の上昇が小さい。
Evaluation item and evaluation method Evaluation item and evaluation criteria Evaluation of residual potential (change in potential of solid black image)
Under low-temperature and low-humidity (10 ° C., 20% RH) and high-temperature, high-humidity (HH: 30 ° C., 80% RH) environments, a character image with a pixel rate of 7%, a halftone image, a solid white image, and a solid black image are each 1 / An image in four equal portions was printed on 10,000 sheets in the single sheet intermittent mode at A4, and the potential change (| ΔV |) of the solid black image portion at the development position after the initial and 10,000 sheets was evaluated. The smaller the | ΔV |, the smaller the increase in the residual potential.

◎;べた黒画像部の電位変化|ΔV|が50V未満(良好)
○;べた黒画像部の電位変化|ΔV|が50V〜150V(実用上問題なし)
×;べた黒画像部の電位変化|ΔV|が150Vより大きい(実用上問題有り)
帯電電位の評価(べた白画像の電位変化)
低温低湿(10℃20%RH)、高温高湿(HH:30℃80%RH)環境下で、画素率が7%の文字画像、ハーフトーン画像、ベタ白画像、ベタ黒画像がそれぞれ1/4等分にある画像をA4で1枚間欠モードにて1万枚の印刷を行い、初期と1万枚後の現像位置でのべた白画像部の電位変化(|ΔV|)を評価した。|ΔV|が小さい方が繰り返し帯電電位の変化が小さい。
A: Potential change in solid black image portion | ΔV | is less than 50 V (good)
○: Potential change of solid black image portion | ΔV | is 50 V to 150 V (no problem in practical use)
×: The potential change | ΔV | of the solid black image portion is larger than 150 V (practically problematic)
Evaluation of charging potential (change in potential of solid white image)
Under low-temperature and low-humidity (10 ° C., 20% RH) and high-temperature, high-humidity (HH: 30 ° C., 80% RH) environments, a character image with a pixel rate of 7%, a halftone image, a solid white image, and a solid black image are each 1 / An image in four equal portions was printed on 10,000 sheets in the single sheet intermittent mode at A4, and the potential change (| ΔV |) of the solid white image portion at the development position after the initial and 10,000 sheets was evaluated. The smaller | ΔV | is, the smaller the change in charging potential is.

◎;べた白画像部の電位変化|ΔV|が50V未満(良好)
○;べた白画像部の電位変化|ΔV|が50V〜150V(実用上問題なし)
×;べた白画像部の電位変化|ΔV|が150Vより大きい(実用上問題有り)
画像濃度;低温低湿(LL:10℃20%RH)、高温高湿(HH:30℃80%RH)で評価
マクベス社製RD−918を使用して測定。紙の反射濃度を「0」とした相対反射濃度で測定した。多数枚のコピーで残留電位が増加すると、画像濃度が低下する。各1万枚コピー後のべた黒画像部で測定した。
A: Potential change | ΔV | of solid white image portion is less than 50 V (good)
○: Potential change of solid white image portion | ΔV | is 50 V to 150 V (no problem in practical use)
×: The potential change | ΔV | of the solid white image portion is larger than 150 V (practically problematic)
Image density: Evaluation at low temperature and low humidity (LL: 10 ° C., 20% RH), high temperature and high humidity (HH: 30 ° C., 80% RH) Measured using Macbeth RD-918. The relative reflection density was measured with the paper reflection density set to “0”. As the residual potential increases on multiple copies, the image density decreases. Measurements were taken at the solid black image portion after 10,000 copies each.

◎:低温低湿、高温高湿とも黒ベタ画像が1.2より高い(良好)
○:低温低湿、高温高湿とも黒ベタ画像が1.0以上、1.2以下(実用上問題なし)
×:低温低湿、高温高湿の何れかで黒ベタ画像が1.0未満(実用上問題あり)
カブリ;低温低湿(LL:10℃20%RH)、高温高湿(HH:30℃80%RH)で評価
カブリ濃度はべた白画像をマクベス社製RD−918を使用し反射濃度で測定した。該反射濃度は相対濃度(印刷していないA4紙の濃度を0.000とする)で評価した。各1万枚コピー後のべた黒画像部で測定した。
A: Black solid image is higher than 1.2 for both low temperature and low humidity and high temperature and high humidity (good)
○: Black solid image of 1.0 or more and 1.2 or less for both low temperature and low humidity and high temperature and high humidity (no problem in practical use)
×: Black solid image is less than 1.0 in either low temperature and low humidity or high temperature and high humidity (practical problem)
Fog: Evaluation at low temperature and low humidity (LL: 10 ° C., 20% RH), high temperature and high humidity (HH: 30 ° C., 80% RH) The fog density was measured by reflection density using a solid white image RD-918 manufactured by Macbeth. The reflection density was evaluated by a relative density (the density of A4 paper not printed is 0.000). Measurements were taken at the solid black image portion after 10,000 copies each.

◎;低温低湿、高温高湿とも濃度が0.010未満(良好)
○;低温低湿、高温高湿とも濃度が0.010以上、0.020以下(実用上問題ないレベル)
×;低温低湿、高温高湿の何れかで濃度が0.020より高い(実用上問題となるレベル)
絶縁破壊;低温低湿(LL:10℃20%RH)、高温高湿(30℃80%RH)で評価
○;LL又はHHで電荷リークによる感光体の絶縁破壊が発生なし。
A: Concentration is less than 0.010 (good) for both low temperature and low humidity and high temperature and high humidity
○: Concentration of 0.010 or more and 0.020 or less for both low temperature and low humidity and high temperature and high humidity (a level that causes no practical problems)
X: Concentration is higher than 0.020 at either low temperature and low humidity or high temperature and high humidity (a level that causes practical problems)
Dielectric breakdown: evaluated at low temperature and low humidity (LL: 10 ° C., 20% RH), high temperature and high humidity (30 ° C., 80% RH) ○: No dielectric breakdown of the photoconductor due to charge leakage at LL or HH.

×;LL又はHHで電荷リークによる感光体の絶縁破壊が発生した。   X: Dielectric breakdown of the photoreceptor due to charge leakage occurred at LL or HH.

黒ポチ(高温高湿(30℃80%RH))
周期性が感光体の周期と一致し、目視できる黒ポチ、黒筋状の画像欠陥が、A4サイズ当たり何個あるかで判定した。
Black pot (high temperature and high humidity (30 ° C 80% RH))
The periodicity coincided with the period of the photoconductor, and the number of visible black spots and black streak-like image defects per A4 size was determined.

◎;0.4mm以上の画像欠陥の頻度:全ての印刷画像が5個/A4以下(良好)
○;0.4mm以上の画像欠陥の頻度:6個/A4以上、10個/A4以下が1枚以上発生(実用上問題なし)
×;0.4mm以上の画像欠陥の頻度:11個/A4以上が1枚以上発生(実用上問題有り)
鮮鋭性
画像の鮮鋭性は、低温低湿(10℃20%RH)、高温高湿(30℃80%RH)の両環境において画像を出し、文字潰れで評価した。3ポイント、5ポイントの文字画像を形成し、下記の判断基準で評価した。
A: Frequency of image defects of 0.4 mm or more: All printed images are 5 / A4 or less (good)
○: Frequency of image defects of 0.4 mm or more: 1 or more of 6 / A4 or more and 10 / A4 or less (no problem in practical use)
X: Frequency of image defects of 0.4 mm or more: 11 or more A4 or more occurred (practical problem)
Sharpness The sharpness of the image was evaluated by squashing characters by displaying images in both low temperature and low humidity (10 ° C., 20% RH) and high temperature, high humidity (30 ° C., 80% RH) environments. 3-point and 5-point character images were formed and evaluated according to the following criteria.

◎;画像ボケの発生がなく、3ポイント、5ポイントとも明瞭であり、容易に判読可能
○;画像ボケの発生が軽微であり、3ポイントは一部判読不能、5ポイントは明瞭であり、容易に判読可能
×;画像ボケが発生し、3ポイントは殆ど判読不能、5ポイントも一部あるいは全部が判読不能
◎: No image blurring, 3 points and 5 points are clear and easy to read ○: Image blurring is minor, 3 points are partially unreadable, 5 points are clear and easy ×: Image blur occurs, 3 points are almost unreadable, 5 points are partially or completely unreadable

Figure 0004135596
Figure 0004135596

表2より、本発明の有機感光体、即ち、中間層の膜厚が5〜25μm、電荷輸送層の膜厚が、5〜20μmである有機感光体1〜は、高温高湿、低温低湿での残留電位、帯電電位の安定性に優れており、このことから画像濃度が十分で且つカブリ濃度が小さい。しかも絶縁破壊も発生せず、黒ポチ等の改良効果が顕著であり、その結果鮮鋭性が良好な電子写真画像を得ている。特に、中間層に金属酸化物粒子にニオブ元素を含有するアナターゼ形酸化チタン及び融解熱0〜40J/gで、吸水率5質量%以下のポリアミド樹脂を用い、中間層膜厚が7〜18μm、且つ電荷輸送層の膜厚が、8〜18μmの感光体1〜6は各評価項目の改良効果が著しい。一方、中間層の膜厚が4μmの感光体15は絶縁破壊が発生し、黒ポチの発生も多く、鮮鋭性も劣化している。中間層の膜厚が27μmの感光体16は残留電位の上昇が大きく、画像濃度が低下し、その結果鮮鋭性も低下している。電荷輸送層の膜厚が4μmの感光体17は絶縁破壊が発生し、黒ポチの発生も多く、鮮鋭性も劣化している。電荷輸送層の膜厚が22μmの感光体18は各ドット画像が不鮮明で、鮮鋭性が低下している。
From Table 2, the organic photoreceptors of the present invention, that is, the organic photoreceptors 1 to 9 having a thickness of the intermediate layer of 5 to 25 μm and the thickness of the charge transport layer of 5 to 20 μm are high temperature and high humidity and low temperature and low humidity. In this case, the residual potential and the charging potential are stable, and the image density is sufficient and the fog density is small. In addition, dielectric breakdown does not occur, and the improvement effect such as black spots is remarkable, and as a result, an electrophotographic image having excellent sharpness is obtained. In particular, an anatase-type titanium oxide containing niobium element in the metal oxide particles in the intermediate layer and a polyamide resin having a heat absorption of 0 to 40 J / g and a water absorption of 5% by mass or less, the intermediate layer thickness is 7 to 18 μm, In addition, the photoreceptors 1 to 6 having a charge transport layer thickness of 8 to 18 μm have a remarkable improvement effect on each evaluation item. On the other hand, the photoconductor 15 having an intermediate layer thickness of 4 μm has a dielectric breakdown, black spots are often generated, and sharpness is also deteriorated. In the photoreceptor 16 having an intermediate layer thickness of 27 μm, the residual potential is greatly increased, the image density is lowered, and as a result, the sharpness is also lowered. The photoconductor 17 having a charge transport layer thickness of 4 μm has dielectric breakdown, black spots are often generated, and sharpness is also deteriorated. On the photoconductor 18 having a charge transport layer thickness of 22 μm, each dot image is unclear and sharpness is lowered.

本発明に係る接触帯電方式を用いた画像形成装置1の断面概略図である。1 is a schematic cross-sectional view of an image forming apparatus 1 using a contact charging method according to the present invention. 画像形成装置1に着脱自在な感光体カートリッジ2の断面概略図である。2 is a schematic cross-sectional view of a photosensitive cartridge 2 that is detachable from the image forming apparatus 1. FIG.

符号の説明Explanation of symbols

1 画像形成装置
2 感光体カートリッジ
3 現像カートリッジ
4 露光装置
5 給紙装置
6 転写ローラ
7 定着器
8 排紙トレイ
21 感光体
22 帯電ブラシ
23、27 電源接続部材
24 プレ帯電フィルム
25、26 帯電ならし部材
DESCRIPTION OF SYMBOLS 1 Image forming apparatus 2 Photoconductor cartridge 3 Developer cartridge 4 Exposure apparatus 5 Paper feeder 6 Transfer roller 7 Fixing device 8 Paper discharge tray 21 Photoconductor 22 Charging brush 23, 27 Power supply connection member 24 Pre-charge film 25, 26 Charging Element

Claims (8)

有機感光体上に帯電部材を接触させて帯電する帯電手段、該有機感光体に静電潜像を形成する露光手段、該静電潜像をトナー像に顕像化する現像手段、該トナー像を転写材に転写する転写手段、前記帯電手段より上流に位置していて、該有機感光体面上のトナーを帯電する少なくとも1つ以上の補助帯電手段を有する画像形成装置に用いられる有機感光体において、導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有し、該中間層がニオブ元素を100ppm〜2.0質量%含有するアナターゼ形酸化チタン顔料を含有し且つ膜厚が5〜25μmであり、電荷輸送層の膜厚が5〜20μmであることを特徴とする有機感光体。 Charging means for charging by bringing a charging member into contact with the organic photoreceptor, exposure means for forming an electrostatic latent image on the organic photoreceptor, developing means for developing the electrostatic latent image into a toner image, the toner image In an organic photoconductor used in an image forming apparatus having at least one auxiliary charging unit that is located upstream of the charging unit and charges toner on the surface of the organic photoconductor And having at least an intermediate layer, a charge generation layer, and a charge transport layer on the conductive support, the intermediate layer containing anatase-type titanium oxide pigment containing niobium element at 100 ppm to 2.0 mass%, and having a film thickness An organic photoreceptor having a thickness of 5 to 25 μm and a charge transport layer thickness of 5 to 20 μm. 前記アナターゼ形酸化チタン顔料の数平均一次粒子が5〜400nmであることを特徴とする請求項1に記載の有機感光体。 The organophotoreceptor according to claim 1, wherein the number average primary particle of the anatase titanium oxide pigment is 5 to 400 nm . 前記中間層に融解熱0〜40J/gで、且つ吸水率5質量%以下のポリアミド樹脂を含有することを特徴とする請求項1又は2に記載の有機感光体。 3. The organic photoreceptor according to claim 1, wherein the intermediate layer contains a polyamide resin having a heat of fusion of 0 to 40 J / g and a water absorption of 5% by mass or less . 前記中間層の体積抵抗が10 8 Ω・cm以上であることを特徴とする請求項1〜3のいずれか1項に記載の有機感光体。 The organophotoreceptor according to claim 1, wherein the intermediate layer has a volume resistance of 10 8 Ω · cm or more . 前記中間層の膜厚が7〜15μmであることを特徴とする請求項1〜4のいずれか1項に記載の有機感光体。 The organic photoreceptor according to claim 1, wherein the intermediate layer has a thickness of 7 to 15 μm . 有機感光体上に帯電部材を接触させて帯電する帯電手段、該有機感光体に静電潜像を形成する露光手段、該静電潜像をトナー像に顕像化する現像手段、該トナー像を転写材に転写する転写手段、前記帯電手段より上流に位置していて、該有機感光体面上のトナーを帯電する少なくとも1つ以上の補助帯電手段を有する画像形成装置に用いられるプロセスカートリッジにおいて、導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有し、該中間層がニオブ元素を100ppm〜2.0質量%含有するアナターゼ形酸化チタン顔料を含有し且つ膜厚が5〜25μm、中間層の膜厚が5〜25μm、電荷輸送層の膜厚が5〜20μmである有機感光体と前記帯電手段、現像手段、転写手段、補助帯電手段の少なくとも1つとが一体的に支持され、画像形成装置本体に着脱自在に装着されていることを特徴とするプロセスカートリッジ。Charging means for charging by bringing a charging member into contact with the organic photoreceptor, exposure means for forming an electrostatic latent image on the organic photoreceptor, developing means for developing the electrostatic latent image into a toner image, the toner image In a process cartridge used in an image forming apparatus having at least one auxiliary charging unit that is located upstream of the charging unit and charges the toner on the surface of the organic photoreceptor, The conductive support has at least an intermediate layer, a charge generation layer, and a charge transport layer. The intermediate layer contains an anatase-type titanium oxide pigment containing niobium element in an amount of 100 ppm to 2.0 mass%, and has a thickness of 5 An organic photoreceptor having a thickness of ˜25 μm, an intermediate layer thickness of 5-25 μm, and a charge transport layer thickness of 5-20 μm is integrated with at least one of the charging means, developing means, transfer means, and auxiliary charging means. Is lifting, the process cartridge characterized in that it is detachably attached to the image forming apparatus main body. 有機感光体上に帯電部材を接触させて帯電する帯電手段、該有機感光体に静電潜像を形成する露光手段、該静電潜像をトナー像に顕像化する現像手段、該トナー像を転写材に転写する転写手段、前記帯電手段より上流に位置していて、該有機感光体面上のトナーを帯電する少なくとも1つ以上の補助帯電手段を有する画像形成装置において、該有機感光体が導電性支持体上に少なくとも中間層、電荷発生層及び電荷輸送層を有し、該中間層がニオブ元素を100ppm〜2.0質量%含有するアナターゼ形酸化チタン顔料を含有し且つ膜厚が5〜25μm、電荷輸送層の膜厚が5〜20μmであることを特徴とする画像形成装置。Charging means for charging by bringing a charging member into contact with the organic photoreceptor, exposure means for forming an electrostatic latent image on the organic photoreceptor, developing means for developing the electrostatic latent image into a toner image, the toner image In an image forming apparatus having at least one auxiliary charging unit that is located upstream of the charging unit and charges toner on the surface of the organic photosensitive member, the organic photosensitive member The conductive support has at least an intermediate layer, a charge generation layer, and a charge transport layer. The intermediate layer contains an anatase-type titanium oxide pigment containing niobium element in an amount of 100 ppm to 2.0 mass%, and has a thickness of 5 An image forming apparatus having a thickness of ˜25 μm and a charge transport layer thickness of 5˜20 μm. 請求項7の画像形成装置を用いて、電子写真画像を形成することを特徴とする画像形成方法。An image forming method comprising forming an electrophotographic image using the image forming apparatus according to claim 7.
JP2003304312A 2003-08-28 2003-08-28 Organic photoreceptor, process cartridge, image forming apparatus and image forming method Expired - Fee Related JP4135596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304312A JP4135596B2 (en) 2003-08-28 2003-08-28 Organic photoreceptor, process cartridge, image forming apparatus and image forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304312A JP4135596B2 (en) 2003-08-28 2003-08-28 Organic photoreceptor, process cartridge, image forming apparatus and image forming method

Publications (2)

Publication Number Publication Date
JP2005077458A JP2005077458A (en) 2005-03-24
JP4135596B2 true JP4135596B2 (en) 2008-08-20

Family

ID=34408033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304312A Expired - Fee Related JP4135596B2 (en) 2003-08-28 2003-08-28 Organic photoreceptor, process cartridge, image forming apparatus and image forming method

Country Status (1)

Country Link
JP (1) JP4135596B2 (en)

Also Published As

Publication number Publication date
JP2005077458A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US7166398B2 (en) Electrophotographic photoreceptor and device
JP4288949B2 (en) Electrophotographic photoreceptor, image forming apparatus, image forming method, and process cartridge
JP4042646B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005292782A (en) Organophotoreceptor, process cartridge and image forming apparatus
JP4292920B2 (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP3988685B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP2005338445A (en) Organic photoreceptor, process cartridge, image forming apparatus, and image forming method
JP2005274683A (en) Organic photoreceptor, process cartridge and image forming apparatus
JP3991929B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4321150B2 (en) Electrophotographic photosensitive member, process cartridge, image forming apparatus, and image forming method
JP4135696B2 (en) Organic photoreceptor, process cartridge, image forming method and image forming apparatus
JP3988686B2 (en) Electrophotographic photosensitive member, image forming apparatus, image forming method, and process cartridge
JP4135596B2 (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP4466420B2 (en) Method for producing organic photoreceptor
JP4155055B2 (en) Organic photoreceptor, image forming apparatus, image forming method, and process cartridge
JP2004177559A (en) Organic photoreceptor, image forming method, image forming apparatus, and process cartridge
JP2004133018A (en) Organic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2003345045A (en) Electrophotographic photoreceptor, apparatus and method for image forming and process cartridge
JP4349218B2 (en) Organic photoreceptor, process cartridge, and image forming apparatus
JP2005221923A (en) Organic photoreceptor, process cartridge, image forming apparatus, and image forming method
JP2004101800A (en) Electrophotographic photoreceptor, image forming apparatus, image forming method and process cartridge
JP3891061B2 (en) Electrophotographic photosensitive member, image forming apparatus, image forming method, and process cartridge
JP2005043390A (en) Electrophotographic photoreceptor, process cartridge, image forming apparatus and image forming method
JP2006064724A (en) Organic photoreceptor,image forming apparatus, image forming method, and process cartridge
JP4449741B2 (en) Organic photoreceptor, process cartridge, and image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees