JP4135225B2 - Vibration control structure of building frame - Google Patents

Vibration control structure of building frame Download PDF

Info

Publication number
JP4135225B2
JP4135225B2 JP23904298A JP23904298A JP4135225B2 JP 4135225 B2 JP4135225 B2 JP 4135225B2 JP 23904298 A JP23904298 A JP 23904298A JP 23904298 A JP23904298 A JP 23904298A JP 4135225 B2 JP4135225 B2 JP 4135225B2
Authority
JP
Japan
Prior art keywords
wall
building
building frame
frame
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23904298A
Other languages
Japanese (ja)
Other versions
JP2000064656A (en
Inventor
克巳 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP23904298A priority Critical patent/JP4135225B2/en
Publication of JP2000064656A publication Critical patent/JP2000064656A/en
Application granted granted Critical
Publication of JP4135225B2 publication Critical patent/JP4135225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、多層階となった建物に入力される地震や風などの振動エネルギーを効果的に吸収して、これを原因として発生する建物の揺動を抑制するようにした建物架構の制振構造に関する。
【0002】
【従来の技術】
一般に、ビル等の多層階建物はRC造,S造またはSRC造として構成され、柱および梁は立方体の各辺を構成するように順次結合してラーメン構造となっている。このような多層階建物では各種制振機能を取り入れて、地震や強風等によって発生する建物の揺動を抑制するようになっている。このような制振機能には建物自体の構造上から制振しようとする考え方が従来から存在するが、例えば、図6(a),(b)に示すように壁を用いた制振システムがある。これは地震や強風により建物架構1が揺動して、図7(a)に示すように剪断変形した場合および図7(b)に示すように曲げ変形した場合に、壁2と梁(または柱)3との間に設けたダンパーなどの制振ディバイス4によって、上記地震や風による振動エネルギーを吸収するようになっている。つまり、上記壁2と上記梁(柱)3との間には所定の隙間δが設けられており、この隙間δが建物架構の変形によって変化して上記制振ディバイス4が作動され、これによって制振機能が得られるようになっている。
【0003】
【発明が解決しようとする課題】
しかしながら、かかる従来の建物架構の制振構造にあっては、壁2は各階毎に独立して構築され、それぞれが上下階で分離されているため、制振ディバイス4に入力される隙間δの変化量は、各階毎の剪断および曲げの変形量に依存することになる。特に、図7(a)に示す剪断変形では、壁2と梁3との間の水平方向の相対変化量δSH1 は比較的大きく得られるが、図7(b)に示す曲げ変形では、同相対変化量δMH1 は小さくなり、また、垂直方向の相対変化量δMV1 は更に小さくなってしまう。
【0004】
このため、剪断変形をも考慮して設定した上記制振ディバイス4では、建物架構1の曲げ変形時に十分な制振機能を得ることができなくなってしまう。また、剛性を高くして少ない変形量で部材の非線形領域に入ってしまうRC構造などの建物架構では、剪断変形および曲げ変形にかかわらず上記制振ディバイス4による十分な制振機能を発揮できなくなってしまうという課題があった。
【0005】
そこで、本発明はかかる従来の課題に鑑みて成されたもので、剪断変形および曲げ変形にかかわらず、建物架構の変形量が少ない場合にも制振ディバイスの機能を十分に引き出して、制振効果を向上することができる建物架構の制振構造を提供することを目的とする。
【0006】
【課題を解決するための手段】
かかる目的を達成するために本発明の建物架構の制振構造は、多層階の建物架構にあって、対向する柱間に複数階にわたって連続する連層壁を形成し、この連層壁を、対向する柱とこれら柱間に架設される梁とで構成されるフレーム構造部に適宜間隙を設けて設置し、該フレーム構造部と連層壁とを、水平方向の変位に応じて作動する水平方向に設けられた水平ダンパーを介して連結すると共に、鉛直方向の変位に応じて作動する鉛直方向に設けられた鉛直ダンパーを介して連結する。
【0007】
従って、本発明の建物架構の制振構造にあっては、柱と梁とで構成されるフレーム構造部に、複数階にわたって連続する連層壁を設置するようにしたので、建物架構に剪断変形や曲げ変形が生じた際に、連層壁とフレーム構造部との間における変形量を、連層壁が連続する階層分の大きな変形量として得ることができる。従って、建物架構の変形量が少ない場合にも隙間変化を大きくできるため、フレーム構造部と連層壁とを連結する制振ディバイスによる制振機能を十分に引き出すことができ、建物の制振効果を著しく向上することができる。
【0008】
【発明の実施の形態】
以下、本発明の実施形態を添付図面を参照して詳細に説明する。図1から図4は本発明の建物架構の制振構造の一実施形態を示し、図1は建物架構の要部正面図、図2は建物架構の要部縦断面図、図3は建物架構の剪断変形時の隙間変化を示す説明図、図4は建物架構の曲げ変形時の隙間変化を示す説明図である。
【0009】
本発明にかかる制振構造は多層階の建物架構10に適用され、その基本構造は図1に示すように、対向する柱12,12間で複数階にわたって連続する連層壁14を形成し、この連層壁14を、対向する柱12,12とこれら柱12,12間に架設される梁16とで構成されるフレーム構造部18に対して適宜間隙δ1 ,δ2 を設けて嵌め込み、該フレーム構造部18と連層壁14とを制振ディバイス20を介して連結してある。
【0010】
上記建物架構10は、RC造,SRC造またはS造などによって中,高層ビルとして構築され、対向する柱12,12の中央部間に上記連層壁14は建込まれる。このとき、該連層壁14は1階から最上階まで連続して形成されるようになっており、従って、この連層壁14は上記柱12,12間に各階毎に架設される梁16を貫通することになる。このため、本実施形態では該梁16の中央部分に分離部分22を形成し、この分離部分22に上記連動壁14を挿通させる構造となっている。尚、図2中、24は床スラブである。
【0011】
上記連層壁14を、柱12,梁16からなるフレーム部材18に嵌め込む際、連層壁14と柱12との間に間隙δ1 が設けられるとともに、連層壁14と梁16の分離部分22の内側との間に間隙δ2 が設けられる。そして、連層壁14とフレーム部材18とを連結する制振ディバイス20は、上記間隙δ1 およびδ2 部分またはこれら間隙δ1 近傍および間隙δ2 近傍に配置される。
【0012】
制振ディバイス20としては、ダンパー20aや高減衰ゴム20bなどのエネルギー吸収材を用いてある。ダンパー20aは高粘性流体の封入式が望ましく、間隙δ1 ,δ2 の変化に伴ってオリフィスを強制通過する際に振動エネルギーを吸収する。一方、上記高減衰ゴム20bは、急激な圧縮変形を伴う場合に振動エネルギーを吸収し、連層壁14の面内方向全てに対して減衰を付加することができる。
【0013】
上記ダンパー20aは一端部が上記連層壁14に取り付けられ、他端部が上記フレーム構造部18に取り付けられる。上記高減衰ゴム20bは、小さな間隙δ2 部分でダンパー20aの配置が困難な部位に設けられ、該高減衰ゴム20bの一側面が連層壁14に固設されるとともに、他側面が梁16の分離部分22内側に固設される。この高減衰ゴム20bは連層壁14と柱12との間の間隙δ1 にも配設することができる。
【0014】
以上の構成により本実施形態の建物架構の制振構造にあっては、柱12と梁16とで構成されるフレーム構造部18に、1階から最上階にわたって連続する連層壁14を柱12と梁16との間に適宜隙間δ1 ,δ2 を設けて嵌め込み、かつ、連層壁14とフレーム構造部18とを、ダンパー20aや高減衰ゴム20bなどで構成される制振ディバイス20を介して連結したので、地震や風により建物架構10に剪断変形や曲げ変形が生じた際に、上記隙間δ1 ,δ2 の間隔が変化して上記制振ディバイス20が作動して振動エネルギーを吸収し、建物架構10の揺動を迅速に減衰して制振機能を発揮することができる。
【0015】
ここで、本実施形態では上記連層壁14が1階から最上階まで多層階にわたって連続するため、該連層壁14とフレーム構造部18との間の隙間δ1 ,δ2 の最大変化量は、1階から最上階までの各階の隙間変化量が集合されたものとなる。
【0016】
即ち、図3は建物架構10が剪断変形した場合で、この建物架構10の変形量が図7(a)に示した従来の場合と同一とした場合、連層壁14とフレーム構造部18との間に現れる水平方向の相対変化量δSH2 は、従来の相対変化量δSH1 より大きな値として得ることができる。また、図4は建物架構10が曲げ変形した場合で、この場合にあっても建物架構10の変形量が図7(b)に示した従来と同一とした場合、水平方向の相対変化量δMH2 および垂直方向の相対変化量δMV2 は共に、従来の相対変化量δMH1 およびδMV1 より大きな値として得ることができる。
【0017】
従って、建物架構10の変形量が少ない場合にも、上記制振ディバイス20による制振機能を十分に引き出すことができ、延いては、建物の制振効果を著しく向上することができる。特に、建物架構10の曲げ変形時には、水平方向および垂直方向の変形量が剪断変形時に比較して著しく小さくなるが、この変形量が小さい曲げ変形時にあっても上記制振ディバイス20を作動させ、延いては、建物の制振機能を十分に確保することができる。また、上記連層壁14は各階毎に分断されていないため、特に、建物が高層化した場合には連層壁14が各階の層間変形を均一化させることができる。
【0018】
ところで、本実施形態にあっては、連層壁14を1階から最上階に至る全階数にわたって連続させた場合を開示したが、これに限ることはなく任意の連続した複数階、例えば1階から中間階までの間とか、中間階から最上階までの間などのように、任意部分の複数階にわたって該連層壁14を連続させればよい。勿論、この場合は連続させた階数分に応じた制振効果が得られることになる。
【0019】
また、制振ディバイス20としては、本実施形態に開示したダンパー20aや高減衰ゴム20b以外に、鉛などの粘弾性材で形成されるリンク材や、高摩擦材などを用いることができる。この場合、リンク材は粘性変形により、かつ、高摩擦材は摩擦抵抗により振動エネルギーが吸収される。
【0020】
ところで、この実施形態では上記連層壁14を一対の柱12,12間に設けた場合を図示したが、この連層壁14は全ての壁に適用して良く、また、制振するに効果的な部位を選択して、その部分の壁を連層壁14とすることもできる。
【0021】
図5は建物架構10の外壁26部分の縦断面図で、連層壁として該外壁26を用いた場合を示す。この場合にあっても外壁26と梁16との間に適宜間隙δ3 を設け、この間隙δ3 部分に高減衰ゴム20bを取り付けるとともに、この間隙δ3 の下側にダンパー20aを設けてある。
【0022】
従って、このように建物の外殻を構成する外壁26を連層壁として利用することにより、建物に必ず備わる外壁26によって制振効果の更なる向上を図ることができる。また、この実施形態のように外壁26を連層壁とする考え方は、建物架構10の内部において、連層壁14の片面のみに梁16が配置される場合にあっても適用することができる。
【0023】
【発明の効果】
以上説明したように本発明の請求項1に示す建物架構の制振構造にあっては、連層壁を、対向する柱間に複数階にわたって連続して形成し、この連層壁を柱,梁からなるフレーム構造部に適宜間隙を設けて設置し、該フレーム構造部と連層壁とを、水平方向の変位に応じて作動する水平方向に設けられた水平ダンパーを介して連結すると共に、鉛直方向の変位に応じて作動する鉛直方向に設けられた鉛直ダンパーを介して連結したので、地震や風などにより建物架構に剪断変形や曲げ変形が生じた際に、連層壁とフレーム構造部との間における変形量を、連層壁が連続する階層分の大きな変形量として得ることができる。
【0024】
従って、建物架構が曲げ変形された場合や架構自体の剛性を高くした場合などにあって建物架構の変形量が少ない場合にも、フレーム構造部と連層壁とを連結する制振ディバイスによる制振機能を十分に引き出すことができ、建物の制振効果を著しく向上することができる。また、上記連層壁は各階毎に分断されていないため、特に、建物が高層化した場合には連層壁が各階の層間変形を均一化させることができるという優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す建物架構の要部正面図である。
【図2】本発明の一実施形態を示す建物架構の要部縦断面図である。
【図3】本発明の一実施形態を示す建物架構の剪断変形時の説明図である。
【図4】本発明の一実施形態を示す建物架構の曲げ変形時の説明図である。
【図5】本発明の他の実施形態を示す建物架構の要部縦断面図である。
【図6】従来の建物架構の要部正面図(a)と要部縦断面図(b)とを示す説明図である。
【図7】従来の建物架構の剪断変形時(a)と曲げ変形時(b)とを示す説明図である。
【符号の説明】
10 建物架構
12 柱
14 連層壁
16 梁
18 フレーム構造部
20 制振ディバイス
20a ダンパー(制振ディバイス)
20b 高減衰ゴム(制振ディバイス)
26 外壁(連層壁)
δ1 ,δ2 ,δ3 隙間
[0001]
BACKGROUND OF THE INVENTION
The present invention effectively absorbs vibration energy such as earthquakes and winds input to a multi-storey building, and suppresses the vibration of the building that is caused by the vibration energy. Concerning structure.
[0002]
[Prior art]
In general, a multi-storey building such as a building is configured as an RC structure, an S structure, or an SRC structure, and columns and beams are sequentially connected to form each side of a cube to form a ramen structure. Such a multi-story building incorporates various vibration control functions to suppress the swinging of the building caused by earthquakes or strong winds. For such a damping function, there is a conventional idea of damping from the structure of the building itself. For example, as shown in FIGS. 6 (a) and 6 (b), a damping system using walls is used. is there. This is because when the building frame 1 is swung due to an earthquake or strong wind and sheared as shown in FIG. 7A and bent as shown in FIG. 7B, the wall 2 and the beam (or The vibration energy caused by the earthquake or wind is absorbed by a damping device 4 such as a damper provided between the column and the pillar 3. In other words, a predetermined gap δ is provided between the wall 2 and the beam (column) 3, and the gap δ changes due to deformation of the building frame, and the vibration damping device 4 is activated. A vibration control function can be obtained.
[0003]
[Problems to be solved by the invention]
However, in such a conventional vibration control structure of a building frame, the wall 2 is constructed independently for each floor, and is separated on the upper and lower floors, so that the gap δ input to the vibration suppression device 4 is reduced. The amount of change will depend on the amount of shear and bending deformation at each floor. In particular, in the shear deformation shown in FIG. 7 (a), the horizontal relative change amount δSH1 between the wall 2 and the beam 3 is relatively large, but in the bending deformation shown in FIG. The change amount ΔMH1 becomes small, and the relative change amount ΔMV1 in the vertical direction becomes further small.
[0004]
For this reason, in the said damping device 4 set also considering the shear deformation, it becomes impossible to obtain a sufficient damping function when the building frame 1 is bent and deformed. Moreover, in a building structure such as an RC structure that increases rigidity and enters the nonlinear region of the member with a small amount of deformation, a sufficient vibration control function by the vibration control device 4 cannot be exhibited regardless of shear deformation or bending deformation. There was a problem that it ended up.
[0005]
Therefore, the present invention has been made in view of such a conventional problem. Regardless of shear deformation or bending deformation, the present invention can fully extract the function of the vibration suppression device even when the amount of deformation of the building frame is small, thereby suppressing vibration. An object of the present invention is to provide a vibration control structure of a building frame that can improve the effect.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, the vibration control structure of a building frame according to the present invention is a multi-story building frame, and a continuous wall is formed between opposing columns over a plurality of floors. A frame structure composed of opposing columns and beams installed between the columns is provided with an appropriate gap, and the frame structure and the multi-layered wall are operated in accordance with horizontal displacement. It connects via the horizontal damper provided in the direction, and connects via the vertical damper provided in the vertical direction that operates according to the displacement in the vertical direction .
[0007]
Therefore, in the vibration control structure of a building frame according to the present invention, a multi-story continuous wall is installed in the frame structure part composed of columns and beams. When bending deformation occurs, the amount of deformation between the multi-layer wall and the frame structure can be obtained as a large amount of deformation for the layer where the multi-layer wall continues. Therefore, even when the amount of deformation of the building frame is small, the gap change can be increased, so that the vibration control function by the vibration control device that connects the frame structure and the multi-layered wall can be fully exploited, and the vibration control effect of the building Can be remarkably improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 to 4 show an embodiment of a vibration control structure for a building frame according to the present invention, FIG. 1 is a front view of the main part of the building frame, FIG. 2 is a longitudinal sectional view of the main part of the building frame, and FIG. FIG. 4 is an explanatory view showing a change in the gap during bending deformation of the building frame.
[0009]
The vibration damping structure according to the present invention is applied to a multi-story building frame 10, and its basic structure forms a continuous wall 14 extending across a plurality of floors between opposing pillars 12 and 12, as shown in FIG. The multi-layer wall 14 is fitted into a frame structure portion 18 composed of opposing columns 12 and 12 and a beam 16 installed between the columns 12 and 12, with appropriate gaps δ1 and δ2, and the frame The structural portion 18 and the multi-layer wall 14 are connected via a vibration control device 20.
[0010]
The building frame 10 is constructed as a middle or high-rise building by RC construction, SRC construction, S construction, or the like, and the multi-story wall 14 is built between the center portions of the opposing columns 12 and 12. At this time, the multi-layer wall 14 is formed continuously from the first floor to the top floor. Therefore, the multi-layer wall 14 is formed between the pillars 12 and 12 and the beams 16 installed on each floor. Will penetrate. For this reason, in the present embodiment, a separation portion 22 is formed in the central portion of the beam 16, and the interlocking wall 14 is inserted through the separation portion 22. In FIG. 2, 24 is a floor slab.
[0011]
When the multi-layer wall 14 is fitted into the frame member 18 including the column 12 and the beam 16, a gap δ 1 is provided between the multi-layer wall 14 and the column 12, and a separation portion between the multi-layer wall 14 and the beam 16 is provided. A gap .delta.2 is provided between the inner side of 22 and the inner side. The damping device 20 that connects the multi-layer wall 14 and the frame member 18 is disposed in the gaps δ1 and δ2 or in the vicinity of the gap δ1 and the gap δ2.
[0012]
As the damping device 20, an energy absorbing material such as a damper 20a or a high damping rubber 20b is used. The damper 20a is preferably a sealed type of a highly viscous fluid, and absorbs vibration energy when forcibly passing through the orifice as the gaps δ1 and δ2 change. On the other hand, the high damping rubber 20b absorbs vibration energy when accompanied by sudden compression deformation, and can add damping to all in-plane directions of the multi-layer wall 14.
[0013]
One end of the damper 20 a is attached to the continuous wall 14, and the other end is attached to the frame structure 18. The high-attenuation rubber 20b is provided at a portion where it is difficult to place the damper 20a in a small gap δ2, and one side surface of the high-attenuation rubber 20b is fixed to the continuous wall 14 and the other side surface of the beam 16 is provided. It is fixed inside the separation part 22. The high-damping rubber 20b can also be disposed in the gap δ1 between the continuous wall 14 and the column 12.
[0014]
In the vibration control structure for a building frame according to the present embodiment having the above-described configuration, the continuous wall 14 extending from the first floor to the uppermost floor is formed on the column structure 12 including the columns 12 and the beams 16. Are provided with appropriate gaps δ1, δ2 between the beam 16 and the beam 16, and the multi-layer wall 14 and the frame structure 18 are connected to each other via a damping device 20 including a damper 20a, a high damping rubber 20b, and the like. Because they are connected, when shear deformation or bending deformation occurs in the building frame 10 due to an earthquake or wind, the gaps δ1 and δ2 change and the vibration control device 20 operates to absorb vibration energy, and the building The vibration of the frame 10 can be quickly attenuated to exhibit a vibration damping function.
[0015]
Here, in the present embodiment, since the multi-layer wall 14 is continuous over the multi-layer floor from the first floor to the top floor, the maximum amount of change in the gaps δ1 and δ2 between the multi-layer wall 14 and the frame structure portion 18 is as follows. The gap change amount of each floor from the first floor to the top floor is gathered.
[0016]
That is, FIG. 3 shows a case where the building frame 10 undergoes shear deformation, and when the amount of deformation of the building frame 10 is the same as that of the conventional case shown in FIG. The horizontal relative change amount ΔSH2 appearing during the period can be obtained as a larger value than the conventional relative change amount ΔSH1. FIG. 4 shows a case where the building frame 10 is bent and deformed. Even in this case, if the deformation amount of the building frame 10 is the same as the conventional structure shown in FIG. The vertical relative change ΔMV2 can be obtained as a larger value than the conventional relative changes ΔMH1 and ΔMV1.
[0017]
Therefore, even when the amount of deformation of the building frame 10 is small, the vibration damping function by the vibration damping device 20 can be sufficiently extracted, and the vibration damping effect of the building can be significantly improved. In particular, when the building frame 10 is bent and deformed, the amount of deformation in the horizontal direction and the vertical direction is significantly smaller than that during shear deformation. However, even when the amount of deformation is small, the damping device 20 is operated. As a result, the vibration control function of the building can be sufficiently secured. In addition, since the multi-layer wall 14 is not divided for each floor, the multi-layer wall 14 can make the interlayer deformation of each floor uniform, especially when the building is raised.
[0018]
By the way, in this embodiment, although the case where the continuous layer wall 14 was made to continue over the whole number of floors from the first floor to the top floor was disclosed, it is not limited to this and any continuous plural floors, for example, the first floor What is necessary is just to make this continuous layer wall 14 continue over several floors of arbitrary parts, such as between from the middle floor to the middle floor, or from the middle floor to the top floor. Of course, in this case, a damping effect corresponding to the number of consecutive floors can be obtained.
[0019]
Moreover, as the damping device 20, in addition to the damper 20a and the high damping rubber 20b disclosed in the present embodiment, a link material formed of a viscoelastic material such as lead, a high friction material, or the like can be used. In this case, vibration energy is absorbed by the link material due to viscous deformation, and the high friction material is absorbed by frictional resistance.
[0020]
By the way, in this embodiment, although the case where the said continuous layer wall 14 was provided between a pair of pillars 12 and 12 was illustrated, this continuous layer wall 14 may be applied to all the walls and is effective in damping. It is also possible to select a specific part and make the wall of the part a multi-layered wall 14.
[0021]
FIG. 5 is a longitudinal sectional view of the outer wall 26 portion of the building frame 10 and shows a case where the outer wall 26 is used as a multi-layered wall. Even in this case, a gap δ3 is appropriately provided between the outer wall 26 and the beam 16, a high damping rubber 20b is attached to the gap δ3, and a damper 20a is provided below the gap δ3.
[0022]
Therefore, by using the outer wall 26 constituting the outer shell of the building as a multi-layered wall in this way, the vibration control effect can be further improved by the outer wall 26 that is always provided in the building. In addition, the idea that the outer wall 26 is a multi-layered wall as in this embodiment can be applied even when the beam 16 is arranged on only one side of the multi-layered wall 14 inside the building frame 10. .
[0023]
【The invention's effect】
As described above, in the vibration control structure for a building frame according to claim 1 of the present invention, a multi-layer wall is continuously formed across a plurality of floors between opposing columns. The frame structure portion made of beams is installed with an appropriate gap, and the frame structure portion and the multi-layered wall are connected via a horizontal damper provided in a horizontal direction that operates according to a horizontal displacement, Because they are connected via vertical dampers that operate in response to vertical displacements , multi-story walls and frame structures can be used when shear deformation or bending deformation occurs in a building frame due to an earthquake or wind. The amount of deformation between the two can be obtained as a large amount of deformation corresponding to the layer in which the continuous wall is continuous.
[0024]
Therefore, even if the building frame is bent or deformed, or the rigidity of the frame itself is increased, and the amount of deformation of the building frame is small, the damping device that connects the frame structure and the multi-layered wall is used. The vibration function can be sufficiently extracted, and the vibration control effect of the building can be remarkably improved. In addition, since the above-mentioned multi-story wall is not divided for each floor, the multi-story wall has an excellent effect that the interlayer deformation of each floor can be made uniform especially when the building is raised.
[Brief description of the drawings]
FIG. 1 is a front view of a main part of a building frame showing an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of an essential part of a building frame showing an embodiment of the present invention.
FIG. 3 is an explanatory diagram at the time of shear deformation of a building frame showing an embodiment of the present invention.
FIG. 4 is an explanatory diagram at the time of bending deformation of a building frame showing an embodiment of the present invention.
FIG. 5 is a longitudinal sectional view of an essential part of a building frame showing another embodiment of the present invention.
FIG. 6 is an explanatory view showing a main part front view (a) and a main part longitudinal sectional view (b) of a conventional building frame.
FIG. 7 is an explanatory diagram showing a shear deformation (a) and a bending deformation (b) of a conventional building frame.
[Explanation of symbols]
10 Building Frame 12 Column 14 Multi-layer Wall 16 Beam 18 Frame Structure 20 Damping Device 20a Damper (Damping Device)
20b High damping rubber (damping device)
26 Outer wall (multi-layered wall)
δ1, δ2, δ3 clearance

Claims (1)

多層階の建物架構にあって、対向する柱間に複数階にわたって連続する連層壁を形成し、この連層壁を、対向する柱とこれら柱間に架設される梁とで構成されるフレーム構造部に適宜間隙を設けて設置し、該フレーム構造部と連層壁とを、水平方向の変位に応じて作動する水平方向に設けられた水平ダンパーを介して連結すると共に、鉛直方向の変位に応じて作動する鉛直方向に設けられた鉛直ダンパーを介して連結したことを特徴とする建物架構の制振構造。In a multi-story building structure, a continuous layer wall is formed between opposing columns across multiple floors, and the continuous layer wall is composed of opposing columns and beams built between these columns. The structure part is installed with an appropriate gap, and the frame structure part and the multi-layered wall are connected via a horizontal damper provided in the horizontal direction that operates according to the horizontal direction displacement, and the vertical direction displacement. A vibration control structure for a building frame, wherein the structure is connected via a vertical damper provided in a vertical direction that operates in response to the vibration.
JP23904298A 1998-08-25 1998-08-25 Vibration control structure of building frame Expired - Fee Related JP4135225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23904298A JP4135225B2 (en) 1998-08-25 1998-08-25 Vibration control structure of building frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23904298A JP4135225B2 (en) 1998-08-25 1998-08-25 Vibration control structure of building frame

Publications (2)

Publication Number Publication Date
JP2000064656A JP2000064656A (en) 2000-02-29
JP4135225B2 true JP4135225B2 (en) 2008-08-20

Family

ID=17039021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23904298A Expired - Fee Related JP4135225B2 (en) 1998-08-25 1998-08-25 Vibration control structure of building frame

Country Status (1)

Country Link
JP (1) JP4135225B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631280B2 (en) * 2004-01-22 2011-02-16 鹿島建設株式会社 Seismic control pier
CN114459531A (en) * 2021-07-26 2022-05-10 北京大成国测科技有限公司 Station building structure safety monitoring method and device based on meteorological information and electronic equipment

Also Published As

Publication number Publication date
JP2000064656A (en) 2000-02-29

Similar Documents

Publication Publication Date Title
JP4135225B2 (en) Vibration control structure of building frame
JP5403331B2 (en) Seismic control frame
JP3261949B2 (en) Vibration control structure using walls of existing building
JPH10280725A (en) Damping skeleton construction
JP2842159B2 (en) Bending deformation control type vibration control structure
JPH021947B2 (en)
JP2000328810A (en) Vibration control frame
JP3248684B2 (en) Damping structure
JP4155928B2 (en) Structure of apartment building
JP2663835B2 (en) Compound control type vibration control structure
JP3677706B2 (en) Seismic isolation and control structure
JP2914187B2 (en) Bending deformation control type vibration control frame
JPH08277650A (en) Bending deformation control type vibration damping structure
JP2010189903A (en) Damping frame for building
JP2001200654A (en) Vibration control building
JP2573525B2 (en) Partition wall damping structure
JP7438154B2 (en) vibration damping building
JP3783133B2 (en) Boundary beam damper and arrangement method of boundary beam damper
JP2001227194A (en) Response controlled structure and method for constructing the same
JPH11350776A (en) Vibration-damping building
JP7094870B2 (en) Vibration control building
JP2009197501A (en) Vibration control structure for building
JP2000204790A (en) Vibration damping building
JP4888697B2 (en) Damping structure
JP5053554B2 (en) Vibration control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050722

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees