JP4134881B2 - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor Download PDF

Info

Publication number
JP4134881B2
JP4134881B2 JP2003367784A JP2003367784A JP4134881B2 JP 4134881 B2 JP4134881 B2 JP 4134881B2 JP 2003367784 A JP2003367784 A JP 2003367784A JP 2003367784 A JP2003367784 A JP 2003367784A JP 4134881 B2 JP4134881 B2 JP 4134881B2
Authority
JP
Japan
Prior art keywords
support
support portion
acceleration sensor
main surface
semiconductor acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003367784A
Other languages
Japanese (ja)
Other versions
JP2005134155A (en
Inventor
大介 若林
万士 片岡
久和 宮島
澄夫 赤井
仁 吉田
浩嗣 後藤
誠 森井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003367784A priority Critical patent/JP4134881B2/en
Publication of JP2005134155A publication Critical patent/JP2005134155A/en
Application granted granted Critical
Publication of JP4134881B2 publication Critical patent/JP4134881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、応力を電気信号に変換することにより作用した加速度を検知する半導体加速度センサに関し、特に、温度特性に優れた半導体加速度センサに関するものである。   The present invention relates to a semiconductor acceleration sensor that detects acceleration applied by converting stress into an electrical signal, and more particularly to a semiconductor acceleration sensor having excellent temperature characteristics.

この種の背景技術として、例えば、特開2000−187040号公報(特許文献1)に提案されているものがあり、これを図3に示す。図3(a)はその全体概略平面図であり、図3(b)はA−A線で切断したときの概略断面図である。   As this type of background art, for example, there is one proposed in Japanese Patent Laid-Open No. 2000-187040 (Patent Document 1), which is shown in FIG. FIG. 3A is an overall schematic plan view thereof, and FIG. 3B is a schematic cross-sectional view taken along line AA.

このものは、シリコンからなる半導体基板にて形成されており、支持部110と、撓み部120と、重り部130と、切込み溝140とを備えている。   This is formed of a semiconductor substrate made of silicon, and includes a support part 110, a bending part 120, a weight part 130, and a cut groove 140.

支持部110は、重り部130を支持するものであり、平面視において略四角形状に形成されている。また、その内方は、それぞれの辺が支持部110の周縁と平行となる略四角形状に開口されており、全体として支持部110は枠体に構成されている。   The support part 110 supports the weight part 130, and is formed in a substantially rectangular shape in plan view. In addition, the inner side is opened in a substantially quadrangular shape in which each side is parallel to the peripheral edge of the support portion 110, and the support portion 110 is configured as a frame as a whole.

撓み部120は、支持部110と重り部130との間に介在して重り部130を吊り下げ支持するものであり、平面視において短冊状に形成されており、その厚みは弾性を有するように薄肉状に形成されている。また、このものは、支持部110と一体に形成され、支持部110を構成する4辺の上面から内方にそれぞれ突設しており、支持部110の内方の中央付近で交差して交差部111を構成している。   The bending portion 120 is interposed between the support portion 110 and the weight portion 130 to suspend and support the weight portion 130, and is formed in a strip shape in a plan view, so that the thickness thereof has elasticity. It is formed in a thin shape. In addition, this is integrally formed with the support part 110 and protrudes inward from the upper surfaces of the four sides constituting the support part 110, and intersects and intersects near the inner center of the support part 110. Part 111 is configured.

また、撓み部120表面の交差部111近傍及び支持部110近傍には複数のピエゾ抵抗(図示せず)が形成されている。ここで、支持部110の任意の一辺と平行な方向をX軸とし、そのX軸と90°の角度で交差する他の一辺と平行な方向をY軸、X軸とY軸との両方と90°の角度で交差する方向をZ軸としたとき、これらのピエゾ抵抗は、それぞれの軸方向に作用する加速度を検出するためにX軸、Y軸、Z軸に対応する4つを一組としてホイートストンブリッジを構成している。   In addition, a plurality of piezoresistors (not shown) are formed in the vicinity of the intersection portion 111 and the support portion 110 on the surface of the bending portion 120. Here, the direction parallel to any one side of the support part 110 is defined as the X axis, the direction parallel to the other side intersecting the X axis at an angle of 90 ° is defined as the Y axis, and both the X axis and the Y axis. When the direction intersecting at an angle of 90 ° is the Z-axis, these piezoresistors are a set of four corresponding to the X-axis, Y-axis, and Z-axis in order to detect acceleration acting in the respective axial directions. As a Wheatstone bridge.

重り部130は、作用する加速度の大きさに応じて遊動し、撓み部120の撓み量を変化させるものであり、換言すると、重り部130が受けた加速度をニュートンの運動方程式で導出される力に変換して撓み部120を撓ませるものである。このものは、支持部110の内方の空間に位置して撓み部120により吊り下げ支持されており、その形状は、支持部110の厚み方向において下面(図3(b)の下側)に向かって幅の狭くなる台形状をなし、平面視において略四角形状をなしている。   The weight part 130 is idled according to the magnitude of the acting acceleration, and changes the amount of bending of the bending part 120. In other words, the force received by the weight part 130 is derived from Newton's equation of motion. In other words, the bending portion 120 is bent. This is located in the inner space of the support part 110 and supported by being suspended by the bending part 120, and its shape is on the lower surface (below FIG. 3B) in the thickness direction of the support part 110. It has a trapezoidal shape that becomes narrower in width, and has a substantially square shape in plan view.

切込み溝140は、支持部110と上部キャップ(図示せず)及び支持部110と下部キャップ(図示せず)を接合した際に発生する応力を緩和するものであり、その形状は、断面視においてV字形状に形成されている。また、このものは、支持部110のそれぞれの辺に複数形成されており、さらに、それぞれの辺と一体化している撓み部120と平行な方向に形成されている。また、切込み溝140の長手方向の一端は支持部110の周縁に達している。   The cut groove 140 relieves stress generated when the support portion 110 and the upper cap (not shown) and the support portion 110 and the lower cap (not shown) are joined, and the shape thereof is in a cross-sectional view. It is formed in a V shape. In addition, a plurality of these are formed on each side of the support part 110, and are formed in a direction parallel to the bending part 120 integrated with each side. In addition, one end in the longitudinal direction of the cut groove 140 reaches the periphery of the support portion 110.

したがって、上記構成の半導体加速度センサによれば、支持部110と上部キャップ及び支持部110と下部キャップを陽極接合を用いて接合した際に、支持部110と各キャップとの線膨張係数の違いにより生じる応力を切込み溝140により吸収できるので、撓み部120に発生する歪みを低減して温度特性を向上することができるのである。
特開2000−187040号
Therefore, according to the semiconductor acceleration sensor having the above-described configuration, when the support portion 110 and the upper cap and the support portion 110 and the lower cap are joined using anodic bonding, due to the difference in the linear expansion coefficient between the support portion 110 and each cap. Since the generated stress can be absorbed by the cut groove 140, the distortion generated in the bent portion 120 can be reduced and the temperature characteristics can be improved.
JP 2000-187040 A

しかしながら、このような半導体加速度センサは、KOHなどを用いた半導体基板の結晶方位に依存する異方性エッチングで切込み溝140を形成しているため、その深さは半導体加速度センサの大きさや破壊強度などにより限定されてしまう。ゆえに、接合部分で発生する応力、特に、支持部110の隅角で発生する応力が支持部110の内方の周縁を伝達して撓み部120に作用してしまう恐れがあり、高精度な温度特性を要求される状況においては精度的に不十分である場合があった。   However, since such a semiconductor acceleration sensor has the cut groove 140 formed by anisotropic etching that depends on the crystal orientation of the semiconductor substrate using KOH or the like, its depth depends on the size and the breaking strength of the semiconductor acceleration sensor. It will be limited by. Therefore, there is a possibility that the stress generated at the joint portion, particularly the stress generated at the corner of the support portion 110, may be transmitted to the inner peripheral edge of the support portion 110 and act on the flexure portion 120. In situations where characteristics are required, accuracy may be insufficient.

本発明は、上記の点に鑑みてなしたものであり、その目的とするところは、応力の吸収効率を向上させて温度特性の優れた半導体加速度センサを提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a semiconductor acceleration sensor having improved temperature absorption characteristics and excellent temperature characteristics.

上記目的を達成するために、請求項1に係る発明の半導体加速度センサは、第1主面と第2主面とを有する半導体基板からなり、内方を開口した支持部と、基端部を支持部の前記第1主面側に設けて開口内に延設された弾性を有する梁部と、梁部により吊り下げ支持されて遊動自在に可動する錘部と、梁部に設けられるとともに作用する加速度に応じて抵抗値の変化するピエゾ抵抗と、支持部の前記第2主面側に少なくとも前記第2主面を分断するように設けてなり、支持部の隅角から梁部の基端部へ伝達する応力を吸収する緩和手段と、を有してなり、半導体基板をSOI基板にて構成するとともに、前記緩和手段はその深さをSOI基板の絶縁層まで穿設した凹状体であることを特徴とするものである。 In order to achieve the above object, a semiconductor acceleration sensor according to a first aspect of the present invention comprises a semiconductor substrate having a first main surface and a second main surface, and includes a support portion having an inward opening and a base end portion. An elastic beam portion provided on the first main surface side of the support portion and extending in the opening, a weight portion that is suspended and supported by the beam portion and freely movable, and is provided on the beam portion and functions. A piezoresistor whose resistance value changes according to the acceleration to be performed, and the second main surface side of the support portion is provided so as to divide at least the second main surface, and the base end of the beam portion from the corner of the support portion And a relaxation means for absorbing the stress transmitted to the part , the semiconductor substrate is constituted by an SOI substrate, and the relaxation means is a concave body whose depth is drilled to the insulating layer of the SOI substrate. It is characterized by this.

このものによれば、支持部の第2主面側を他部材に接合した際に、接合部から伝達される応力、特に、応力の集中する支持部の隅角から伝達してくる応力の伝達経路を緩和手段により分断して応力の吸収効率を向上することができ、さらに、緩和手段の深さを支持部の厚み方向におけるほぼ全域まで設けることができ、また、深さの制御手段としてシリコンとエッチングレートの異なる絶縁層がエッチングストッパとなるので、緩和手段の深さのバラツキを抑制できる。 According to this, when the second main surface side of the support portion is joined to another member, the stress transmitted from the joint portion, particularly the stress transmitted from the corner of the support portion where the stress is concentrated is transmitted. The path can be divided by the relaxation means to improve the stress absorption efficiency . Further, the depth of the relaxation means can be provided to almost the entire area in the thickness direction of the support portion, and silicon can be used as the depth control means. and since insulating layers having different etch rate is the etching stopper, Ru can suppress variation in depth of the relieving means.

本発明の半導体加速度センサによれば、緩衝手段により支持部の第2主面側から伝達される応力の伝達経路を緩和手段により分断して応力の吸収効率を向上することができるので、線膨張係数の違いにより温度変化で生じる応力に対しても撓み部の受ける影響を低減して温度特性を向上することができる。   According to the semiconductor acceleration sensor of the present invention, the stress transmission efficiency can be improved by dividing the transmission path of the stress transmitted from the second main surface side of the support portion by the buffering means by the relaxation means. It is possible to improve the temperature characteristics by reducing the influence of the bending portion on the stress caused by the temperature change due to the difference in coefficient.

また、半導体基板としてSOI基板を用いることにより、緩衝手段として深さを支持部の厚み方向におけるほぼ全域まで設けた凹状体を形成することができ、また、凹状体の深さの制御を絶縁層で行えるので、緩衝手段の深さのバラツキを抑制でき、結果的に、温度特性を向上させ、かつ温度特性のバラツキを抑制することができる。   Further, by using an SOI substrate as the semiconductor substrate, a concave body having a depth up to almost the entire region in the thickness direction of the support portion can be formed as a buffer means, and the depth of the concave body can be controlled by an insulating layer. Therefore, the variation in the depth of the buffer means can be suppressed, and as a result, the temperature characteristic can be improved and the variation in the temperature characteristic can be suppressed.

[第1の実施形態]
第1の実施形態に係る半導体加速度センサについて図1に基づき説明する。図1(a)はその概略斜視図、図1(b)はその概略下面図である。
[First Embodiment]
The semiconductor acceleration sensor according to the first embodiment will be described with reference to FIG. FIG. 1A is a schematic perspective view thereof, and FIG. 1B is a schematic bottom view thereof.

この実施形態の半導体加速度センサは、例えば、シリコン(Si)からなる支持層11上に、例えば、二酸化シリコン(SiO)からなる絶縁層12を介してシリコンからなる活性層13を積層したSOI基板1を加工することにより形成しており、その主要構成要素として、支持部2と、梁部3と、錘部4と、ピエゾ抵抗5と、緩和手段6とを備えている。 In the semiconductor acceleration sensor of this embodiment, for example, an SOI substrate in which an active layer 13 made of silicon is laminated on a support layer 11 made of silicon (Si) via an insulating layer 12 made of, for example, silicon dioxide (SiO 2 ). 1 is formed by processing a supporting part 2, a beam part 3, a weight part 4, a piezoresistor 5 and a relaxation means 6 as main components.

このうち、支持部2は、半導体加速度センサの基体となるものであり、梁部3を介して錘部4を支持するものである。このものは、SOI基板1の内方を穿設した枠体であり、平面視において略四角形状に形成している。また、この支持部2は、支持層11、絶縁層12、活性層13の3層で構成しており、その支持層11の表面にはピエゾ抵抗5と接続した、例えば、アルミニウム(Al)からなる電極(図示せず)を形成している。   Among these, the support part 2 becomes a base body of a semiconductor acceleration sensor, and supports the weight part 4 via the beam part 3. This is a frame having an inner side of the SOI substrate 1 and formed in a substantially square shape in plan view. The support portion 2 is composed of a support layer 11, an insulating layer 12, and an active layer 13, and the surface of the support layer 11 is connected to the piezoresistor 5, for example, from aluminum (Al). An electrode (not shown) is formed.

梁部3は、作用する加速度に応じて錘部4が遊動自在に動くように吊り下げ支持するものである。このものは、SOI基板1の活性層13にて構成しており、支持部2の各辺の略中央付近を基端部31として内方に向かって突設し、支持部2の中央付近で交差部21を介して互いに一体化している。また、この梁部3は、平面視において短冊状であり、かつその厚みを活性層13と略同等に形成している。本実施形態では活性層13の厚みを5μm程度としており、このような厚みにおいては、梁部3は作用する加速度に応じて可撓する弾性体として機能する。   The beam part 3 is suspended and supported so that the weight part 4 moves freely according to the acting acceleration. This is composed of the active layer 13 of the SOI substrate 1 and protrudes inwardly with the vicinity of the approximate center of each side of the support portion 2 as a base end portion 31, and in the vicinity of the center of the support portion 2. They are integrated with each other through the intersection 21. Further, the beam portion 3 has a strip shape in plan view, and has a thickness substantially equal to that of the active layer 13. In this embodiment, the thickness of the active layer 13 is set to about 5 μm, and at such a thickness, the beam portion 3 functions as an elastic body that is flexible in accordance with the acting acceleration.

錘部4は、作用する加速度の大きさに応じて誘導して梁部3の撓み量を変化させるものである。このものは、SOI基板1の支持層11にて構成しており、主錘部41と4つの補助錘部42とからなる。   The weight portion 4 is guided according to the magnitude of the acting acceleration and changes the amount of bending of the beam portion 3. This is constituted by the support layer 11 of the SOI substrate 1, and is composed of a main weight portion 41 and four auxiliary weight portions 42.

このうち、主錘部41は、交差部21の下面に絶縁層12を介して結合している。その形状は平面視において略四角形状であり、その厚みは支持部2の支持層11の厚みと略同等であり、主錘部41の下面が支持部2の下面と同一平面を構成している。   Among these, the main weight portion 41 is coupled to the lower surface of the intersecting portion 21 via the insulating layer 12. The shape thereof is a substantially square shape in plan view, the thickness thereof is substantially the same as the thickness of the support layer 11 of the support portion 2, and the lower surface of the main weight portion 41 forms the same plane as the lower surface of the support portion 2. .

一方、補助錘部42は、主錘部41の4つの隅角にそれぞれ一体化して形成しており、加速度が作用していない状態でSOI基板1の活性層13側から見たときに、隣り合う梁部3とその梁部3を支持する支持部2の辺とで囲まれた領域に位置するように形成している。その形状は、平面視において略四角形状であり、その厚みは主錘部41と略同等の厚みを有している。   On the other hand, the auxiliary weight part 42 is formed integrally with each of the four corners of the main weight part 41, and is adjacent to the auxiliary weight part 42 when viewed from the active layer 13 side of the SOI substrate 1 in a state where acceleration is not applied. It forms so that it may be located in the area | region enclosed by the beam part 3 which fits, and the edge | side of the support part 2 which supports the beam part 3. FIG. The shape thereof is a substantially square shape in plan view, and the thickness thereof is substantially the same as that of the main weight portion 41.

ピエゾ抵抗5は、応力により梁部3が変形した際の撓み量を電気信号に変換するものである。このものは、梁部3の表面に形成しており、詳細には梁部3と支持部2との結合部分近傍及び梁部3と交差部21との結合部分近傍に配置している。このうち、交差部21の近傍にあるピエゾ抵抗5は、支持部2の辺と平行な方向のベクトル成分を持つ加速度に対して応答し、例えば、支持部2の任意の一辺と平行な方向をX軸と規定し、X軸と直交してかつ支持部2の辺と平行な方向をY軸と規定すると、X軸と平行な支持部2上にある4つのピエゾ抵抗5で1組のホイートストンブリッジを構成し、また、Y軸と平行な支持部2上にある4つのピエゾ抵抗で1組のホイートストンブリッジを構成している。さらに、支持部2の近傍にあるピエゾ抵抗5は、X軸及びY軸に直交する方向のベクトル成分を持つ加速度に対して応答し、例えば、この方向をZ軸と規定すると、梁部3上にある4つのピエゾ抵抗5で1組のホイートストンブリッジを構成している。   The piezoresistor 5 converts the amount of bending when the beam portion 3 is deformed by stress into an electric signal. This is formed on the surface of the beam portion 3, and more specifically, is disposed in the vicinity of the coupling portion between the beam portion 3 and the support portion 2 and in the vicinity of the coupling portion between the beam portion 3 and the intersection portion 21. Among these, the piezoresistor 5 in the vicinity of the intersection 21 responds to acceleration having a vector component in a direction parallel to the side of the support 2, for example, in a direction parallel to any one side of the support 2. When the X axis is defined and the direction perpendicular to the X axis and parallel to the side of the support portion 2 is defined as the Y axis, a set of Wheatstones is formed by four piezoresistors 5 on the support portion 2 parallel to the X axis. A bridge is formed, and a set of Wheatstone bridges is formed by four piezoresistors on the support portion 2 parallel to the Y axis. Furthermore, the piezoresistor 5 in the vicinity of the support portion 2 responds to acceleration having a vector component in a direction orthogonal to the X axis and the Y axis. For example, if this direction is defined as the Z axis, The four piezoresistors 5 in FIG. 1 constitute a set of Wheatstone bridges.

緩和手段6は、支持部2を台座(図示せず)やパッケージ(図示せず)などと接合したときに線膨張係数の違いにより発生する応力を緩和するものであり、一端が支持部2の外周縁に連結し、他端が支持部2の内周縁に連結する凹状体である。このものは、支持部2の下面に形成しており、その位置は、支持部2の隅角と梁部3との間の略中央付近に支持部2の辺の長手方向と直交するように配置している。また、緩和手段6は、凹状体の深さを支持部2の支持層11と略同等に形成し、その支持部2の辺の長手方向と平行な幅を10μm程度に形成しており、支持部2の各辺を支持部2の隅角と梁部3との間で分断している。これにより、支持部2を構成する活性層13は、略四角状の連続した環状体に構成され、絶縁層12及び支持層11は、緩和手段6により分割されて8つの塊体で構成されることとなる。   The relaxing means 6 relaxes the stress generated by the difference in linear expansion coefficient when the support portion 2 is joined to a pedestal (not shown), a package (not shown) or the like. A concave body is connected to the outer peripheral edge and the other end is connected to the inner peripheral edge of the support portion 2. This is formed on the lower surface of the support portion 2, and the position thereof is orthogonal to the longitudinal direction of the side of the support portion 2 in the vicinity of the approximate center between the corner of the support portion 2 and the beam portion 3. It is arranged. Further, the relaxing means 6 is formed so that the depth of the concave body is substantially equal to the support layer 11 of the support portion 2 and the width parallel to the longitudinal direction of the side of the support portion 2 is about 10 μm. Each side of the portion 2 is divided between the corner of the support portion 2 and the beam portion 3. Thereby, the active layer 13 which comprises the support part 2 is comprised by the substantially square continuous cyclic | annular body, and the insulating layer 12 and the support layer 11 are divided | segmented by the relaxation means 6, and are comprised by eight lump bodies. It will be.

次に、その製造方法について説明する。   Next, the manufacturing method will be described.

まず、それぞれの層厚が、例えば、支持層11が400μm程度、絶縁層12が0.5μm程度、活性層13が5μm程度のSOI基板1を用い、その表面に、例えば、パイロジェニック酸化法により二酸化シリコン(SiO)からなる酸化膜を形成する。 First, an SOI substrate 1 having a thickness of about 400 μm for the support layer 11, about 0.5 μm for the insulating layer 12, and about 5 μm for the active layer 13 is used for each layer. An oxide film made of silicon dioxide (SiO 2 ) is formed.

次いで、活性層13にピエゾ抵抗5、拡散配線(図示せず)、金属配線(図示せず)及び電極(図示せず)を形成する。このうち、ピエゾ抵抗5及び拡散配線の形成は、まず、梁部3及び支持部2の所定の位置の酸化膜を除去し、例えば、活性層がn型の導電型を有する場合、導電型がp型となる不純物、例えば、ボロン(B)をイオン注入法又はデポジット拡散法等を用いて支持層11に注入する。続いて、1100℃程度に昇温した水蒸気と酸素との混合気体中で30分程度不純物を熱拡散して処理を終える。   Next, a piezoresistor 5, a diffusion wiring (not shown), a metal wiring (not shown), and an electrode (not shown) are formed on the active layer 13. Among these, the piezoresistor 5 and the diffusion wiring are formed by first removing the oxide films at predetermined positions of the beam portion 3 and the support portion 2. For example, when the active layer has an n-type conductivity type, the conductivity type is A p-type impurity, for example, boron (B) is implanted into the support layer 11 using an ion implantation method or a deposit diffusion method. Subsequently, the impurity is thermally diffused for about 30 minutes in a mixed gas of water vapor and oxygen heated to about 1100 ° C. to finish the process.

一方、金属配線及び電極の形成は、拡散配線上の所定の位置の酸化膜を除去してコンタクトホール(図示せず)を形成し、活性層13の酸化膜上に、例えば、アルミニウム(Al)をスパッタ法を用いて積層する。続いて、フォトレジスト(図示せず)を塗布後、所定形状にパターニングして処理を終える。   On the other hand, the metal wiring and electrode are formed by removing the oxide film at a predetermined position on the diffusion wiring to form a contact hole (not shown), and for example, aluminum (Al) on the oxide film of the active layer 13. Are stacked using a sputtering method. Subsequently, after applying a photoresist (not shown), patterning into a predetermined shape is completed.

次いで、支持層11にフォトレジストを塗布し、支持部2と錘部4との境界となる部位及び緩和手段6となる部位のフォトレジストを除去し、誘導結合型プラズマエッチング(ICP)を用いて支持層11を絶縁層12に至るまでエッチング除去して支持部2と錘部4及び緩和手段6を構成する凹状体を形成する。このとき、ICPには、例えば、六フッ化硫黄(SF)を用いている。 Next, a photoresist is applied to the support layer 11, and the photoresist at the part that becomes the boundary between the support part 2 and the weight part 4 and the part that becomes the relaxation means 6 is removed, and inductively coupled plasma etching (ICP) is used. The support layer 11 is removed by etching until it reaches the insulating layer 12, thereby forming a concave body constituting the support portion 2, the weight portion 4, and the relaxing means 6. At this time, for example, sulfur hexafluoride (SF 6 ) is used for the ICP.

次いで、活性層13にフォトレジストを塗布し、隣り合う梁部3と支持部2とに囲まれた領域のフォトレジストを除去し、ICPを用いて活性層13をエッチングして開口部22を形成する。   Next, a photoresist is applied to the active layer 13, the photoresist in a region surrounded by the adjacent beam portion 3 and the support portion 2 is removed, and the active layer 13 is etched using ICP to form an opening 22. To do.

最後に、例えば、フッ化水素酸(HF)の溶液を霧状にして噴霧し、支持部2の支持層11と当接する絶縁層12及び錘部4の主錘部41と当接する絶縁層12を除いた他の領域の絶縁層12をエッチングして錘部4を遊動自在にし、半導体加速度センサを完成する。   Finally, for example, a solution of hydrofluoric acid (HF) is sprayed in the form of a mist, and the insulating layer 12 that contacts the support layer 11 of the support portion 2 and the insulating layer 12 that contacts the main weight portion 41 of the weight portion 4. Etching is performed on the insulating layer 12 in other areas except for the weight portion 4 so as to be freely movable, thereby completing the semiconductor acceleration sensor.

このあと、半導体加速度センサを台座やパッケージなどに接合して外部と電気的に接続することにより、加速度センサ装置として使用可能になる。   Thereafter, the semiconductor acceleration sensor can be used as an acceleration sensor device by being joined to a pedestal or package and electrically connected to the outside.

ここにおいて、例えば、半導体加速度センサをガラスからなる台座に接合した場合、半導体加速度センサを構成するシリコン(Si)の線膨張係数は2.6×10−6/K程度、台座の線膨張係数は2.8×10−6/K程度であるため、環境温度の変化に伴い、この線膨張係数の差が影響して応力を発生させてしまう。しかしながら、本実施形態の半導体加速度センサによれば、この応力を支持部2に緩和手段6として形成した凹状体によりその伝達経路を分断しているため、特に応力の集中する支持部の隅角から伝達してくる応力を効率的に吸収することができ、梁部3の受ける影響を低減して温度特性を向上することができる。また、SOI基板1を用いて半導体加速度センサを実現しているので、凹状体の深さを支持層11の厚みと同等に設けることができ、さらに、絶縁層12をエッチングストッパとして利用できるので、凹状体の深さのバラツキを抑制でき、結果的に半導体加速度センサの温度特性のバラツキを抑制することができる。 Here, for example, when the semiconductor acceleration sensor is bonded to a pedestal made of glass, the linear expansion coefficient of silicon (Si) constituting the semiconductor acceleration sensor is about 2.6 × 10 −6 / K, and the linear expansion coefficient of the pedestal is Since it is about 2.8 × 10 −6 / K, a stress is generated due to the difference in the linear expansion coefficient as the environmental temperature changes. However, according to the semiconductor acceleration sensor of the present embodiment, since the transmission path is divided by the concave body formed as the relaxation means 6 in the support portion 2 from the stress, particularly from the corner of the support portion where the stress is concentrated. The transmitted stress can be absorbed efficiently, and the influence of the beam portion 3 can be reduced to improve the temperature characteristics. In addition, since the semiconductor acceleration sensor is realized using the SOI substrate 1, the depth of the concave body can be provided equivalent to the thickness of the support layer 11, and the insulating layer 12 can be used as an etching stopper. Variations in the depth of the concave body can be suppressed, and as a result, variations in temperature characteristics of the semiconductor acceleration sensor can be suppressed.

なお、緩和手段6は、支持部2の辺の長手方向に対して直交するように設けたものに限定されるものではなく、例えば、斜めに交わるように設けてもよく、支持部2の辺を分断可能であれば、その交わる角度は適宜設計変更が可能なものである。また、その形成位置は、支持部2の各辺の隅角と梁部3との間の略中央付近に限定されるものではなく、任意に選択できるものである。また、支持部2の各辺の隅角と梁部3との間を分断できれば、緩和手段6はその間に複数個存在してもかまわない。   The relaxation means 6 is not limited to the one provided so as to be orthogonal to the longitudinal direction of the side of the support part 2. For example, the relaxation means 6 may be provided so as to cross obliquely. If the angle can be divided, the intersecting angle can be appropriately changed in design. Further, the formation position is not limited to the vicinity of the approximate center between the corners of each side of the support portion 2 and the beam portion 3, and can be arbitrarily selected. Moreover, if the space between the corners of each side of the support part 2 and the beam part 3 can be divided, a plurality of relaxation means 6 may exist between them.

[第2の実施形態]
第2の実施形態に係る半導体加速度センサを図2に基づいて説明する。図2(a)は、その概略斜視図であり、図2(b)はその概略下面図である。
[Second Embodiment]
A semiconductor acceleration sensor according to a second embodiment will be described with reference to FIG. FIG. 2 (a) is a schematic perspective view thereof, and FIG. 2 (b) is a schematic bottom view thereof.

本実施形態の半導体加速度センサは、支持部7の所定の部分が第1の実施形態と異なるものであり、他の構成要素は第1の実施形態と実質的に同一であるので、同一部材には同一の番号を付して説明を省略する。   In the semiconductor acceleration sensor of the present embodiment, the predetermined portion of the support portion 7 is different from that of the first embodiment, and other components are substantially the same as those of the first embodiment. Are given the same numbers and their explanation is omitted.

本実施形態の支持部7は、支持層11側からの平面視において、緩和手段6で挟まれ、かつ梁部3の基端部31を包含する部位71が第1の実施形態と異なっている。この部位71は、その外縁側をエッチングにより除去して支持部7の隅角近傍の幅よりも薄く形成しており、錘部4の自重や作用した加速度によって支持層11が撓むことのない程度に設定している。   The support portion 7 of this embodiment differs from that of the first embodiment in a portion 71 sandwiched between the relaxing means 6 and including the proximal end portion 31 of the beam portion 3 in a plan view from the support layer 11 side. . This portion 71 is formed by removing the outer edge side thereof by etching and making it thinner than the width near the corner of the support portion 7, and the support layer 11 does not bend due to the weight of the weight portion 4 or the acting acceleration. The degree is set.

したがって、本実施形態の半導体加速度センサによれば、この応力を支持部7に緩和手段6として形成した凹状体によりその伝達経路を分断しているため、特に応力の集中する支持部の隅角から伝達してくる応力を効率的に吸収することができ、また、支持部2における梁部3の基端部31を包含する部位71が直接受ける応力をも減少することができ、温度特性をより向上することができる。   Therefore, according to the semiconductor acceleration sensor of the present embodiment, since the transmission path is divided by the concave body formed as the relaxing means 6 in the support portion 7 from the stress, the stress is concentrated particularly from the corner of the support portion where the stress is concentrated. The transmitted stress can be efficiently absorbed, and the stress received directly by the portion 71 including the proximal end portion 31 of the beam portion 3 in the support portion 2 can be reduced, and the temperature characteristics can be further improved. Can be improved.

本発明の第1の実施形態に係る半導体加速度センサを示すものであり、(a)はその概略斜視図、(b)は支持層から見た概略下面図である。BRIEF DESCRIPTION OF THE DRAWINGS The semiconductor acceleration sensor which concerns on the 1st Embodiment of this invention is shown, (a) is the schematic perspective view, (b) is the schematic bottom view seen from the support layer. 本発明の第2の実施形態に係る半導体加速度センサを示すものであり、(a)はその概略斜視図、(b)は支持層から見た概略下面図である。The semiconductor acceleration sensor which concerns on the 2nd Embodiment of this invention is shown, (a) is the schematic perspective view, (b) is the schematic bottom view seen from the support layer. 従来の半導体加速度センサを示すものであり、(a)はその概略平面図、(b)はA−A線で切断したときの概略断面図である。A conventional semiconductor acceleration sensor is shown, (a) is a schematic plan view thereof, and (b) is a schematic cross-sectional view taken along line AA.

符号の説明Explanation of symbols

1 SOI基板
12 絶縁層
2 支持部
22 開口部
3 梁部
31 基端部
4 錘部
5 ピエゾ抵抗
6 緩和手段
DESCRIPTION OF SYMBOLS 1 SOI substrate 12 Insulating layer 2 Support part 22 Opening part 3 Beam part 31 Base end part 4 Weight part 5 Piezoresistive 6 Relaxation means

Claims (2)

第1主面と第2主面とを有する半導体基板からなり、
内方を開口した支持部と、
基端部を支持部の前記第1主面側に設けて開口内に延設された弾性を有する梁部と、
梁部により吊り下げ支持されて遊動自在に可動する錘部と、
梁部に設けられるとともに作用する加速度に応じて抵抗値の変化するピエゾ抵抗と、
支持部の前記第2主面側に少なくとも前記第2主面を分断するように設けてなり、支持部の隅角から梁部の基端部へ伝達する応力を吸収する緩和手段と、を有してなり、
前記半導体基板はSOI基板からなるとともに、前記緩和手段はその深さをSOI基板の絶縁層まで穿設した凹状体であることを特徴とする半導体加速度センサ。
A semiconductor substrate having a first main surface and a second main surface;
A support that opens inward;
A beam portion having elasticity and extending in the opening by providing a base end portion on the first main surface side of the support portion;
A weight part that is suspended and supported by the beam part and freely movable;
Piezoresistor whose resistance value changes according to the acceleration applied and acting on the beam,
And a relaxation means that is provided on the second main surface side of the support portion so as to divide at least the second main surface and absorbs stress transmitted from the corner of the support portion to the base end portion of the beam portion. and it will be,
The semiconductor acceleration sensor according to claim 1, wherein the semiconductor substrate is an SOI substrate, and the relaxation means is a concave body having a depth drilled to an insulating layer of the SOI substrate .
前記半導体基板はSOI基板からなるとともに、前記緩衝手段はその深さをSOI基板の絶縁層まで穿設した凹状体である請求項1記載の半導体加速度センサ。 2. The semiconductor acceleration sensor according to claim 1, wherein the semiconductor substrate is an SOI substrate, and the buffer means is a concave body having a depth drilled to an insulating layer of the SOI substrate.
JP2003367784A 2003-10-28 2003-10-28 Semiconductor acceleration sensor Expired - Fee Related JP4134881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367784A JP4134881B2 (en) 2003-10-28 2003-10-28 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367784A JP4134881B2 (en) 2003-10-28 2003-10-28 Semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JP2005134155A JP2005134155A (en) 2005-05-26
JP4134881B2 true JP4134881B2 (en) 2008-08-20

Family

ID=34645689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367784A Expired - Fee Related JP4134881B2 (en) 2003-10-28 2003-10-28 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JP4134881B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350244A (en) * 1993-06-04 1994-12-22 Fujitsu Ten Ltd Protective housing for printed wiring board and soldering method of electronic component

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167187B2 (en) 2013-07-09 2019-01-01 Seiko Epson Corporation Physical quantity sensor having an elongated groove, and manufacturing method thereof
JP2015206746A (en) * 2014-04-23 2015-11-19 セイコーエプソン株式会社 Electronic device, method for manufacturing electronic device, physical quantity sensor, electronic equipment, and mobile object
CN103941041B (en) * 2014-03-28 2016-08-17 武汉瑞芯科微电子技术有限公司 A kind of single mass three-shaft mems accelerometer of three-frame structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06350244A (en) * 1993-06-04 1994-12-22 Fujitsu Ten Ltd Protective housing for printed wiring board and soldering method of electronic component

Also Published As

Publication number Publication date
JP2005134155A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
US7107847B2 (en) Semiconductor acceleration sensor and method of manufacturing the same
KR100715644B1 (en) Acceleration sensor
KR100301097B1 (en) Acceleration sensor element and method of its manufacture
JP2005283393A (en) Inertia sensor
JP2006029827A (en) Inertial sensor
JP4784641B2 (en) Semiconductor device and manufacturing method thereof
US20100162823A1 (en) Mems sensor and mems sensor manufacture method
JP2004333133A (en) Inertial force sensor
KR20170002947A (en) Pressure sensor element and method for manufacturing same
JP4134881B2 (en) Semiconductor acceleration sensor
JP4847686B2 (en) Semiconductor acceleration sensor
JP5531806B2 (en) Capacitive inertial force sensor
JP3938199B1 (en) Wafer level package structure and sensor device
JP2006208272A (en) Semiconductor multiaxial acceleration sensor
JP4179070B2 (en) Semiconductor acceleration sensor and manufacturing method thereof
JP4665733B2 (en) Sensor element
JP2010048700A (en) Mems and method for manufacturing mems
JP2005172808A (en) Semiconductor acceleration sensor
JP2000065854A (en) Semiconductor acceleration sensor element and its manufacture
JP5635370B2 (en) Nanosheet transducer
JP2005134367A (en) Semiconductor acceleration sensor
JP2006064532A (en) Semiconductor acceleration sensor
JP2000275271A (en) Semiconductor acceleration sensor
KR20160125770A (en) Sensor package and manufacturing method thereof
JP5547054B2 (en) Capacitance type acceleration sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees