JP4134671B2 - Plasma processing method - Google Patents

Plasma processing method Download PDF

Info

Publication number
JP4134671B2
JP4134671B2 JP2002302927A JP2002302927A JP4134671B2 JP 4134671 B2 JP4134671 B2 JP 4134671B2 JP 2002302927 A JP2002302927 A JP 2002302927A JP 2002302927 A JP2002302927 A JP 2002302927A JP 4134671 B2 JP4134671 B2 JP 4134671B2
Authority
JP
Japan
Prior art keywords
substrate
vacuum
processing chamber
container
gate door
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002302927A
Other languages
Japanese (ja)
Other versions
JP2004140153A (en
Inventor
義弘 柳
清彦 高木
悌一 木村
利幸 渡辺
雅史 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002302927A priority Critical patent/JP4134671B2/en
Publication of JP2004140153A publication Critical patent/JP2004140153A/en
Application granted granted Critical
Publication of JP4134671B2 publication Critical patent/JP4134671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、プラズマ処理方法に関し、特に、ドライエッチング処理において、基板を載置する電極と前記基板との間に発生する静電気を除去するところに特徴があり、効率的にデバイス破壊を低減させることが可能なプラズマ処理方法に関するものである。
【0002】
【従来の技術】
近年、液晶素子製造分野において、製造コスト削減や環境保護の観点から、工程簡略や製造方法の環境負荷の少ない製造方法に変更を望む声が高まっている。特に、次世代フラットパネルとして期待されている液晶や有機EL素子パネルの価格競争の激化とパネルの大型化、高性能化に伴い、従来の薬液による工法から、プラズマを応用した薄膜加工する工法及び装置が望まれつつある。
【0003】
しかしながら、真空中にプラズマを発生させ、プロセスガスを乖離させ、イオンやラジカルにより物理的、科学的な反応を組み合わせた加工を行うため、絶縁体である被処理ガラス基板上に多量な電荷を発生させることになる。
【0004】
このとき、多量に発生した電荷は、薄膜回路の構成上、金属膜と金属膜の間を絶縁する為の絶縁膜が薄膜形成されているが、耐電圧には閾値を持つことになり、その閾値を越えるような電荷を被処理ガラス基板が帯び、帯電した場合には絶縁膜の破壊が発生し、薄膜回路を形成しえなくなる。このため、なるべく被処理ガラス基板上にチャージしないようなプラズマにするか、チャージした電荷をプラズマプロセス上の工夫で低減する取り組みを実施してきた。
【0005】
以下、図1に代表的なドライエッチング装置を示す。
【0006】
図1において、1はドライエッチング処理を行うための処理室、2a,2b,2cは処理室1や後述する真空移載容器5、ロードロック容器8にプロセスガスや不活性ガスを導入するためのガス導入装置、3は基板を載置する電極、4a,4b,4cは処理室1や後述する真空移載容器5、ロードロック容器8の内部を排気するための真空排気装置、5は処理室1へ基板を真空圧力の状態で出し入れする真空移載容器、6aは処理室1と真空移載容器5の隔壁となり開閉機構を有するゲート扉、6bは真空移載容器5と後述するロードロック容器8の隔壁となり開閉機構を有するゲート扉、6cは後述するロードロック容器8を真空に保持するためのゲート扉、7は真空搬送機構、8は大気状態から真空状態へ容器内を減圧する動作や、その逆に真空状態から大気状態へ加圧する動作が出来る機能を有するロードロック容器、9は基板を収納する基板収納装置、10は基板収納装置9から基板を取り出し、ロードロック容器8へ移載するための大気搬送機構である。なお11は基板である。
【0007】
以下、上記ドライエッチング装置を用いた具体的な動作手順について説明する。
【0008】
まず、基板11を、基板収納装置9より大気搬送機構10にて取り出し、ロードロック容器8にガス導入装置2cより不活性ガスをパージして大気状態にし、ゲート扉96cを開き、大気搬送機構10によって、基板12をロードロック容器8へと搬送する。
【0009】
次に、ゲート扉6cを閉じて、ロードロック容器8において、ガス導入装置2cの動作を止め、真空排気装置4cより排気し、一定の圧力にまで真空排気が完了した後、ゲート扉6bを開く。このとき、真空移載容器5は真空排気装置4bが常時真空排気動作しており、常に真空状態を保持した状態となっている。
【0010】
その後、真空搬送機構7によりロードロック容器8に載置されている基板11を取り出し、真空移載容器5へと移載して、ゲート扉6bを閉じる。処理室1にある真空排気装置4aは常時真空排気動作しており、容器内は常に真空状態を保持している。このような状態で、ゲート扉6aが開き、真空移載容器5内の真空搬送機構7にある基板11は処理室1の電極3へ移載され、ゲート扉6aが閉まり、プラズマ処理が行われる。
【0011】
プラズマ処理終了後、N2やO2などの不活性ガスによる除電プロセスといわれる、プラズマの発生領域を圧力やパワーにより変化させて、基板11上に帯電した電荷を除去するプロセス処理を行った後、ゲート扉6aが開き、真空搬送機構7により、処理室1内の電極3上に載置された基板11は、処理室1内から取り出され、真空移載容器5内に移載される。
【0012】
このとき、処理室1内の真空排気装置4aは、プラズマ処理後の反応生成物が真空移載容器4aへ流入しないように排気動作をしている。そして、ゲート扉6aが閉じ、次にゲート扉6bが開き、基板11は真空移載機構5からロードロック容器8へと移載され、ゲート扉6bが閉まる。ロードロック容器9内の真空排気装置4cが停止し、ガス導入装置2cより不活性ガスがパージされ、ロードロック容器8内は真空圧状態から大気圧状態へとなり、ゲート扉6cが開く。そして、大気搬送機構10により、ロードロック容器8内にある基板11が取り出され、基板収納装置9へと収められる。
【0013】
【特許文献1】
特開2002−261159号公報
【0014】
【発明が解決しようとする課題】
しかしながら、処理室1内にて基板11がプラズマ処理終了後、除電プロセス行い、ゲート扉6aを開き、真空搬送機構7により、処理室1内の電極3上に載置された基板11が、処理室1内より取り出され、真空移載容器5内に移載される時に、基板11の表面に残留帯電した電荷の電位値は図2に示すような挙動を示す。
【0015】
プラズマ処理後の基板11の表面に帯電した電荷は、ゲート扉6aを通過する時に最大電位値を示し、その後も高い電位を保持した状態で真空移載容器5に載置される。基板11が真空中において移載される際に変化する帯電位が基板11上に成膜された絶縁膜の耐電圧閾値Aを越えた時に、絶縁破壊を起こすという問題点がある。
【0016】
これは、図3に示すように、基板11が移載する際に、基板表面に帯電した電荷−Qが対抗して分極している電極3表面+Q(この時点では、dが限りなく大きいため、(式1)の公式には当てはまらないことから、処理室1の底面、ゲート扉6aの底面、真空移載容器5の底面へと移り変わる時に、(式1)に当て嵌る「d」が存在している場合に限る。
【0017】
【数1】

Figure 0004134671
【0018】
から明らかなように、d(距離)に影響される領域(dmin)に達した時に、V-gが上昇する可能性があるためであると考えられる。
【0019】
無論、最も基板11の表面電位が上昇するのは、電極3より基板11が離れる瞬間であることは、容易に想像がつくが、そのとき絶縁破壊を免れても、基板11の一部が、ゲート扉6aを通過しているため、基板11の一部分のみ表面の電位が異常に上昇する可能性があり、その部分で絶縁破壊が起こると想像されている。
【0020】
一般的な真空量産設備は、ゲート扉開閉時の圧力損失を小さくするため、ゲート扉を限りなく小さく製作している。基板11がゲート扉6aを通過する地点での、基板11とゲート扉6aの距離は、限りなく基板11とゲート扉6aが近くなり(式1)の影響を受ける範囲となることになる。基板11上の一部分で電位V-gが、電極3上にあるときよりも高い値を示すこととなる。前述する内容は、量産設備の形態によっては、ゲート扉6aだけではなく、他の部分においても、(式1)の影響を受けやすいこともあり得る。
【0021】
本発明は、上記従来の問題点に鑑み、プラズマ処理後に被処理ガラス基板を移載する際に変化する基板上の電荷量を軽減することが可能なプラズマ処理装置及びプラズマ処理方法を提供することを目的とする。
【0022】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下のように構成する。
【0023】
本発明に係るプラズマ処理方法は、処理室にてエッチング処理されたガラス基板を、真空下において前記処理室から真空移載容器へ移載する際、前記処理室にてN 2 ガスに気化した2Oガスを混入させた不活性ガスによる除電プロセスを行い、その後、前記処理室と前記真空移載容器とにN2ガスを導入することで前記処理室及び前記真空移載容器の圧力を調整しながら、前記処理室から前記真空移載容器へガラス基板を移載することを特徴とする。
【0024】
このとき、処理室と真空移載容器の圧力値を5〜20Paの範囲に維持すると好適である。
【0035】
【発明の実施の形態】
以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。
【0036】
本発明のプラズマ処理方法の実施形態について、図面を参照しつつ説明する。
【0037】
以下、図1に実施様態について代表的なドライエッチング装置形態について説明する。1はドライエッチング処理を行うための処理室、2a,2b,2cは処理室1や後述する真空移載容器5、ロードロック容器8にプロセスガスや不活性ガスを導入するためのガス導入装置、3は基板を載置する電極、4a,4b,4cは処理室1や後述する真空移載容器5、ロードロック容器8の内部を排気するための真空排気装置、5は処理室1へ基板を真空圧力の状態で出し入れする真空移載容器、6aは処理室1と真空移載容器5の隔壁となり開閉機構を有するゲート扉、6bは真空移載容器5と後述するロードロック容器8の隔壁となり開閉機構を有するゲート扉、6cは後述するロードロック容器8を真空に保持するためのゲート扉、7は真空搬送機構、8は大気状態から真空状態へ容器内を減圧する動作や、その逆に真空状態から大気状態へ加圧する動作が出来る機能を有するロードロック容器、9は基板を収納する基板収納装置、10は基板収納装置9から基板を取り出し、ロードロック容器8へ移載するための大気搬送機構である。なお11は基板である。
【0038】
以下、上記ドライエッチング装置を用いた具体的な動作手順について説明する。
【0039】
まず、基板11を、基板収納装置9より大気搬送機構11にて取り出し、ロードロック容器8にガス導入装置2cよりN2ガスをパージして大気状態にし、ゲート扉6cを開き、大気搬送機構10によって、基板11をロードロック容器8へと搬送する。
【0040】
続けて、ゲート扉6cを閉じて、ロードロック容器8において、ガス導入装置2cの動作を止め、排気装置4cより排気し、一定の圧力にまで真空排気が完了した後、ゲート扉6bを開く。真空移載容器5は真空排気装置4bが常時真空排気動作しており常に真空状態を保持した状態となっている。
【0041】
真空搬送機構7によりロードロック容器8に載置されている基板11を取り出し、真空移載容器5へと移載して、ゲート扉6bを閉じる。処理室1にある真空排気装置4aは常時真空排気動作しており容器内は常に真空常置を保持した状態となっている。
【0042】
このような状態でゲート扉6aを開き、真空移載容器5内の真空搬送機構7にある基板11は処理室1の電極3へ移載され、ゲート扉6aが閉まりプラズマ処理が行われる。
【0043】
プラズマ処理終了後は、N 2 どに気化したH2Oガスを混入させて不活性ガスによる除電プロセスといわれる、プラズマの発生領域を圧力やパワーにより変化させて、基板11上に帯電した電荷を除去するプロセス処理を行うことで、プラズマにより帯電した電荷は前記H2Oガスを混入させることで効率よく、処理室内の雰囲気に逃がすことが可能となり、基板11上の電荷を除電することが可能となる。
【0044】
上記のような処理が終了した後は、ゲート扉6aを開き、ガス導入装置2bよりN2ガスを流入させ、真空排気装置4bを停止し、真空排気装置4aにて、処理室2と真空移載容器5内が15Paになるように調整しながら、真空搬送機構7により、処理室1内の電極3上に載置された基板11を、処理室1内から取り出し、真空移載容器5内に移載する。
【0045】
このように、処理室1と真空移載容器5内が15Paとなるように調整することで、図4に示すように、プラズマ処理後の基板11の表面に帯電した電荷は、除電され電位は一定となる。そのため、基板11上に成膜された絶縁膜の耐電圧閾値を越えて、絶縁破壊をおこす問題点が解決される。真空下において、プラズマにより帯電した基板11上の電荷は、圧力を一定の値まで高めることで、真空容器中の雰囲気に流れ出る作用がある。このため、基板11上のV-gは一定の値を示したと考える。
【0046】
また、ガス導入装置2bへH2Oガスを気化して、同時に導入しながら基板11を処理室1から取り出すと、より効果的で好適である。
【0047】
その後、ガス導入装置2bを停止させ、ゲート扉6aを閉じ、真空排気装置4bを動作させ、真空移載容器5内を所定の圧力以下まで排気し、真空排気装置4aにて、処理室1内も所定の圧力以下まで排気する。
【0048】
次に、ゲート扉6bを開き、真空移載機構5により基板11はロードロック容器8へと移載され、ゲート扉6bは閉まる。ロードロック容器8内の真空排気装置4cが停止し、ガス導入装置2cより不活性ガスがパージされ、ロードロック容器8内は真空圧状態から大気圧状態へとなり、ゲート扉6cが開き、大気搬送機構10により、ロードロック容器8内にある基板11が取り出され、基板収納装置9へと収められる。
【0049】
以上のことから、プラズマ処理後に被処理ガラス基板を移載する際に変化する基板上の電荷量を軽減することが可能となる。
【0050】
【発明の効果】
本発明によれば、プラズマ処理中に基板が帯びた電荷を搬送中に効率的に除電でき、効率的にデバイス破壊を低減させることが可能なプラズマ処理方法が提供できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係るプラズマ処理装置の概略構成図
【図2】従来の実施形態における基板の表面帯電値を示す図
【図3】基板の表面電位の上昇メカニズムを示す概略図
【図4】本発明の実施形態での基板の表面帯電値を示す図
【符号の説明】
1 処理室
2a,2b,2c ガス導入装置
3 電極
4a,4b,4c 真空排気装置
5 真空移載容器
6a,6b,6c ゲート扉
7 真空搬送機構
8 ロードロック容器
9 基板収納装置
10 大気搬送機構[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma treatment how, in particular, in the dry etching process, there is characterized in that the removal of static electricity generated between the electrode and the substrate for mounting the substrate, reduces efficiently the device breakdown it relates to a possible plasma processing how be.
[0002]
[Prior art]
In recent years, in the liquid crystal element manufacturing field, there is an increasing demand for a change to a manufacturing method with a simplified process and a less environmental load of the manufacturing method from the viewpoint of manufacturing cost reduction and environmental protection. In particular, as the price competition of liquid crystal and organic EL element panels, which are expected as next-generation flat panels, intensify, the panel size increases, and the performance increases, the conventional thin film processing method using plasma from the conventional chemical method, and An apparatus is being desired.
[0003]
However, plasma is generated in vacuum, process gas is separated, and processing that combines physical and scientific reactions by ions and radicals is performed, so a large amount of charge is generated on the glass substrate to be processed as an insulator. I will let you.
[0004]
In this case, a large amount of electric charge is generated by forming a thin insulating film to insulate between the metal film and the metal film due to the structure of the thin film circuit. When the glass substrate to be processed has a charge exceeding the threshold value and is charged, the insulating film is broken and a thin film circuit cannot be formed. For this reason, efforts have been made to reduce the charged charge by means of a plasma process or to make the plasma not to be charged on the glass substrate to be processed as much as possible.
[0005]
A typical dry etching apparatus is shown in FIG.
[0006]
In FIG. 1, reference numeral 1 denotes a processing chamber for performing a dry etching process, and 2a, 2b, and 2c are for introducing a process gas and an inert gas into the processing chamber 1, a vacuum transfer container 5 and a load lock container 8, which will be described later. A gas introduction device, 3 is an electrode for mounting a substrate, 4a, 4b, and 4c are vacuum evacuation devices for exhausting the interior of the processing chamber 1, a vacuum transfer container 5 described later, and a load lock container 8, and 5 is a processing chamber. 1 is a vacuum transfer container for loading and unloading a substrate to and from 1 in a vacuum pressure state, 6a is a gate door which serves as a partition wall between the processing chamber 1 and the vacuum transfer container 5 and has an opening / closing mechanism, and 6b is a vacuum transfer container 5 and a load lock container which will be described later. 8 is a gate door having an opening / closing mechanism as a partition wall, 6c is a gate door for holding a load lock container 8 to be described later in vacuum, 7 is a vacuum transfer mechanism, 8 is an operation for depressurizing the inside of the container from an atmospheric state to a vacuum state, ,That A load lock container having a function capable of pressurizing from a vacuum state to an atmospheric state, 9 is a substrate storage device for storing the substrate, and 10 is a substrate storage device for taking out the substrate from the substrate storage device 9 and transferring it to the load lock container 8. It is an atmospheric transfer mechanism. Reference numeral 11 denotes a substrate.
[0007]
Hereinafter, a specific operation procedure using the dry etching apparatus will be described.
[0008]
First, the substrate 11 is taken out from the substrate storage device 9 by the atmospheric transfer mechanism 10, and the load lock container 8 is purged with an inert gas from the gas introducing device 2c to be in an atmospheric state, the gate door 96c is opened, and the atmospheric transfer mechanism 10 is opened. Thus, the substrate 12 is transferred to the load lock container 8.
[0009]
Next, the gate door 6c is closed, the operation of the gas introducing device 2c is stopped in the load lock container 8, the vacuum exhaust device 4c is exhausted, and after the vacuum exhaust is completed to a certain pressure, the gate door 6b is opened. . At this time, the vacuum transfer container 5 is in a state in which the vacuum exhaust device 4b is always evacuated and always kept in a vacuum state.
[0010]
Thereafter, the substrate 11 placed on the load lock container 8 is taken out by the vacuum transfer mechanism 7, transferred to the vacuum transfer container 5, and the gate door 6b is closed. The evacuation device 4a in the processing chamber 1 is always evacuated and the inside of the container is always kept in a vacuum state. In this state, the gate door 6a is opened, the substrate 11 in the vacuum transfer mechanism 7 in the vacuum transfer container 5 is transferred to the electrode 3 in the processing chamber 1, the gate door 6a is closed, and plasma processing is performed. .
[0011]
After completion of the plasma treatment, after performing a process treatment for removing charges charged on the substrate 11 by changing the generation region of the plasma by pressure and power, which is called a neutralization process using an inert gas such as N 2 or O 2. The gate door 6 a is opened, and the substrate 11 placed on the electrode 3 in the processing chamber 1 is taken out from the processing chamber 1 by the vacuum transfer mechanism 7 and transferred to the vacuum transfer container 5.
[0012]
At this time, the vacuum exhaust device 4a in the processing chamber 1 performs an exhaust operation so that the reaction product after the plasma processing does not flow into the vacuum transfer container 4a. Then, the gate door 6a is closed, then the gate door 6b is opened, the substrate 11 is transferred from the vacuum transfer mechanism 5 to the load lock container 8, and the gate door 6b is closed. The vacuum exhaust device 4c in the load lock container 9 is stopped, the inert gas is purged from the gas introduction device 2c, the inside of the load lock container 8 is changed from the vacuum pressure state to the atmospheric pressure state, and the gate door 6c is opened. Then, the substrate 11 in the load lock container 8 is taken out by the atmospheric transfer mechanism 10 and stored in the substrate storage device 9.
[0013]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-261159 [0014]
[Problems to be solved by the invention]
However, after the plasma processing of the substrate 11 is completed in the processing chamber 1, a static elimination process is performed, the gate door 6 a is opened, and the substrate 11 placed on the electrode 3 in the processing chamber 1 is processed by the vacuum transfer mechanism 7. When taken out from the chamber 1 and transferred into the vacuum transfer container 5, the potential value of the electric charge remaining on the surface of the substrate 11 shows the behavior as shown in FIG.
[0015]
The electric charge charged on the surface of the substrate 11 after the plasma treatment shows a maximum potential value when passing through the gate door 6a, and is then placed on the vacuum transfer container 5 while maintaining a high potential. There is a problem that dielectric breakdown occurs when the charged potential that changes when the substrate 11 is transferred in a vacuum exceeds the withstand voltage threshold A of the insulating film formed on the substrate 11.
[0016]
This is because, as shown in FIG. 3, when the substrate 11 is transferred, the surface of the electrode 3 + Q on which the charge −Q charged on the substrate surface is polarized is opposed (at this point, d is extremely large). Since it does not apply to the formula of (Equation 1), there is “d” that fits in (Equation 1) when changing to the bottom surface of the processing chamber 1, the bottom surface of the gate door 6a, and the bottom surface of the vacuum transfer container 5. Only if you are.
[0017]
[Expression 1]
Figure 0004134671
[0018]
As is clear from this, it is considered that V-g may increase when the region (dmin) affected by d (distance) is reached.
[0019]
Of course, it can be easily imagined that the surface potential of the substrate 11 is most increased at the moment when the substrate 11 is separated from the electrode 3. Since it passes through the gate door 6a, the surface potential of only part of the substrate 11 may rise abnormally, and it is assumed that dielectric breakdown occurs in that part.
[0020]
In general vacuum mass production equipment, the gate door is made as small as possible to reduce the pressure loss when the gate door is opened and closed. The distance between the substrate 11 and the gate door 6a at the point where the substrate 11 passes through the gate door 6a is infinitely close to the substrate 11 and the gate door 6a and is affected by (Equation 1). The potential V-g at a part on the substrate 11 shows a higher value than when it is on the electrode 3. The contents described above may be easily affected by (Equation 1) not only in the gate door 6a but also in other parts depending on the form of mass production equipment.
[0021]
In view of the above-described conventional problems, the present invention provides a plasma processing apparatus and a plasma processing method capable of reducing the amount of charge on a substrate that changes when a glass substrate to be processed is transferred after plasma processing. With the goal.
[0022]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as follows.
[0023]
The plasma processing method according to the present invention, a glass substrate which is etched in the processing chamber, when transferred into the vacuum transfer chamber from the processing chamber under vacuum and vaporized N 2 gas Te in the processing chamber H A neutralization process using an inert gas mixed with 2 O gas is performed, and then the pressure of the processing chamber and the vacuum transfer container is adjusted by introducing N 2 gas into the processing chamber and the vacuum transfer container. However, the glass substrate is transferred from the processing chamber to the vacuum transfer container.
[0024]
At this time, it is preferable to maintain the pressure values of the processing chamber and the vacuum transfer container in the range of 5 to 20 Pa .
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments according to the present invention will be described below in detail with reference to the drawings.
[0036]
Embodiments of the plasma treatment how the present invention will be described with reference to the drawings.
[0037]
Hereinafter, a typical dry etching apparatus according to the embodiment will be described with reference to FIG. 1 is a processing chamber for performing a dry etching process, 2a, 2b, and 2c are gas introduction devices for introducing a process gas and an inert gas into the processing chamber 1, a vacuum transfer container 5 and a load lock container 8 described later, 3 is an electrode for placing a substrate, 4a, 4b, and 4c are vacuum evacuation devices for evacuating the interior of the processing chamber 1, a vacuum transfer container 5 and a load lock container 8 described later, and 5 is a substrate for the processing chamber 1. A vacuum transfer container 6a that is put in and out in a vacuum state, 6a is a gate door that serves as a partition wall between the processing chamber 1 and the vacuum transfer container 5 and has an opening / closing mechanism, and 6b is a partition wall between the vacuum transfer container 5 and a load lock container 8 described later. A gate door having an opening / closing mechanism, 6c is a gate door for holding a load lock container 8 to be described later in a vacuum, 7 is a vacuum transfer mechanism, 8 is an operation of decompressing the container from the atmospheric state to the vacuum state, and vice versa. Vacuum state A load-lock container having a function capable of pressurizing to the atmospheric state, 9 is a substrate storage device for storing the substrate, and 10 is an atmospheric transfer mechanism for taking out the substrate from the substrate storage device 9 and transferring it to the load-lock container 8. is there. Reference numeral 11 denotes a substrate.
[0038]
Hereinafter, a specific operation procedure using the dry etching apparatus will be described.
[0039]
First, the substrate 11 is taken out from the substrate storage device 9 by the atmospheric transfer mechanism 11, and the load lock container 8 is purged with N 2 gas from the gas introduction device 2 c to the atmospheric state, the gate door 6 c is opened, and the atmospheric transfer mechanism 10 is opened. Thus, the substrate 11 is transferred to the load lock container 8.
[0040]
Subsequently, the gate door 6c is closed, the operation of the gas introduction device 2c is stopped in the load lock container 8, the exhaust device 4c is exhausted, and after the vacuum exhaust is completed to a certain pressure, the gate door 6b is opened. The vacuum transfer container 5 is always in a vacuum state because the vacuum exhaust device 4b is always evacuated.
[0041]
The substrate 11 placed on the load lock container 8 is taken out by the vacuum transfer mechanism 7, transferred to the vacuum transfer container 5, and the gate door 6b is closed. The evacuation device 4a in the processing chamber 1 is always evacuated and the inside of the container is always kept in a vacuum.
[0042]
In this state, the gate door 6a is opened, the substrate 11 in the vacuum transfer mechanism 7 in the vacuum transfer container 5 is transferred to the electrode 3 in the processing chamber 1, the gate door 6a is closed, and plasma processing is performed.
[0043]
After the plasma treatment completion, be mixed with the H 2 O gas which vaporizes etc. N 2 is said neutralization process with an inert gas, the generation region of plasma is varied by the pressure and power, electric charge accumulated on the substrate 11 By performing the process for removing the charge, the charge charged by the plasma can be efficiently released to the atmosphere in the processing chamber by mixing the H 2 O gas, and the charge on the substrate 11 can be discharged. It becomes possible.
[0044]
After the above processing is completed, the gate door 6a is opened, N 2 gas is allowed to flow in from the gas introducing device 2b, the vacuum exhaust device 4b is stopped, and the vacuum chamber 4a and the process chamber 2 are transferred to the vacuum chamber. The substrate 11 placed on the electrode 3 in the processing chamber 1 is taken out from the processing chamber 1 by the vacuum transfer mechanism 7 while adjusting the inside of the mounting vessel 5 to 15 Pa, and the inside of the vacuum transfer container 5 is removed. To be transferred to.
[0045]
In this way, by adjusting the inside of the processing chamber 1 and the vacuum transfer container 5 to 15 Pa, as shown in FIG. 4, the charge charged on the surface of the substrate 11 after the plasma processing is eliminated, and the potential is It becomes constant. Therefore, the problem of causing dielectric breakdown exceeding the withstand voltage threshold value of the insulating film formed on the substrate 11 is solved. Under vacuum, the charge on the substrate 11 charged by plasma has the effect of flowing out to the atmosphere in the vacuum vessel by increasing the pressure to a certain value. For this reason, it is considered that V-g on the substrate 11 shows a constant value.
[0046]
Further, it is more effective and preferable to vaporize the H 2 O gas into the gas introducing device 2b and take out the substrate 11 from the processing chamber 1 while simultaneously introducing the gas.
[0047]
Thereafter, the gas introduction device 2b is stopped, the gate door 6a is closed, the vacuum exhaust device 4b is operated, the vacuum transfer container 5 is exhausted to a predetermined pressure or less, and the vacuum exhaust device 4a Is exhausted to below a predetermined pressure.
[0048]
Next, the gate door 6b is opened, the substrate 11 is transferred to the load lock container 8 by the vacuum transfer mechanism 5, and the gate door 6b is closed. The evacuation device 4c in the load lock container 8 is stopped, the inert gas is purged from the gas introduction device 2c, the inside of the load lock container 8 is changed from the vacuum pressure state to the atmospheric pressure state, the gate door 6c is opened, and the atmospheric transfer is performed. The substrate 10 in the load lock container 8 is taken out by the mechanism 10 and stored in the substrate storage device 9.
[0049]
From the above, it is possible to reduce the amount of charge on the substrate that changes when the glass substrate to be processed is transferred after the plasma processing.
[0050]
【The invention's effect】
According to the present invention, a charge-tinged a substrate during plasma processing can efficiently charge removal during transport, capable of reducing efficiently the device breakdown plasma treatment how wear in provision.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a plasma processing apparatus according to an embodiment of the present invention. FIG. 2 is a diagram showing a surface charge value of a substrate in a conventional embodiment. FIG. 4 is a diagram showing a surface charge value of a substrate in an embodiment of the present invention.
DESCRIPTION OF SYMBOLS 1 Processing chamber 2a, 2b, 2c Gas introduction apparatus 3 Electrode 4a, 4b, 4c Vacuum exhaust apparatus 5 Vacuum transfer container 6a, 6b, 6c Gate door 7 Vacuum transfer mechanism 8 Load lock container 9 Substrate storage apparatus 10 Atmospheric transfer mechanism

Claims (2)

処理室にてエッチング処理されたガラス基板を、真空下において前記処理室から真空移載容器へ移載する際、前記処理室にてN 2 ガスに気化した2Oガスを混入させた不活性ガスによる除電プロセスを行い、その後、前記処理室と前記真空移載容器とにN2ガスを導入することで前記処理室及び前記真空移載容器の圧力を調整しながら、前記処理室から前記真空移載容器へガラス基板を移載すること
を特徴とするプラズマ処理方法。
The glass substrate which has been etched in the processing chamber, when transferred into the vacuum transfer chamber from the processing chamber under vacuum, inert obtained by mixing H 2 O gas which is vaporized N 2 gas Te into the processing chamber Performing a static elimination process with gas, and then adjusting the pressure of the processing chamber and the vacuum transfer container by introducing N 2 gas into the processing chamber and the vacuum transfer container, and the vacuum from the processing chamber A plasma processing method, comprising transferring a glass substrate to a transfer container.
前記処理室と前記真空移載容器の圧力値を5〜20Paの範囲に維持すること
を特徴とする請求項1記載のプラズマ処理方法。
The plasma processing method according to claim 1, wherein pressure values of the processing chamber and the vacuum transfer container are maintained in a range of 5 to 20 Pa.
JP2002302927A 2002-10-17 2002-10-17 Plasma processing method Expired - Fee Related JP4134671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302927A JP4134671B2 (en) 2002-10-17 2002-10-17 Plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302927A JP4134671B2 (en) 2002-10-17 2002-10-17 Plasma processing method

Publications (2)

Publication Number Publication Date
JP2004140153A JP2004140153A (en) 2004-05-13
JP4134671B2 true JP4134671B2 (en) 2008-08-20

Family

ID=32450859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302927A Expired - Fee Related JP4134671B2 (en) 2002-10-17 2002-10-17 Plasma processing method

Country Status (1)

Country Link
JP (1) JP4134671B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174242U (en) * 1984-04-17 1985-11-19 株式会社日立国際電気 Reactive ion etching equipment
JPH01279784A (en) * 1988-05-02 1989-11-10 Tokyo Electron Ltd Etching device
JP3162767B2 (en) * 1991-12-09 2001-05-08 富士通株式会社 Vacuum processing method and vacuum processing apparatus
JP3227812B2 (en) * 1992-07-28 2001-11-12 松下電器産業株式会社 Dry etching method
JPH06283472A (en) * 1993-03-29 1994-10-07 Tokyo Electron Ltd Plasma device and plasma processing method
JPH08153711A (en) * 1994-11-26 1996-06-11 Semiconductor Energy Lab Co Ltd Etching device
JPH09298189A (en) * 1996-04-30 1997-11-18 Seiko Epson Corp Plasma treatment method and plasma treatment apparatus
JP4394778B2 (en) * 1999-09-22 2010-01-06 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP2001093877A (en) * 1999-09-22 2001-04-06 Texas Instr Japan Ltd Method for manufacturing semiconductor device
JP2001237215A (en) * 2000-02-23 2001-08-31 Nec Corp Method and device for manufacturing semiconductor device
JP2002198411A (en) * 2000-12-26 2002-07-12 Tokyo Electron Ltd Pressure control method, transfer apparatus, and cluster tool
JP2003124186A (en) * 2001-10-10 2003-04-25 Matsushita Electric Ind Co Ltd Plasma processing method

Also Published As

Publication number Publication date
JP2004140153A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US5007981A (en) Method of removing residual corrosive compounds by plasma etching followed by washing
US20050161434A1 (en) Method for forming insulation film
KR101870491B1 (en) Plasma processing appratus, substrate processing system, fabrication method of thin film transistor, and storage medium
JPH04226025A (en) Method forming titanium silicide con- ducting layer on silicon wafer
CN104916534B (en) The manufacturing method of plasma processing apparatus and thin film transistor (TFT)
JPH0950992A (en) Film forming device
US5200017A (en) Sample processing method and apparatus
EP1492161A1 (en) Method for forming underlying insulation film
JP2019135797A (en) Manufacturing method of thin film transistor and storage medium
JP2010232240A (en) Method of manufacturing semiconductor device, and device of manufacturing semiconductor
JP4697315B2 (en) Plasma processing method
JPH08115901A (en) Plasma processing method and plasma processor
US20220020572A1 (en) Plasma processing apparatus and plasma processing method
JP4134671B2 (en) Plasma processing method
JP2004241420A (en) Processing system
JPH07147273A (en) Etching treatment
CN100483566C (en) Ferroelectric film, semiconductor device, ferroelectric film manufacturing method, and ferroelectric film manufacturing apparatus
JP3592878B2 (en) Plasma cleaning method
JPWO2007077718A1 (en) Substrate processing method and substrate processing apparatus
TW202230511A (en) Substrate processing method and substrate processing apparatus
JPH10233389A (en) Semiconductor treatment apparatus and its cleaning method as well as manufacture of semiconductor device
JP2764027B2 (en) Sample processing method and apparatus
US6177361B1 (en) In-situ formation of metal oxide and ferroelectric oxide films
JP4598416B2 (en) Plasma processing method
Gottscho et al. Use of plasma processing in making integrated circuits and flat-panel displays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050930

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees