JP4134627B2 - High frequency acoustic wave device using aluminum nitride piezoelectric thin film - Google Patents

High frequency acoustic wave device using aluminum nitride piezoelectric thin film Download PDF

Info

Publication number
JP4134627B2
JP4134627B2 JP2002225488A JP2002225488A JP4134627B2 JP 4134627 B2 JP4134627 B2 JP 4134627B2 JP 2002225488 A JP2002225488 A JP 2002225488A JP 2002225488 A JP2002225488 A JP 2002225488A JP 4134627 B2 JP4134627 B2 JP 4134627B2
Authority
JP
Japan
Prior art keywords
piezoelectric film
electrode
acoustic wave
electrode fingers
wave device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002225488A
Other languages
Japanese (ja)
Other versions
JP2004072204A (en
JP2004072204A5 (en
Inventor
敦 礒部
健吾 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002225488A priority Critical patent/JP4134627B2/en
Publication of JP2004072204A publication Critical patent/JP2004072204A/en
Publication of JP2004072204A5 publication Critical patent/JP2004072204A5/ja
Application granted granted Critical
Publication of JP4134627B2 publication Critical patent/JP4134627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
本発明は、通信機器等に用いられるラム波型弾性波共振器等弾性波素子に関する。
【0002】
【従来の技術】
従来、高周波用途の弾性波共振器として、ダイアモンドを用いた弾性表面波素子が知られている(例えば、特許第02885349号)。音速が8000m/sと大きいため、2.5GHz帯の弾性波素子として利用されている。
【0003】
【発明が解決しようとする課題】
通信機器用途の弾性波素子は、プロセス負荷の低減を考慮すると、より高音速が望まれる。最も高音速な材料であるダイアモンドは10000m/s以上と非常に大きい音速を有するが、しかし圧電性を有さないため、圧電体を付加する必要があり、その結果、利用できる音速は8000m/sまで低化してしまうという問題がある。
【0004】
通信機器用途のSAW素子では、より電気機械結合係数(k2)の大きい共振器を用いた方が低損失な電気特性にすることができる。高性能なSAW素子を作成する場合、ダイアモンドを用いた弾性表面波素子のk2は2%以下であり、小さいという問題がある。
本発明の目的は、上記問題点を解決すること、すなわち、音速の非常に大きい(>9000m/s)弾性波素子を提供することである。第2の目的は、k2の大きい(>2%)弾性波素子を提供することである。
【0005】
【課題を解決するための手段】
上記目的は、窒化アルミニウム(AlN)を主成分とする圧電膜と、前記圧電膜表面に形成され、少なくても二本以上の電極指を有する電極パターンとよりなるラム波型弾性波素子において、前記AlN圧電膜の分極方位(c軸)は圧電膜の法線とほぼ直交し、且つ電極指ともほぼ直交する方向であり、圧電膜の厚さは前記電極パターンの電極ピッチより薄いことを特徴とするラム波型弾性波素子により、解決する。ここでラム波型弾性波とは平板を伝搬する弾性波であり、平板の厚さ方向に対してほぼ均一なエネルギー分布を示す(例えば特許第2936210号)。
【0006】
以下、本発明の作用を図を用いて説明する。図1はラム波型弾性波素子の構造を説明する断面図である。図2はラム波型弾性波の音速とk2の板厚依存性を示している。厚さhのAlN圧電膜1の表面に周期Pで2種類の電位の電極指(3-1、3-2)が交互に形成されている。電極指の幅Lと各電極間間隙Sの比は2対3である。AlN圧電膜1は矢印9で示された方向に分極したAlN圧電体を主成分とする物質で構成されている。計算は、有限要素-解析解結合法(例えば礒部敦、疋田光孝、浅井健吾、住岡淳司「有限要素-解析解結合法による新モード型SAWの探索とその移動通信用素子への応用」電子情報通信学会論文誌 C-I Vol. J 82-C-I No. 12 pp. 697-705 1999年12月)に、仮想境界での電気開放と機械開放条件を加えることで計算を行なった。図2に示すように、h<Pのラム波型弾性波で、高音速(>9000m/s)、高k2 (>2%)が得られることを見出した。図3はラム波型弾性波の音速とk2の電極指方向依存性を示している。横軸はAlN圧電膜の分極方向と電極指の方向との成す角度を示している。分極方向と電極指の方向が直交(90度)するとき、最も音速とk2が大きくなる。また55°から125°の間の角度のとき、高k2 (>2%)が得られる。すなわち、AlN圧電単結晶基板を電極指のピッチより薄くし、かつ分極方向と電極指の方向が55°から125°の間の角度のとき、高音速で高k2のラム波型弾性波素子を形成することができる。以上の考察により、一例として図1に示されるように、ギャップに挟まれた圧電膜1と、圧電膜1の表面に形成され、少なくても二本以上の電極指を有する櫛型電極パターン3を有し、圧電膜1の厚さhが電極指3のピッチPより小さい弾性波素子において、圧電膜1の主成分が窒化アルミニウムであり、圧電膜1の分極方向9が圧電膜の法線と垂直であり、且つ電極指3が圧電膜1の分極方向に対して55〜125°の範囲の角度に設定されていることを特徴とする窒化アルミニウム圧電薄膜を用いた高周波弾性波素子を提案する。
【0007】
【発明の実施の形態】
以下本発明の好ましい実施例について詳細に説明する。
図4は本発明の第1実施例による一開口共振器の構成を示す平面図である。一開口共振器は、AlN圧電薄膜1と、その表面に形成された櫛型電極と反射器とで形成されている。櫛型電極は、AlN圧電薄膜1の分極方向9に対して平行な2本のバスバー2と、分極方向9に対して垂直な11対の電極指3と、入出力端子4、5とで構成されている。入力端子4は11本の電極指3-1に接続されたバスバー2-1に接続され、また出力端子は12本の電極指3-2に接続されたバスバー2-2に接続され、入力側の電極指3-1と出力側の電極指3-2は交互に配置されている。櫛型電極の両側に反射器が設置されている。各反射器はAlN圧電薄膜の分極方向と平行な2本のバスバー6と、分極方向と垂直な18本の反射電極指10で構成され、全ての反射電極指10の両端はバスバー6と接続されている。櫛型電極と入出力端子と反射器はAl-0.7%Cu合金により形成されている。
【0008】
図5は図4A-A'で示される部分の断面図である。AlN圧電薄膜1の厚さhは0.03P(P=20μm)に設定されている。また電極指線幅Lは0.4Pである。AlN圧電薄膜1は珪素単結晶基板7により支持されている。
このように構成された一開口共振器では、櫛型電極部のAlN圧電薄膜1の厚さが電極指ピッチPより極めて小さいため、櫛型電極で励振された弾性振動は瞬時にAlN圧電薄膜1の裏面に到達し、そのため弾性表面波ではなくラム波として伝搬する。また、弾性表面波の弾性振動は電極から深さ方向に2P程度の範囲に分布するのに対し、本一開口共振器は電極に極めて近い領域(<0.03P)に集中するため、弾性表面波より大きい圧電効果を示す。さらに、AlN圧電薄膜1の分極方向とラム波の伝播方向が一致しているため、弾性振動の主成分が縦波になり、いっそう高音速、強圧電効果となる。その結果、極めて大きい音速(>9000m/s)と比帯域幅(>0.02)を有するラム波型弾性波共振器を実現することが可能となる。
図6は他の実施例による一開口共振器の構成を示す平面図である。
図7は図6のB-B'で示される部分の断面図である。厚さh=0.1PのAlN圧電薄膜1と、その表面に形成された櫛型電極と反射器と入出力端子と、凹部を有する珪素単結晶基板7で構成されている。第1実施例とは、珪素単結晶基板7の形状が異なっているが、全く同機能のラム波型弾性波共振器を実現している。
【0009】
【発明の効果】
以上説明したように、本発明によれば、極めて大きい音速(>9000m/s)とk2 (>0.02)を有するラム波型弾性波素子を実現することができる。
弾性表面波デバイスのプロセスで広く用いられているi線露光機の微細解像できる寸法は0.30μm以上であるため、通常の弾性表面波デバイス(音速4000m/s)の適用周波数は3.3GHz以下、またダイアモンドを用いた弾性表面波デバイス(音速8000m/s)でも6.7GHz以下であるのに対して、本発明(音速9000m/s)を用いることで、7.5GHzまで拡大することができる。
【図面の簡単な説明】
【図1】本発明の弾性波素子の構造を説明する断面図。
【図2】本発明の弾性波素子の音速とk2のAlN圧電薄膜膜厚依存性を示した図。
【図3】本発明の弾性波素子の音速とk2のAlN圧電薄膜分極方向依存性を示した図。
【図4】本発明の実施の形態に係る弾性波共振器を示した斜視図。
【図5】図4のA-A'部分の断面図。
【図6】本発明の実施の形態に係る弾性波共振器を示した斜視図。
【図7】図6のB-B'部分の断面図。
【符号の説明】
1…AlN圧電薄膜。
2…バスバー。
3…電極指。
4、5…入出力端子。
6…反射器のバスバー。
7…珪素単結晶基板。
8…空隙。
9…AlNの分極方向。
[0001]
[Technical field to which the invention belongs]
The present invention relates to an elastic wave element such as a lamb wave type elastic wave resonator used in communication equipment or the like.
[0002]
[Prior art]
Conventionally, a surface acoustic wave element using diamond is known as an acoustic wave resonator for high frequency applications (for example, Japanese Patent No. 02885349). Since the sound velocity is as high as 8000 m / s, it is used as an elastic wave device in the 2.5 GHz band.
[0003]
[Problems to be solved by the invention]
The acoustic wave device for communication equipment is desired to have a higher sound speed in consideration of reduction of process load. Diamond, which is the highest sound speed material, has a very high sound speed of 10000 m / s or more, but since it does not have piezoelectricity, it is necessary to add a piezoelectric material, so that the available sound speed is 8000 m / s There is a problem that it will be lowered.
[0004]
In a SAW element for communication equipment, it is possible to obtain electrical characteristics with low loss by using a resonator having a larger electromechanical coupling coefficient (k 2 ). When producing a high-performance SAW element, k 2 of a surface acoustic wave element using diamond is 2% or less, which is a problem.
An object of the present invention is to solve the above-described problems, that is, to provide an acoustic wave device having a very high sound velocity (> 9000 m / s). The second object is to provide an elastic wave device having a large k 2 (> 2%).
[0005]
[Means for Solving the Problems]
In the Lamb wave type acoustic wave device comprising a piezoelectric film mainly composed of aluminum nitride (AlN) and an electrode pattern formed on the surface of the piezoelectric film and having at least two electrode fingers, The polarization orientation (c-axis) of the AlN piezoelectric film is substantially perpendicular to the normal line of the piezoelectric film and substantially perpendicular to the electrode fingers, and the thickness of the piezoelectric film is smaller than the electrode pitch of the electrode pattern. This is solved by the Lamb wave type elastic wave element. Here, the Lamb wave type elastic wave is an elastic wave propagating through a flat plate and shows a substantially uniform energy distribution in the thickness direction of the flat plate (for example, Japanese Patent No. 2936210).
[0006]
The operation of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view illustrating the structure of a Lamb wave type elastic wave device. FIG. 2 shows the dependence of the sound velocity of Lamb wave type elastic wave on the plate thickness of k2. On the surface of the AlN piezoelectric film 1 having a thickness h, electrode fingers (3-1, 3-2) of two kinds of potentials are alternately formed with a period P. The ratio of the electrode finger width L to the interelectrode gap S is 2 to 3. The AlN piezoelectric film 1 is made of a material whose main component is an AlN piezoelectric body polarized in the direction indicated by the arrow 9. The calculation is based on a finite element-analytic solution coupling method (for example, Satoshi Isobe, Mitsutaka Hamada, Kengo Asai, Junji Sumioka, "Search for a new mode-type SAW by the finite element-analytic solution coupling method and its application to mobile communication devices" Electronic Information The communication journal CI Vol. J 82-CI No. 12 pp. 697-705 (December 1999) was calculated by adding the electrical opening and virtual opening conditions at the virtual boundary. As shown in FIG. 2, it was found that a high acoustic velocity (> 9000 m / s) and a high k 2 (> 2%) can be obtained with a Lamb wave type elastic wave of h <P. Figure 3 shows the electrode finger direction dependence of the sound velocity and k 2 of the Lamb wave type elastic wave. The horizontal axis represents the angle formed between the polarization direction of the AlN piezoelectric film and the direction of the electrode fingers. When the polarization direction and the direction of the electrode finger are orthogonal (90 degrees), the sound velocity and k2 are the largest. When the angle is between 55 ° and 125 °, a high k 2 (> 2%) is obtained. That is, when the AlN piezoelectric single crystal substrate is made thinner than the pitch of the electrode fingers, and the polarization direction and the direction of the electrode fingers are at an angle between 55 ° and 125 °, the Lamb wave type elastic wave device having a high sound speed and a high k 2 Can be formed. From the above consideration, as shown in FIG. 1 as an example, a comb-shaped electrode pattern 3 formed on the surface of the piezoelectric film 1 sandwiched between the gaps and having at least two electrode fingers is formed. In the acoustic wave element in which the thickness h of the piezoelectric film 1 is smaller than the pitch P of the electrode fingers 3, the main component of the piezoelectric film 1 is aluminum nitride, and the polarization direction 9 of the piezoelectric film 1 is the normal line of the piezoelectric film A high-frequency acoustic wave device using an aluminum nitride piezoelectric thin film characterized in that the electrode finger 3 is set at an angle in the range of 55 to 125 ° with respect to the polarization direction of the piezoelectric film 1 To do.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail.
FIG. 4 is a plan view showing the configuration of the one-opening resonator according to the first embodiment of the present invention. The one-opening resonator is formed by an AlN piezoelectric thin film 1, a comb electrode formed on the surface, and a reflector. The comb-shaped electrode is composed of two bus bars 2 parallel to the polarization direction 9 of the AlN piezoelectric thin film 1, eleven pairs of electrode fingers 3 perpendicular to the polarization direction 9, and input / output terminals 4 and 5. Has been. Input terminal 4 is connected to bus bar 2-1 connected to eleven electrode fingers 3-1, and output terminal is connected to bus bar 2-2 connected to twelve electrode fingers 3-2. The electrode fingers 3-1 and the output-side electrode fingers 3-2 are alternately arranged. Reflectors are installed on both sides of the comb electrode. Each reflector is composed of two bus bars 6 parallel to the polarization direction of the AlN piezoelectric thin film and 18 reflective electrode fingers 10 perpendicular to the polarization direction, and both ends of all the reflective electrode fingers 10 are connected to the bus bar 6. ing. The comb electrode, the input / output terminal, and the reflector are made of an Al-0.7% Cu alloy.
[0008]
FIG. 5 is a cross-sectional view of the portion shown in FIG. 4A-A ′. The thickness h of the AlN piezoelectric thin film 1 is set to 0.03P (P = 20 μm). The electrode finger line width L is 0.4P. The AlN piezoelectric thin film 1 is supported by a silicon single crystal substrate 7.
In the one-opening resonator configured as described above, since the thickness of the AlN piezoelectric thin film 1 in the comb-shaped electrode portion is extremely smaller than the electrode finger pitch P, the elastic vibration excited by the comb-shaped electrode instantaneously causes the AlN piezoelectric thin film 1 Therefore, it propagates as a Lamb wave instead of a surface acoustic wave. In addition, the surface acoustic waves are distributed in the range of about 2P in the depth direction from the electrode, whereas this one-opening resonator is concentrated in the region very close to the electrode (<0.03P). Greater piezoelectric effect. In addition, since the polarization direction of the AlN piezoelectric thin film 1 matches the propagation direction of the Lamb wave, the main component of the elastic vibration becomes a longitudinal wave, resulting in a higher sound speed and a strong piezoelectric effect. As a result, it is possible to realize a Lamb wave type elastic wave resonator having a very large sound velocity (> 9000 m / s) and a specific bandwidth (> 0.02).
FIG. 6 is a plan view showing a configuration of a one-opening resonator according to another embodiment.
FIG. 7 is a cross-sectional view of a portion indicated by BB ′ in FIG. An AlN piezoelectric thin film 1 having a thickness h = 0.1 P, a comb-shaped electrode formed on the surface thereof, a reflector, an input / output terminal, and a silicon single crystal substrate 7 having a recess are formed. Although the shape of the silicon single crystal substrate 7 is different from that of the first embodiment, a lamb wave type elastic wave resonator having exactly the same function is realized.
[0009]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a Lamb wave type acoustic wave device having an extremely high sound velocity (> 9000 m / s) and k 2 (> 0.02).
Since the i-line exposure machine widely used in the surface acoustic wave device process has a resolution of 0.30 μm or more, the applicable frequency of ordinary surface acoustic wave devices (sonic velocity 4000 m / s) is 3.3 GHz or less. The surface acoustic wave device using diamond (sonic speed of 8000 m / s) is 6.7 GHz or lower, but by using the present invention (sound speed of 9000 m / s), it can be expanded to 7.5 GHz.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating the structure of an acoustic wave device of the present invention.
FIG. 2 is a graph showing the dependence of sound velocity and k 2 on the AlN piezoelectric thin film thickness of the acoustic wave device of the present invention.
FIG. 3 is a graph showing the dependence of acoustic velocity and k 2 on the polarization direction of an AlN piezoelectric thin film of the acoustic wave device of the present invention.
FIG. 4 is a perspective view showing an acoustic wave resonator according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view taken along line AA ′ of FIG.
FIG. 6 is a perspective view showing an acoustic wave resonator according to an embodiment of the present invention.
7 is a cross-sectional view taken along the line BB ′ in FIG.
[Explanation of symbols]
1 ... AlN piezoelectric thin film.
2 ... Bus bar.
3 ... Electrode fingers.
4, 5 ... Input / output terminals.
6 ... Reflector busbar.
7: A silicon single crystal substrate.
8: Void.
9: Polarization direction of AlN.

Claims (6)

ギャップに挟まれた圧電膜と、
前記圧電膜に形成され、少なくとも二本以上の電極指を有する櫛型電極パターンとを有し、
前記圧電膜の厚さは前記電極指のピッチより小さく、前記圧電膜内をラム波型弾性波が伝搬するよう構成され、
前記電極指の方向が前記圧電膜の分極方向に対して55°〜125°の範囲の角度に設定され、かつ、前記圧電膜の前記分極方向が前記圧電膜の法線に対して略垂直であり、かつ、前記電極指の方向が前記圧電膜の法線に対してほぼ垂直である
ことを特徴とする高周波弾性波素子。
A piezoelectric film sandwiched between gaps;
A comb-shaped electrode pattern formed on the piezoelectric film and having at least two electrode fingers;
The thickness of the piezoelectric film is smaller than the pitch of the electrode fingers, and a lamb wave type elastic wave propagates in the piezoelectric film,
The direction of the electrode finger is set to an angle in a range of 55 ° to 125 ° with respect to the polarization direction of the piezoelectric film, and the polarization direction of the piezoelectric film is substantially perpendicular to the normal line of the piezoelectric film. And a direction of the electrode finger is substantially perpendicular to a normal line of the piezoelectric film .
請求項1において、
前記櫛型電極パターンは、前記圧電膜の表面に形成されていることを特徴とする高周波弾性波素子。
In claim 1,
The high frequency acoustic wave device, wherein the comb electrode pattern is formed on a surface of the piezoelectric film.
請求項1において、
前記圧電膜は窒化アルミニウムを含んで成ることを特徴とする高周波弾性波素子。
In claim 1,
The high-frequency acoustic wave device according to claim 1, wherein the piezoelectric film comprises aluminum nitride.
請求項1ないし3のいずれかにおいて、
前記電極指の幅と前記電極指間の間隙との比が、2対3であることを特徴とする高周波弾性波素子。
In any one of Claims 1 thru | or 3,
The high-frequency acoustic wave device according to claim 1, wherein a ratio of a width of the electrode finger to a gap between the electrode fingers is 2 to 3.
請求項1ないし4のいずれかにおいて、
前記ピッチは前記弾性波の波長の1/2の長さであることを特徴とする高周波弾性波素子。
In any of claims 1 to 4,
The high-frequency acoustic wave device according to claim 1, wherein the pitch is half the wavelength of the acoustic wave.
第1の面と、前記第1の面にて開口する開口部を有する空洞部とを有する基板と、
前記第1の開口部と重なる部分を有して前記第1の面上に形成された圧電膜と、
前記圧電膜上に形成され、第1の複数の電極指を有する第1の電極パターンと、
前記圧電膜上に形成され、第2の複数の電極指を有する第2の電極パターンとを具備して成り、
前記第1の複数の電極指と前記第2の複数の電極指とは、所定の周期でそれぞれ交互に配置され、
前記圧電膜の厚さは前記所定の周期より小さく、前記圧電膜内をラム波型弾性波が伝搬するよう構成され、
前記第1および第2の複数の電極指の方向は、前記圧電膜の分極方向に対して55°〜125°の範囲の角度であり、かつ、前記圧電膜の前記分極方向が前記圧電膜の法線に対して略垂直であり、かつ、前記電極指の方向が前記圧電膜の法線に対してほぼ垂直である
ことを特徴とする弾性波共振器。
A substrate having a first surface and a hollow portion having an opening opening in the first surface;
A piezoelectric film formed on the first surface having a portion overlapping the first opening;
A first electrode pattern formed on the piezoelectric film and having a first plurality of electrode fingers;
A second electrode pattern formed on the piezoelectric film and having a second plurality of electrode fingers;
The first plurality of electrode fingers and the second plurality of electrode fingers are alternately arranged with a predetermined period,
The piezoelectric film has a thickness smaller than the predetermined period, and is configured such that a Lamb wave type elastic wave propagates in the piezoelectric film,
The direction of the first and second electrode fingers is an angle in the range of 55 ° to 125 ° with respect to the polarization direction of the piezoelectric film, and the polarization direction of the piezoelectric film is that of the piezoelectric film. An acoustic wave resonator characterized by being substantially perpendicular to a normal line and a direction of the electrode finger being substantially perpendicular to a normal line of the piezoelectric film .
JP2002225488A 2002-08-02 2002-08-02 High frequency acoustic wave device using aluminum nitride piezoelectric thin film Expired - Fee Related JP4134627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002225488A JP4134627B2 (en) 2002-08-02 2002-08-02 High frequency acoustic wave device using aluminum nitride piezoelectric thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002225488A JP4134627B2 (en) 2002-08-02 2002-08-02 High frequency acoustic wave device using aluminum nitride piezoelectric thin film

Publications (3)

Publication Number Publication Date
JP2004072204A JP2004072204A (en) 2004-03-04
JP2004072204A5 JP2004072204A5 (en) 2005-10-20
JP4134627B2 true JP4134627B2 (en) 2008-08-20

Family

ID=32013098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225488A Expired - Fee Related JP4134627B2 (en) 2002-08-02 2002-08-02 High frequency acoustic wave device using aluminum nitride piezoelectric thin film

Country Status (1)

Country Link
JP (1) JP4134627B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202087A (en) 2005-05-11 2007-08-09 Seiko Epson Corp Lamb wave type high frequency device
JP4613960B2 (en) * 2005-10-19 2011-01-19 株式会社村田製作所 Lamb wave device
JP4315174B2 (en) * 2006-02-16 2009-08-19 セイコーエプソン株式会社 Manufacturing method of lamb wave type high frequency device
CN108470823B (en) * 2018-04-12 2021-09-07 中国电子科技集团公司第四十九研究所 High-voltage electric polarization system for high-molecular film

Also Published As

Publication number Publication date
JP2004072204A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
TWI762832B (en) Surface acoustic wave device
JP5046961B2 (en) High frequency acoustic wave device
CN1902817B (en) Boundary acoustic wave device
CN105811913A (en) Acoustic wave device
JP2008148338A (en) Surface acoustic wave functional element
JP2001524295A (en) Surface acoustic wave device including separated comb electrodes
KR20200131188A (en) Elastic wave device, radio-frequency front-end circuit, and communication apparatus
CN110995194B (en) Two-dimensional high-performance resonator
CN113056873A (en) Elastic wave device, branching filter, and communication device
JPH08288788A (en) Surface acoustic wave element
CN115001438A (en) Structure of longitudinal leakage surface acoustic wave resonator and filter
KR20190115081A (en) A seismic device
WO2023035235A1 (en) Resonator, filter, and electronic device
JP4134627B2 (en) High frequency acoustic wave device using aluminum nitride piezoelectric thin film
JP2000183681A (en) Surface acoustic wave device
JP2002152007A (en) Lamb wave type elastic wave resonator
JPH11298286A (en) Surface acoustic wave waveguide structure and device using the structure
US6373353B1 (en) Surface acoustic wave transducer using NSPUDT property substrate and surface acoustic wave filter using the transducer
WO2023097531A1 (en) Bulk acoustic wave resonator, filter and electronic device
CN116233709A (en) High-performance acoustic device based on longitudinal acoustic surface wave
JP2008092610A (en) Surface acoustic wave substrate and surface acoustic wave functional element
KR102607899B1 (en) elastic wave device
JPH10173467A (en) Transversal saw filter
JPS59213A (en) Surface acoustic wave device
WO2022168799A1 (en) Elastic wave device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees