JP4134390B2 - Manufacturing method of semiconductor dynamic quantity sensor - Google Patents

Manufacturing method of semiconductor dynamic quantity sensor Download PDF

Info

Publication number
JP4134390B2
JP4134390B2 JP24069298A JP24069298A JP4134390B2 JP 4134390 B2 JP4134390 B2 JP 4134390B2 JP 24069298 A JP24069298 A JP 24069298A JP 24069298 A JP24069298 A JP 24069298A JP 4134390 B2 JP4134390 B2 JP 4134390B2
Authority
JP
Japan
Prior art keywords
end point
etching
point detection
substrate
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24069298A
Other languages
Japanese (ja)
Other versions
JP2000068527A (en
Inventor
一彦 加納
幸裕 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP24069298A priority Critical patent/JP4134390B2/en
Publication of JP2000068527A publication Critical patent/JP2000068527A/en
Application granted granted Critical
Publication of JP4134390B2 publication Critical patent/JP4134390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0817Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for pivoting movement of the mass, e.g. in-plane pendulum

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Pressure Sensors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、梁構造の可動部を有し、例えば加速度、ヨーレート、振動等の力学量を検出する半導体力学量センサの製造方法に関する。
【0002】
【従来の技術】
従来、この種の半導体力学量センサとして、特開平9−145740号公報に示す加速度センサがある。この加速度センサの平面構成を図9(a)に示し、そのH−H断面を図9(b)に示す。この加速度センサは、シリコンで構成された基板30、アンカ部11、おもり可動電極12、梁部13、固定電極14で構成されるスイッチ式の加速度センサとなっている。
【0003】
アンカ部11は、円柱形状で、基板30上に形成されている。おもり可動電極12は、円筒形状で、基板30の表面と所定の間隔を隔ててほぼ平行に設けられており、基板30と垂直方向の略円柱状側面、すなわち円周状に形成された円周側面12aを有している。
梁部13は、一端がアンカ部11に固定され他端がおもり可動電極12に固定されており、おもり可動電極12をアンカ部11に対して支持する。この梁部13は、複数本(図では4本)設けられており、それぞれを、平面的に見て円弧の一部となる形状にし、また断面において横の長さに対する縦の長さの比を大きくした形状にすることによって、基板30の表面に対し平行方向に弾性変形するバネ部を構成している。
【0004】
固定電極14は、内側が円柱をくり抜いた形状で、おもり可動電極12の外側に所定の間隔を隔てて基板30上に形成されており、おもり可動電極12の検出面12aに対向する円周側面14aを有している。
アンカ部11、おもり可動電極12、梁部13、固定電極14は、半導体層としてのシリコン膜をエッチングして形成されたもので、おもり可動電極12と梁部13にて梁構造の可動部を構成し、固定電極14にて固定部を構成している。また、それぞれの表面には、導電性をもたせるために不純物が導入されている。従って、おもり可動電極12の円周側面12aは導電性の検出面となり、固定電極14の円周側面14aは導電性の被検出面となる。また、アンカ部11、固定電極14は、図に示すように、酸化膜21、22によって、基板30上に固定されている。
【0005】
上記した構成において、基板30の表面と平行な方向に加速度が生じたとき、基板30の表面と平行な方向におもり可動電極12が変位し、おもり可動電極12の検出面12aと固定電極14の被検出面14aとが接触する。この接触状態を、図示しない検出回路により検出することによって、加速度が検出される。
上記した加速度センサは、次のようにして製造される。
【0006】
まず、図10(a)に示すように、シリコン基板30に犠牲層をなす酸化膜20を成膜し、その上にシリコン膜10を成膜した基板を用意する。
次に、図10(b)に示すように、シリコン膜10をエッチングして、シリコン膜10を、アンカ部11、おもり可動電極12、梁部13、固定電極14の形状にパターニングする。この後、シリコン表面に導電性を持たせるためにアンカ部11、おもり可動電極12、梁部13、固定電極14の各部に不純物を導入する。
【0007】
最後に、図10(c)に示すように、おもり可動電極12、梁部13直下の酸化膜20をフッ化水素系液体によりエッチング、すなわち犠牲層エッチングを行って、可動部を可動状態にする。
【0008】
【発明が解決しようとする課題】
上記した製造方法においては、犠牲層エッチングによって可動部の下の酸化膜20を除去しているが、その犠牲層エッチングの終点を確認することが難しく、エッチング時間をオーバーしてしまうとアンカ部11や固定電極14が基板30に固定できないという問題がある。
【0009】
本発明は上記問題に鑑みたもので、犠牲層エッチングの終点を容易に確認できるようにすることを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載の発明においては、犠牲層エッチングの終点検出パターンを形成しておき、犠牲層エッチングによる終点検出パターンの変位状態によって可動部の下の犠牲層の除去を確認することを特徴としている。
【0011】
終点検出パターンの下にある犠牲層が犠牲層エッチング時にエッチングされて終点検出パターンが変位するため、その変位状態によって可動部の下の犠牲層の除去を確認することができ、犠牲層エッチングの終点を容易に確認することができる。
この場合、終点検出パターンは、請求項2に記載の発明のように、可動部と同時にパターニング形成すれば、終点検出パターンを形成するための余分な工程を必要としないため、製造工程を簡単にすることができる。
【0012】
また、請求項3に記載の発明のように、終点検出パターンを幅の異なる複数の構造体で形成しておけば、それぞれの構造体の変位状態に基づいて犠牲層エッチングの終点を容易に確認することができる。この場合、請求項4に記載の発明のように、終点検出パターンをなす複数の構造体として、可動部の下側の犠牲層が除去されるエッチング時間でエッチングされる幅より広いものと狭いもの含むように形成すれば、幅の狭い方の構造体の下の犠牲層が除去され幅の広い方の構造体の下の犠牲層が残っている状態にて、より容易に犠牲層エッチングの終点を確認することができる。
【0013】
また、請求項5に記載の発明のように、終点検出パターンの一部を固定部に接続した状態で形成するようにすれば、犠牲層エッチング時に終点検出パターンが離脱することがないため、センサの歩留まりを良好にすることができる。
【0014】
【発明の実施の形態】
以下、本発明を図に示す実施形態について説明する。
図1に本発明の一実施形態に係る加速度センサ構成を示す。(a)は平面図、(b)は(a)中のA−A断面図である。この図1において、図9に示すものと同一符号を付したものは、同一物であることを示している。従って、この実施形態における加速度センサは、図9に示すものと同様、シリコンで構成された基板30、アンカ部11、おもり可動電極12、梁部13、固定電極14で構成されるスイッチ式の加速度センサとなっている。
【0015】
この実施形態においては、固定電極14の形成領域に、おもり可動電極12、梁部13を基板30からリリースするエッチング、すなわち犠牲層エッチングの終点を検出するための終点検出パターン41〜46が形成されている。
以下、この実施形態における加速度センサの製造方法について説明する。
まず、図2(a)に示すように、シリコン基板30に犠牲層をなす酸化膜20を成膜し、その上に半導体層としてのシリコン膜10を成膜した基板(ウェハ)を用意する。この基板としては、SOI基板を用いることもできる。
【0016】
次に、図2(b)に示すように、シリコン膜10をエッチングして、シリコン膜10を、アンカ部11、おもり可動電極12、梁部13、固定電極14、および終点検出パターン41〜46の形状にパターニングする。この終点検出パターンは、図1(a)に示すように、A−A断面での幅が終点検出パターン41から終点検出パターン46にいくに従って広くなっており、終点検出パターン46の幅がおもり可動電極12の幅と同じになっている。この後、シリコン表面に導電性を持たせるためにアンカ部11、おもり可動電極12、梁部13、固定電極14の各部に不純物を導入する。
【0017】
最後に、図2(c)に示すように、おもり可動電極12、梁部13直下の酸化膜20をフッ化水素系液体によりエッチングすることで、可動部を可動状態にする。この際、終点検出パターン41〜46は固定電極13と接続されていないため、直下の酸化膜20がエッチングによって除去されると、図に示すように下側に落ちる。エッチングが進行するに従い、幅の狭い終点検出パターンから順に下側に落ち、おもり可動電極12の下側の酸化膜20のエッチングが終了すると、終点検出パターン45が下に落ちる。エッチング終了後、光学顕微鏡等で上部から終点検出パターン41〜46の変位状態を観察することにより、エッチングが終了していることを視覚的に確認することができる。
【0018】
次に、上記した終点検出パターン41〜46の動作を、図3〜図6を用いて説明する。図3は、エッチングする前の状態を示し、図4〜図6にエッチング後の3つの挙動パターンを示す。なお、各図の(a)は終点検出パターン41〜46が形成されている領域の平面図、(b)は断面図である。第1の挙動パターンは、図4に示すように、終点検出パターンがそのまま基板30側に下がり基板30に付着する。第2の挙動パターンは、図5に示すように、犠牲層エッチング中あるいはそのあとの水洗工程等で終点検出パターンが水平方向に移動して、基板30側に下がり基板30に付着する。第3の挙動パターンは、図6に示すように、犠牲層エッチング中あるいはそのあとの水洗工程等で終点検出パターンが基板30から離れ液中に取り込まれる。いずれの場合も、エッチング終了後、光学顕微鏡で上部から観察することにより酸化膜20除去のエッチングがどこまで進行しているかを判断することができる。
【0019】
なお、終点検出パターンの幅は、基板30からリリースされる梁構造体(可動部)の幅の一番広いところに設定するのが好ましいが、構造体幅とエッチング幅が必ずしも一致しない場合がある。その場合、基板30からリリースされる構造体のエッチング時間に相当する構造体幅を設定し、その設定した幅の前後に梁幅の狭いものと広いものを形成しておくと、酸化膜20除去のエッチングの進行を判断しやすくなる。このようなパターンを設けることにより、エッチング液の温度変化や劣化等によるエッチングレートの変化があった場合でも、エッチング終了後、上部から終点検出パターンを観察することによりエッチングが終了しているか否かを判断することができる。
【0020】
また、終点検出パターン41〜46としては、図1に示すような構造のものに限らず、図7に示すような片持ち梁構造のものであってもよい。この場合、エッチングの終点検出は梁先端の幅の広いところで行う。図8に、エッチング後の終点検出パターン41〜46の状態を示す。梁の先端の幅広個所の下の酸化膜20が除去されると、下方または横方向に構造体が付着し、梁が変形するため、エッチング終了後、このパターンを観察することにより、エッチングが終了しているか否かを判断することができる。
【0021】
このように終点検出パターン41〜46を片持ち梁構造にすることによって、それが基板30から離脱することがないためセンサの歩留まりが向上できる。すなわち、図6に見られるように、終点検出パターンが液中に取り込まれると、それがウェハ表面に再付着し、ゴミとなる恐れがあるが、片持ち梁構造にすることで、それがウェハから離脱することがなく、従ってゴミとなることがないためセンサの歩留まりが向上する。なお、片持ち梁構造に限らず、基板30になんらかの形で固定されていれば同様の効果を奏する。
【0022】
また、上記した製造方法においては、基板30の上に酸化膜20、シリコン膜10を成膜した基板を用意し、シリコン酸化膜10をエッチングして、可動部と固定部をパターニングするものを示したが、第1のシリコン基板に可動部と固定部を画定するための溝を形成しておき、その上に犠牲層をなす酸化膜を形成し、その酸化膜の表面を平坦化した後、第2のシリコン基板と貼り合わせ、この後、第1のシリコン基板の表面を研磨して、前記溝から前記犠牲層をなす酸化膜をエッチングにより除去して可動部を可動にする製造方法を用いることもできる。
【0023】
なお、本発明は上記したような加速度センサに限らず、梁構造体の可動電極と固定電極とを対向させて力学量を検出するものであれば、その他の構造の加速度センサ、ヨーレートセンサなどに適用することもできる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る加速度センサの構成を示す図である。
【図2】図1に示す加速度センサの製造方法を示す工程図である。
【図3】終点検出パターン41〜46のエッチング前の状態を示す図である。
【図4】図3に示すもののエッチング後の第1の挙動パターンを示す図である。
【図5】図3に示すもののエッチング後の第2の挙動パターンを示す図である。
【図6】図3に示すもののエッチング後の第3の挙動パターンを示す図である。
【図7】終点検出パターン41〜46の他の形成例におけるエッチング前の状態を示す図である。
【図8】図7に示すもののエッチング後の挙動パターンを示す図である。
【図9】従来の加速度センサの構成を示す図である。
【図10】図9に示す加速度センサの製造方法を示す工程図である。
【符号の説明】
10…シリコン膜、11…アンカ部、12…おもり可動電極、13…梁部、
14…固定電極、20、21、22…酸化膜、30…基板、
41〜46…終点検出パターン。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a semiconductor dynamic quantity sensor having a movable part having a beam structure and detecting a dynamic quantity such as acceleration, yaw rate, vibration, and the like.
[0002]
[Prior art]
Conventionally, as this type of semiconductor dynamic quantity sensor, there is an acceleration sensor disclosed in Japanese Patent Laid-Open No. 9-145740. FIG. 9A shows a planar configuration of this acceleration sensor, and FIG. 9B shows a HH cross section thereof. This acceleration sensor is a switch type acceleration sensor composed of a substrate 30 made of silicon, an anchor portion 11, a movable weight electrode 12, a beam portion 13, and a fixed electrode 14.
[0003]
The anchor portion 11 has a cylindrical shape and is formed on the substrate 30. The weight movable electrode 12 has a cylindrical shape and is provided substantially parallel to the surface of the substrate 30 at a predetermined interval. The weight movable electrode 12 is a substantially cylindrical side surface perpendicular to the substrate 30, that is, a circumferentially formed circumferential shape. It has a side surface 12a.
The beam portion 13 has one end fixed to the anchor portion 11 and the other end fixed to the weight movable electrode 12, and supports the weight movable electrode 12 with respect to the anchor portion 11. A plurality of beam portions 13 (four in the figure) are provided, each of which has a shape that becomes a part of an arc when seen in a plan view, and the ratio of the vertical length to the horizontal length in the cross section. By making the shape larger, a spring portion is formed which is elastically deformed in a direction parallel to the surface of the substrate 30.
[0004]
The fixed electrode 14 has a shape in which a cylinder is hollowed out, is formed on the substrate 30 at a predetermined interval outside the weight movable electrode 12, and is a circumferential side surface facing the detection surface 12 a of the weight movable electrode 12. 14a.
The anchor portion 11, the movable weight electrode 12, the beam portion 13, and the fixed electrode 14 are formed by etching a silicon film as a semiconductor layer, and the movable portion having a beam structure is formed by the movable weight electrode 12 and the beam portion 13. The fixed portion is configured by the fixed electrode 14. In addition, impurities are introduced into each surface in order to provide conductivity. Therefore, the circumferential side surface 12a of the weight movable electrode 12 becomes a conductive detection surface, and the circumferential side surface 14a of the fixed electrode 14 becomes a conductive detection surface. Further, the anchor portion 11 and the fixed electrode 14 are fixed on the substrate 30 by oxide films 21 and 22, as shown in the figure.
[0005]
In the configuration described above, when acceleration occurs in a direction parallel to the surface of the substrate 30, the weight movable electrode 12 is displaced in a direction parallel to the surface of the substrate 30, and the detection surface 12 a of the weight movable electrode 12 and the fixed electrode 14 The detected surface 14a comes into contact. By detecting this contact state by a detection circuit (not shown), acceleration is detected.
The acceleration sensor described above is manufactured as follows.
[0006]
First, as shown in FIG. 10A, an oxide film 20 that forms a sacrificial layer is formed on a silicon substrate 30, and a substrate on which the silicon film 10 is formed is prepared.
Next, as shown in FIG. 10B, the silicon film 10 is etched to pattern the silicon film 10 into the shape of the anchor portion 11, the movable weight electrode 12, the beam portion 13, and the fixed electrode 14. Thereafter, impurities are introduced into the anchor portion 11, the weight movable electrode 12, the beam portion 13, and the fixed electrode 14 in order to provide conductivity to the silicon surface.
[0007]
Finally, as shown in FIG. 10 (c), the movable movable electrode 12 and the oxide film 20 immediately below the beam portion 13 are etched with a hydrogen fluoride liquid, that is, sacrificial layer etching is performed to make the movable portion movable. .
[0008]
[Problems to be solved by the invention]
In the manufacturing method described above, the oxide film 20 under the movable portion is removed by sacrificial layer etching, but it is difficult to confirm the end point of the sacrificial layer etching, and the anchor portion 11 is exceeded if the etching time is exceeded. There is another problem that the fixed electrode 14 cannot be fixed to the substrate 30.
[0009]
The present invention has been made in view of the above problems, and an object thereof is to make it possible to easily confirm the end point of sacrificial layer etching.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, in the first aspect of the present invention, a sacrificial layer etching end point detection pattern is formed, and the sacrificial layer under the movable portion is removed depending on the displacement state of the end point detection pattern by sacrificial layer etching. It is characterized by confirming.
[0011]
Since the sacrificial layer under the end point detection pattern is etched during the sacrificial layer etching and the end point detection pattern is displaced, the removal of the sacrificial layer under the movable part can be confirmed according to the displacement state, and the sacrificial layer etching end point is confirmed. Can be easily confirmed.
In this case, if the end point detection pattern is formed by patterning at the same time as the movable portion as in the invention described in claim 2, an extra step for forming the end point detection pattern is not required, and thus the manufacturing process is simplified. can do.
[0012]
Further, if the end point detection pattern is formed of a plurality of structures having different widths as in the invention described in claim 3, the end point of the sacrifice layer etching can be easily confirmed based on the displacement state of each structure. can do. In this case, as in the invention described in claim 4, as the plurality of structures forming the end point detection pattern, those having a width wider than or narrower than the width etched by the etching time for removing the sacrificial layer below the movable portion If it is formed so that the sacrificial layer under the narrower structure is removed and the sacrificial layer under the wider structure remains, the sacrificial layer etching end point becomes easier. Can be confirmed.
[0013]
Further, as in the fifth aspect of the invention, if a part of the end point detection pattern is formed in a state of being connected to the fixed portion, the end point detection pattern will not be detached during the sacrifice layer etching. Yield can be improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments shown in the drawings will be described below.
FIG. 1 shows an acceleration sensor configuration according to an embodiment of the present invention. (A) is a top view, (b) is AA sectional drawing in (a). In FIG. 1, the same reference numerals as those shown in FIG. 9 denote the same items. Accordingly, the acceleration sensor in this embodiment is a switch type acceleration composed of the substrate 30 made of silicon, the anchor portion 11, the weight movable electrode 12, the beam portion 13, and the fixed electrode 14 as shown in FIG. It is a sensor.
[0015]
In this embodiment, the end point detection patterns 41 to 46 for detecting the end point of the etching that releases the weight movable electrode 12 and the beam portion 13 from the substrate 30, that is, the sacrifice layer etching, are formed in the formation region of the fixed electrode 14. ing.
Hereinafter, the manufacturing method of the acceleration sensor in this embodiment is demonstrated.
First, as shown in FIG. 2A, an oxide film 20 that forms a sacrificial layer is formed on a silicon substrate 30, and a substrate (wafer) on which a silicon film 10 as a semiconductor layer is formed is prepared. As this substrate, an SOI substrate can also be used.
[0016]
Next, as shown in FIG. 2B, the silicon film 10 is etched, and the silicon film 10 is changed into an anchor portion 11, a weight movable electrode 12, a beam portion 13, a fixed electrode 14, and end point detection patterns 41 to 46. Patterned into a shape. As shown in FIG. 1A, the end point detection pattern has a width in the AA section that increases from the end point detection pattern 41 to the end point detection pattern 46, and the end point detection pattern 46 has a width that is movable. The width of the electrode 12 is the same. Thereafter, impurities are introduced into the anchor portion 11, the weight movable electrode 12, the beam portion 13, and the fixed electrode 14 in order to provide conductivity to the silicon surface.
[0017]
Finally, as shown in FIG. 2C, the movable part is made movable by etching the weight movable electrode 12 and the oxide film 20 immediately below the beam part 13 with a hydrogen fluoride liquid. At this time, since the end point detection patterns 41 to 46 are not connected to the fixed electrode 13, when the oxide film 20 immediately below is removed by etching, the end point detection patterns 41 to 46 fall downward as shown in the figure. As the etching proceeds, the end point detection pattern 45 falls downward in order from the narrow end point detection pattern, and when the etching of the oxide film 20 below the weight movable electrode 12 is finished, the end point detection pattern 45 falls downward. After the etching is completed, it is possible to visually confirm that the etching is completed by observing the displacement state of the end point detection patterns 41 to 46 from above with an optical microscope or the like.
[0018]
Next, the operation of the end point detection patterns 41 to 46 will be described with reference to FIGS. FIG. 3 shows a state before etching, and FIGS. 4 to 6 show three behavior patterns after etching. In addition, (a) of each figure is a top view of the area | region in which the end point detection patterns 41-46 are formed, (b) is sectional drawing. In the first behavior pattern, as shown in FIG. 4, the end point detection pattern falls to the substrate 30 side as it is and adheres to the substrate 30. In the second behavior pattern, as shown in FIG. 5, the end point detection pattern moves in the horizontal direction during or after the sacrificial layer etching, and drops to the substrate 30 side and adheres to the substrate 30. In the third behavior pattern, as shown in FIG. 6, the end point detection pattern is separated from the substrate 30 and taken into the liquid during the sacrificial layer etching or in the subsequent water washing step. In any case, it is possible to determine how far the etching for removing the oxide film 20 has progressed by observing from above with an optical microscope after the etching is completed.
[0019]
Note that the width of the end point detection pattern is preferably set to the widest width of the beam structure (movable part) released from the substrate 30, but the structure width and the etching width may not necessarily match. . In that case, the structure width corresponding to the etching time of the structure released from the substrate 30 is set, and when the narrow and wide beam widths are formed before and after the set width, the oxide film 20 is removed. It becomes easy to judge the progress of etching. Whether or not etching is completed by observing the end point detection pattern from the top after completion of etching even when there is a change in etching rate due to temperature change or deterioration of the etchant by providing such a pattern. Can be judged.
[0020]
Further, the end point detection patterns 41 to 46 are not limited to the structure as shown in FIG. 1 but may have a cantilever structure as shown in FIG. In this case, the end point of etching is detected at a wide end of the beam. FIG. 8 shows the states of the end point detection patterns 41 to 46 after etching. When the oxide film 20 under the wide portion at the tip of the beam is removed, the structure adheres downward or laterally, and the beam is deformed. Therefore, the etching is completed by observing this pattern after the etching is completed. It can be judged whether or not.
[0021]
By making the end point detection patterns 41 to 46 into a cantilever structure in this way, the sensor yield can be improved because it does not detach from the substrate 30. In other words, as shown in FIG. 6, when the end point detection pattern is taken into the liquid, it may be reattached to the wafer surface and become dust. The sensor yield is improved because it is not separated from the sensor and therefore does not become dust. It should be noted that the same effect can be obtained as long as the substrate 30 is fixed in some form, not limited to the cantilever structure.
[0022]
In the above manufacturing method, a substrate in which the oxide film 20 and the silicon film 10 are formed on the substrate 30 is prepared, and the silicon oxide film 10 is etched to pattern the movable portion and the fixed portion. However, after forming a groove for defining the movable portion and the fixed portion in the first silicon substrate, forming an oxide film as a sacrificial layer thereon, and planarizing the surface of the oxide film, A manufacturing method is used in which the movable portion is moved by bonding the second silicon substrate and then polishing the surface of the first silicon substrate to remove the oxide film forming the sacrificial layer from the groove by etching. You can also.
[0023]
The present invention is not limited to the acceleration sensor as described above, but may be an acceleration sensor, a yaw rate sensor, or the like having any other structure as long as the mechanical quantity is detected by making the movable electrode and the fixed electrode of the beam structure face each other. It can also be applied.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an acceleration sensor according to an embodiment of the present invention.
2 is a process diagram showing a method of manufacturing the acceleration sensor shown in FIG. 1. FIG.
FIG. 3 is a diagram illustrating a state before etching of end point detection patterns 41 to 46;
FIG. 4 is a diagram showing a first behavior pattern after etching of what is shown in FIG. 3;
FIG. 5 is a diagram showing a second behavior pattern after etching of what is shown in FIG. 3;
6 is a diagram showing a third behavior pattern after etching of what is shown in FIG. 3; FIG.
FIG. 7 is a diagram showing a state before etching in another example of forming end point detection patterns 41 to 46;
8 is a diagram showing a behavior pattern after etching of what is shown in FIG. 7;
FIG. 9 is a diagram showing a configuration of a conventional acceleration sensor.
10 is a process diagram showing a method of manufacturing the acceleration sensor shown in FIG. 9. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Silicon film, 11 ... Anchor part, 12 ... Weight movable electrode, 13 ... Beam part,
14 ... fixed electrode, 20, 21, 22 ... oxide film, 30 ... substrate,
41 to 46: end point detection patterns.

Claims (5)

基板の上に犠牲層を介して梁構造の可動部および固定部がパターニング形成された半導体層を有するものを用意し、前記可動部の下の前記犠牲層をエッチングにより除去して前記可動部を力学量の作用によって可動できるようにした半導体力学量センサの製造方法において、
前記半導体層に前記エッチングの終点検出パターンを形成し、前記エッチングによる前記終点検出パターンの変位状態によって前記可動部の下の前記犠牲層の除去を確認することを特徴とする半導体力学量センサの製造方法。
A substrate having a semiconductor layer in which a movable part and a fixed part of a beam structure are patterned through a sacrificial layer on a substrate is prepared, and the sacrificial layer under the movable part is removed by etching to remove the movable part. In a method of manufacturing a semiconductor mechanical quantity sensor that is movable by the action of a mechanical quantity,
The semiconductor end point detection pattern is formed in the semiconductor layer, and the removal of the sacrificial layer under the movable part is confirmed according to the displacement state of the end point detection pattern by the etching. Method.
前記終点検出パターンを前記可動部と同時にパターニング形成することを特徴とする請求項1に記載の半導体力学量センサの製造方法。2. The method of manufacturing a semiconductor dynamic quantity sensor according to claim 1, wherein the end point detection pattern is formed by patterning simultaneously with the movable portion. 前記終点検出パターンを幅の異なる複数の構造体で形成することを特徴とする請求項1又は2に記載の半導体力学量センサの製造方法。3. The method of manufacturing a semiconductor dynamic quantity sensor according to claim 1, wherein the end point detection pattern is formed of a plurality of structures having different widths. 前記複数の構造体を、前記可動部の下側の犠牲層が除去されるエッチング時間でエッチングされる幅より広いものと狭いもの含むように形成することを特徴とする請求項3に記載の半導体力学量センサの製造方法。4. The semiconductor according to claim 3, wherein the plurality of structures are formed so as to include ones wider and narrower than a width etched by an etching time during which a sacrificial layer below the movable portion is removed. Manufacturing method of mechanical quantity sensor. 前記終点検出パターンの一部を前記固定部に接続した状態で形成することを特徴とする請求項1乃至4のいずれか1つに記載の半導体力学量センサの製造方法。5. The method of manufacturing a semiconductor dynamic quantity sensor according to claim 1, wherein a part of the end point detection pattern is formed in a state of being connected to the fixed portion.
JP24069298A 1998-08-26 1998-08-26 Manufacturing method of semiconductor dynamic quantity sensor Expired - Fee Related JP4134390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24069298A JP4134390B2 (en) 1998-08-26 1998-08-26 Manufacturing method of semiconductor dynamic quantity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24069298A JP4134390B2 (en) 1998-08-26 1998-08-26 Manufacturing method of semiconductor dynamic quantity sensor

Publications (2)

Publication Number Publication Date
JP2000068527A JP2000068527A (en) 2000-03-03
JP4134390B2 true JP4134390B2 (en) 2008-08-20

Family

ID=17063293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24069298A Expired - Fee Related JP4134390B2 (en) 1998-08-26 1998-08-26 Manufacturing method of semiconductor dynamic quantity sensor

Country Status (1)

Country Link
JP (1) JP4134390B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060176487A1 (en) * 2004-09-27 2006-08-10 William Cummings Process control monitors for interferometric modulators
JP4774885B2 (en) * 2005-09-22 2011-09-14 セイコーエプソン株式会社 Manufacturing method of MEMS element
JP2011137843A (en) * 2008-03-27 2011-07-14 Nec Corp Etching end point detection pattern and etching end point detection method
EP2202197B1 (en) * 2008-12-29 2014-03-05 Imec Method for testing MEMS devices

Also Published As

Publication number Publication date
JP2000068527A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
KR100599124B1 (en) Method for manufacturing floating structure
US6428713B1 (en) MEMS sensor structure and microfabrication process therefor
JP5091156B2 (en) Micromechanical element and method for manufacturing micromechanical element
US6117701A (en) Method for manufacturing a rate-of-rotation sensor
US7785481B2 (en) Method for fabricating micromachined structures
KR101462389B1 (en) Method of producing wafer
KR100237000B1 (en) Method for fabricating microstructures by using sacrifical oxide
US8524520B2 (en) Method for producing a structure comprising a mobile element by means of a heterogeneous sacrificial layer
JP4134390B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
JP2001102597A (en) Semiconductor structure and method for fabrication thereof
JP2008264902A (en) Silicon structure and its manufacturing method
JP2007216368A (en) Electromechanical element and electronic circuit device, and method for manufacturing the same
CN112624031A (en) MEMS structure with over-etching barrier layer and preparation method thereof
KR100712336B1 (en) Prism manufacturing method
US7041593B2 (en) Method for manufacturing thin-film structure
JP4557034B2 (en) Semiconductor dynamic quantity sensor and manufacturing method thereof
JPH11274142A (en) Etching depth detecting method, manufacture of semiconductor device using the method, and manufacture of dynamical quantity sensor using the detecting method
JP4193232B2 (en) Mechanical quantity sensor
JP3577566B2 (en) Manufacturing method of semiconductor dynamic quantity sensor
CN103477421A (en) Method and device for detecting termination of etching
JP5382937B2 (en) Etching method with improved control of feature critical dimension at the bottom of thick film
JP3966155B2 (en) Manufacturing method of structure having movable part
KR100491855B1 (en) Method for manufacturing thin-film structure
JP2004136396A (en) Manufacturing method of micro structure
JP2006500232A (en) Formation method and components of micromechanics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees