JP4134351B2 - Particle carrier for nucleic acid binding - Google Patents

Particle carrier for nucleic acid binding Download PDF

Info

Publication number
JP4134351B2
JP4134351B2 JP16317594A JP16317594A JP4134351B2 JP 4134351 B2 JP4134351 B2 JP 4134351B2 JP 16317594 A JP16317594 A JP 16317594A JP 16317594 A JP16317594 A JP 16317594A JP 4134351 B2 JP4134351 B2 JP 4134351B2
Authority
JP
Japan
Prior art keywords
double
stranded
stranded oligonucleotide
nucleic acid
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16317594A
Other languages
Japanese (ja)
Other versions
JPH08296A (en
Inventor
可君 范
裕之 田野
澄 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP16317594A priority Critical patent/JP4134351B2/en
Publication of JPH08296A publication Critical patent/JPH08296A/en
Application granted granted Critical
Publication of JP4134351B2 publication Critical patent/JP4134351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、核酸結合用粒子担体に関し、さらに詳しくは遺伝子工学、クローニング、ゲノム核酸解析等の分野における特定の制限酵素切断末端をもつ核酸断片の結合、回収あるいはDNA結合性蛋白質の分離、抽出、特に生植物のゲノム核酸の解読に行われる制限酵素ランドマークの一次スクリーニングに有効な粒子担体に関する。
【0002】
【従来の技術】
一本鎖オリゴヌクレオチドがプローブとして固定化された水不溶性固相担体と、プローブと相補的な塩基配列とを相補的な結合で結合させることによって形成される特定の制限酵素の認識部位を有する担体を用いて、標的核酸(またはその断片)を結合させ、特定の塩基配列を抽出、分離する試みは以前から行われてきた。
従来の水不溶性固相担体にオリゴヌクレオチドを固定化する技術としては、例えばオリゴヌクレオチドの末端部位にアーム、スペーサー等の物質を介して水不溶性固相担体の表面に存在する所望の官能基に結合する方法、スペーサー等を介することなく、オリゴヌクレオチドの末端塩基を化学的に修飾することによって水不溶性固相担体の表面の官能基に結合する方法、オリゴヌクレオチドの末端塩基をそのまま水不溶性固相担体の表面の官能基に結合する方法等を挙げることができる(特開昭61−130305号、特開昭61−246201号、特開昭63−27000号、特開平1−171499号、特開平3−147800号、Cell 5,301(1975)等)。しかしながら、いずれの場合においても一本鎖オリゴヌクレオチドの末端を選択的に固相担体表面に固定化する技術であり、二本鎖オリゴヌクレオチドの固定化には利用できない。
また、一般に知られている化学反応あるいはビオチン/アビジン反応のような生化学的な反応も一本鎖オリゴヌクレオチドの固相表面への固定化には利用することができるが、二本鎖オリゴヌクレオチドの固定化には利用できない。従って、それらの反応により一本鎖オリゴヌクレオチドが固定化された担体は、ハイブリタイゼーション法を用いた特定の核酸、プローブ核酸またはターゲット核酸の捕捉、検出等への利用に限られていた。
【0003】
一方、一本鎖オリゴヌクレオチドを固定化した固相担体を、特定の制限酵素によって処理した核酸断片の回収、接続あるいはDNA結合蛋白質との結合に用いる場合には、一本鎖オリゴヌクレオチドに相補鎖をアニールし、前記特定の制限酵素の認識部位を形成させることが必要である。
そこで、例えば固定化された一本鎖オリゴヌクレオチドを一旦、相補鎖過剰の条件でアニーリングさせて固定化された二本鎖オリゴヌクレオチドを形成し、さらにその末端に特定の制限酵素認識部位を形成させた後、余分な相補鎖を除去することによって調製される特定の制限酵素認識部位を末端にもつ二本鎖オリゴヌクレオチドが固定化された担体を、前記制限酵素で切断されたDNA断片の分離、抽出に使用する方法が挙げられる(特開平3−147800号)。
しかし上記方法において固定化された二本鎖オリゴヌクレオチドを形成させるには過剰な相補鎖と長時間とを必要とし、また固定化された二本鎖オリゴヌクレオチドの結合が数十ベース長の塩基による水素結合のみであるために、アニーリングの効率の悪さによって満足に制限酵素認識部位を末端に形成させられないという欠点がある。さらに、得られる固定化された二本鎖オリゴヌクレオチドは、保存安定性が悪く、二本鎖形成時の条件で保存しなければならず、使用上および保存上、効率的であるとはいえない。
【0004】
【発明が解決しようとする課題】
本発明の目的は、特定の制限酵素切断末端をもつ核酸断片の分離、抽出あるいはDNA結合性蛋白質の分離、抽出を容易に、かつ精度よく行うことができる特定の制限酵素の認識部位を有する二本鎖オリゴヌクレオチドが固定化された粒子担体を提供することにある。
【0005】
【課題を解決するための手段】
前記課題は、有機高分子を主成分とする粒子の表面に、特定の制限酵素の認識部位および相補鎖部位を有する二本鎖オリゴヌクレオチドが固定化された核酸結合用粒子担体であって、(1)該粒子は、表面にカルボキシル基を有しており、かつ平均粒子径が0.1〜15μmであり、(2)該二本鎖オリゴヌクレオチドは、その全塩基数が5〜80であり、該二本鎖オリゴヌクレオチドの片方の末端の二本鎖部位は、互いに相補性がない塩基数1〜30の一本鎖オリゴヌクレオチドA1およびA2から構成され、該二本鎖オリゴヌクレオチドの他方の末端の二本鎖部位は、少なくとも末端に特定の制限酵素の認識部位を有する二本鎖オリゴヌクレオチドBから構成されており、(3)該二本鎖オリゴヌクレオチドと該粒子とは、該二本鎖オリゴヌクレオチドを構成する一本鎖オリゴヌクレオチドA1およびA2の塩基にそれぞれ少なくとも1つ存在するアミノ基と該粒子表面に存在するカルボキシル基とのアミド結合により固定化されている、
ことを特徴とする核酸結合用粒子担体、によって達成される。
【0006】
以下に本発明を詳細に説明する。これにより、本発明の目的、構成および効果がより明確になるであろう。
本発明に用いる粒子は、有機高分子を主成分とする水不溶性の粒子である。ここで主成分となる有機高分子としては、例えばスチレン、クロルスチレン、クロロメチルスチレン、α−メチルスチレン、ジビニルベンゼン、スチレンスルホン酸ナトリウム、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸−2−ヒドロキシエチル、(メタ)アクリル酸ポリオキシエチレン、(メタ)アクリル酸グリシジル、エチレングリコール−ジ−(メタ)アクリル酸エステル、(メタ)アクリル酸トリブロモフェニル、トリブロモプロピルアクリレート、(メタ)アクリロニトリル、(メタ)アクロレイン、(メタ)アクリルアミド、メチレンビス(メタ)アクリルアミド、ブタジエン、イソプレン、酢酸ビニル、ビニルピリジン、N−ビニルピロリドン、塩化ビニル、臭化ビニル等の芳香族ビニル化合物、α,β−不飽和カルボン酸のエステル類もしくはアミド類、α,β−不飽和ニトリル化合物、ハロゲン化ビニル化合物、共役ジエン化合物、ならびに低級脂肪酸ビニルエステルからなるビニル系単量体の1種以上を重合して得られる水不溶性の有機高分子を挙げることができる。さらに他の有機高分子としては、アガロース、デキストラン、セルロース、カルボキシメチルセルロース等の多糖類の架橋体やメチル化アルブミン、ゼラチン、コラーゲン、カゼイン等の蛋白質の架橋体を挙げることができる。
【0007】
これらの粒子は、乳化重合、懸濁重合、溶液沈澱重合等によって製造することができる。また、有機高分子を非溶媒中に分散し架橋したり、または溶媒を揮散させることなどによって該粒子を得ることができるが、粒子の製造方法はこれらに限定されるものではない。
【0008】
なお、これらの粒子には必要に応じて粒子の内部、または表面に有機染料、顔料、蛍光色素を含有または被覆させてもよいし、無機物質からなる充填剤、例えばマグネタイト、ヘマタイト、ニッケル等の金属あるいは金属化合物のような磁性もしくは超常磁性を有する物質を含浸させ、粒子を複合化させてもよい。
【0009】
以上のようにして得られる粒子の表面は、非多孔質であることが望ましい。ここで、粒子の表面が「非多孔質」であるとは、長径が0.01μm以上である孔を粒子の表面に有しないことを意味する。粒子の表面が非多孔質でないと、すなわち、長径で0.01μm以上である孔が粒子の表面に存在すると、核酸の検出法等で用いられる制限酵素切断末端をもつ核酸断片が粒子の内部に捕捉される等の原因により感度や精度の問題を生ずる場合がある。なお、このように、粒子の表面は非多孔質であることが望ましいが、粒子の内部には独立気泡等が存在してもよい。
【0010】
粒子の平均粒子径は、0.1〜15μmであり、好ましくは0.3〜5μmである。平均粒子径が0.1μm未満であると遠心分離等の簡便な操作で粒子を回収しにくくなる。一方15μmを超えると粒子の単位体積当たりの表面積が小さくなり、かつ核酸断片の分離、抽出等において粒子が均一に分散しなくなるために、高い分離率、抽出率等を達成できない恐れがある。
【0011】
さらに、本発明において使用する粒子は、後述するように一本鎖オリゴヌクレオチドA1およびA2中の塩基のアミノ基とのアミド結合を形成させるために、その表面にアミド結合の形成に関与するカルボキシル基を有する必要がある。従って、粒子がその表面にカルボキシル基を有しない場合には、表面に予めカルボキシル基を導入する必要がある。カルボキシル基は粒子表面積1nm2当たり少なくとも平均1個存在することが好ましく、より好ましくは3個以上、さらに好ましくは5個以上である。
このようなカルボキシル基を表面に有する前記有機高分子からなる粒子としては、例えばイムテックスSSM−60、SSM−58、SSM−57、G0101、G0303、G0302、G0301、G0201、G0202、G0501、L0101、L0102、DRB−F1、DRB−F2、DRB−F3等の商品名(日本合成ゴム(株))で市販しているものが挙げられる。前記の表面にカルボキシル基を有する粒子は、酵素反応に支障なく使用でき、かつ100℃までの耐熱性を有するものである。また、カルボキシル基を有しない粒子の表面にカルボキシル基を導入するには、従来より知られている種々の方法を利用することができる。
【0012】
次に本発明に用いる二本鎖オリゴヌクレオチド(以下、「特定二本鎖オリゴヌクレオチド」という。)について説明する。
特定二本鎖オリゴヌクレオチドは、片方の末端が互いに相補性がない塩基数1〜30の一本鎖オリゴヌクレチドA1およびA2から構成され、さらに他方の末端が少なくとも末端に特定の制限酵素の認識部位を有する二本鎖オリゴヌクレオチドBから構成されており、その全塩基数は5〜80塩基(一本鎖当たり)であり、好ましくは10〜50塩基(一本鎖当たり)である。ここで、全塩基数が5塩基未満であると制限酵素の認識部位を形成することが困難となったり、あるいは酵素反応が非効率的となり、80塩基を超えると特定二本鎖オリゴヌクレオチドの合成効率が低下し、かつ特定の制限酵素切断末端をもつ核酸断片の分離が非効率的となる。
【0013】
前記二本鎖オリゴヌクレオチドBは、その末端および必要に応じてその相補鎖中に同一もしくは異なる種類の特定の制限酵素(例えばEcoR I、Not I、ScaI等)の認識部位を一つ以上有し、該認識部位は特定の制限酵素切断末端をもつ核酸断片とリガーゼ等の作用により結合する働きか、特定の制限酵素により切断される働きをもつものである。ここで二本鎖オリゴヌクレオチドBの末端の制限酵素の認識部位は、塩基数の異なる接着末端型であっても良いし、塩基数の揃った平滑末端型であってもよい。
なお、二本鎖オリゴヌクレオチドBが特定の制限酵素の認識部位を二つ以上有する場合、二本鎖オリゴヌクレオチドBが特定の制限酵素切断末端をもつ核酸断片と結合した後、該結合部位とは別の部位の特定の制限酵素で切り出し、クローニング等に直接用いることが可能となる。
【0014】
前記一本鎖オリゴヌクレオチドA1およびA2は、その塩基数が1〜30塩基であり、好ましくは5〜15塩基である。ここで、一本鎖オリゴヌクレオチドA1およびA2の塩基数は、後述する粒子との固定化反応の効率およびオリゴヌクレオチドの対象性を考慮すると、塩基数が近いことが好ましいが、必ずしも同じ塩基数である必要はない。また、前記一本鎖オリゴヌクレオチドA1およびA2は、互いに相補性がなく、アニール後も常に一本鎖状態を維持する。そこで前記一本鎖オリゴヌクレオチドA1およびA2は、互いの相補性を回避するために一種類単独の塩基、例えばデオキシアデニル酸(dA)、デオキシチジル酸(dC)またはデオキシグアニル酸(dG)のいずれかから構成されることが好ましい。
【0015】
本発明に用いられる特定二本鎖オリゴヌクレオチドは、塩基数1〜30塩基の一本鎖オリゴヌクレオチドA1およびA2となり得る塩基配列と、アニール後に特定の制限酵素の認識部位を形成する二本鎖オリゴヌクレオチドBとなり得る塩基配列とを有する全塩基数5〜80の一本鎖オリゴヌクレオチドを、通常のアニーリング条件でアニールさせることにより容易に形成することができる。
アニール後の特定二本鎖オリゴヌクレオチドは、二本鎖オリゴヌクレオチドBの塩基配列中に存在するアミノ基がアニーリングにより水素結合で束縛され、一本鎖オリゴヌクレオチドA1およびA2の塩基中にあるアミノ基のみがフリーな状態となるため、一本鎖オリゴヌクレオチドA1およびA2が特異的に粒子表面に固定化される。従って、前記特定二本鎖オリゴヌクレオチドを用いれば一本鎖オリゴヌクレオチドA1およびA2の特定部位を特別な化学的修飾をすることなく、特異的に、かつ高い効率で粒子表面に固定化することができる。
なお、上記アニーリングにより得られた特定二本鎖オリゴヌクレオチドは、市販されているハイドロキシアパタイトカラムを通し、未反応の特定一本鎖オリゴヌクレオチドを除去することにより精製することができる。
【0016】
特定二本鎖オリゴヌクレオチドを粒子に固定化させるためには、操作の簡便さ、固定化効率の高さおよび精度を考慮すると、粒子表面のカルボキシル基と一本鎖オリゴヌクレオチドA1およびA2中の塩基のアミノ基とをアミド結合によって固定化させることが必要である。
【0017】
上記固定化のための反応は、例えば適当な大きさの反応容器に、表面にカルボキシル基を有する粒子と前記特定二本鎖オリゴヌクレオチドとを仕込んだ後、脱水縮合剤を添加することにより行う。ここで脱水縮合剤としては、例えば1−エチル−3−(N,N’−ジメチルアミノ)プロピルカルボジイミド、N−エチル−5−フェニルイソキサゾリウム−3’−スルホネート、N−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキノリン等の水溶性の脱水縮合剤が好ましいものとして挙げられるが、油溶性の脱水縮合剤も使用することができる。これらの脱水縮合剤は、使用する粒子が表面に有するカルボキシル基1グラム当量に対して、通常、1〜20モル、好ましくは2〜10モル使用する。
粒子の使用量は、特定二本鎖オリゴヌクレオチド1ミリモル当たり、通常、0.5〜500g、好ましくは5〜50gである。上記反応は、通常、pH3〜11程度の水溶性媒体中、例えば水中、4〜70℃において、5分ないし一夜行えばよい。
上述のようにして得られる本発明の担体を用いて目的の特定の制限酵素の認識部位をもつ核酸断片と結合反応するとき、粒子担体は通常、水溶性媒体に分散させた状態で用いられる。この際の分散液の濃度は、通常、0.05〜25重量%であり、より好ましくは0.1〜15重量%である。粒子濃度が0.05重量%未満であると、特定の制限酵素の認識部位をもつ核酸断片と効率的に結合することができず、25重量%を超えると制限酵素が粒子表面に付着して有効に働かない。
【0018】
【実施例】
以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
実施例
(1)一本鎖オリゴヌクレオチドの合成および精製
DNA合成装置(アプライド バイオシステム社モデルABI381A型)を用いてβ−シアノエチルホスホアミド法で、下記に示す塩基配列を有する一本鎖オリゴヌクレオチドX(+)およびX(−)を合成した。なお、下記塩基配列はアニールさせて得られる特定二本鎖オリゴヌクレオチドが、片方の末端がその末端にNotIの認識部位を有する二本鎖オリゴヌクレオチドBと塩基数が10塩基の一本鎖オリゴヌクレオチドA1およびA2とから構成されるように設計した。
配列X(+);5'GGC CGC CTT TAG TGA GGG TTA ATG TCG ACA CCC CCC CCCC 3'
配列X(−);3' CG GAA ATC ACT CCC AAT TAC AGC TGT CCC CCC CCCC 5'
ここで、(+)および(−)はそれぞれDNAの+鎖および−鎖を、5’および3’は5’末端および3’末端を表す。
合成した一本鎖オリゴヌクレオチドX(+)およびX(−)をそれぞれ濃水酸化アンモニウム10mlで前記装置のカラムから切り出し、55℃で一夜放置した後、真空乾燥した。次いで高速液体クロマトグラフィーで溶出液として15重量%アセトニトリル溶液を用い、C18逆相カラムにより精製した。精製した一本鎖オリゴヌクレオチドX(+)およびX(−)を18重量%ポリアクリルアミドゲル中に電気泳動させ、該一本鎖オリゴヌクレオチドX(+)およびX(−)が精製されていることを確認した。
得られた一本鎖オリゴヌクレオチドX(+)およびX(−)の溶出液から、エタノールで沈澱させることにより一本鎖オリゴヌクレオチドX(+)およびX(−)をさらにを濃縮・精製した。次に、濃縮・精製した一本鎖オリゴヌクレオチドX(+)およびX(−)をそれぞれ500μlの滅菌水に溶解した後、260nmにおける吸光度を測定して定量したところ、約5mgの一本鎖オリゴヌクレオチドX(+)およびX(−)が得られた。
【0019】
(2)一本鎖オリゴヌクレオチドの末端リン酸化処理
(1)で合成した一本鎖オリゴヌクレオチドX(+)を88μl(3mg)また、一本鎖オリゴヌクレオチドX(−)を91μl(3mg)取り、それぞれにポリヌクレオチドキナーゼ(東洋紡社製)500ユニットおよびアデノシン−5’三リン酸2nmolを混合し、10倍プロトレーディンエンドキナーゼ緩衝液(東洋紡社製)50μlを加えてから滅菌蒸留水で500μlに調整した。
これらを37℃のウォーターバス中で2時間反応させた後、95℃で3分間放置し、エタノールを用いて沈澱、精製した。続いて、精製した末端リン酸化処理された一本鎖オリゴヌクレオチドX(+)およびX(−)各1mgをTE緩衝液(10mMトリス塩酸塩緩衝液(pH8)および1mMエチレンジアミン四酢酸からなる緩衝液)500μlに溶解した。
【0020】
(3)特定二本鎖オリゴヌクレオチドの形成
(2)で得られた末端リン酸化処理した一本鎖オリゴヌクレオチドX(+)およびX(−)をそれぞれ6nmol採取し、2mlのエッペンドルフチューブに入れ、10倍アニーリング溶液(100mMトリス塩酸塩緩衝液(pH8)、60mM塩化マグネシウム、60mMβ−メルカプトエタノールおよび500mM塩化ナトリウムからなる緩衝液)を10μl加え、滅菌蒸留水で100mlに調整した。
これを80℃のウォーターバスにて10分間加温し、その後室温になるまで静置した(所要時間4時間)。この反応により、片方の末端が塩基数がそれぞれ10塩基である二本の一本鎖オリゴヌクレオチドA1およびA2と、他方の末端がその末端に制限酵素NotIの認識部位を有する二本鎖オリゴヌクレオチドBとから構成される特定二本鎖オリゴヌクレオチドが得られた。得られた特定二本鎖オリゴヌクレオチドをハイドロキシアパタイトカラム(バイオゲルHPHTカラム、バイオラッド社製)を用いて0.6モルリン酸緩衝液を溶出液として精製を行った。精製後の特定二本鎖オリゴヌクレオチドを回収し、ブタノールで濃縮し、脱塩したところ、その収量は精製前の91%であった。
【0021】
(4)特定二本鎖オリゴヌクレオチドの粒子への固定化
平均粒子径が1.0μm、平均粒子径の標準偏差が5%、かつ粒子表面積1nm2当たり平均5個のカルボキシル基を有するポリスチレン粒子イムノテックスL0101(日本合成ゴム(株)製)の10(W/V)%0.1mN塩酸懸濁液を1000μl、(3)で得られた特定二本鎖オリゴヌクレオチド4nmolおよび1−エチル−3−(N,N’−ジメチルアミノ)プロピルカルボジイミドの0.5(W/V)%0.1mN塩酸溶液500μlをエッペンドルフ遠心管に入れ、10℃に設定した恒温槽中で一晩混合することにより特定二本鎖オリゴヌクレオチド中の一本鎖オリゴヌクレオチドA1およびA2のdcの塩基配列中のアミノ基と粒子表面のカルボキシル基とをアミド結合させた。
その後、10,000rpmで2分間遠心分離して特定二本鎖オリゴヌクレオチドが固定化された粒子を沈澱として回収した。次に結合用緩衝液(10mM トリス塩酸塩緩衝液、pH8、500mM 塩化ナトリウム、0.1(W/v)%ドデシル硫酸ナトリウムおよび1mM エチレンジアミン四酢酸からなる緩衝液)をオリゴヌクレオチド固定化粒子に1ml添加し再分散させた後、10,000rpmで3分間遠心分離し、特定二本鎖オリゴヌクレオチドが固定化された粒子を回収した。この操作を3回繰り返して最終的に特定二本鎖オリゴヌクレオチドが固定化された粒子をTE緩衝液1ml(固形分10(W/V)%)に分散した(以下、「分散液a」という。)。
【0022】
(5)NotI末端をもつ核酸断片の調整
プラスミドBluescriptII SK(+)(pBSII 東洋紡社製)75μg(約38pM)、NotI(10ユニット/μl)200ユニット、10倍HB緩衝液40μl(いずれもタカラ社製)および滅菌蒸留水294μlを混合し、37℃にて3時間反応させた。反応終了後、反応混合液と等量のP.C.I(フェノール:クロロホルム:イソアミノアルコール=25:24:1(容量比))溶液を加えて充分に混和し、15,000rpmにて10分間遠心分離した後、上部の水層を回収した。回収した水層に8Mアンモニウムアセテート100μlを加えて充分に混合をし、次いで15,000rpmにて5分間遠心分離し、得られたNotIで消化したプラスミドBluescriptII SK(+)をTE緩衝液20μlに分散させた。
【0023】
(6)32Pによる標識
(5)で調整したNotIで消化したプラスミドBluescriptII SK(+)のTE緩衝液にアルカリフォスフォターゼ(タカラ社製)約2μl(酵素活性にして40ユニット)、10倍アルカリフォスフォターゼ用緩衝液2μlおよび滅菌蒸留水16μlを加えて37℃で2時間反応させた後、65℃で30分間加熱した。この溶液にエタノール50μlを加え、−80℃にて10分間静置した後、15,000rpmで5分間遠心分離し、得られた沈澱をTE緩衝液20μlに溶解した。この溶液にT4ポリヌクレオチドキナーゼ(ベーリンガーハイム社製)1μl(酵素活性にして8ユニット)、γ−32Pアデノシン三リン酸5μl(放射線量にして50μCi)、10倍濃度の5’−リン酸化用緩衝液5μlおよび滅菌水19μlを加えて混合し、37℃で30分間インキュベートした。
次に反応液からT4ポリヌクレオチドキナーゼをフェノール抽出法(”Molecular Cloning”,Cold Spring Harbor Laboratories,1982,458)によって除去した後、反応液をTE緩衝液で膨潤させたセファデックスG−50(ファルマシア社製)カラム(1ml)を用いるゲル濾過に供した。
なお、上記で用いた10倍濃度の5’−リン酸化用緩衝液は次の組成を有するものである。

Figure 0004134351
ゲル濾過による溶出液を100μlずつ順に分取し、各画分の放射線量をチェレンコフカウント法によって測定して素通り画分を判別し集めた。
この結果、32Pによって標識したプラスミドBluescriptII SK(+)のNotI消化物のTE緩衝液(以下、「TE緩衝液I」という。)20μlが得られた。
【0024】
(7)ScaIによる消化
(6)で得られたTE緩衝液IにScaI(100/μl、タカラ社製)および10倍HB緩衝液40μlを加え、滅菌水で400μlに調製してから37℃で3時間反応させた。反応終了後、等量のP.C.I溶液を加えて充分に混合し、次いで15,000rpmで10分間遠心分離して上部の水層を回収した。
回収した水層に8Mアンモニアアセテート100μlおよびエタノール800μlを加えて充分に混合してから15,000rpmで5分間遠心分離し、ScaIで消化したプラスミドBluescriptII SK(+)の断片を100μlのTE緩衝液に溶解させた。
(6)と同様にしてチェレンコフ−カウント法によって放射線量を測定したところ、1μl当たり40,000rpmのカウントの放射線量を有する溶液であった。また、プラスミドBluescriptII SK(+)の断片の濃度は0.30pmol/μl、NotI末端サイトは0.6pmole/μlであった。
【0025】
(8)NotIで消化したプラスミドBluescriptII SK(+)の断片の捕獲および分離の評価
(4)で得られた分散液aを10μlずつA−1〜A−4までの4本の遠心管に入れた。次いで(7)で調製したNotIおよびScaIで消化したプラスミドBluescriptII SK(+)の断片をそれぞれ1、2、4、6pmolとなるようにA−1〜A−4まで4本の遠心管に加えた。これら4本の遠心管にそれぞれ10倍のライゲーション緩衝液(660mMトリス塩酸緩衝液(pH8)、66mM塩化マグネシウムおよび100mMのDTTからなる緩衝液)5μl、50mM 5’−アデノシン三リン酸5μl、50%ポリエチレングリコール5μlおよび3M塩化ナトリウム5μlを加えた。そして、各遠心管にさらにT4DNAリガーゼ(タカラ社製、350ユニット/μl)5μlを加えた後、滅菌蒸留水を加えて50μlに調製し、17℃にて12時間反応させた。反応終了後、4本の遠心管のチェレンコフカウントを測定し、それぞれを各遠心管のトータルカウントとした。
また、上記反応終了後、4本の遠心管にMB緩衝液(50mMトリス塩酸緩衝液(pH7.5)、0.01%ゼラチン、100mM塩化ナトリウムおよび10mM塩化マグネシウムからなる緩衝液)1000μlずつを加え、反応を停止させた。次いで4本の遠心管を10,000rpmで3分間遠心分離し、上清を除去した後、TE緩衝液50μlに分散してチェレンコフカウントを測定し、それぞれを各遠心管のカウント2とした。
次いで、4本の遠心管にNotI(100ユニット/μl)40ユニットおよび10倍HB緩衝液(タカラ社製)10μlを加え、滅菌蒸留水で100μlに調製し、37℃で3時間反応させた。続いて10,000rpmで5分間遠心洗浄し、沈澱物をTE緩衝液/0.25M塩化ナトリウム溶液で3回遠心洗浄した後、TE緩衝液で50μlに再分散したもののチェレンコフカウントを測定し、これらをカウント3とした。
NotIで消化したプラスミドBluescriptII SK(+)の捕獲率および回収率を次式により算出し、表1に示した。
【0026】
【数1】
Figure 0004134351
【0027】
【数2】
Figure 0004134351
【0028】
【表1】
Figure 0004134351
【0029】
【本発明の効果】
本発明によれば特定の制限酵素切断末端をもつ核酸断片の結合、回収あるいはDNA結合性蛋白質の分離、抽出を容易に、かつ精度良く行うことができる特定の制限酵素の認識部位を有する二本鎖オリゴヌクレオチドが固定化された粒子担体が得られる。[0001]
[Industrial application fields]
The present invention relates to a particle carrier for nucleic acid binding, and more specifically, binding and recovery of a nucleic acid fragment having a specific restriction enzyme cleavage end in the fields of genetic engineering, cloning, genomic nucleic acid analysis, etc., or separation and extraction of a DNA binding protein, In particular, the present invention relates to a particle carrier that is effective for primary screening of restriction enzyme landmarks used in the decoding of genomic nucleic acids of living plants.
[0002]
[Prior art]
A carrier having a specific restriction enzyme recognition site formed by binding a water-insoluble solid phase carrier in which a single-stranded oligonucleotide is immobilized as a probe and a base sequence complementary to the probe through a complementary bond. Attempts have already been made to bind a target nucleic acid (or a fragment thereof) using, and extract and isolate a specific base sequence.
As a technique for immobilizing oligonucleotides on a conventional water-insoluble solid phase carrier, for example, binding to a desired functional group present on the surface of the water-insoluble solid phase carrier via a substance such as an arm or a spacer at the terminal site of the oligonucleotide. A method of binding to a functional group on the surface of a water-insoluble solid phase carrier by chemically modifying the terminal base of the oligonucleotide without using a spacer or the like, a water-insoluble solid phase carrier as it is And the like (Japanese Unexamined Patent Publication No. 61-130305, Japanese Unexamined Patent Publication No. 61-246201, Japanese Unexamined Patent Publication No. 63-27000, Japanese Unexamined Patent Publication No. 1-1171499, Japanese Unexamined Patent Publication No. Hei 3). -147800, Cell 5,301 (1975), etc.). However, in either case, this is a technique for selectively immobilizing the ends of single-stranded oligonucleotides on the surface of a solid support, and cannot be used for immobilizing double-stranded oligonucleotides.
In addition, generally known chemical reactions or biochemical reactions such as biotin / avidin reaction can be used to immobilize single-stranded oligonucleotides on the solid surface. It cannot be used for immobilization. Therefore, the carrier on which the single-stranded oligonucleotide is immobilized by these reactions has been limited to use for capturing, detecting, and the like of a specific nucleic acid, probe nucleic acid or target nucleic acid using a hybridization method.
[0003]
On the other hand, when the solid phase carrier on which the single-stranded oligonucleotide is immobilized is used for recovering, connecting or binding to a DNA-binding protein of a nucleic acid fragment treated with a specific restriction enzyme, it is complementary to the single-stranded oligonucleotide. Is necessary to form a recognition site for the specific restriction enzyme.
Therefore, for example, an immobilized single-stranded oligonucleotide is annealed once under the condition of excess complementary strand to form an immobilized double-stranded oligonucleotide, and a specific restriction enzyme recognition site is formed at the end. Thereafter, a carrier on which a double-stranded oligonucleotide having a specific restriction enzyme recognition site prepared by removing an extra complementary strand is immobilized is separated from a DNA fragment cleaved by the restriction enzyme, The method used for extraction is mentioned (Unexamined-Japanese-Patent No. 3-147800).
However, in order to form an immobilized double-stranded oligonucleotide in the above method, an excessive complementary strand and a long time are required, and the binding of the immobilized double-stranded oligonucleotide is caused by a base having a length of several tens of bases. Since there are only hydrogen bonds, there is a drawback that a restriction enzyme recognition site cannot be satisfactorily formed at the terminal due to inefficient annealing. Furthermore, the obtained immobilized double-stranded oligonucleotide has poor storage stability and must be stored under the conditions at the time of double-stranded formation, which is not efficient in use and storage. .
[0004]
[Problems to be solved by the invention]
It is an object of the present invention to have a specific restriction enzyme recognition site capable of easily and accurately performing separation and extraction of a nucleic acid fragment having a specific restriction enzyme cleavage end or separation and extraction of a DNA-binding protein. An object of the present invention is to provide a particle carrier on which a double-stranded oligonucleotide is immobilized.
[0005]
[Means for Solving the Problems]
The problem is that a recognition site for a specific restriction enzyme is present on the surface of a particle mainly composed of an organic polymer. And complementary strand sites (1) The particles have a carboxyl group on the surface and have an average particle diameter of 0.1 to 15 μm. (2) The double-stranded oligonucleotide has a total base number of 5 to 80, Of the double-stranded oligonucleotide One end The double-stranded part of Composed of single-stranded oligonucleotides A1 and A2 having 1 to 30 bases that are not complementary to each other; Of the double-stranded oligonucleotide The other end The double-stranded part of At least specific to the end Limits A double-stranded oligonucleotide B having an enzyme recognition site, and (3) the double-stranded oligonucleotide and the particle are single-stranded oligonucleotides A1 and A2 constituting the double-stranded oligonucleotide Are fixed by an amide bond between at least one amino group present in each of the bases and a carboxyl group present on the particle surface,
This is achieved by a particle carrier for nucleic acid binding characterized in that.
[0006]
The present invention is described in detail below. This will make the purpose, configuration and effect of the present invention clearer.
The particles used in the present invention are water-insoluble particles whose main component is an organic polymer. Examples of the organic polymer as the main component include styrene, chlorostyrene, chloromethylstyrene, α-methylstyrene, divinylbenzene, sodium styrenesulfonate, (meth) acrylic acid, methyl (meth) acrylate, (meth ) Ethyl acrylate, (meth) acrylic acid-n-butyl, (meth) acrylic acid-2-hydroxyethyl, (meth) acrylic acid polyoxyethylene, (meth) acrylic acid glycidyl, ethylene glycol di- (meth) Acrylic acid ester, (meth) acrylic acid tribromophenyl, tribromopropyl acrylate, (meth) acrylonitrile, (meth) acrolein, (meth) acrylamide, methylenebis (meth) acrylamide, butadiene, isoprene, vinyl acetate, vinylpyridine, N -Vinyl Aromatic vinyl compounds such as loridone, vinyl chloride, vinyl bromide, esters or amides of α, β-unsaturated carboxylic acids, α, β-unsaturated nitrile compounds, vinyl halide compounds, conjugated diene compounds, and lower Mention may be made of water-insoluble organic polymers obtained by polymerizing at least one vinyl monomer comprising a fatty acid vinyl ester. Still other organic polymers include cross-linked products of polysaccharides such as agarose, dextran, cellulose, carboxymethyl cellulose, and cross-linked products of proteins such as methylated albumin, gelatin, collagen, and casein.
[0007]
These particles can be produced by emulsion polymerization, suspension polymerization, solution precipitation polymerization or the like. Further, the particles can be obtained by dispersing and crosslinking the organic polymer in a non-solvent or volatilizing the solvent, but the method for producing the particles is not limited to these.
[0008]
These particles may contain or coat organic dyes, pigments, fluorescent dyes on the inside or the surface of the particles as necessary, and fillers made of inorganic substances such as magnetite, hematite, nickel, etc. Particles may be combined by impregnating a magnetic or superparamagnetic substance such as a metal or metal compound.
[0009]
The surface of the particles obtained as described above is desirably non-porous. Here, the particle surface being “non-porous” means that the particle surface does not have pores having a major axis of 0.01 μm or more. If the surface of the particle is not non-porous, that is, if a pore having a long diameter of 0.01 μm or more is present on the surface of the particle, a nucleic acid fragment having a restriction enzyme cleavage end used in a nucleic acid detection method or the like is present in the particle There may be a problem of sensitivity and accuracy depending on the cause of being captured. As described above, the surface of the particles is preferably non-porous, but closed cells or the like may exist inside the particles.
[0010]
The average particle diameter of the particles is 0.1 to 15 μm, preferably 0.3 to 5 μm. When the average particle diameter is less than 0.1 μm, it becomes difficult to collect particles by a simple operation such as centrifugation. On the other hand, if it exceeds 15 μm, the surface area per unit volume of the particles becomes small, and the particles are not uniformly dispersed in the separation and extraction of nucleic acid fragments, so that there is a possibility that a high separation rate, extraction rate, etc. cannot be achieved.
[0011]
Further, the particles used in the present invention have a carboxyl group involved in the formation of an amide bond on the surface in order to form an amide bond with the amino group of the base in the single-stranded oligonucleotides A1 and A2, as will be described later. It is necessary to have. Therefore, when the particle does not have a carboxyl group on its surface, it is necessary to introduce a carboxyl group on the surface in advance. Carboxyl group has a particle surface area of 1 nm 2 It is preferable that at least one is present per average, more preferably 3 or more, and still more preferably 5 or more.
Examples of the particles made of the organic polymer having a carboxyl group on the surface include, for example, Imtex SSM-60, SSM-58, SSM-57, G0101, G0303, G0302, G0301, G0201, G0202, G0501, L0101, and L0102. , DRB-F1, DRB-F2, DRB-F3, and other commercial names (Nippon Synthetic Rubber Co., Ltd.). The particles having a carboxyl group on the surface can be used without any problem in the enzyme reaction and have heat resistance up to 100 ° C. In order to introduce a carboxyl group into the surface of a particle having no carboxyl group, various conventionally known methods can be used.
[0012]
Next, the double-stranded oligonucleotide used in the present invention (hereinafter referred to as “specific double-stranded oligonucleotide”) will be described.
The specific double-stranded oligonucleotide is composed of single-stranded oligonucleotides A1 and A2 having 1 to 30 bases whose one ends are not complementary to each other, and the other end is at least a recognition site for a specific restriction enzyme at the end. The total number of bases is 5 to 80 bases (per single strand), preferably 10 to 50 bases (per single strand). Here, if the total number of bases is less than 5 bases, it becomes difficult to form a restriction enzyme recognition site, or the enzymatic reaction becomes inefficient, and if it exceeds 80 bases, synthesis of a specific double-stranded oligonucleotide is performed. The efficiency is reduced, and the separation of nucleic acid fragments having specific restriction enzyme cleavage ends becomes inefficient.
[0013]
The double-stranded oligonucleotide B has one or more recognition sites for specific restriction enzymes of the same or different types (for example, EcoR I, Not I, ScaI, etc.) at its ends and optionally in its complementary strand. The recognition site has a function of binding to a nucleic acid fragment having a specific restriction enzyme cleavage end by the action of ligase or the like, or a function of being cleaved by a specific restriction enzyme. Here, the recognition site of the restriction enzyme at the end of the double-stranded oligonucleotide B may be an adhesive end type having a different number of bases or a smooth end type having a uniform number of bases.
When the double-stranded oligonucleotide B has two or more specific restriction enzyme recognition sites, the double-stranded oligonucleotide B binds to a nucleic acid fragment having a specific restriction enzyme cleavage end, It can be excised with a specific restriction enzyme at another site and used directly for cloning or the like.
[0014]
The single-stranded oligonucleotides A1 and A2 have 1 to 30 bases, preferably 5 to 15 bases. Here, the number of bases of the single-stranded oligonucleotides A1 and A2 is preferably close to the number of bases in consideration of the efficiency of the immobilization reaction with the particles to be described later and the target property of the oligonucleotide, but it is not necessarily the same There is no need. The single-stranded oligonucleotides A1 and A2 are not complementary to each other and always maintain a single-stranded state even after annealing. Therefore, the single-stranded oligonucleotides A1 and A2 are each composed of one kind of base such as deoxyadenylic acid (dA), deoxy to avoid complementarity with each other. Shi It is preferably composed of either tidylic acid (dC) or deoxyguanylic acid (dG).
[0015]
The specific double-stranded oligonucleotide used in the present invention is a double-stranded oligonucleotide that forms a recognition site for a specific restriction enzyme after annealing with a base sequence that can be a single-stranded oligonucleotide A1 or A2 having 1 to 30 bases. A single-stranded oligonucleotide having a total number of bases of 5 to 80 having a base sequence that can be nucleotide B can be easily formed by annealing under normal annealing conditions.
In the specific double-stranded oligonucleotide after annealing, the amino group present in the base sequence of the double-stranded oligonucleotide B is bound by hydrogen bonding by annealing, and the amino group in the bases of the single-stranded oligonucleotides A1 and A2 Since only this becomes free, the single-stranded oligonucleotides A1 and A2 are specifically immobilized on the particle surface. Therefore, if the specific double-stranded oligonucleotide is used, the specific sites of the single-stranded oligonucleotides A1 and A2 can be specifically and efficiently immobilized on the particle surface without special chemical modification. it can.
The specific double-stranded oligonucleotide obtained by the annealing can be purified by passing through a commercially available hydroxyapatite column and removing the unreacted specific single-stranded oligonucleotide.
[0016]
In order to immobilize the specific double-stranded oligonucleotide on the particle, considering the simplicity of operation, the high immobilization efficiency, and the accuracy, the carboxyl group on the particle surface and the bases in the single-stranded oligonucleotides A1 and A2 It is necessary to immobilize the amino group with an amide bond.
[0017]
The above-mentioned reaction for immobilization is performed, for example, by charging particles having a carboxyl group on the surface and the specific double-stranded oligonucleotide in a reaction vessel having an appropriate size and then adding a dehydrating condensing agent. Examples of the dehydrating condensing agent include 1-ethyl-3- (N, N′-dimethylamino) propylcarbodiimide, N-ethyl-5-phenylisoxazolium-3′-sulfonate, and N-ethoxycarbonyl-2. A water-soluble dehydrating condensing agent such as ethoxy-1,2-dihydroquinoline is preferable, but an oil-soluble dehydrating condensing agent can also be used. These dehydrating condensing agents are generally used in an amount of 1 to 20 mol, preferably 2 to 10 mol, per 1 gram equivalent of carboxyl groups on the surface of the particles used.
The amount of the particles used is usually 0.5 to 500 g, preferably 5 to 50 g, per 1 mmol of the specific double-stranded oligonucleotide. The above reaction may be usually performed in an aqueous medium having a pH of about 3 to 11, for example, in water at 4 to 70 ° C. for 5 minutes to overnight.
When the carrier of the present invention obtained as described above is used for a binding reaction with a nucleic acid fragment having a recognition site for a specific restriction enzyme of interest, the particle carrier is usually used in a state of being dispersed in an aqueous medium. The concentration of the dispersion at this time is usually 0.05 to 25% by weight, more preferably 0.1 to 15% by weight. If the particle concentration is less than 0.05% by weight, it cannot efficiently bind to a nucleic acid fragment having a specific restriction enzyme recognition site. If the particle concentration exceeds 25% by weight, the restriction enzyme adheres to the particle surface. Does not work effectively.
[0018]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
Example
(1) Synthesis and purification of single-stranded oligonucleotides
Single-stranded oligonucleotides X (+) and X (−) having the following base sequences were synthesized by a β-cyanoethylphosphoamide method using a DNA synthesizer (Applied Biosystems model ABI381A type). In addition, the following base sequence is a specific double-stranded oligonucleotide obtained by annealing, one end of which is a double-stranded oligonucleotide B having a NotI recognition site at one end and a single-stranded oligonucleotide having 10 bases. It was designed to be composed of A1 and A2.
Sequence X (+); 5'GGC CGC CTT TAG TGA GGG TTA ATG TCG ACA CCC CCC CCCC 3 '
Sequence X (-); 3 'CG GAA ATC ACT CCC AAT TAC AGC TGT CCC CCC CCCC 5'
Here, (+) and (−) represent the + strand and − strand of DNA, and 5 ′ and 3 ′ represent the 5 ′ end and the 3 ′ end, respectively.
The synthesized single-stranded oligonucleotides X (+) and X (−) were each cut out from the column of the apparatus with 10 ml of concentrated ammonium hydroxide, left at 55 ° C. overnight, and then vacuum-dried. Subsequently, the product was purified by high performance liquid chromatography using a C18 reverse phase column using a 15 wt% acetonitrile solution as an eluent. Purified single-stranded oligonucleotides X (+) and X (−) are electrophoresed in an 18 wt% polyacrylamide gel, and the single-stranded oligonucleotides X (+) and X (−) are purified. It was confirmed.
From the eluate of the obtained single-stranded oligonucleotides X (+) and X (−), the single-stranded oligonucleotides X (+) and X (−) were further concentrated and purified by precipitation with ethanol. Next, the concentrated and purified single-stranded oligonucleotides X (+) and X (−) were each dissolved in 500 μl of sterilized water and then quantified by measuring the absorbance at 260 nm. Nucleotides X (+) and X (-) were obtained.
[0019]
(2) Terminal phosphorylation treatment of single-stranded oligonucleotides
88 μl (3 mg) of the single-stranded oligonucleotide X (+) synthesized in (1) and 91 μl (3 mg) of the single-stranded oligonucleotide X (−) were taken, and 500 units each of polynucleotide kinase (Toyobo Co., Ltd.) Then, 2 nmol of adenosine-5 ′ triphosphate was mixed, 50 μl of 10-fold protradin endokinase buffer (manufactured by Toyobo) was added, and then adjusted to 500 μl with sterilized distilled water.
These were reacted in a water bath at 37 ° C. for 2 hours, then allowed to stand at 95 ° C. for 3 minutes, precipitated and purified using ethanol. Subsequently, 1 mg each of the purified terminal phosphorylated single-stranded oligonucleotides X (+) and X (−) was added to TE buffer (10 mM Tris hydrochloride buffer (pH 8) and 1 mM ethylenediaminetetraacetic acid buffer). ) Dissolved in 500 μl.
[0020]
(3) Formation of specific double-stranded oligonucleotide
6 nmol each of the single-stranded oligonucleotides X (+) and X (−) subjected to terminal phosphorylation treatment obtained in (2) were collected, put into a 2 ml Eppendorf tube, and 10-fold annealing solution (100 mM Tris hydrochloride buffer solution). (PH 8), 60 mM magnesium chloride, 60 mM β-mercaptoethanol, and a buffer solution consisting of 500 mM sodium chloride) were added at 10 μl, and adjusted to 100 ml with sterilized distilled water.
This was heated in a water bath at 80 ° C. for 10 minutes and then allowed to stand until it reached room temperature (required time 4 hours). By this reaction, two single-stranded oligonucleotides A1 and A2 each having 10 bases at one end and a double-stranded oligonucleotide B having the other end having a restriction enzyme NotI recognition site at the other end. A specific double-stranded oligonucleotide composed of The obtained specific double-stranded oligonucleotide was purified using a hydroxyapatite column (Biogel HPHT column, manufactured by Bio-Rad) using a 0.6 molar phosphate buffer as an eluent. The purified specific double-stranded oligonucleotide was recovered, concentrated with butanol, and desalted. The yield was 91% before purification.
[0021]
(4) Immobilization of specific double-stranded oligonucleotides on particles
The average particle size is 1.0 μm, the standard deviation of the average particle size is 5%, and the particle surface area is 1 nm. 2 1000 μl of a 10 (W / V)% 0.1 mN hydrochloric acid suspension of polystyrene particles Immunotex L0101 (manufactured by Nippon Synthetic Rubber Co., Ltd.) having an average of 5 carboxyl groups per unit, obtained in (3) Place 500 μl of a 0.5 (W / V)% 0.1 mN hydrochloric acid solution of 4 nmol of a single-stranded oligonucleotide and 1-ethyl-3- (N, N′-dimethylamino) propylcarbodiimide in an Eppendorf centrifuge tube and set to 10 ° C. The amino group in the base sequence of dc of the single-stranded oligonucleotides A1 and A2 in the specific double-stranded oligonucleotide and the carboxyl group on the particle surface were amide-bonded by mixing overnight in the constant temperature bath.
Thereafter, the mixture was centrifuged at 10,000 rpm for 2 minutes, and the particles having the specific double-stranded oligonucleotide immobilized thereon were collected as a precipitate. Next, 1 ml of binding buffer (10 mM Tris hydrochloride buffer, pH 8, 500 mM sodium chloride, 0.1 (W / v)% sodium dodecyl sulfate and 1 mM ethylenediaminetetraacetic acid) was added to the oligonucleotide-immobilized particles. After addition and redispersion, the mixture was centrifuged at 10,000 rpm for 3 minutes to collect particles on which the specific double-stranded oligonucleotide was immobilized. This operation was repeated 3 times, and finally the particles on which the specific double-stranded oligonucleotide was immobilized were dispersed in 1 ml of TE buffer (solid content 10 (W / V)%) (hereinafter referred to as “dispersion a”). .)
[0022]
(5) Preparation of nucleic acid fragment having NotI end
Plasmid BluescriptII SK (+) (pBSII manufactured by Toyobo Co., Ltd.) 75 μg (about 38 pM), NotI (10 units / μl) 200 units, 10-fold HB buffer 40 μl (both manufactured by Takara) and 294 μl of sterile distilled water were mixed, The reaction was carried out at 37 ° C. for 3 hours. After completion of the reaction, an equivalent amount of P.I. C. An I (phenol: chloroform: isoaminoalcohol = 25: 24: 1 (volume ratio)) solution was added and mixed well, followed by centrifugation at 15,000 rpm for 10 minutes, and then the upper aqueous layer was recovered. 100 μl of 8M ammonium acetate is added to the recovered aqueous layer and mixed well, then centrifuged at 15,000 rpm for 5 minutes, and the resulting NotI-digested plasmid BluescriptII SK (+) is dispersed in 20 μl of TE buffer. I let you.
[0023]
(6) 32 Marking with P
About 2 μl of alkaline phosphatase (manufactured by Takara) (40 units) with 10 times alkaline phosphatase buffer solution in TE buffer solution of plasmid BluescriptII SK (+) digested with NotI prepared in (5) 2 μl and 16 μl of sterile distilled water were added and reacted at 37 ° C. for 2 hours, followed by heating at 65 ° C. for 30 minutes. 50 μl of ethanol was added to this solution and allowed to stand at −80 ° C. for 10 minutes, followed by centrifugation at 15,000 rpm for 5 minutes, and the resulting precipitate was dissolved in 20 μl of TE buffer. In this solution, 1 μl of T4 polynucleotide kinase (Boehringerheim) (8 units in terms of enzyme activity), γ- 32 P adenosine triphosphate 5 μl (50 μCi in terms of radiation dose), 10 μl concentration 5′-phosphorylation buffer 5 μl and sterile water 19 μl were added and mixed, and incubated at 37 ° C. for 30 minutes.
Next, after removing T4 polynucleotide kinase from the reaction solution by a phenol extraction method (“Molecular Cloning”, Cold Spring Harbor Laboratories, 1982, 458), Sephadex G-50 (Pharmacia) obtained by swelling the reaction solution with a TE buffer solution. The product was subjected to gel filtration using a column (1 ml).
The 10-fold concentration buffer for 5′-phosphorylation used above has the following composition.
Figure 0004134351
100 μl of the eluate by gel filtration was collected in order, and the radiation dose of each fraction was measured by the Cherenkov count method to identify and collect the passing fraction.
As a result, 32 20 μl of TE buffer solution (hereinafter referred to as “TE buffer solution I”) of NotI digest of plasmid BluescriptII SK (+) labeled with P was obtained.
[0024]
(7) Digestion with ScaI
ScaI (100 / μl, manufactured by Takara) and 40 μl of 10-fold HB buffer were added to TE buffer I obtained in (6), adjusted to 400 μl with sterilized water, and reacted at 37 ° C. for 3 hours. After completion of the reaction, an equal amount of P.I. C. The solution I was added and mixed well, then centrifuged at 15,000 rpm for 10 minutes to recover the upper aqueous layer.
100 μl of 8M ammonia acetate and 800 μl of ethanol were added to the recovered aqueous layer and mixed well, then centrifuged at 15,000 rpm for 5 minutes, and the fragment of plasmid BluescriptII SK (+) digested with ScaI was added to 100 μl of TE buffer. Dissolved.
When the radiation dose was measured by the Cherenkov-Count method in the same manner as in (6), it was a solution having a radiation dose of 40,000 rpm per μl. Further, the concentration of the fragment of plasmid BluescriptII SK (+) was 0.30 pmol / μl, and the NotI terminal site was 0.6 pmol / μl.
[0025]
(8) Evaluation of capture and separation of fragments of plasmid BluescriptII SK (+) digested with NotI
10 μl of the dispersion a obtained in (4) was placed in four centrifuge tubes A-1 to A-4. Next, fragments of plasmid BluescriptII SK (+) digested with NotI and ScaI prepared in (7) were added to four centrifuge tubes from A-1 to A-4 so as to be 1, 2, 4, and 6 pmol, respectively. . In each of these four centrifuge tubes, 10 μl of ligation buffer (660 mM Tris-HCl buffer (pH 8), 66 mM magnesium chloride and 100 mM DTT) 5 μl, 50 mM 5′-adenosine triphosphate 5 μl, 50% 5 μl of polyethylene glycol and 5 μl of 3M sodium chloride were added. Further, 5 μl of T4 DNA ligase (manufactured by Takara, 350 units / μl) was further added to each centrifuge tube, and then sterilized distilled water was added to prepare 50 μl, followed by reaction at 17 ° C. for 12 hours. After completion of the reaction, the Cherenkov counts of the four centrifuge tubes were measured, and each was used as the total count of each centrifuge tube.
After completion of the reaction, 1000 μl of MB buffer (50 mM Tris-HCl buffer (pH 7.5), 0.01% gelatin, 100 mM sodium chloride, and 10 mM magnesium chloride) was added to each of four centrifuge tubes. The reaction was stopped. Subsequently, the four centrifuge tubes were centrifuged at 10,000 rpm for 3 minutes, the supernatant was removed, and then dispersed in 50 μl of TE buffer, and the Cherenkov count was measured. Each was counted as 2 in each centrifuge tube.
Subsequently, 40 units of NotI (100 units / μl) and 10 μl of 10-fold HB buffer (manufactured by Takara) were added to four centrifuge tubes, adjusted to 100 μl with sterile distilled water, and reacted at 37 ° C. for 3 hours. Subsequently, the precipitate was centrifuged and washed at 10,000 rpm for 5 minutes, and the precipitate was washed three times with TE buffer / 0.25M sodium chloride solution, and then re-dispersed in 50 μl with TE buffer, and the Cherenkov count was measured. Was counted 3.
The capture rate and recovery rate of the plasmid BluescriptII SK (+) digested with NotI were calculated according to the following equations and are shown in Table 1.
[0026]
[Expression 1]
Figure 0004134351
[0027]
[Expression 2]
Figure 0004134351
[0028]
[Table 1]
Figure 0004134351
[0029]
[Effect of the present invention]
According to the present invention, two nucleic acids having specific restriction enzyme recognition sites capable of easily and accurately performing binding and recovery of nucleic acid fragments having specific restriction enzyme cleavage ends or separation and extraction of DNA-binding proteins. A particle carrier having a strand oligonucleotide immobilized thereon is obtained.

Claims (2)

有機高分子を主成分とする粒子の表面に、特定の制限酵素の認識部位および相補鎖部位を有する二本鎖オリゴヌクレオチドが固定化された核酸結合用粒子担体であって、
(1)該粒子は、表面にカルボキシル基を有しており、かつ平均粒子径が0.3〜5μmであり、
(2)該二本鎖オリゴヌクレオチドは、その全塩基数が5〜80であり、該二本鎖オリゴヌクレオチドの片方の末端の二本鎖部位は、互いに相補性がない塩基数1〜30の一本鎖オリゴヌクレオチドA1およびA2から構成され、該二本鎖オリゴヌクレオチドの他方の末端の二本鎖部位は、少なくとも末端に特定の制限酵素の認識部位を有する二本鎖オリゴヌクレオチドBから構成されており、
(3)該二本鎖オリゴヌクレオチドと該粒子とは、該二本鎖オリゴヌクレオチドを構成する一本鎖オリゴヌクレオチドA1およびA2の塩基にそれぞれ少なくとも1つ存在するアミノ基と該粒子表面に存在するカルボキシル基とのアミド結合により固定化されている、
ことを特徴とする核酸結合用粒子担体。
A nucleic acid binding particle carrier in which a double-stranded oligonucleotide having a specific restriction enzyme recognition site and a complementary strand site is immobilized on the surface of a particle mainly composed of an organic polymer,
(1) The particles have a carboxyl group on the surface and have an average particle size of 0.3 to 5 μm,
(2) The double-stranded oligonucleotide has 5 to 80 bases in total, and the double-stranded part at one end of the double-stranded oligonucleotide has 1 to 30 bases that are not complementary to each other. It is composed of single-stranded oligonucleotides A1 and A2, and the double-stranded site at the other end of the double-stranded oligonucleotide is composed of double-stranded oligonucleotide B having a specific restriction enzyme recognition site at least at the end. And
(3) The double-stranded oligonucleotide and the particle are present on the particle surface and at least one amino group present in each base of the single-stranded oligonucleotides A1 and A2 constituting the double-stranded oligonucleotide. Immobilized by an amide bond with a carboxyl group,
A particle carrier for binding nucleic acid, characterized in that
前記一本鎖オリゴヌクレオチドA1およびA2を構成する塩基は、デオキシアデニル酸、デオキシシチジル酸、またはデオキシグアニル酸から選ばれる1種類の塩基であることを特徴とする請求項1記載の核酸結合用粒子担体。  2. The nucleic acid binding nucleic acid according to claim 1, wherein the bases constituting the single-stranded oligonucleotides A1 and A2 are one kind of base selected from deoxyadenylic acid, deoxycytidylic acid, or deoxyguanylic acid. Particle carrier.
JP16317594A 1994-06-22 1994-06-22 Particle carrier for nucleic acid binding Expired - Fee Related JP4134351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16317594A JP4134351B2 (en) 1994-06-22 1994-06-22 Particle carrier for nucleic acid binding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16317594A JP4134351B2 (en) 1994-06-22 1994-06-22 Particle carrier for nucleic acid binding

Publications (2)

Publication Number Publication Date
JPH08296A JPH08296A (en) 1996-01-09
JP4134351B2 true JP4134351B2 (en) 2008-08-20

Family

ID=15768677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16317594A Expired - Fee Related JP4134351B2 (en) 1994-06-22 1994-06-22 Particle carrier for nucleic acid binding

Country Status (1)

Country Link
JP (1) JP4134351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204463A (en) * 2000-01-27 2001-07-31 Toyo Kohan Co Ltd Support for immobilizing nucleotide
KR100383080B1 (en) * 2000-09-05 2003-05-12 주식회사 포스코 Substrate with controlled amine density and regular spacing and method for preparing the same

Also Published As

Publication number Publication date
JPH08296A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
JP2801051B2 (en) Methods and reagents for detecting nucleobase sequences
US5830643A (en) Partially double-stranded oligonucleotide and method for forming oligonucleotide
JP3905132B2 (en) Purification of plasmid DNA using column chromatography in the presence of PEG
US6180348B1 (en) Method of isolating target specific oligonucleotide ligands
AU640626B2 (en) Nucleic acid probes
JP2701092B2 (en) Probe methods and compositions for detecting different DNA sequences
US20090048439A1 (en) Isolation of nucleic acids molecules using modified solid supports
JPS62167793A (en) Detection of nucleic acid sequence and hybridization probe therefor
JPH04501956A (en) RNA and DNA detection and quantification methods
JPS60237361A (en) Method of detecting aimed genetic material
JPS6231920B2 (en)
JPH02245663A (en) Chemically manufacturing method of nucleotide probe with highly singular activity
JPH0630637B2 (en) Nucleic acid detection method by separation
KR20130041843A (en) Methods of detecting residual amounts of polymers used in the purification of biomolecules
US20090215029A1 (en) Methods of isolating and purifying nucleic acid-binding biomolecules and compositions including same
EP0365595A1 (en) Affinity removal of contaminating sequences from recombinant cloned na using capture beads
JP2002538478A (en) Method for labeling nucleic acid amplicon that prevents simultaneous contamination
JP4134351B2 (en) Particle carrier for nucleic acid binding
JP2004508448A5 (en)
JP4019433B2 (en) Particle carrier for nucleic acid binding
JP3800615B2 (en) Method for preparing nucleic acid diagnostic particle and method for detecting target nucleic acid in test sample using the nucleic acid diagnostic particle
US5972611A (en) Hybridization carrier and a process for preparing the same
JP2003508015A (en) Electrophoretic analysis of target molecules using adapter molecules
JP2880996B2 (en) Hybridization support and method for preparing the same
JP3448776B2 (en) Carrier for nucleic acid binding, method for preparing the same, and method for detecting target nucleic acid

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071108

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080128

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees