JP4133791B2 - Method for producing fuel cell electrode-membrane assembly - Google Patents

Method for producing fuel cell electrode-membrane assembly Download PDF

Info

Publication number
JP4133791B2
JP4133791B2 JP2003423728A JP2003423728A JP4133791B2 JP 4133791 B2 JP4133791 B2 JP 4133791B2 JP 2003423728 A JP2003423728 A JP 2003423728A JP 2003423728 A JP2003423728 A JP 2003423728A JP 4133791 B2 JP4133791 B2 JP 4133791B2
Authority
JP
Japan
Prior art keywords
layer
negative electrode
underlayer
positive
electrode side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003423728A
Other languages
Japanese (ja)
Other versions
JP2005183232A (en
Inventor
玄 沖山
知子 伊達
靖宏 中尾
修 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003423728A priority Critical patent/JP4133791B2/en
Publication of JP2005183232A publication Critical patent/JP2005183232A/en
Application granted granted Critical
Publication of JP4133791B2 publication Critical patent/JP4133791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

本発明は燃料電池用電極−膜接合体の製造方法に係り、特に、正・負極側の拡散層、正・負極側の下地層、正・負極側の電極層および電解質膜を積層した燃料電池用電極−膜接合体の製造方法に関するものである。   The present invention relates to a method for producing a fuel cell electrode-membrane assembly, and in particular, a fuel cell in which a positive / negative electrode side diffusion layer, a positive / negative electrode side underlayer, a positive / negative electrode side electrode layer, and an electrolyte membrane are laminated. The present invention relates to a method for producing an electrode-membrane assembly.

図10は従来の燃料電池用電極−膜接合体を示す断面図である。
燃料電池用電極−膜接合体100は、負極側拡散層101に負極側下地層102を積層し、負極側下地層102に負電極層103を積層し、負電極層103に電解質膜104を積層し、電解質膜104に正電極層105を積層し、正電極層105に正極側下地層106を積層し、正極側下地層106に正極側拡散層107を積層したものである。
FIG. 10 is a sectional view showing a conventional fuel cell electrode-membrane assembly.
In the fuel cell electrode-membrane assembly 100, the negative electrode side base layer 102 is stacked on the negative electrode side diffusion layer 101, the negative electrode layer 103 is stacked on the negative electrode side base layer 102, and the electrolyte membrane 104 is stacked on the negative electrode layer 103. Then, the positive electrode layer 105 is laminated on the electrolyte membrane 104, the positive electrode base layer 106 is laminated on the positive electrode layer 105, and the positive electrode diffusion layer 107 is laminated on the positive electrode base layer 106.

この燃料電池用電極−膜接合体100を製造する際に、一例としてアルコールを用いて燃料電池用電極−膜接合体100の接合性を保つ製造方法が知られている(例えば、特許文献1参照。)。
特開平7−130375号公報
When manufacturing this fuel cell electrode-membrane assembly 100, as an example, a manufacturing method is known that maintains the bonding property of the fuel cell electrode-membrane assembly 100 using alcohol (see, for example, Patent Document 1). .)
JP-A-7-130375

この公報の技術は、例えば正電極層106のカーボン108…に触媒として白金を胆持し、この表面にナフィオン(登録商標:デュポン社)製の膜を形成し、このナフィオン膜の一部をアルコールでゲル状に溶解し、白金を胆持したカーボン108…同士の結着性を良好に確保するものである。   In the technology of this publication, for example, carbon as a catalyst is held on carbon 108 of the positive electrode layer 106, a film made of Nafion (registered trademark: DuPont) is formed on the surface, and a part of the Nafion film is made alcohol. Thus, the carbon 108... Dissolved in a gel state and holding the platinum is firmly secured.

通常、燃料電池用電極−膜接合体100には、負極側拡散層101として多孔質のカーボンペーパーを用い、負極側下地層102としてカーボン108とバインダー(図示せず)とを混合したものを用いる。
このカーボンペーパーは多孔質のシートである。このため、カーボンペーパーの表面に孔が形成され、表面は比較的大きな凹凸状になっている。
Usually, the fuel cell electrode-membrane assembly 100 uses a porous carbon paper as the negative electrode side diffusion layer 101 and a mixture of carbon 108 and a binder (not shown) as the negative electrode side base layer 102. .
This carbon paper is a porous sheet. For this reason, holes are formed on the surface of the carbon paper, and the surface has a relatively large uneven shape.

このため、負極側拡散層101に塗布した負極側下地層102の表面が、比較的大きな凹凸状になり、負極側下地層102に塗布した負電極層103の表面が、比較的大きな凹凸状になる。
よって、負電極層103の表面に塗布する電解質膜104の膜厚を均一に確保することは難しい。
次図で、電解質膜104の膜厚について詳しく説明する。
For this reason, the surface of the negative electrode side underlayer 102 applied to the negative electrode side diffusion layer 101 has a relatively large uneven shape, and the surface of the negative electrode layer 103 applied to the negative electrode side underlayer 102 has a relatively large uneven shape. Become.
Therefore, it is difficult to ensure a uniform film thickness of the electrolyte membrane 104 applied to the surface of the negative electrode layer 103.
The film thickness of the electrolyte membrane 104 will be described in detail with reference to the next figure.

図11は図10の11部拡大図であり、電解質膜104を形成する工程を説明する図である。
まず、負極側拡散層101としてのカーボンペーパーの表面101aに、負極側下地層102をスクリーン印刷(図示せず)で塗布する。
ここで、スクリーン印刷とは、網目状のスクリーンをカーボンペーパーの上方に配置し、このスクリーンの表面をスキージで加圧しながら、スキージを負極側拡散層101に沿って移動することで、スクリーンの網目から負極側拡散層101に負極側下地層102を塗布することをいう。
スクリーン印刷の際に、スキージを負極側拡散層101に沿って移動するので、負極側下地層102を負極側拡散層101の表面101aに倣わせて塗布することになる。
FIG. 11 is an enlarged view of a portion 11 in FIG. 10 and is a diagram for explaining a process of forming the electrolyte membrane 104.
First, the negative electrode base layer 102 is applied to the surface 101a of the carbon paper as the negative electrode diffusion layer 101 by screen printing (not shown).
Here, the screen printing means that a mesh-like screen is disposed above the carbon paper, and the squeegee is moved along the negative electrode-side diffusion layer 101 while pressing the surface of the screen with the squeegee, so that the mesh of the screen is obtained. The negative electrode side base layer 102 is applied to the negative electrode side diffusion layer 101.
During screen printing, the squeegee moves along the negative electrode side diffusion layer 101, so that the negative electrode side base layer 102 is applied following the surface 101 a of the negative electrode side diffusion layer 101.

負極側拡散層101としてカーボンペーパーを用いることで、表面101が比較的大きな凹凸状になる。この負極側拡散層101の表面101aに沿って負極側下地層102をスクリーン印刷することで、負極側下地層102の表面102aが大きな凹凸状になる。
さらに、スクリーン印刷完了後、スクリーンを負極側下地層101の表面101aから離す際に、スクリーンの網目が負極側下地層101の表面101aに残る。
加えて、負極側下地層102は、比較的大粒のカーボン109…(…は複数を示す)を含んでいる。このため、大粒のカーボン109…で負極側拡散層101の表面101aを凹凸状にする虞がある。
以上の理由から、負極側下地層102の表面102aはさらに大きな凹凸状になることが考えられる。
By using carbon paper as the negative electrode side diffusion layer 101, the surface 101 has a relatively large uneven shape. By screen-printing the negative electrode side underlayer 102 along the surface 101a of the negative electrode side diffusion layer 101, the surface 102a of the negative electrode side underlayer 102 becomes large uneven.
Furthermore, after the screen printing is completed, when the screen is separated from the surface 101 a of the negative electrode side underlayer 101, the screen mesh remains on the surface 101 a of the negative electrode side underlayer 101.
In addition, the negative electrode side underlayer 102 includes relatively large carbon 109 (... indicates a plurality). For this reason, there is a possibility that the surface 101a of the negative electrode side diffusion layer 101 is made uneven by the large-sized carbon 109.
For the above reasons, it is conceivable that the surface 102a of the negative electrode side underlayer 102 has a larger uneven shape.

この負極側下地層102の表面102aに負電極層103をスプレー塗工で塗布する。
このため、負電極層103の表面103aが負極側下地層102の表面102aと同様に比較的大きな凹凸状になる。
この負電極層103の表面103aに、電解質膜104をブレード塗工で塗布する。
The negative electrode layer 103 is applied to the surface 102a of the negative electrode side underlayer 102 by spray coating.
For this reason, the surface 103 a of the negative electrode layer 103 has a relatively large uneven shape like the surface 102 a of the negative electrode side underlayer 102.
The electrolyte membrane 104 is applied to the surface 103a of the negative electrode layer 103 by blade coating.

ここで、ブレード塗工とは、電解質膜104を塗布した直後に、塗布した電解質膜104の表面104aに沿って、ブレードを移動することで塗布量を制御することをいう。
よって、電解質膜104をブレード塗工で塗布することで、電解質膜104の塗布量を好適に調整することが可能になり、加えて電解質膜104の表面104aを平坦にできるという利点がある。
Here, blade coating refers to controlling the coating amount by moving the blade along the surface 104a of the applied electrolyte membrane 104 immediately after the electrolyte membrane 104 is applied.
Therefore, by applying the electrolyte membrane 104 by blade coating, it is possible to suitably adjust the coating amount of the electrolyte membrane 104, and in addition, there is an advantage that the surface 104a of the electrolyte membrane 104 can be flattened.

しかし、電解質膜104をブレード塗工すると、電解質膜104の表面104aをブレードで平坦に形成することになり、負電極層103の凸部103bの箇所で電解質膜104の膜厚t1が薄くなる。
このように、電解質膜104の膜厚t1が、負電極層103の凸部103bの箇所で薄くなる。電解質膜104の膜厚104aに局部的に膜厚t1の薄い箇所があると、燃料電池用電極−膜接合体100を発電する際に、燃料電池用電極−膜接合体100の発電性能を確保することは難しい。
However, when the electrolyte membrane 104 is blade-coated, the surface 104a of the electrolyte membrane 104 is formed flat with the blade, and the thickness t1 of the electrolyte membrane 104 is reduced at the location of the convex portion 103b of the negative electrode layer 103.
Thus, the thickness t1 of the electrolyte membrane 104 is reduced at the location of the convex portion 103b of the negative electrode layer 103. When there is a portion where the thickness t1 is locally thin in the thickness 104a of the electrolyte membrane 104, the power generation performance of the fuel cell electrode-membrane assembly 100 is secured when the fuel cell electrode-membrane assembly 100 generates power. Difficult to do.

本発明は、燃料電池用電極−膜接合体の発電性能を確保することができる燃料電池用電極−膜接合体の製造方法を提供することを課題とする。   An object of the present invention is to provide a method for producing a fuel cell electrode-membrane assembly capable of ensuring the power generation performance of the fuel cell electrode-membrane assembly.

請求項1に係る発明は、正・負極の一方側の拡散層に一方側の下地層を塗布し、この一方側の下地層が未乾燥のうちに、正・負極の一方の電極層を前記一方側の下地層に塗布し、この一方の電極層が未乾燥のうちに電解質膜を前記一方の電極層に塗布し、この電解質膜が未乾燥のうちに、正・負極の他方の電極層を前記電解質層に塗布し、この他方の電極層が未乾燥のうちに、正・負極の他方側の拡散層に他方側の下地層を塗布して得た二層体のうち、前記他方側の下地層前記他方の電極層に重ね合わせて、前記正・負極の一方側の拡散層、前記一方側の下地層、前記正・負極の一方の電極層、前記電解質膜、前記正・負極の他方の電極層、前記他方側の下地層および前記正・負極の他方側の拡散層がこの順に積層された未乾燥状態の電極−膜接合体を得、この未乾燥状態の電極−膜接合体を乾燥する燃料電池用電極−膜接合体の製造方法であって、前記一方側の下地層を、カーボン粒、バインダーおよび溶媒で構成し、前記カーボン粒と前記バインダーと前記溶媒との質量和を分母とし、前記カーボン粒と前記バインダーとの質量和を分子として得る値を、前記一方側の下地層の固形分率と呼び、このカーボン粒の粒径を0.1〜10μmとし、
この一方側の下地層の固形分率を2〜20wt%とし、この一方側の下地層の粘度を0.05〜1Pa・sとし、この一方側の下地層の表面をブレードでならすことにより前記正・負極の一方側の拡散層に塗布することを特徴とする。
Invention, a base layer on one side is applied to the diffusion layer on one side of the positive and negative electrodes, while the underlying layer of the one side is undried, one electrode layer of the positive and negative electrodes wherein according to claim 1 The electrode layer is applied to the base layer on one side , the electrolyte layer is applied to the one electrode layer while the one electrode layer is undried, and the other electrode of the positive and negative electrodes is applied to the one electrode layer. applying a layer on the electrolyte layer, while the other electrode layer is undried, among other side bilayers of the underlying layer obtained by coating the other side of the diffusion layer of the positive and negative electrodes, the other The base layer on the side is overlaid on the other electrode layer, the diffusion layer on one side of the positive / negative electrode, the base layer on the one side, the one electrode layer on the positive / negative electrode, the electrolyte membrane, the other electrode layer of the negative electrode, the diffusion layer on the other side of the base layer and the positive and negative electrodes of the other side is conductive undried state of being stacked in this order - to obtain a membrane assembly, the undried state of the electrode - fuel cell electrode to dry the membrane assembly - a membrane assembly manufacturing method, the underlayer before Symbol one side, carbon particle, a binder and constituted by the solvent, the a carbon particle and denominator mass sum of the solvent and the binder, the values to obtain a mass sum of the carbon particle and the binder as a molecule, and the solid fraction of the one side of the base layer Called, the particle size of the carbon particles is 0.1 to 10 μm,
The solid fraction of the base layer of the one side and 2 to 20 wt%, the viscosity of the underlying layer of the one side and 0.05~1Pa · s, said by leveling the surface of the underlying layer of the one side by the blade It is applied to the diffusion layer on one side of the positive and negative electrodes.

粘度には、パスカル秒(Pa・s)、ポアズ(P)、センチポアズ(cP)、重量キロウラム秒毎平方メートル(kgf・s/m)などの単位が用いられているが、ここではSI単位のパスカル秒(Pa・s)を使用する。 For viscosity, units such as Pascal second (Pa · s), Poise (P), Centipoise (cP), Weight Kiloram second per square meter (kgf · s / m 2 ) are used. Pascal second (Pa · s) is used.

正・負極の一方側の拡散層に一方側の下地層を塗布する。この下地層に含むカーボン粒の粒径を0.1〜10μmとすることでカーボン粒を小径にし、この下地層の固形分率を2〜20wt%とすることで粘度を0.05〜1Pa・sと下げた。
加えて、正・負極の一方側の拡散層に一方側の下地層を塗布する際に、この下地層の表面をブレードでならすようにした。
An underlayer on one side is applied to the diffusion layer on one side of the positive and negative electrodes. By making the particle size of the carbon particles contained in this underlayer 0.1 to 10 μm, the carbon particles are made small, and by setting the solid content of this underlayer to 2 to 20 wt%, the viscosity is 0.05 to 1 Pa · s.
In addition, when the base layer on one side is applied to the diffusion layer on one side of the positive and negative electrodes, the surface of the base layer is smoothed with a blade.

このように、カーボン粒を小径にするとともに一方側の下地層の粘度を下げ、かつ一方側の下地層を塗布する際に下地層の表面をブレードでならすことで、一方側の下地層の表面を平坦にする。
この下地層に、正・負極の一方の電極層を塗布し、この電極層に電解質膜を塗布することで、電解質膜を平坦に塗布する。
Thus, lowering the viscosity of one side of the base layer as well as the carbon particles smaller in diameter, and whereas that level the surface of the base layer in the blade when applying the underlayer side, whereas the surface side of the base layer To flatten.
The positive electrode layer and the negative electrode layer are applied to the base layer, and the electrolyte membrane is applied to the electrode layer to apply the electrolyte membrane flatly.

ここで、一方側の下地層に含むカーボン粒の粒径を0.1〜10μmとした理由は以下の通りである。
すなわち、カーボン粒の粒径が0.1μm未満になると、カーボン粒の粒径が小さくなりすぎて、正・負極の一方側の拡散層にカーボン粒が染み込んでしまう。
よって、多孔質の拡散層に目詰まりが生じてしまい、発電の際にガスの拡散性が低下する。
Here, the reason why the particle size of the carbon particles contained in the one underlayer is 0.1 to 10 μm is as follows.
That is, when the particle size of the carbon particles is less than 0.1 μm, the particle size of the carbon particles becomes too small and the carbon particles penetrate into the diffusion layer on one side of the positive and negative electrodes.
Therefore, the porous diffusion layer is clogged, and the gas diffusibility is reduced during power generation.

加えて、カーボン粒の粒径が0.1μm未満になると、カーボン粒の粒径が小さくなりすぎて、一方側の下地層の密度が密になりすぎて、発電の際にガスの拡散性が低下する。
そこで、カーボン粒の粒径を0.1μm以上にすることで、拡散層の目詰まりを抑え、かつ一方側の下地層の密度をある程度粗に保つようにした。これにより、発電の際にガスの拡散性を好適に保つことができる。
In addition, if the particle size of the carbon particles is less than 0.1 μm, the particle size of the carbon particles becomes too small, the density of the underlayer on one side becomes too dense, and the gas diffusibility during power generation descend.
Therefore, by setting the particle size of the carbon particles to 0.1 μm or more, the clogging of the diffusion layer is suppressed, and the density of the base layer on one side is kept somewhat rough. Thereby, the diffusibility of gas can be suitably maintained during power generation.

一方、カーボン粒の粒径が10μmを超えると、カーボン粒の粒径が大きくなりすぎて、下地層の表面を平坦することが難しい。
そこで、カーボン粒の粒径を10μm以下にすることで、一方側の下地層の表面を平坦にするようにした。
On the other hand, when the particle size of the carbon particles exceeds 10 μm, the particle size of the carbon particles becomes too large, and it is difficult to flatten the surface of the underlayer.
Therefore, the surface of the base layer on one side is made flat by setting the particle size of the carbon particles to 10 μm or less.

さらに、一方側の下地層の固形分率を2〜20wt%とした理由は以下の通りである。
すなわち、一方側の下地層の固形分率が2wt%未満になると、カーボン粒およびバインダーが少量になり、粘度が下がりすぎる。
よって、一方側の下地層が正・負極の一方側の拡散層に染み込み易くなり、多孔質の拡散層に目詰まりが生じてしまい、ガスの拡散性が低下する。そこで、一方側の下地層の固形分率を2wt%以上にすることで、正・負極の一方側の拡散層の目詰まりを抑え、発電の際にガスの拡散性を好適に保つようにした。
Furthermore, the reason why the solid content of the underlayer on one side is 2 to 20 wt% is as follows.
That is, when the solid content of the undercoat layer on one side is less than 2 wt%, the amount of carbon particles and the binder becomes small, and the viscosity is lowered too much.
Therefore, the base layer on one side easily penetrates into the diffusion layer on one side of the positive and negative electrodes , the porous diffusion layer is clogged, and the gas diffusibility is lowered. Therefore, by setting the solid content ratio of the underlayer on one side to 2 wt% or more, clogging of the diffusion layer on one side of the positive and negative electrodes is suppressed, and the gas diffusibility is suitably maintained during power generation. .

一方、一方側の下地層の固形分率が20wt%を超えると、カーボン粒およびバインダーが多量になり、粘度が上がりすぎる。このため、一方側の下地層の表面張力が大きくなりすぎて、下地層の表面を平坦することが難しい。
そこで、一方側の下地層の固形分率を20wt%以下にすることで、一方側の下地層の表面を平坦にするようにした。
On the other hand, when the solid content of the base layer on one side exceeds 20 wt%, the amount of carbon particles and binder increases and the viscosity increases too much. For this reason, the surface tension of the underlayer on one side becomes too large, and it is difficult to flatten the surface of the underlayer.
Therefore, the surface of the underlayer on one side is made flat by setting the solid content of the underlayer on one side to 20 wt% or less.

加えて、一方側の下地層の粘度を0.05〜1Pa・sとした理由は以下の通りである。
すなわち、一方側の下地層の粘度が0.05Pa・s未満になると、一方側の下地層の粘度が下がりすぎてしまう。よって、一方側の下地層が正・負極の一方側の拡散層に染み込み易くなり、多孔質の拡散層に目詰まりが生じてしまい、発電の際にガスの拡散性が低下する。
そこで、一方側の下地層の粘度を0.05Pa・s以上にすることで、正・負極の一方側の拡散層の目詰まりを抑え、ガスの拡散性を好適に保つようにした。
In addition, the reason why the viscosity of the base layer on one side is 0.05 to 1 Pa · s is as follows.
That is, when the viscosity of the underlayer on one side is less than 0.05 Pa · s, the viscosity of the underlayer on one side is too low. Therefore, the base layer on one side easily penetrates into the diffusion layer on one side of the positive and negative electrodes , the porous diffusion layer is clogged, and the gas diffusibility is reduced during power generation.
Therefore, by setting the viscosity of the base layer on one side to 0.05 Pa · s or more, clogging of the diffusion layer on one side of the positive and negative electrodes is suppressed, and the gas diffusibility is suitably maintained.

一方、一方側の下地層の粘度が1Pa・sを超えると、一方側の下地層の粘度が上がりすぎる。このため、一方側の下地層の表面張力が大きくなりすぎて、一方側の下地層の表面を平坦することが難しい。
そこで、一方側の下地層の粘度が1Pa・s以下にすることで、一方側の下地層の表面を平坦にするようにした。
On the other hand, when the viscosity of the underlayer on one side exceeds 1 Pa · s, the viscosity of the underlayer on one side is excessively increased. For this reason, the surface tension of the base layer on one side becomes too large, and it is difficult to flatten the surface of the base layer on one side .
Therefore, the surface of the underlayer on one side is made flat by setting the viscosity of the underlayer on one side to 1 Pa · s or less.

請求項1に係る発明では、一方側の下地層の表面を平坦にすることで、電解質膜の膜厚を均一にして、燃料電池用電極−膜接合体の発電性能を確保することができるという利点がある。 In the invention according to claim 1, it is possible to ensure the power generation performance of the fuel cell electrode-membrane assembly by flattening the surface of the base layer on one side to make the thickness of the electrolyte membrane uniform. There are advantages.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る燃料電池用電極−膜接合体を備えた燃料電池ユニットを示す分解斜視図である。
燃料電池ユニット10は、複数(2個)の燃料電池単体(セル)11,11で構成したものである。
この燃料電池単体11は、燃料電池用電極−膜接合体12の両側にそれぞれ負極側セパレータ13および正極側セパレータ14を備える。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is an exploded perspective view showing a fuel cell unit provided with an electrode-membrane assembly for a fuel cell according to the present invention.
The fuel cell unit 10 is composed of a plurality (two) of fuel cell units (cells) 11, 11.
This single fuel cell 11 includes a negative separator 13 and a positive separator 14 on both sides of a fuel cell electrode-membrane assembly 12.

燃料電池用電極−膜接合体12は、負極側拡散層21、負極側下地層22、負電極層23、電解質膜24、正電極層25、正極側下地層26、正極側拡散層27を積層したものである。
負極側拡散層21および正極側拡散層27で燃料電池用電極−膜接合体12の両側を構成する。
The electrode-membrane assembly 12 for a fuel cell includes a negative electrode side diffusion layer 21, a negative electrode side base layer 22, a negative electrode layer 23, an electrolyte membrane 24, a positive electrode layer 25, a positive electrode side base layer 26, and a positive electrode side diffusion layer 27. It is a thing.
The negative electrode side diffusion layer 21 and the positive electrode side diffusion layer 27 constitute both sides of the fuel cell electrode-membrane assembly 12.

負極側拡散層21に負極側セパレータ13を積層する。負極側セパレータ13の流路溝15を負極側拡散層21で覆い、負極側拡散層21および流路溝15で水素ガス流路17を形成する。
また、正極側拡散層27に正極側セパレータ14を積層する。正極側セパレータ14の流路溝16を正極側拡散層27で覆い、正極側拡散層27および流路溝16で酸素ガス流路18を形成する。
The negative electrode side separator 13 is laminated on the negative electrode side diffusion layer 21. The flow path groove 15 of the negative electrode side separator 13 is covered with the negative electrode side diffusion layer 21, and the hydrogen gas flow path 17 is formed by the negative electrode side diffusion layer 21 and the flow path groove 15.
Further, the positive electrode side separator 14 is laminated on the positive electrode side diffusion layer 27. The flow path groove 16 of the positive electrode side separator 14 is covered with the positive electrode side diffusion layer 27, and the oxygen gas flow path 18 is formed by the positive electrode side diffusion layer 27 and the flow path groove 16.

燃料電池用電極−膜接合体12は、負極側拡散層21、負極側下地層22、負電極層23、電解膜質24、正電極層25、正極側下地層26、正極側拡散層27を積層したものである。
このように、構成した燃料電池単体11を複数個(図1では2個のみを示す)備えることで、燃料電池ユニット10を構成する。
なお、燃料電池用電極−膜接合体12については図2で詳しく説明する。
The electrode-membrane assembly 12 for a fuel cell includes a negative electrode side diffusion layer 21, a negative electrode side base layer 22, a negative electrode layer 23, an electrolyte membrane material 24, a positive electrode layer 25, a positive electrode side base layer 26, and a positive electrode side diffusion layer 27. It is a thing.
Thus, the fuel cell unit 10 is configured by providing a plurality of fuel cell units 11 (only two are shown in FIG. 1).
The fuel cell electrode-membrane assembly 12 will be described in detail with reference to FIG.

燃料電池ユニット10によれば、水素ガス流路17に水素ガスを供給するとともに、酸素ガス流路18に酸素ガスを供給することで、電子(e)を矢印の如く流して電流を発生する。 According to the fuel cell unit 10, the hydrogen gas is supplied to the hydrogen gas flow path 17 and the oxygen gas is supplied to the oxygen gas flow path 18, thereby causing electrons (e ) to flow as indicated by arrows and generating a current. .

図2は本発明に係る燃料電池用電極−膜接合体を示す説明図である。
燃料電池用電極−膜接合体12は、負極側拡散層21に負極側下地層22を積層し、負極側下地層22に負電極層23を積層し、負電極層23に電解質膜24を積層し、電解質膜24に正電極層25を積層し、正電極層25に正極側下地層26を積層し、正極側下地層26に正極側拡散層27を積層したものである。
FIG. 2 is an explanatory view showing a fuel cell electrode-membrane assembly according to the present invention.
In the fuel cell electrode-membrane assembly 12, the negative electrode side base layer 22 is stacked on the negative electrode side diffusion layer 21, the negative electrode layer 23 is stacked on the negative electrode side base layer 22, and the electrolyte membrane 24 is stacked on the negative electrode layer 23. Then, the positive electrode layer 25 is laminated on the electrolyte membrane 24, the positive electrode base layer 26 is laminated on the positive electrode layer 25, and the positive electrode side diffusion layer 27 is laminated on the positive electrode side base layer 26.

負極側拡散層21および正極側拡散層27は、一例として多孔質のカーボンペーパーに撥水性処理を施したものである。
負極側下地層22は、一例として粒状のカーボン(カーボン粒)28、バインダー(図示せず)および溶媒29で構成したものである。
負極側下地層22のバインダーとして、例えば熱可塑性フッ素樹脂(THV)を用い、溶媒29として、NMP(N−メチル・2・ピロリドン)、メチルエチルケトン(MEK)などを用いる。
As an example, the negative electrode side diffusion layer 21 and the positive electrode side diffusion layer 27 are obtained by subjecting porous carbon paper to a water repellent treatment.
The negative electrode side underlayer 22 is composed of, for example, granular carbon (carbon particles) 28, a binder (not shown), and a solvent 29.
For example, thermoplastic fluororesin (THV) is used as the binder for the negative electrode side base layer 22, and NMP (N-methyl · 2 · pyrrolidone), methyl ethyl ketone (MEK), or the like is used as the solvent 29.

負極側下地層22のバインダーとして、熱可塑性フッ素樹脂(THV)を用いることで、負極側下地層22を撥水性に優れた層とする。
なお、負極側下地層22のバインダーは、熱可塑性フッ素樹脂(THV)に限定するものではなく、溶媒29は、NMP(N−メチル・2・ピロリドン)、メチルエチルケトン(MEK)に限定するものではない。
By using a thermoplastic fluororesin (THV) as a binder for the negative electrode side underlayer 22, the negative electrode side underlayer 22 is made a layer having excellent water repellency.
The binder of the negative electrode side underlayer 22 is not limited to thermoplastic fluororesin (THV), and the solvent 29 is not limited to NMP (N-methyl-2.pyrrolidone) or methyl ethyl ketone (MEK). .

正極側下地層26は、一例として粒状のカーボン(カーボン粒)31、バインダー(図示せず)および溶媒32で構成したものである。
正極側下地層26のバインダーとして、例えばパーフルオロスルホン酸系ポリマーを用い、溶媒32として、エタノール、メタノール、1−プロパノール、2−プロパノールなどを用いる。
The positive electrode side underlayer 26 is composed of granular carbon (carbon particles) 31, a binder (not shown) and a solvent 32 as an example.
For example, a perfluorosulfonic acid polymer is used as the binder of the positive electrode base layer 26, and ethanol, methanol, 1-propanol, 2-propanol, or the like is used as the solvent 32.

正極側下地層26のバインダーとして、パーフルオロスルホン酸系ポリマーを用いることで、正極側下地層26を吸水性に優れた層とする。
なお、正極側下地層26のバインダーは、パーフルオロスルホン酸系ポリマーに限定するものではなく、溶媒32は、エタノール、メタノール、1−プロパノール、2−プロパノールに限定するものではない。
By using a perfluorosulfonic acid polymer as a binder of the positive electrode side underlayer 26, the positive electrode side underlayer 26 is made a layer having excellent water absorption.
In addition, the binder of the positive electrode base layer 26 is not limited to perfluorosulfonic acid polymer, and the solvent 32 is not limited to ethanol, methanol, 1-propanol, and 2-propanol.

負電極層23は、負極用の溶媒に触媒(電極粒)を混合し、塗布後に溶媒を乾燥することで固化したものである。負電極層23の触媒は、カーボンの表面に触媒として白金−ルテニウム合金を担持したものである。
正電極層25は、正極用の溶媒に触媒(電極粒)を混合し、塗布後に溶媒を乾燥することで固化したものである。正電極層25の触媒は、カーボンの表面に触媒として白金を担持したものである。
The negative electrode layer 23 is solidified by mixing a catalyst (electrode particles) in a solvent for a negative electrode and drying the solvent after coating. The catalyst of the negative electrode layer 23 is one in which a platinum-ruthenium alloy is supported on the carbon surface as a catalyst.
The positive electrode layer 25 is formed by mixing a catalyst (electrode particles) in a positive electrode solvent and drying the solvent after coating. The catalyst of the positive electrode layer 25 has platinum supported on the surface of carbon as a catalyst.

電解質膜24は、炭化水素系固体高分子に溶媒を加えてペースト状にしたものを負電極層23に塗布した後、溶媒を除去するとともに乾燥することで、負電極層23および正電極層25と一体に固化したものである。
なお、電解質膜24は、膜厚tを略均一に形成したものである。
以下、燃料電池用電極−膜接合体12の製造方法を図3〜図9に基づいて説明する。
The electrolyte membrane 24 is obtained by applying a paste obtained by adding a solvent to a hydrocarbon-based solid polymer to the negative electrode layer 23, and then removing the solvent and drying the negative electrode layer 23 and the positive electrode layer 25. And solidified together.
The electrolyte membrane 24 is formed with a substantially uniform thickness t.
Hereinafter, the manufacturing method of the electrode-membrane assembly 12 for fuel cells is demonstrated based on FIGS.

図3(a),(b)は本発明に係る燃料電池用電極−膜接合体の負極側拡散層に負極側下地層を塗布する例を説明する図である。
(a)において、載置台41に負極側拡散層21をセットする。負極側拡散層21は、多孔質のカーボンペーパーであり、その表面21aは比較的大きな凹凸状になっている。
3 (a) and 3 (b) are diagrams for explaining an example in which a negative electrode base layer is applied to the negative electrode diffusion layer of the fuel cell electrode-membrane assembly according to the present invention.
In (a), the negative electrode side diffusion layer 21 is set on the mounting table 41. The negative electrode side diffusion layer 21 is a porous carbon paper, and the surface 21a has a relatively large uneven shape.

(b)において、負極側拡散層21に負極側下地層22をブレード塗布装置42でブレード塗工(blade cating)する。
すなわち、ブレード塗布装置42の吐出ノズル43から、負極側拡散層21に、スラリー状の負極側下地層22を吐出させながら、吐出ノズル43を矢印aの如く移動する。
吐出ノズル43の後方からブレード44を矢印bの如く移動する。
In (b), the negative electrode side base layer 22 is blade coated on the negative electrode side diffusion layer 21 by a blade coating device 42.
That is, the discharge nozzle 43 is moved as indicated by an arrow a while discharging the slurry-like negative electrode side underlayer 22 from the discharge nozzle 43 of the blade coating device 42 to the negative electrode side diffusion layer 21.
The blade 44 is moved from behind the discharge nozzle 43 as shown by an arrow b.

ここで、負極側下地層22に含むカーボン28の粒径を0.1〜10μmとすることでカーボン28を小径にした。
加えて、負極側下地層22の固形分率を2〜20wt%とすることで粘度を0.05〜1Pa・s(50〜1000センチポアズ(cP))に下げた。
Here, the diameter of the carbon 28 included in the negative electrode side underlayer 22 was set to 0.1 to 10 μm, so that the carbon 28 was reduced in diameter.
In addition, the viscosity was lowered to 0.05 to 1 Pa · s (50 to 1000 centipoise (cP)) by setting the solid content of the negative electrode side underlayer 22 to 2 to 20 wt%.

図4(a),(b)は本発明に係る燃料電池用電極−膜接合体の負極側拡散層に負極側下地層を塗布した状態を説明する図である。
(a)において、ブレード44を矢印bの如く移動することで、ブレード44の下辺44aで負極側下地層22の表面22aをならす。
4 (a) and 4 (b) are diagrams illustrating a state in which a negative electrode-side base layer is applied to the negative electrode-side diffusion layer of the fuel cell electrode-membrane assembly according to the present invention.
In (a), by moving the blade 44 as shown by the arrow b, the surface 22 a of the negative electrode side underlayer 22 is leveled by the lower side 44 a of the blade 44.

負極側下地層22に含むカーボン28の粒径を0.1〜10μmと小径にし、負極側下地層22の固形分率を2〜20wt%として粘度を0.05〜1Pa・sと下げ、負極側下地層22の表面22aをブレード44の下辺44aでならす。
これにより、負極側下地層22の表面22aを、負極側拡散層21の凹凸状の表面21aの影響を受けないで平坦にすることができる。
The particle size of the carbon 28 included in the negative electrode side underlayer 22 is reduced to 0.1 to 10 μm, the solid content of the negative electrode side underlayer 22 is set to 2 to 20 wt%, and the viscosity is reduced to 0.05 to 1 Pa · s. The surface 22 a of the side base layer 22 is leveled with the lower side 44 a of the blade 44.
Thereby, the surface 22a of the negative electrode side base layer 22 can be flattened without being affected by the uneven surface 21a of the negative electrode side diffusion layer 21.

ここで、負極側下地層22の固形分率とは、負極側下地層22のカーボン28とバインダー(図示せず)と溶媒29との質量和を分母とし、カーボン28とバインダー(図示せず)との質量和を分子として得る値である。
すなわち、負極側下地層22の固形分率(wt%)=
[(カーボン28の質量)+(バインダーの質量)]/[(カーボン28の質量)+(バインダーの質量)+(溶媒29の質量)]の関係が成立する。
Here, the solid content ratio of the negative electrode side underlayer 22 refers to the mass sum of the carbon 28, the binder (not shown) and the solvent 29 of the negative electrode side underlayer 22, and the carbon 28 and the binder (not shown). Is the value to obtain the sum of mass as a numerator.
That is, the solid content ratio (wt%) of the negative electrode side underlayer 22 =
The relationship of [(mass of carbon 28) + (mass of binder)] / [(mass of carbon 28) + (mass of binder) + (mass of solvent 29)] is established.

ここで、負極側下地層22に含むカーボン28の粒径を0.1〜10μmとした理由は以下の通りである。
すなわち、カーボン28の粒径が0.1μm未満になると、カーボン28の粒径が小さくなりすぎて、負極側拡散層21にカーボン28が染み込んでしまう。
よって、多孔質の負極側拡散層21に目詰まりが生じてしまい、発電の際にガスの拡散性が低下する。
Here, the reason why the particle size of the carbon 28 included in the negative electrode side underlayer 22 is 0.1 to 10 μm is as follows.
That is, when the particle size of the carbon 28 is less than 0.1 μm, the particle size of the carbon 28 becomes too small and the carbon 28 penetrates into the negative electrode side diffusion layer 21.
Therefore, the porous negative electrode side diffusion layer 21 is clogged, and the gas diffusibility is lowered during power generation.

加えて、カーボン28の粒径が0.1μm未満になると、カーボン28の粒径が小さくなりすぎて、負極側下地層22の密度が密になりすぎて、発電の際にガスの拡散性が低下する。
そこで、カーボン28の粒径を0.1μm以上にすることで、負極側拡散層21の目詰まりを抑え、かつ負極側下地層22の密度をある程度粗に保つようにした。
これにより、発電の際にガスの拡散性を好適に保つことができる。
In addition, when the particle size of the carbon 28 is less than 0.1 μm, the particle size of the carbon 28 becomes too small, the density of the negative electrode side underlayer 22 becomes too dense, and gas diffusibility is generated during power generation. descend.
Therefore, by setting the particle size of the carbon 28 to 0.1 μm or more, clogging of the negative electrode side diffusion layer 21 is suppressed, and the density of the negative electrode side base layer 22 is kept to a certain extent.
Thereby, the diffusibility of gas can be suitably maintained during power generation.

一方、カーボン28の粒径が10μmを超えると、カーボン28の粒径が大きくなりすぎて、負極側下地層22の表面22aを平坦することが難しい。
そこで、カーボン28の粒径を10μm以下にすることで、負極側下地層22の表面22aを平坦にするようにした。
On the other hand, when the particle size of the carbon 28 exceeds 10 μm, the particle size of the carbon 28 becomes too large, and it is difficult to flatten the surface 22a of the negative electrode side underlayer 22.
Therefore, the surface 22a of the negative electrode side underlayer 22 is made flat by setting the particle size of the carbon 28 to 10 μm or less.

さらに、負極側下地層22の固形分率を2〜20wt%とした理由は以下の通りである。
すなわち、負極側下地層22の固形分率が2wt%未満になると、カーボン28およびバインダー(図示せず)が少量になり、粘度が下がりすぎる。
よって、負極側下地層22が負極側拡散層21に染み込み易くなり、多孔質の負極側拡散層21に目詰まりが生じてしまい、発電の際にガスの拡散性が低下する。
そこで、負極側下地層22の固形分率を2wt%以上にすることで、負極側拡散層21の目詰まりを抑え、発電の際にガスの拡散性を好適に保つようにした。
Further, the reason for setting the solid content ratio of the negative electrode side underlayer 22 to 2 to 20 wt% is as follows.
That is, when the solid content ratio of the negative electrode side underlayer 22 is less than 2 wt%, the amount of carbon 28 and binder (not shown) becomes small and the viscosity is too low.
Therefore, the negative electrode side base layer 22 easily penetrates into the negative electrode side diffusion layer 21, and the porous negative electrode side diffusion layer 21 is clogged, and gas diffusibility is reduced during power generation.
Therefore, by setting the solid content ratio of the negative electrode side underlayer 22 to 2 wt% or more, clogging of the negative electrode side diffusion layer 21 is suppressed, and gas diffusibility is suitably maintained during power generation.

一方、負極側下地層22の固形分率が20wt%を超えると、カーボン28およびバインダー(図示せず)が多量になり、粘度が上がりすぎる。
このため、負極側下地層22の表面張力が大きくなりすぎて、負極側下地層22の表面22aを平坦することが難しい。
そこで、負極側下地層22の固形分率を20wt%以下にすることで、負極側下地層22の表面22aを平坦にするようにした。
On the other hand, if the solid content of the negative electrode side underlayer 22 exceeds 20 wt%, the amount of carbon 28 and binder (not shown) will increase and the viscosity will increase too much.
For this reason, the surface tension of the negative electrode side foundation layer 22 becomes too large, and it is difficult to flatten the surface 22a of the negative electrode side foundation layer 22.
Therefore, the surface 22a of the negative electrode side underlayer 22 is made flat by setting the solid content of the negative electrode side underlayer 22 to 20 wt% or less.

加えて、負極側下地層22の粘度を0.05〜1Pa・sとした理由は以下の通りである。
すなわち、負極側下地層22の粘度が0.05Pa・s未満になると、負極側下地層22の粘度が下がりすぎてしまう。
よって、負極側下地層22が負極側拡散層21に染み込み易くなり、多孔質の負極側拡散層21に目詰まりが生じてしまい、発電の際にガスの拡散性が低下する。
そこで、負極側下地層22の粘度を0.05Pa・s以上にすることで、負極側拡散層21の目詰まりを抑え、発電の際にガスの拡散性を好適に保つようにした。
In addition, the reason why the viscosity of the negative electrode base layer 22 is 0.05 to 1 Pa · s is as follows.
That is, when the viscosity of the negative electrode side foundation layer 22 is less than 0.05 Pa · s, the viscosity of the negative electrode side foundation layer 22 is too low.
Therefore, the negative electrode side base layer 22 easily penetrates into the negative electrode side diffusion layer 21, and the porous negative electrode side diffusion layer 21 is clogged, and gas diffusibility is reduced during power generation.
Therefore, by setting the viscosity of the negative electrode side underlayer 22 to 0.05 Pa · s or more, clogging of the negative electrode side diffusion layer 21 is suppressed, and gas diffusibility is suitably maintained during power generation.

一方、負極側下地層22の粘度が1Pa・sを超えると、負極側下地層22の粘度が上がりすぎる。このため、負極側下地層22の表面張力が大きくなりすぎて、負極側下地層22の表面22aを平坦することが難しい。
そこで、負極側下地層22の粘度が1Pa・s以下にすることで、負極側下地層22の表面22aを平坦にするようにした。
On the other hand, when the viscosity of the negative electrode side foundation layer 22 exceeds 1 Pa · s, the viscosity of the negative electrode side foundation layer 22 is excessively increased. For this reason, the surface tension of the negative electrode side foundation layer 22 becomes too large, and it is difficult to flatten the surface 22a of the negative electrode side foundation layer 22.
Therefore, the surface 22a of the negative electrode side underlayer 22 is made flat by setting the viscosity of the negative electrode side underlayer 22 to 1 Pa · s or less.

(b)において、負極側下地層22の表面22aをブレード44の下辺44a((a)参照)で平坦にならした後、負極側下地層22が、負極側拡散層21の凹凸状の表面21aに倣って僅かに凹凸状になる。
しかし、負極側下地層22の表面22aをブレード44で平坦にならしてあるので、負極側下地層22が、負極側拡散層21の凹凸状の表面21aに倣っても、負極側下地層22の表面22aを略平坦の状態に保つ。
In (b), after the surface 22 a of the negative electrode side underlayer 22 is flattened by the lower side 44 a (see (a)) of the blade 44, the negative electrode side underlayer 22 becomes the uneven surface 21 a of the negative electrode side diffusion layer 21. The pattern becomes slightly concave and convex.
However, since the surface 22 a of the negative electrode side underlayer 22 is flattened by the blade 44, even if the negative electrode side underlayer 22 follows the uneven surface 21 a of the negative electrode side diffusion layer 21, the negative electrode side underlayer 22 The surface 22a is kept in a substantially flat state.

図5(a),(b)は本発明に係る燃料電池用電極−膜接合体の負極側下地層に負電極層を塗布する例を説明する図である。
(a)において、負極側下地層22が未乾燥のうちに、負極側下地層22の上方に、スプレー塗布装置47の噴射ノズル48を配置する。
噴射ノズル48から、スラリー状の負電極層23を噴射させながら、噴射ノズル48を矢印cの如く負極側下地層22の表面22aに沿って移動する。
FIGS. 5A and 5B are diagrams for explaining an example in which a negative electrode layer is applied to the negative electrode base layer of the fuel cell electrode-membrane assembly according to the present invention.
In (a), the spray nozzle 48 of the spray coating device 47 is disposed above the negative electrode side underlayer 22 while the negative electrode side underlayer 22 is not dried.
While spraying the slurry-like negative electrode layer 23 from the spray nozzle 48, the spray nozzle 48 is moved along the surface 22a of the negative electrode side underlayer 22 as indicated by an arrow c.

(b)において、噴射ノズル48((a)参照)から負電極層23を噴射させて、未乾燥状態の負極側下地層22の表面22aに負電極層23をスプレー塗布する。
負極側下地層22の表面22aが略平坦なので、負電極層23の表面23aを、負極側下地層22の表面22aと同様に略平坦の状態に保つ。
In (b), the negative electrode layer 23 is sprayed from the spray nozzle 48 (see (a)), and the negative electrode layer 23 is spray-coated on the surface 22a of the undried negative electrode base layer 22.
Since the surface 22a of the negative electrode side foundation layer 22 is substantially flat, the surface 23a of the negative electrode layer 23 is kept substantially flat like the surface 22a of the negative electrode side foundation layer 22.

図6(a),(b)は本発明に係る燃料電池用電極−膜接合体の負電極層に電解質膜を塗布する例を説明する図である。
(a)において、負電極層23が未乾燥のうちに、負電極層23に、ワニス状の電解膜質24をブレード塗布装置51でブレード塗工する。
すなわち、ブレード塗布装置51の吐出ノズル52から、未乾燥状態の負電極層23に電解膜質24を吐出させながら、吐出ノズル52を矢印dの如く移動する。
FIGS. 6A and 6B are diagrams illustrating an example in which an electrolyte membrane is applied to the negative electrode layer of the fuel cell electrode-membrane assembly according to the present invention.
In (a), while the negative electrode layer 23 is undried, the varnish-like electrolytic film material 24 is blade-coated on the negative electrode layer 23 with a blade coating device 51.
That is, the discharge nozzle 52 is moved as shown by the arrow d while discharging the electrolyte membrane material 24 from the discharge nozzle 52 of the blade coating device 51 to the negative electrode layer 23 in an undried state.

吐出ノズル52の後方からブレード53を矢印eの如く移動することで、ブレード53の下辺53aで負電極層24の表面24aをならす。
電解質膜24をブレード塗工で塗布することで、電解質膜24の塗布量を好適に調整することが可能になり、加えて電解質膜24の表面24aを平坦にできるという利点がある。
By moving the blade 53 from the rear of the discharge nozzle 52 as indicated by an arrow e, the surface 24a of the negative electrode layer 24 is smoothed by the lower side 53a of the blade 53.
By applying the electrolyte membrane 24 by blade coating, it is possible to suitably adjust the coating amount of the electrolyte membrane 24. In addition, there is an advantage that the surface 24a of the electrolyte membrane 24 can be flattened.

(b)において、負電極層23の表面23aが略平坦の状態に形成されているので、電解質膜24の表面24aを、ブレード53の下辺53aでならした状態、すなわち平坦の状態を保つ。
ここで、負電極層23の表面23aに電解質膜24の下側の表面24bが接触する。電解質膜24の下側の表面24bは、負電極層23の表面23aと同様に、略平坦の状態を保つ。
このように、電解質膜24の下側の表面24bを略平坦に形成するとともに、電解質膜24の表面24aを平坦に形成することで、電解質膜24の膜厚tを略均一にする。
In (b), since the surface 23a of the negative electrode layer 23 is formed in a substantially flat state, the state in which the surface 24a of the electrolyte membrane 24 is leveled with the lower side 53a of the blade 53, that is, a flat state is maintained.
Here, the lower surface 24 b of the electrolyte membrane 24 is in contact with the surface 23 a of the negative electrode layer 23. Similar to the surface 23a of the negative electrode layer 23, the lower surface 24b of the electrolyte membrane 24 is maintained in a substantially flat state.
Thus, the lower surface 24b of the electrolyte membrane 24 is formed substantially flat, and the surface 24a of the electrolyte membrane 24 is formed flat, so that the film thickness t of the electrolyte membrane 24 is made substantially uniform.

図7(a),(b)は本発明に係る燃料電池用電極−膜接合体の電解質膜に正電極層を塗布する例を説明する図である。
(a)において、電解質膜24が未乾燥のうちに、電解質膜24の上方に、スプレー塗布装置56の噴射ノズル57を配置する。
噴射ノズル57から、スラリー状の正電極層25を噴射させながら、噴射ノズル57を矢印fの如く電解質膜24の表面24aに沿って移動する。
FIGS. 7A and 7B are diagrams for explaining an example in which a positive electrode layer is applied to the electrolyte membrane of the fuel cell electrode-membrane assembly according to the present invention.
In (a), the spray nozzle 57 of the spray coating device 56 is arranged above the electrolyte membrane 24 while the electrolyte membrane 24 is undried.
While spraying the slurry-like positive electrode layer 25 from the spray nozzle 57, the spray nozzle 57 is moved along the surface 24a of the electrolyte membrane 24 as indicated by an arrow f.

(b)において、噴射ノズル57((a)参照)から正電極層25を噴射させて、未乾燥状態の電解質膜24に正電極層25をスプレー塗布する。
電解質膜24の表面24aが平坦なので、正電極層25の表面25aを、電解質膜24の表面24aと同様に平坦の状態に保つ。
In (b), the positive electrode layer 25 is sprayed from the spray nozzle 57 (see (a)), and the positive electrode layer 25 is spray-coated on the electrolyte membrane 24 in an undried state.
Since the surface 24a of the electrolyte membrane 24 is flat, the surface 25a of the positive electrode layer 25 is kept flat like the surface 24a of the electrolyte membrane 24.

図8(a),(b)は本発明に係る燃料電池用電極−膜接合体の正電極層に、正極側拡散層に正極側下地層を塗布した二層体を重ね合わせる例を説明する図である。
(a)において、正電極層25が未乾燥のうちに、正極側拡散層27に正極側下地層26を塗布した二層体61を矢印gの如くを重ね合わせる。なお、正極側下地層26も未乾燥状態を保つ。
このように、正電極層25に二層体61を重ね合わせることで、未乾燥状態の電極−膜接合体12を得る。
FIGS. 8A and 8B illustrate an example in which a positive electrode layer of a fuel cell electrode-membrane assembly according to the present invention is overlaid with a two-layer body in which a positive electrode base layer is applied to a positive electrode diffusion layer. FIG.
In (a), while the positive electrode layer 25 is undried, the two-layer body 61 in which the positive electrode side base layer 26 is applied to the positive electrode side diffusion layer 27 is overlapped as shown by the arrow g. In addition, the positive electrode side base layer 26 also maintains an undried state.
Thus, the electrode-membrane assembly 12 in an undried state is obtained by superimposing the bilayer body 61 on the positive electrode layer 25.

ここで、正極側拡散層27に正極側下地層26を塗布する方法は任意である。
すなわち、正極側拡散層27に正極側下地層26を塗布する方法は、図3(b)および図4(a)で示す負極側拡散層21に負極側下地層22を塗布する方法と同一でなくともよい。
Here, the method of applying the positive electrode base layer 26 to the positive electrode diffusion layer 27 is arbitrary.
That is, the method of applying the positive electrode side underlayer 26 to the positive electrode side diffusion layer 27 is the same as the method of applying the negative electrode side underlayer 22 to the negative electrode side diffusion layer 21 shown in FIGS. 3 (b) and 4 (a). Not necessary.

しかしながら、正極側拡散層27に正極側下地層26を塗布する方法を、図3(b)および図4(a)で示す方法と同一にすることも可能である。
すなわち、正極側下地層26に含むカーボン31の粒径を0.1〜10μmと小径にし、正極側下地層26の固形分率を2〜20wt%として粘度を0.05〜1Pa・sと下げ、この正極側下地層26を塗布する際に、正極側下地層26の表面26aをブレードでならすことも可能である。
これにより、正極側下地層26の表面26aを、正極側拡散層27の凹凸状の表面27aの影響を受けないで平坦にすることができる。
However, the method of applying the positive electrode base layer 26 to the positive electrode diffusion layer 27 can be the same as the method shown in FIGS. 3B and 4A.
That is, the particle diameter of the carbon 31 contained in the positive electrode side underlayer 26 is reduced to 0.1 to 10 μm, the solid content rate of the positive electrode side underlayer 26 is set to 2 to 20 wt%, and the viscosity is reduced to 0.05 to 1 Pa · s. When applying the positive electrode base layer 26, the surface 26a of the positive electrode base layer 26 may be leveled with a blade.
Thereby, the surface 26 a of the positive electrode side underlayer 26 can be flattened without being affected by the uneven surface 27 a of the positive electrode side diffusion layer 27.

(b)において、未乾燥状態の電極−膜接合体12を得た後、未乾燥状態の電極−膜接合体12に荷重Fをかけた状態でヒータ63で矢印hの如く加熱する。
未乾燥状態の電極−膜接合体12をヒータ63で加熱することで、未乾燥状態の電極−膜接合体12から溶媒を矢印iの如く蒸発させて、未乾燥状態の電極−膜接合体12を乾燥する。
In (b), after obtaining the undried electrode-membrane assembly 12, the electrode 63 is heated with the heater 63 as indicated by an arrow h while a load F is applied to the undried electrode-membrane assembly 12.
The electrode-membrane assembly 12 in an undried state is heated by the heater 63 to evaporate the solvent from the electrode-membrane assembly 12 in the undried state as indicated by an arrow i. To dry.

図9は図8(b)の9部拡大図を示す図である。
電極−膜接合体12を乾燥して電極−膜接合体12から溶媒(図示せず)を除去した後において、電極−膜接合体12を乾燥する前の状態と同様に、電解質膜24の下側の表面24bを略平坦に保つとともに、電解質膜24の表面24aを平坦に保つ。
このため、電解質膜24の膜厚を、乾燥前の膜厚tと同様あるいは、乾燥前の膜厚tより僅かに薄くなった状態で、略均一に保つことが可能である。
これにより、燃料電池用電極−膜接合体12の発電性能を確保することができる。
FIG. 9 is an enlarged view of 9 parts in FIG.
After the electrode-membrane assembly 12 is dried and the solvent (not shown) is removed from the electrode-membrane assembly 12, the state below the electrolyte membrane 24 is the same as before the electrode-membrane assembly 12 is dried. The side surface 24b is kept substantially flat, and the surface 24a of the electrolyte membrane 24 is kept flat.
For this reason, the thickness of the electrolyte membrane 24 can be kept substantially uniform in the same manner as the thickness t before drying or slightly thinner than the thickness t before drying.
Thereby, the power generation performance of the electrode-membrane assembly 12 for a fuel cell can be ensured.

なお、前記実施の形態では、燃料電池用電極−膜接合体12を、負極側拡散層21、負極側下地層22、負電極層23、電解質膜24、正電極層25、正極側下地層26、正極側拡散層27の順に積層したものを例に説明したが、これに限らないで、燃料電池用電極−膜接合体12を、正極側拡散層27、正極側下地層26、正電極層25、電解質膜24、負電極層23、負極側下地層22、負極側拡散層21の順に積層することも可能である。   In the above-described embodiment, the fuel cell electrode-membrane assembly 12 is made up of the negative electrode side diffusion layer 21, the negative electrode side base layer 22, the negative electrode layer 23, the electrolyte membrane 24, the positive electrode layer 25, and the positive electrode side base layer 26. However, the fuel cell electrode-membrane assembly 12 is not limited to this, and the positive electrode side diffusion layer 27, the positive electrode side underlayer 26, and the positive electrode layer are not limited thereto. 25, the electrolyte membrane 24, the negative electrode layer 23, the negative electrode side base layer 22, and the negative electrode side diffusion layer 21 can be laminated in this order.

また、前記実施の形態では、ブレード塗布装置42を移動して負極側下地層22を塗布し、ブレード塗布装置51を移動して電解質膜24を塗布する例について説明したが、これに限らないで、ブレード塗布装置42,51を固定し、被塗布層側を移動して、負極側下地層22や電解質膜24を塗布することも可能である。   In the above embodiment, the example in which the blade coating device 42 is moved to apply the negative electrode base layer 22 and the blade coating device 51 is moved to apply the electrolyte membrane 24 has been described. However, the present invention is not limited thereto. It is also possible to apply the negative electrode base layer 22 and the electrolyte membrane 24 by fixing the blade coating devices 42 and 51 and moving the coated layer side.

さらに、前記実施の形態では、スプレー塗布装置47,56などの噴射ノズル48,57などを移動して、負電極層23や正電極層25などを塗布する例について説明したが、これに限らないで、スプレー塗布装置47,56などを固定し、被塗布層側を移動して、負電極層23や正電極層25などを塗布することも可能である。   Furthermore, although the said embodiment demonstrated the example which moves spray nozzles 48 and 57, such as spray coating apparatus 47 and 56, and apply | coats the negative electrode layer 23, the positive electrode layer 25, etc., it is not restricted to this. Thus, it is also possible to apply the negative electrode layer 23, the positive electrode layer 25, etc. by fixing the spray coating devices 47, 56 and moving the coated layer side.

また、前記実施の形態では、電解質膜24をブレード塗布装置51を用いて塗布した例について説明したが、これに限らないで、スプレー塗布装置を用いて電解質膜24を塗布することも可能である。   In the above-described embodiment, the example in which the electrolyte membrane 24 is applied using the blade coating device 51 has been described. However, the present invention is not limited thereto, and the electrolyte membrane 24 can be applied using a spray coating device. .

本発明は、正・負極側の拡散層、正・負極側の下地層、正・負極側の電極層および電解質膜を積層した燃料電池用電極−膜接合体の製造方法に好適である。   The present invention is suitable for a method of manufacturing a fuel cell electrode-membrane assembly in which a positive / negative electrode side diffusion layer, a positive / negative electrode side underlayer, a positive / negative electrode side electrode layer, and an electrolyte membrane are laminated.

本発明に係る燃料電池用電極−膜接合体を備えた燃料電池ユニットを示す分解斜視図である。It is a disassembled perspective view which shows the fuel cell unit provided with the electrode-membrane assembly for fuel cells which concerns on this invention. 本発明に係る燃料電池用電極−膜接合体を示す説明図である。It is explanatory drawing which shows the electrode-membrane assembly for fuel cells which concerns on this invention. 本発明に係る燃料電池用電極−膜接合体の負極側拡散層に負極側下地層を塗布する例を説明する図である。It is a figure explaining the example which apply | coats a negative electrode side base layer to the negative electrode side diffusion layer of the electrode-membrane assembly for fuel cells which concerns on this invention. 本発明に係る燃料電池用電極−膜接合体の負極側拡散層に負極側下地層を塗布した状態を説明する図である。It is a figure explaining the state which apply | coated the negative electrode side base layer to the negative electrode side diffusion layer of the electrode-membrane assembly for fuel cells which concerns on this invention. 本発明に係る燃料電池用電極−膜接合体の負極側下地層に負電極層を塗布する例を説明する図である。It is a figure explaining the example which apply | coats a negative electrode layer to the negative electrode side base layer of the electrode-membrane assembly for fuel cells which concerns on this invention. 本発明に係る燃料電池用電極−膜接合体の負電極層に電解質膜を塗布する例を説明する図である。It is a figure explaining the example which apply | coats an electrolyte membrane to the negative electrode layer of the electrode-membrane assembly for fuel cells which concerns on this invention. 本発明に係る燃料電池用電極−膜接合体の電解質膜に正電極層を塗布する例を説明する図である。It is a figure explaining the example which apply | coats a positive electrode layer to the electrolyte membrane of the electrode-membrane assembly for fuel cells which concerns on this invention. 本発明に係る燃料電池用電極−膜接合体の正電極層に、正極側拡散層に正極側下地層を塗布した二層体を重ね合わせる例を説明する図である。It is a figure explaining the example which overlaps the two-layer body which apply | coated the positive electrode side base layer to the positive electrode side diffusion layer on the positive electrode layer of the electrode-membrane assembly for fuel cells which concerns on this invention. 図8(b)の9部拡大図を示す図である。It is a figure which shows the 9 part enlarged view of FIG.8 (b). 従来の燃料電池用電極−膜接合体を示す断面図である。It is sectional drawing which shows the conventional electrode-membrane assembly for fuel cells. 図10の11部拡大図である。FIG. 11 is an enlarged view of part 11 in FIG. 10.

符号の説明Explanation of symbols

10…燃料電池ユニット、12…燃料電池用電極−膜接合体、21…負極側拡散層、22…負極側下地層、23…負電極層、24…電解質膜、25…正電極層、26…正極側下地層、27…正極側拡散層、28,31…カーボン(カーボン粒)、29,32…溶媒。   DESCRIPTION OF SYMBOLS 10 ... Fuel cell unit, 12 ... Electrode-membrane assembly for fuel cells, 21 ... Negative electrode side diffusion layer, 22 ... Negative electrode side base layer, 23 ... Negative electrode layer, 24 ... Electrolyte membrane, 25 ... Positive electrode layer, 26 ... Positive electrode side underlayer, 27... Positive electrode side diffusion layer, 28, 31... Carbon (carbon particles), 29, 32.

Claims (1)

正・負極の一方側の拡散層に一方側の下地層を塗布し、
この一方側の下地層が未乾燥のうちに、正・負極の一方の電極層を前記一方側の下地層に塗布し、
この一方の電極層が未乾燥のうちに電解質膜を前記一方の電極層に塗布し、
この電解質膜が未乾燥のうちに、正・負極の他方の電極層を前記電解質層に塗布し、
この他方の電極層が未乾燥のうちに、正・負極の他方側の拡散層に他方側の下地層を塗布して得た二層体のうち、前記他方側の下地層前記他方の電極層に重ね合わせて
前記正・負極の一方側の拡散層、前記一方側の下地層、前記正・負極の一方の電極層、前記電解質膜、前記正・負極の他方の電極層、前記他方側の下地層および前記正・負極の他方側の拡散層がこの順に積層された未乾燥状態の電極−膜接合体を得、
この未乾燥状態の電極−膜接合体を乾燥する燃料電池用電極−膜接合体の製造方法であって、
記一方側の下地層を、カーボン粒、バインダーおよび溶媒で構成し、
前記カーボン粒と前記バインダーと前記溶媒との質量和を分母とし、前記カーボン粒と前記バインダーとの質量和を分子として得る値を、前記一方側の下地層の固形分率と呼び、
このカーボン粒の粒径を0.1〜10μmとし、
この一方側の下地層の固形分率を2〜20wt%とし、
この一方側の下地層の粘度を0.05〜1Pa・sとし、
この一方側の下地層の表面をブレードでならすことにより前記正・負極の一方側の拡散層に塗布することを特徴とする燃料電池用電極−膜接合体の製造方法。
Apply the base layer on one side to the diffusion layer on one side of the positive and negative electrodes,
While the base layer on one side is undried, one of the positive and negative electrode layers is applied to the base layer on the one side ,
While this one electrode layer is undried, an electrolyte membrane is applied to the one electrode layer ,
While this electrolyte membrane is undried, the other electrode layer of the positive and negative electrodes is applied to the electrolyte layer ,
Among the two-layered body obtained by applying the other underlayer to the diffusion layer on the other side of the positive and negative electrodes while the other electrode layer is undried, the other underlayer is used as the other electrode. superimposed on the layer,
The diffusion layer on one side of the positive / negative electrode, the base layer on the one side, the one electrode layer on the positive / negative electrode, the electrolyte membrane, the other electrode layer on the positive / negative electrode, the base layer on the other side, and the Obtaining an undried electrode-membrane assembly in which the diffusion layers on the other side of the positive and negative electrodes are laminated in this order ,
A method for producing an electrode-membrane assembly for a fuel cell for drying the electrode-membrane assembly in an undried state,
The underlayer before Symbol one side, composed of carbon particle, a binder and a solvent,
The carbon particle and the binder mass sum of the solvent as the denominator, the value to obtain the mass sum of the carbon particle and the binder as a molecule, referred to as the solid content of the one side of the base layer,
The carbon particles have a particle size of 0.1 to 10 μm,
The solid content rate of this one side underlayer is 2 to 20 wt%,
The viscosity of the base layer on one side is 0.05 to 1 Pa · s,
A method for producing an electrode-membrane assembly for a fuel cell, comprising applying the surface of the underlayer on one side to the diffusion layer on one side of the positive and negative electrodes by leveling with a blade.
JP2003423728A 2003-12-19 2003-12-19 Method for producing fuel cell electrode-membrane assembly Expired - Fee Related JP4133791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423728A JP4133791B2 (en) 2003-12-19 2003-12-19 Method for producing fuel cell electrode-membrane assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423728A JP4133791B2 (en) 2003-12-19 2003-12-19 Method for producing fuel cell electrode-membrane assembly

Publications (2)

Publication Number Publication Date
JP2005183232A JP2005183232A (en) 2005-07-07
JP4133791B2 true JP4133791B2 (en) 2008-08-13

Family

ID=34784131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423728A Expired - Fee Related JP4133791B2 (en) 2003-12-19 2003-12-19 Method for producing fuel cell electrode-membrane assembly

Country Status (1)

Country Link
JP (1) JP4133791B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011125088A1 (en) 2010-04-01 2011-10-13 トヨタ自動車株式会社 Bonding material for fuel cell, and fuel cell
US20150270567A1 (en) * 2014-03-24 2015-09-24 Asahi Glass Company, Limited Process for producing membrane/electrode assembly for polymer electrolyte fuel cell and paste for forming interlayer

Also Published As

Publication number Publication date
JP2005183232A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
JP5397228B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP3866077B2 (en) Method for preparing a membrane electrode assembly
JP5208773B2 (en) Method for producing membrane electrode assembly for polymer electrolyte fuel cell and method for producing polymer electrolyte fuel cell
CN100385721C (en) Method of making membrane electrode assemblies
WO2008133255A1 (en) Process for producing membrane electrode assembly, membrane electrode assembly, apparatus for producing membrane electrode assembly, and fuel cell
JP2007317658A (en) Control parameter for optimizing performance of membrane electrode assembly
JP5002874B2 (en) Method for forming electrode catalyst layer of fuel cell
JP2001068119A (en) Polymer electrolyte fuel cell and method of manufacturing its electrode
JP4833860B2 (en) Membrane electrode assembly prepared by spraying catalyst directly onto membrane
JP2008135274A (en) Method of manufacturing fuel cell
JP4919005B2 (en) Method for producing electrode for fuel cell
JP2009289692A (en) Method of manufacturing electrode layer for fuel cell
JP2006344517A (en) Manufacturing method of fuel cell
JP2005317492A (en) Fuel cell, electrode-electrolyte film assembly, electrode substrate with catalyst layer, those process of manufacturing, and transcription sheet
JP4133791B2 (en) Method for producing fuel cell electrode-membrane assembly
JP2010102937A (en) Formation material of electrode layer for fuel cell, membrane electrode assembly for fuel cell, fuel cell, method for manufacturing formation material of electrode layer for fuel cell, and method for manufacturing electrode layer for fuel cell
JP3827653B2 (en) Method for producing electrode for fuel cell
US20080102349A1 (en) Membrane-electrode assembly having reduced interfacial resistance between catalyst electrode and electrolyte membrane
JP7470816B2 (en) Methods for producing catalyst coated membranes
JP2004158446A (en) Manufacturing method of fuel cell and fuel cell device
JP2009032438A (en) Manufacturing method for membrane-electrode assembly of fuel battery and membrane-electrode assembly
JP2009043692A (en) Manufacturing method and membrane electrode assembly for fuel cell, and membrane electrode assembly
JP4133789B2 (en) Method for producing fuel cell electrode-membrane assembly
JP3828507B2 (en) Fuel cell electrode
JP2009080974A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees