JP4133176B2 - Heat recovery method in crude oil atmospheric distillation equipment - Google Patents

Heat recovery method in crude oil atmospheric distillation equipment Download PDF

Info

Publication number
JP4133176B2
JP4133176B2 JP2002286399A JP2002286399A JP4133176B2 JP 4133176 B2 JP4133176 B2 JP 4133176B2 JP 2002286399 A JP2002286399 A JP 2002286399A JP 2002286399 A JP2002286399 A JP 2002286399A JP 4133176 B2 JP4133176 B2 JP 4133176B2
Authority
JP
Japan
Prior art keywords
crude oil
condensed water
reference value
desalter
upstream portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002286399A
Other languages
Japanese (ja)
Other versions
JP2004123807A (en
Inventor
敦 桐沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2002286399A priority Critical patent/JP4133176B2/en
Publication of JP2004123807A publication Critical patent/JP2004123807A/en
Application granted granted Critical
Publication of JP4133176B2 publication Critical patent/JP4133176B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、原油常圧蒸留装置における熱回収方法に関し、特に、脱塩器の上流部分における原油の加熱温度を調整し、脱塩器下流での熱回収を向上させることによって、原油常圧蒸留装置からの排熱を抑制し、原油常圧蒸留装置におけるエネルギー効率の向上を図る熱回収方法に関する。
【0002】
【従来の技術】
原油常圧蒸留装置においては、原油を加熱し、常圧蒸留塔で、沸点差によりナフサから重油までに分留している。このような原油常圧蒸留装置においては、原油に含まれる塩分を除去するために、脱塩器を設けているのが一般的である。そして、脱塩器では、原油常圧蒸留装置に供給され、所定温度に加熱された原油に洗浄水を注入し、この洗浄水に原油中の塩分を溶解させ、高電圧下で微粒水滴状態の洗浄水を会合し沈降分離した後、塩分を含んだ洗浄水を、脱塩器の外に排出するようにしている。なお、原油の加熱温度は、脱塩器における脱塩効率に関係し、加熱温度が高いほど脱塩効率が高くなる。従って、通常は、高い脱塩効率を得るために、加熱温度を高めに設定している。
【0003】
このような原油の脱塩装置及び脱塩方法としては、例えば、塔頂レシーバの凝縮水を脱塩用洗浄水として使用することにより熱効率よく原油の脱塩をはかるもの(特許文献1参照)、原油に洗浄水を添加し、攪拌して十分に分散させた後に脱塩器中に導入し、高圧電場により分離塩水として沈降分離するもの(特許文献2参照)及び原油中に存在する水よりも低い塩度の洗浄水で洗浄し、得られた混合物を原油の層と塩水の層とに分離するもの(特許文献3参照)が知られている。
【0004】
【特許文献1】
特開昭52−25806号(明細書の発明の詳細な説明の欄の記載参照)
【特許文献2】
特開昭60−156512号(請求の範囲の記載参照)
【特許文献3】
特開昭61−151298号(発明の要約の欄の記載参照)
【0005】
ところで、上記したような脱塩装置を含む原油常圧蒸留装置においては、蒸留塔から排出された高温の重油から熱回収を行っているのが一般的である。そして、原油は、脱塩器の上流部分で、この回収された熱によって加熱された後に脱塩器に送り込まれ、その後、脱塩器の下流部分でさらに回収された熱によって加熱されて、加熱炉に送り込まれる。
しかし、脱塩器の上流部分で回収された熱の一部は、脱塩器の排水とともに原油常圧蒸留装置から排出され、その排熱がエネルギーロスになっているという問題がある。脱塩器の運転温度を高くすると原油への溶解水分量が多くなり、この水分も加熱炉で加熱され、蒸留塔の塔頂部で冷却されることになり、無駄なエネルギーが使われることになる。このエネルギーロスの問題は、脱塩器の上流部分における原油の温度が高くなるほど大きくなる。
【0006】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたもので、原油常圧蒸留装置からの排熱を可能な限り抑制し、エネルギー効率の向上を図ることができる原油常圧蒸留装置における熱回収方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明の発明者は、鋭意研究を重ねた結果、脱塩器の上流部分における原油の温度を下げることができれば、蒸留塔から取り出した排熱の多くを脱塩後の原油の加熱に利用することができ、加熱炉で使用する燃料を削減できることに着目した。
しかし、脱塩器の上流部分における原油の温度を下げると、原油の粘度及び比重が上昇して脱塩性能が低下する。
そこで、本発明では、排熱の回収を有効に行うため、脱塩器の上流部分の温度の上方限界を見つけるとともに、脱塩器上流部分の温度低下によって脱塩及び脱水性能が低下したときの下方限界を見つけ、脱塩性能を監視するようにしている。
【0008】
請求項1に記載の方法では、原油を加熱する工程と、加熱した原油に洗浄水を加えて脱塩を行う工程と、脱塩処理した原油を蒸留塔で各種成分に分留する工程とを有し、前記蒸留塔の排熱を、蒸留塔に導入する原油の加熱と脱塩前の原油の加熱に利用する原油常圧蒸留装置における熱回収方法において、前記蒸留塔の塔頂部から排出されたガスを冷却し、ガス中の水分を凝縮水として分離して排出する工程と、前記凝縮水の排出量を計測する工程と、前記脱塩器の上流部分における原油の温度調整を行う際の基準となる前記凝縮水の排出量の基準値を予め設定する工程と、前記凝縮水の排出量の検出結果が前記基準値より多いときに、前記脱塩器の上流部分における原油の加熱温度を下げるように指令を出力する工程と、前記凝縮水中のpH値を計測する工程と、前記脱塩器の上流部分における原油の温度調整を行う際の基準となる前記凝縮水中のpH値の基準値を予め設定する工程と、前記凝縮水の排出量の検出結果が前記基準値より少なく、前記凝縮水中のpH値の検出結果が前記基準値より低いときに、前記脱塩器の上流部分における原油の加熱温度を上げるように指令を出力する工程と、を有する原油常圧蒸留装置における熱回収方法としてある。
請求項2に記載の方法は、さらに、前記凝縮水の排出量の検出結果が前記基準値より少なく、前記凝縮水中のpH値の検出結果が前記基準値より低いときに、前記蒸留塔の塔頂部に中和剤を供給する工程を有する原油常圧蒸留装置における熱回収方法としてある。
【0009】
請求項3に記載の方法は、原油を加熱する工程と、加熱した原油に洗浄水を加えて脱塩を行う工程と、脱塩処理した原油を蒸留塔で各種成分に分留する工程とを有し、前記蒸留塔の排熱を、蒸留塔に導入する原油の加熱と脱塩前の原油の加熱に利用する原油常圧蒸留装置における熱回収方法において、前記蒸留塔の塔頂部から排出されたガスを冷却し、ガス中の水分を凝縮水として分離して排出する工程と、前記凝縮水の排出量を計測する工程と、前記脱塩器の上流部分における原油の温度調整を行う際の基準となる前記凝縮水の排出量の基準値を予め設定する工程と、前記凝縮水の排出量の検出結果が前記基準値より多いときに、前記脱塩器の上流部分における原油の加熱温度を下げるように指令を出力する工程と、前記凝縮水中のpH値を計測する工程と、前記凝縮水中のpH値の許容範囲を予め設定する工程と、前記凝縮水の排出量の検出結果が前記基準値より少なく、前記凝縮水中のpH値の検出結果が前記許容範囲より低いときに、前記蒸留塔の塔頂部に中和剤を供給する工程と、前記脱塩器の上流部分における原油の温度調整を行う際の基準となる前記中和剤の供給量の基準値を予め設定する工程と、前記中和剤の供給量が前記基準値より多いときに、前記脱塩器の上流部分における原油の加熱温度を上げるように指令を出力する工程と、を有する原油常圧蒸留装置における熱回収方法としてある。
【0010】
さらに、請求項4に記載する方法は、前記脱塩器の上流部分に送る排熱の一部を、脱塩後の原油の加熱に利用する原油常圧蒸留装置における熱回収方法としてある。
このように、脱塩器の上流部分における原油の加熱温度を下げる場合、余剰となる熱の一部を脱塩器の下流部分、すなわち、脱塩後の原油の加熱に利用することで、エネルギーの有効利用を図ることができる。
【0011】
【発明の実施の形態】
以下、本発明の好適な実施形態を、図面にしたがって詳細に説明する。
図1は、本発明の一実施形態にかかり、原油常圧蒸留装置の構成を説明する概略図である。
原油常圧蒸留装置1は、ポンプP1によって供給された原油の脱塩を行う脱塩器11と、この脱塩器11によって脱塩された原油の予備蒸留を行う予備蒸留塔12と、予備蒸留塔12から取り出された原油を所定温度に加熱する加熱炉13と、この加熱炉13で加熱された原油の分留を行う常圧蒸留塔14とを有している。
【0012】
また、原油常圧蒸留装置1は、常圧蒸留塔14で各種留分に分留した後に、重油の熱回収を行う複数の熱交換器16,17,18を有している。常圧蒸留塔14の底部からポンプP2によって取り出された高温の重油は、熱交換器16に送られ、予備蒸留塔12から取り出された原油の加熱(熱交換)に利用される。さらに、重油は、熱交換器16から熱交換器17に送られ、予備蒸留塔12の上流部分で原油を加熱する。この後、重油はさらに熱交換器18に送られ、脱塩器11の上流部分で原油の加熱に利用される。熱交換器18を経由した重油は、冷却器21に送られ、所定温度に冷却された後、製品重油として次工程に送られる。
【0013】
例えば、原油常圧蒸留装置1に供給される原油の温度が約20℃である場合、脱塩器11の手前で熱交換器18により約145℃まで加熱され、さらに、予備蒸留塔12の手前で、熱交換器17により約210℃程度まで加熱される。そして、加熱炉13で約360℃程度まで加熱された原油が、常圧蒸留塔14に供給される。
【0014】
常圧蒸留塔14では、性状の違いにより、原油からナフサ、灯油、軽油、重質軽油及び重油が分留される。常圧蒸留塔14の塔頂部から取り出されたガスは、冷却器22によって冷却され、塔頂分離槽26に送られる。この塔頂分離槽26では、ガス中に含まれているナフサと水分とが分離され、分離された水分(このような水分を「凝縮水」と記載する場合がある)は塔頂分離槽26から排出される。
【0015】
塔頂分離槽26の排水口には、常圧蒸留塔14の塔頂部から取り出されたガス中の塩素濃度、すなわち、凝縮水の酸性度を計測するpHメーターPHが設けられている。このpHメーターPHの計測結果は、原油常圧蒸留塔14の稼働を制御する制御装置24に送信される(図1において、制御装置24に入力又は制御装置24から出力される信号を破線で示す)。制御装置24は、前記ガスがほぼ中性(許容範囲:例えばpH6.0〜pH7.0)になるように、中和剤供給装置25に指令を出力する。中和剤供給装置25は、塩素濃度、すなわち、凝縮水のpHが予め設定された値(許容範囲pH6.0〜pH7.0の間で適宜に設定する)を下回ったときに、中和剤を常圧蒸留塔14の塔頂部に供給する。
【0016】
熱交換器16と熱交換器17とを連結する配管16aと、熱交換器17と熱交換器18とを連結する配管17aとの間には、バイパス配管19aが設けられ、このバイパス配管19aの途中に、バイパス配管19aの開閉量を調整するバルブ19が設けられている。
そして、配管16aを流れる重油の一部を、熱交換器17を通すことなく熱交換器18に送ることで、脱塩器11の上流部分における原油の温度調整を行うことができるようになっている。
【0017】
すなわち、熱交換器17を通過させる前の高温の重油を、配管16aからバイパス配管19aを経て直接熱交換器18に送る場合に、バイパス配管19aを流れる重油の量を増やすと、脱塩器11の上流部分における原油の加熱温度を上昇させることができる。反対に、バイパス配管19aを流れる重油の量を減らすと、脱塩器11の上流部分における原油の加熱温度を下降させることができる。バイパス配管19aを流れる重油の量は、バルブ19の開量を調整することによって行うことができるが、このようなバルブ19の開量の調整は、制御装置24の指令によって行われる。
【0018】
脱塩器11における脱塩効率は、脱塩器11の上流部分における原油の温度を高くするほど向上する。一方、原油の温度が高くなると、脱塩器11からの排水温度も高くなり、エネルギーロスが大きくなるうえ、原油に混入する水分(蒸気)の量が増えて、塔頂分離槽26から排出される水分の量が多くなり、加熱炉13で余分の加熱を行い、冷却器22で余分の熱を除去しなければならなくなって、さらにエネルギーロスが大きくなる。
そこで、この実施形態の制御装置24は、可能な限り脱塩器11からのエネルギーロスと塔頂分離槽26からの水分の排出量とを減少させるために、バルブ19の開量を小さくして、脱塩器11の上流部分における原油温度を低くするように指令を出力する。また、ガス中の塩素濃度が高くなったとき、すなわち、塔頂分離槽26から排出される凝縮水のpH値が低くなったときには、pH値を高くするように中和剤の供給量を増やす指令を出力するとともに、バルブ19の開量を大きくして、脱塩器11の上流部分における原油温度を高くするように指令を出力する。
【0019】
制御装置24がバルブ19の操作を行うための基準は、予め設定して制御装置24に記憶させておくとよい。例えば、ガスに含まれる塩素濃度に由来する凝縮水のpH値の基準値を、原油性状等により、許容範囲であるpH6.0〜pH7.0の間で、例えばpH6.2のように予め決定し、この基準値pH6.2を、制御装置24に設定しておくとよい。そして、凝縮水のpH値が前記基準値であるpH6.2を下回ったときに、バルブ19の開量を大きくする指令を出すように設定するとよい。
なお、許容範囲であるpH6.0〜pH7.0の上限近傍(例えばpH6.6)で第二の基準値を設定しておき、凝縮水のpH値が、この第二の基準値(pH6.6)に近づいたときに、制御装置24がバルブ19の開量を小さくする指令を出力するように設定することもできる。
【0020】
図2は、制御装置24による処理の一例を示すフローチャートである。
制御装置24は、原油常圧蒸留装置1の稼動開始(ステップS101)と同時に、脱塩器11の入口における原油の温度を、前記条件に基づいて設定する(ステップS102)。また、制御装置24は、分留を行う原油の種類や原油の処理量,常圧蒸留塔14における蒸留の条件等に基づいて、塔頂分離槽26から排出される凝縮水の量の基準値を設定する(ステップS103)。
常圧蒸留塔14が稼動を開始した後、流量計FLによって検出された塔頂分離槽26から凝縮水の排出量が制御装置24に送信され(ステップS104)、制御装置24でこの排出量が、予め設定された基準値よりも多いかどうかが判断される(ステップS105)。
そして、前記凝縮水の排出量が前記基準値よりも多いときは、脱塩器11の入口における原油の温度が高いと判断して(ステップS106)、バルブ19の開量を小さくするように指令を出力する(ステップS107)。その後、ステップS104に戻って、排出量の監視を行う。
前記凝縮水の排出量が前記基準値よりも少ないときは(ステップS105)、塔頂分離槽26から排出された凝縮水のpH値を、pH計PHで検出し(ステップS109)、pH計PHの検出結果が基準値(例えば、前記のpH6.2)以上かどうかを判断する(ステップS110)。
そして、pH計PHのpH値が基準値よりを下回っているときは、脱塩基11の入口における原油の温度が低いと判断して(ステップS111)、バルブ19の開量を大きくするように指令を出力する(ステップS112)。その後、ステップS109に戻って、凝縮水のpH値を監視する。
なお、pH計PHのpH値が基準値よりを上回っているときは、上記手順による熱回収操作を継続するかどうかを判断し(ステップS114)、操作を継続するのであれば、ステップS103に戻り、水分の排出量の基準値をさらに小さい値に設定して、ステップS103以後の手順繰り返す。
【0021】
制御装置24による処理の手順は上記に限定されるものではない。本発明と同様の作用・効果を得られるのであれば、他の処理手順であってもよいことは勿論である。
次に、図3を参照しながら、処理の手順の他の例について説明する。
図3においては、図2に示す先の実施形態と同一の処理手順には同一の符号を付し、詳しい説明は省略する。
図2の実施形態では、凝縮水のpH値に基づいて、バルブ19の開量の調整を行うようにしている(ステップS109,S110)が、この実施形態では、中和剤供給装置25から供給される中和剤の量に基づいて、バルブ19の開量の調整を行うようにしている。
中和剤供給装置25は、制御装置24からの指令にしたがって、凝縮水中のpH値が許容範囲内、例えばpH6.2〜pH6.6になるように、塔頂部に中和剤を供給する(ステップS109′)。この中和剤の供給量は、中和剤供給装置25に設けられた計量部等で計量することができる。
そして、中和剤供給装置25から塔頂部に供給される中和剤の量の基準値を予め設定しておき、供給される中和剤の量が前記基準値より多いときは(ステップS110′)、脱塩基11の入口における原油の温度が低いと判断して(ステップS111)、バルブ19の開量を大きくするように指令を出力する(ステップS112)。その後、ステップS109′に戻って、中和剤供給装置25から塔頂部に供給される中和剤の量を監視する。
【0022】
図4は、本発明の効果を示す図で、線Iは加熱炉13の上流部分における原油の温度を、線IIは予備蒸留塔12の上流部分における原油の温度を、線IIIは燃料原単位を示している。
なお、線IIIの「燃料原単位」とは、単位量の原油を各留分に精製するのに必要な燃料の量をいい、この値が小さくなるほど、原油常圧蒸留装置1のエネルギー効率が向上することを示している。
【0023】
脱塩器11の上流部分の原油温度が低くなると、線I及び線IIに示すように、加熱炉13の上流部分や予備蒸留塔12の上流部分における原油の温度は上昇する。例えば、脱塩器11の上流部分における原油の温度が145℃から130℃になると、加熱炉13の上流部分における原油の温度は約252℃から約256℃に上昇し、予備蒸留塔12の上流部分における原油の温度は、約208℃から約215℃に上昇する。
【0024】
このとき、脱塩器11の上流部分における原油温度の低下にともなって脱塩器11の脱塩効率が小さくなって、ガス中の塩素濃度は高くなり、凝縮水のpH値は低くなるが、その値は許容範囲内である。また、塔頂分離槽26からの水分の排出量も少なくなる。
燃料原単位は、線IIIに示すように、脱塩器11の上流部分における原油の温度が145℃であるときは約8.5であったが、温度が130℃まで低下すると、約8.2まで低下する。
このように、本発明によれば、エネルギー効率が、原油常圧蒸留装置1の全体で向上することがわかる。
【0025】
本発明の好適な実施形態について説明してきたが、本発明は上記の実施形態によりなんら限定されるものではなく、本発明の適用範囲内で種々に変更することが可能である。
例えば、上記の実施形態では、塔頂分離槽26からの凝縮水の排出量を計測する流量計FLを設けるものとして説明したが、排出された凝縮水のpH値のみでバルブ19の開量調整を行う場合は、特にこのような流量計FLは設けなくてもよい。
【0026】
また、ガス中の塩素濃度を計測する手段として、排出された凝縮水のpH値を計測するpHメーターPHを用いたが、ガス中の塩素濃度を計測できるのであれば、他の手段を用いてもよい。
さらに、制御装置24は、pHメーターPH,流量計FL又は温度計THによる検出値が、予め設定された許容範囲や基準値等を超えたときに、音や光で作業者に報知するようにしてもよい。
【0027】
また、上記の実施形態では、バルブ19の開量を大きくする又は小さくするための基準値を、pH値や水分の排出量、中和剤の供給量のそれぞれについて一つだけ設けるものとして説明しているが、この基準値を複数設けて、各基準値ごとにバルブ19の開量を大きくしたり小さくしたりする指令を制御装置24が出力するようにすることも可能である。
【0028】
【発明の効果】
このように、本発明によれば、脱塩器の上流部分における原油の温度を可能な限り低くすることで、脱塩器から排出されるエネルギーの量を少なくすることができる。
また、脱塩器の上流部分で利用する排熱の一部を、脱塩器よりも下流部分の原油の加熱に利用することで、原油常圧蒸留装置のエネルギー効率の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかり、原油常圧蒸留装置の構成を説明する概略図である。
【図2】制御装置による処理の一例を説明するフローチャートである。
【図3】制御装置による処理の他の例を説明するフローチャートである。
【図4】本発明の効果を示すグラフで、脱塩器の上流部分、加熱炉の上流部分及び予備蒸留塔の上流部分における原油の加熱温度と、燃料原単位との関係を示すグラフである。
【符号の説明】
1原油常圧蒸留装置
11 脱塩器
12 予備蒸留塔
13 加熱炉
14 常圧蒸留塔
16〜18 熱交換器
16a 配管
19 バルブ
19a バイパス配管
21,22 冷却器
24 制御装置
25 中和剤供給装置
26 塔頂分離槽
PH pHメーター
P1,P2 ポンプ
TH 温度計
FL 流量計
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat recovery method in a crude oil atmospheric distillation apparatus, and in particular, by adjusting the heating temperature of crude oil in the upstream part of the desalter and improving heat recovery downstream of the desalter, The present invention relates to a heat recovery method that suppresses exhaust heat from the apparatus and improves energy efficiency in a crude oil atmospheric distillation apparatus.
[0002]
[Prior art]
In a crude oil atmospheric distillation apparatus, crude oil is heated and fractionated from naphtha to heavy oil by a boiling point difference in an atmospheric distillation column. In such a crude oil atmospheric distillation apparatus, a desalinator is generally provided to remove salt contained in the crude oil. In the desalter, the wash water is injected into the crude oil that has been supplied to the crude oil atmospheric pressure distillation apparatus and heated to a predetermined temperature, and the salt content in the crude oil is dissolved in the wash water. After the wash water is associated and separated by settling, the wash water containing salt is discharged out of the desalter. The heating temperature of crude oil is related to the desalting efficiency in the desalter, and the desalting efficiency increases as the heating temperature increases. Therefore, normally, in order to obtain a high desalting efficiency, the heating temperature is set high.
[0003]
As such a crude oil desalting apparatus and desalting method, for example, the desalination of crude oil is efficiently performed by using the condensed water of the top receiver as washing water for desalting (see Patent Document 1), Rather than washing water added to crude oil, sufficiently dispersed by stirring, introduced into a desalinator, and separated and separated as separated salt water by a high piezoelectric field (see Patent Document 2) and water present in crude oil What wash | cleans with the wash water of low saltiness, and isolate | separates the obtained mixture into the layer of crude oil and the layer of salt water (refer patent document 3) is known.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 52-25806 (see the description in the detailed description column of the specification)
[Patent Document 2]
Japanese Patent Laid-Open No. 60-156512 (refer to claims)
[Patent Document 3]
Japanese Patent Laid-Open No. 61-151298 (refer to the description in the summary section of the invention)
[0005]
By the way, in the crude oil atmospheric distillation apparatus including the desalting apparatus as described above, heat recovery is generally performed from high-temperature heavy oil discharged from the distillation tower. The crude oil is heated by the recovered heat in the upstream portion of the desalter and then fed into the desalter . Thereafter, the crude oil is further heated by the recovered heat in the downstream portion of the desalter and heated. Sent to the furnace.
However, there is a problem that a part of the heat recovered in the upstream portion of the desalter is discharged from the crude oil atmospheric distillation apparatus together with the drainage of the desalter, and the waste heat becomes an energy loss. If the operating temperature of the desalter is increased, the amount of water dissolved in the crude oil increases, and this water is also heated in the heating furnace and cooled at the top of the distillation tower, and wasted energy is used. . The problem of this energy loss increases as the temperature of the crude oil in the upstream portion of the desalter increases.
[0006]
[Problems to be solved by the invention]
The present invention has been made to solve the above-described problems, and suppresses heat exhausted from the crude oil atmospheric distillation apparatus as much as possible to improve energy efficiency. It is intended to provide a collection method.
[0007]
[Means for Solving the Problems]
As a result of extensive research, the inventors of the present invention can use most of the exhaust heat extracted from the distillation tower for heating the crude oil after desalting if the temperature of the crude oil in the upstream portion of the desalter can be lowered. It was possible to reduce the fuel used in the heating furnace.
However, when the temperature of the crude oil in the upstream portion of the desalter is lowered, the viscosity and specific gravity of the crude oil are increased and the desalting performance is lowered.
Therefore, in the present invention, in order to effectively recover the exhaust heat, the upper limit of the temperature of the upstream portion of the desalter is found, and the desalting and dewatering performance is reduced due to the temperature decrease of the upstream portion of the desalter. The lower limit is found and the desalination performance is monitored.
[0008]
In the method of Claim 1, the process of heating crude oil, the process of adding washing water to the heated crude oil and desalting, and the process of fractionating the desalted crude oil into various components in a distillation tower And a heat recovery method in a crude oil atmospheric distillation apparatus used for heating crude oil to be introduced into the distillation tower and heating crude oil before desalting, and exhausted from the top of the distillation tower. Cooling the gas, separating the water in the gas as condensed water and discharging it, measuring the amount of condensed water discharged, and adjusting the temperature of the crude oil in the upstream portion of the demineralizer a step of presetting a reference value of the emission of the condensed water as a reference, when the detection result of the emission of the condensed water is larger than the reference value, the oil heating temperature in the upstream portion of the desalter and outputting a command to lower, pH of the condensed water A step of measuring, a step of pre-setting a reference value of pH value of the condensed water as a reference when adjusting the temperature of oil in the upstream portion of the desalter, the detection result of the emission of the condensed water There less than the reference value, when the detection result of the pH value of the condensed water is lower than the reference value, and a step for outputting a command to raise the heating temperature of the crude oil in the upstream portion of the desalter It is a heat recovery method in a crude oil atmospheric distillation device.
The method according to claim 2, further comprising: when the detection result of the discharge amount of the condensed water is less than the reference value and the detection result of the pH value in the condensed water is lower than the reference value, This is a heat recovery method in a crude oil atmospheric distillation apparatus having a step of supplying a neutralizing agent to the top.
[0009]
The method according to claim 3 includes a step of heating crude oil, a step of adding washing water to the heated crude oil to perform desalting, and a step of fractionating the desalted crude oil into various components in a distillation tower. And a heat recovery method in a crude oil atmospheric distillation apparatus used for heating crude oil to be introduced into the distillation tower and heating crude oil before desalting, and exhausted from the top of the distillation tower. Cooling the gas, separating the water in the gas as condensed water and discharging it, measuring the amount of condensed water discharged, and adjusting the temperature of the crude oil in the upstream portion of the demineralizer A step of presetting a reference value of the amount of condensate discharge as a reference, and when the detection result of the amount of condensate discharge is greater than the reference value, the heating temperature of the crude oil in the upstream portion of the demineralizer A step of outputting a command to lower the pH value in the condensed water A step of measuring, a step of presetting an allowable range of the pH value in the condensed water, a detection result of the discharge amount of the condensed water being less than the reference value, and a detection result of the pH value of the condensed water being the allowable range When it is lower, the step of supplying the neutralizing agent to the top of the distillation column, and the reference value of the supply amount of the neutralizing agent that serves as a reference when adjusting the temperature of the crude oil in the upstream portion of the demineralizer And a step of outputting a command to raise the heating temperature of the crude oil in the upstream portion of the demineralizer when the supply amount of the neutralizing agent is larger than the reference value. It is a heat recovery method in a pressure distillation apparatus.
[0010]
Furthermore, the method described in claim 4 is a heat recovery method in a crude oil atmospheric distillation apparatus that uses part of the exhaust heat sent to the upstream portion of the desalter to heat the crude oil after desalting .
Thus, when lowering the heating temperature of the crude oil in the upstream part of the desalter, a part of the surplus heat is used for heating the downstream part of the desalter, that is, the crude oil after desalination. Can be used effectively.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic diagram illustrating a configuration of a crude oil atmospheric distillation apparatus according to an embodiment of the present invention.
The crude oil atmospheric distillation apparatus 1 includes a desalter 11 for desalting crude oil supplied by the pump P1, a preliminary distillation column 12 for preliminarily distilling crude oil desalted by the desalter 11, and a preliminary distillation. A heating furnace 13 for heating the crude oil taken out from the tower 12 to a predetermined temperature and an atmospheric distillation tower 14 for fractionating the crude oil heated in the heating furnace 13 are provided.
[0012]
Moreover, the crude oil atmospheric distillation apparatus 1 has a plurality of heat exchangers 16, 17, and 18 that perform heat recovery of heavy oil after fractionating into various fractions in the atmospheric distillation column 14. The high-temperature heavy oil taken out from the bottom of the atmospheric distillation column 14 by the pump P2 is sent to the heat exchanger 16 and used for heating (heat exchange) of the crude oil taken out from the preliminary distillation column 12. Further, heavy oil is sent from the heat exchanger 16 to the heat exchanger 17 to heat the crude oil in the upstream portion of the preliminary distillation column 12. Thereafter, the heavy oil is further sent to the heat exchanger 18 and used for heating the crude oil in the upstream portion of the desalter 11. The heavy oil that has passed through the heat exchanger 18 is sent to the cooler 21, cooled to a predetermined temperature, and then sent to the next process as product heavy oil.
[0013]
For example, when the temperature of the crude oil supplied to the crude oil atmospheric distillation apparatus 1 is about 20 ° C., it is heated to about 145 ° C. by the heat exchanger 18 before the desalter 11 and further before the preliminary distillation column 12. Then, it is heated to about 210 ° C. by the heat exchanger 17. Then, the crude oil heated to about 360 ° C. in the heating furnace 13 is supplied to the atmospheric distillation tower 14.
[0014]
In the atmospheric distillation tower 14, naphtha, kerosene, light oil, heavy light oil and heavy oil are fractionated from crude oil due to the difference in properties. The gas taken out from the top of the atmospheric distillation column 14 is cooled by the cooler 22 and sent to the top separation tank 26. In the tower top separation tank 26, naphtha and moisture contained in the gas are separated, and the separated moisture (such moisture may be referred to as “condensed water”) is separated from the tower top separation tank 26. Discharged from.
[0015]
A pH meter PH for measuring the chlorine concentration in the gas taken out from the top of the atmospheric distillation tower 14, that is, the acidity of the condensed water, is provided at the drain outlet of the top separation tank 26. The measurement result of the pH meter PH is transmitted to the control device 24 that controls the operation of the crude oil atmospheric distillation column 14 (in FIG. 1, a signal input to the control device 24 or output from the control device 24 is indicated by a broken line). ). The control device 24 outputs a command to the neutralizing agent supply device 25 so that the gas becomes almost neutral (allowable range: for example, pH 6.0 to pH 7.0). When the chlorine concentration, that is, the pH of the condensed water falls below a preset value (set appropriately within the allowable range of pH 6.0 to pH 7.0), the neutralizing agent supply device 25 neutralizes the neutralizing agent. Is fed to the top of the atmospheric distillation column 14.
[0016]
A bypass pipe 19a is provided between the pipe 16a connecting the heat exchanger 16 and the heat exchanger 17 and the pipe 17a connecting the heat exchanger 17 and the heat exchanger 18, and the bypass pipe 19a A valve 19 for adjusting the opening / closing amount of the bypass pipe 19a is provided in the middle.
And the temperature adjustment of the crude oil in the upstream part of the desalter 11 can be performed now by sending a part of heavy oil which flows through the piping 16a to the heat exchanger 18 without passing the heat exchanger 17. Yes.
[0017]
That is, when high-temperature heavy oil before passing through the heat exchanger 17 is sent directly from the pipe 16a to the heat exchanger 18 via the bypass pipe 19a, if the amount of heavy oil flowing through the bypass pipe 19a is increased, the desalter 11 It is possible to increase the heating temperature of the crude oil in the upstream portion. Conversely, if the amount of heavy oil flowing through the bypass pipe 19a is reduced, the heating temperature of the crude oil in the upstream portion of the desalter 11 can be lowered. The amount of heavy oil flowing through the bypass pipe 19 a can be adjusted by adjusting the opening amount of the valve 19. Such adjustment of the opening amount of the valve 19 is performed by a command from the control device 24.
[0018]
The desalination efficiency in the desalter 11 increases as the temperature of the crude oil in the upstream portion of the desalter 11 increases. On the other hand, when the temperature of the crude oil rises, the temperature of the waste water from the desalter 11 also rises, energy loss increases, and the amount of moisture (steam) mixed in the crude oil increases and is discharged from the top separation tank 26. The amount of moisture to be increased increases, the extra heating must be performed in the heating furnace 13, and the extra heat must be removed by the cooler 22, which further increases the energy loss.
Therefore, the control device 24 of this embodiment reduces the opening amount of the valve 19 in order to reduce the energy loss from the desalter 11 and the amount of water discharged from the top separation tank 26 as much as possible. A command is output to lower the crude oil temperature in the upstream portion of the desalter 11. Further, when the chlorine concentration in the gas becomes high, that is, when the pH value of the condensed water discharged from the top separation tank 26 becomes low, the supply amount of the neutralizing agent is increased so as to increase the pH value. A command is output, and the command is output to increase the crude oil temperature in the upstream portion of the desalter 11 by increasing the opening amount of the valve 19.
[0019]
The reference for the control device 24 to operate the valve 19 may be set in advance and stored in the control device 24. For example, the reference value of the pH value of the condensed water derived from the concentration of chlorine contained in the gas is determined in advance, such as pH 6.2, between pH 6.0 and pH 7.0, which is an allowable range, depending on crude oil properties and the like. The reference value pH 6.2 may be set in the control device 24 in advance. And it is good to set so that the instruction | command which enlarges the opening amount of the valve | bulb 19 may be issued when the pH value of condensed water falls below pH6.2 which is the said reference value.
A second reference value is set in the vicinity of the upper limit (for example, pH 6.6) of pH 6.0 to pH 7.0, which is an allowable range, and the pH value of the condensed water is the second reference value (pH 6. It is also possible to set so that the control device 24 outputs a command for reducing the opening amount of the valve 19 when approaching 6).
[0020]
FIG. 2 is a flowchart illustrating an example of processing by the control device 24.
The control device 24 sets the temperature of the crude oil at the inlet of the demineralizer 11 based on the above conditions simultaneously with the start of operation of the crude oil atmospheric distillation apparatus 1 (step S101) (step S102). In addition, the control device 24 determines the reference value of the amount of condensed water discharged from the top separation tank 26 based on the type of crude oil to be fractionated, the amount of crude oil treated, the distillation conditions in the atmospheric distillation tower 14, and the like. Is set (step S103).
After the atmospheric distillation column 14 starts operation, the amount of condensed water discharged from the top separation tank 26 detected by the flow meter FL is transmitted to the control device 24 (step S104). It is determined whether or not the reference value is larger than a preset reference value (step S105).
When the amount of condensed water discharged is larger than the reference value, it is determined that the temperature of the crude oil at the inlet of the desalter 11 is high (step S106), and a command to reduce the opening amount of the valve 19 is issued. Is output (step S107). Thereafter, the process returns to step S104 to monitor the discharge amount.
When the amount of condensed water discharged is smaller than the reference value (step S105), the pH value of the condensed water discharged from the top separation tank 26 is detected by the pH meter PH (step S109), and the pH meter PH It is determined whether or not the detection result is equal to or higher than a reference value (for example, the above pH 6.2) (step S110).
When the pH value of the pH meter PH is lower than the reference value, it is determined that the temperature of the crude oil at the inlet of the abasic 11 is low (step S111), and a command is given to increase the opening amount of the valve 19. Is output (step S112). Then, it returns to step S109 and monitors the pH value of condensed water.
When the pH value of the pH meter PH is higher than the reference value, it is determined whether or not the heat recovery operation according to the above procedure is continued (step S114), and if the operation is continued, the process returns to step S103. Then, the reference value of the water discharge amount is set to a smaller value, and the procedure after step S103 is repeated.
[0021]
The processing procedure by the control device 24 is not limited to the above. Of course, other procedures may be used as long as the same actions and effects as the present invention can be obtained.
Next, another example of the processing procedure will be described with reference to FIG.
In FIG. 3, the same processing steps as those in the previous embodiment shown in FIG.
In the embodiment of FIG. 2, the opening amount of the valve 19 is adjusted based on the pH value of the condensed water (steps S109 and S110), but in this embodiment, the supply from the neutralizing agent supply device 25 is performed. The opening amount of the valve 19 is adjusted based on the amount of neutralizing agent.
The neutralizing agent supply device 25 supplies the neutralizing agent to the top of the column so that the pH value in the condensed water is within an allowable range, for example, pH 6.2 to pH 6.6, according to a command from the control device 24 ( Step S109 '). The supply amount of the neutralizing agent can be measured by a measuring unit or the like provided in the neutralizing agent supply device 25.
And the reference value of the quantity of the neutralizing agent supplied to the tower top part from the neutralizing agent supply apparatus 25 is preset, and when the quantity of the neutralizing agent supplied is larger than the said reference value (step S110 ') ), It is determined that the temperature of the crude oil at the inlet of the abasic 11 is low (step S111), and a command is output to increase the opening amount of the valve 19 (step S112). Then, it returns to step S109 'and monitors the quantity of the neutralizing agent supplied to the tower top part from the neutralizing agent supply apparatus 25. FIG.
[0022]
FIG. 4 is a graph showing the effect of the present invention. Line I indicates the temperature of crude oil in the upstream portion of the heating furnace 13, line II indicates the temperature of crude oil in the upstream portion of the preliminary distillation column 12, and line III indicates the fuel consumption rate. Is shown.
The “fuel intensity” of line III means the amount of fuel required to refine a unit amount of crude oil into each fraction. The smaller this value, the more energy efficiency of the crude oil atmospheric distillation apparatus 1 becomes. It shows improvement.
[0023]
When the crude oil temperature in the upstream portion of the desalter 11 becomes low, the crude oil temperature in the upstream portion of the heating furnace 13 and the upstream portion of the preliminary distillation column 12 rises as shown by lines I and II. For example, when the temperature of the crude oil in the upstream portion of the desalter 11 is changed from 145 ° C. to 130 ° C., the temperature of the crude oil in the upstream portion of the heating furnace 13 rises from about 252 ° C. to about 256 ° C. The temperature of the crude oil in the section increases from about 208 ° C to about 215 ° C.
[0024]
At this time, the desalination efficiency of the desalter 11 decreases as the crude oil temperature in the upstream portion of the desalter 11 decreases, the chlorine concentration in the gas increases, and the pH value of the condensed water decreases. Its value is within an acceptable range. Further, the amount of water discharged from the tower top separation tank 26 is also reduced.
As shown in line III, the fuel consumption rate was about 8.5 when the temperature of the crude oil in the upstream portion of the desalter 11 was 145 ° C, but when the temperature dropped to 130 ° C, it was about 8. Decrease to 2.
Thus, according to this invention, it turns out that energy efficiency improves the whole crude oil atmospheric distillation apparatus 1. FIG.
[0025]
Although the preferred embodiments of the present invention have been described, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the present invention.
For example, in the above embodiment, the flow meter FL for measuring the amount of condensed water discharged from the top separation tank 26 has been described. However, the opening amount of the valve 19 is adjusted only by the pH value of the discharged condensed water. Such a flow meter FL need not be provided in particular.
[0026]
Further, as a means for measuring the chlorine concentration in the gas, a pH meter PH for measuring the pH value of the discharged condensed water was used, but other means can be used as long as the chlorine concentration in the gas can be measured. Also good.
Further, the control device 24 notifies the operator by sound or light when the detected value by the pH meter PH, the flow meter FL or the thermometer TH exceeds a preset allowable range or reference value. May be.
[0027]
Further, in the above embodiment, it is assumed that only one reference value for increasing or decreasing the opening amount of the valve 19 is provided for each of the pH value, the water discharge amount, and the neutralizing agent supply amount. However, it is also possible to provide a plurality of reference values so that the control device 24 outputs a command to increase or decrease the opening amount of the valve 19 for each reference value.
[0028]
【The invention's effect】
Thus, according to this invention, the quantity of the energy discharged | emitted from a desalinator can be decreased by making the temperature of the crude oil in the upstream part of a desalter as low as possible.
Moreover, the energy efficiency of the crude oil atmospheric distillation device can be improved by using a part of the exhaust heat used in the upstream part of the desalter for heating the crude oil in the downstream part of the desalter. .
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating the configuration of a crude oil atmospheric distillation apparatus according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating an example of processing by a control device.
FIG. 3 is a flowchart illustrating another example of processing by the control device.
FIG. 4 is a graph showing the effect of the present invention, showing the relationship between the heating temperature of crude oil in the upstream portion of the desalter, the upstream portion of the heating furnace, and the upstream portion of the preliminary distillation column, and the fuel consumption rate. .
[Explanation of symbols]
1 crude oil atmospheric distillation apparatus 11 desalinator 12 preliminary distillation tower 13 heating furnace 14 atmospheric distillation towers 16 to 18 heat exchanger 16a piping 19 valve 19a bypass piping 21, 22 cooler 24 control device 25 neutralizing agent supply device 26 Top separation tank PH pH meter P1, P2 Pump TH Thermometer FL Flow meter

Claims (4)

原油を加熱する工程と、加熱した原油に洗浄水を加えて脱塩を行う工程と、脱塩処理した原油を蒸留塔で各種成分に分留する工程とを有し、前記蒸留塔の排熱を、蒸留塔に導入する原油の加熱と脱塩前の原油の加熱に利用する原油常圧蒸留装置における熱回収方法において、
前記蒸留塔の塔頂部から排出されたガスを冷却し、ガス中の水分を凝縮水として分離して排出する工程と、
前記凝縮水の排出量を計測する工程と、
前記脱塩器の上流部分における原油の温度調整を行う際の基準となる前記凝縮水の排出量の基準値を予め設定する工程と、
前記凝縮水の排出量の検出結果が前記基準値より多いときに、前記脱塩器の上流部分における原油の加熱温度を下げるように指令を出力する工程と、
前記凝縮水中のpH値を計測する工程と、
前記脱塩器の上流部分における原油の温度調整を行う際の基準となる前記凝縮水中のpH値の基準値を予め設定する工程と、
前記凝縮水の排出量の検出結果が前記基準値より少なく、前記凝縮水中のpH値の検出結果が前記基準値より低いときに、前記脱塩器の上流部分における原油の加熱温度を上げるように指令を出力する工程と、
を有することを特徴とする原油常圧蒸留装置における熱回収方法。
A step of heating crude oil, a step of adding salt water to the heated crude oil for desalting, and a step of fractionating the desalted crude oil into various components in a distillation tower, the exhaust heat of the distillation tower In a heat recovery method in a crude oil atmospheric distillation apparatus used for heating crude oil to be introduced into a distillation column and heating crude oil before desalting,
Cooling the gas discharged from the top of the distillation column, separating the water in the gas as condensed water and discharging it;
Measuring the discharge amount of the condensed water ;
Pre-setting a reference value for the amount of condensed water discharged, which serves as a reference for adjusting the temperature of crude oil in the upstream portion of the desalter;
When the detection result of the emission of the condensed water is larger than the reference value, and outputting a command to lower the crude oil heating temperature in the upstream portion of the desalter,
Measuring the pH value in the condensed water ;
Pre-setting a reference value of the pH value in the condensed water that serves as a reference when adjusting the temperature of crude oil in the upstream portion of the desalter;
When the detection result of the discharge amount of the condensed water is less than the reference value and the detection result of the pH value of the condensed water is lower than the reference value, the heating temperature of the crude oil in the upstream portion of the demineralizer is increased. Outputting a command;
A heat recovery method in a crude oil atmospheric distillation apparatus, characterized by comprising:
前記凝縮水の排出量の検出結果が前記基準値より少なく、前記凝縮水中のpH値の検出結果が前記基準値より低いときに、前記蒸留塔の塔頂部に中和剤を供給する工程を有することを特徴とする請求項1記載の原油常圧蒸留装置における熱回収方法。A step of supplying a neutralizing agent to the top of the distillation column when a detection result of the discharge amount of the condensed water is less than the reference value and a detection result of the pH value in the condensed water is lower than the reference value. The heat recovery method in the crude oil atmospheric distillation apparatus according to claim 1. 原油を加熱する工程と、加熱した原油に洗浄水を加えて脱塩を行う工程と、脱塩処理した原油を蒸留塔で各種成分に分留する工程とを有し、前記蒸留塔の排熱を、蒸留塔に導入する原油の加熱と脱塩前の原油の加熱に利用する原油常圧蒸留装置における熱回収方法において、A process of heating the crude oil, a process of adding salt water to the heated crude oil for desalting, and a process of fractionating the desalted crude oil into various components in a distillation tower, the waste heat of the distillation tower In a heat recovery method in a crude oil atmospheric distillation apparatus used for heating crude oil to be introduced into a distillation column and heating crude oil before desalting,
前記蒸留塔の塔頂部から排出されたガスを冷却し、ガス中の水分を凝縮水として分離して排出する工程と、  Cooling the gas discharged from the top of the distillation column, separating the water in the gas as condensed water and discharging it;
前記凝縮水の排出量を計測する工程と、  Measuring the discharge amount of the condensed water;
前記脱塩器の上流部分における原油の温度調整を行う際の基準となる前記凝縮水の排出量の基準値を予め設定する工程と、  Pre-setting a reference value for the amount of condensed water discharged, which serves as a reference for adjusting the temperature of crude oil in the upstream portion of the desalter;
前記凝縮水の排出量の検出結果が前記基準値より多いときに、前記脱塩器の上流部分における原油の加熱温度を下げるように指令を出力する工程と、  Outputting a command to lower the heating temperature of the crude oil in the upstream portion of the desalter when the detection result of the amount of condensed water discharged is greater than the reference value;
前記凝縮水中のpH値を計測する工程と、  Measuring the pH value in the condensed water;
前記凝縮水中のpH値の許容範囲を予め設定する工程と、  Preliminarily setting an allowable range of the pH value in the condensed water;
前記凝縮水の排出量の検出結果が前記基準値より少なく、前記凝縮水中のpH値の検出結果が前記許容範囲より低いときに、前記蒸留塔の塔頂部に中和剤を供給する工程と、  Supplying a neutralizing agent to the top of the distillation column when the detection result of the condensed water discharge is less than the reference value and the detection result of the pH value of the condensed water is lower than the allowable range;
前記脱塩器の上流部分における原油の温度調整を行う際の基準となる前記中和剤の供給量の基準値を予め設定する工程と、  Presetting a reference value for the supply amount of the neutralizing agent, which is a reference when performing temperature adjustment of crude oil in the upstream portion of the desalter;
前記中和剤の供給量が前記基準値より多いときに、前記脱塩器の上流部分における原油の加熱温度を上げるように指令を出力する工程と、  Outputting a command to increase the heating temperature of the crude oil in the upstream portion of the demineralizer when the supply amount of the neutralizing agent is greater than the reference value;
を有するこの原油常圧蒸留装置における熱回収方法。  A method of recovering heat in this crude oil atmospheric distillation apparatus.
請求項1〜3のいずれかに記載の原油常圧蒸留装置における熱回収方法において、
前記脱塩器の上流部分に送る排熱の一部を、脱塩後の原油の加熱に利用することを特徴とする原油常圧蒸留装置における熱回収方法。
In the heat recovery method in the crude oil atmospheric distillation apparatus according to any one of claims 1 to 3,
A method for recovering heat in a crude oil atmospheric distillation apparatus, wherein a part of exhaust heat sent to an upstream portion of the desalter is used for heating crude oil after desalting.
JP2002286399A 2002-09-30 2002-09-30 Heat recovery method in crude oil atmospheric distillation equipment Expired - Lifetime JP4133176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002286399A JP4133176B2 (en) 2002-09-30 2002-09-30 Heat recovery method in crude oil atmospheric distillation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002286399A JP4133176B2 (en) 2002-09-30 2002-09-30 Heat recovery method in crude oil atmospheric distillation equipment

Publications (2)

Publication Number Publication Date
JP2004123807A JP2004123807A (en) 2004-04-22
JP4133176B2 true JP4133176B2 (en) 2008-08-13

Family

ID=32279463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002286399A Expired - Lifetime JP4133176B2 (en) 2002-09-30 2002-09-30 Heat recovery method in crude oil atmospheric distillation equipment

Country Status (1)

Country Link
JP (1) JP4133176B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2547479C2 (en) * 2013-08-26 2015-04-10 Андрей Владиславович Курочкин Method for heat recovery at primary oil refining unit
US9803930B2 (en) * 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated hydrocracking and diesel hydrotreating facilities
US9803505B2 (en) 2015-08-24 2017-10-31 Saudi Arabian Oil Company Power generation from waste heat in integrated aromatics and naphtha block facilities
CN108865212A (en) * 2018-07-13 2018-11-23 佛山市三水区精联自动化设备有限公司 A kind of crude flashing device

Also Published As

Publication number Publication date
JP2004123807A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
CN1957068B (en) Steam cracking of hydrocarbon feedstocks containing salt and/or particulate matter
JP6033282B2 (en) Energy efficient and environmentally advanced configuration for naphtha hydroprocessing process
CA2815785C (en) Heat recovery for bitumen froth treatment plant integration with temperature circulation loop circuits
CN103131472B (en) Process method for on-line salt washing of fractionating tower of delayed coking device
WO2009105309A1 (en) Method and system for generating steam in the oil industry
JP2016514046A (en) Energy efficient systems and processes for treating sludge
JP4267722B2 (en) Quench oil viscosity control method
JP4133176B2 (en) Heat recovery method in crude oil atmospheric distillation equipment
JP2011144225A (en) Crude treatment system
JP5421793B2 (en) Crude oil processing system
RU2232181C1 (en) Method of separating petroleum feedstock for production of asphalt and apparatus for implementation of the method
RU2671746C1 (en) Method for removing dissolved gas from feed stream of evaporator
CN108795482B (en) SAGD produced liquid treatment method and device based on two-stage separation
JP4729520B2 (en) Cleaning method in piping system
JP4704743B2 (en) Process for recovering methylene chloride
CN205843120U (en) A kind of steam type lithium bromide chiller bootstrap system
CN108862802A (en) One kind containing chlorine, fluorine-containing liquid waste treatment system and processing method
KR101435144B1 (en) Apparatus for collecting btx from cog
US6383368B1 (en) Method for pretreatment of refinery feed for desalting the feedstock, and related additive
CN1982225A (en) Method for process water treatment in olefin plants
CA2802254C (en) Integration techniques for steam generation and produced water treatment for thermal in situ recovery operations
CN217149094U (en) Continuous reforming system applied to secondary processing of petroleum
US1220504A (en) Apparatus for dehydrating hydrocarbon-oils.
JPS5945031B2 (en) Crude oil distillation method
SE534130C2 (en) Method and apparatus for heating a chip slurry in the transfer line between impregnation vessels and boilers in the production of pulp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4133176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

EXPY Cancellation because of completion of term