JP4133060B2 - 画像入力装置、画像入力方法、およびコンピュータ読み取り可能な記録媒体 - Google Patents
画像入力装置、画像入力方法、およびコンピュータ読み取り可能な記録媒体 Download PDFInfo
- Publication number
- JP4133060B2 JP4133060B2 JP2002209947A JP2002209947A JP4133060B2 JP 4133060 B2 JP4133060 B2 JP 4133060B2 JP 2002209947 A JP2002209947 A JP 2002209947A JP 2002209947 A JP2002209947 A JP 2002209947A JP 4133060 B2 JP4133060 B2 JP 4133060B2
- Authority
- JP
- Japan
- Prior art keywords
- subject
- image
- photographing
- pattern
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims description 50
- 238000012937 correction Methods 0.000 claims description 34
- 238000005259 measurement Methods 0.000 claims description 28
- 238000001514 detection method Methods 0.000 claims description 19
- 230000008569 process Effects 0.000 claims description 17
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 description 73
- 238000010586 diagram Methods 0.000 description 22
- 230000008859 change Effects 0.000 description 9
- 230000007246 mechanism Effects 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- NUHSROFQTUXZQQ-UHFFFAOYSA-N isopentenyl diphosphate Chemical compound CC(=C)CCO[P@](O)(=O)OP(O)(O)=O NUHSROFQTUXZQQ-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Editing Of Facsimile Originals (AREA)
- Studio Devices (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Input (AREA)
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Facsimile Scanning Arrangements (AREA)
Description
【発明の属する技術分野】
本発明は、書籍などの被写体に所定の投光パターンを光照射し、その反射光から得られる画像の3次元形状を計測して被写体画像の歪み補正を行ない、高解像度の撮影を得る画像入力装置、画像入力方法、およびコンピュータ読み取り可能な記録媒体に関する。
【0002】
【従来の技術】
従来の画像入力装置(撮影装置)において、被写体に、たとえば平行線などのパターンを投光し、その反射光を入力して被写体画像の3次元画像を計測することが行なわれている。このような被写体の3次元形状を計測する技術に関しては、マシンビジョン・コンピュータビジョンの分野で研究されている。また、3次元形状の計測方法についてはマシンビジョン(江尻正員、大田友一、池内克史著)や三次元画像計測(井口往史、佐藤宏介、昭晃堂出版)などに開示されている。
【0003】
ところで、被写体が製本された原稿などである場合、製本された本を開きその上方から撮影すると、本の継ぎ目の部分では画像が圧縮されて歪んだ画像になる。そこで、これを解消するものとして、たとえば、原稿を走査して読み取るラインセンサと原稿面との距離を検出する距離センサとを用い、読み取り時に、検出した距離に応じてラインセンサの副走査方向の読み取りピッチを変化させるものが特開昭62−143557号公報に開示されている。また、特開平3−117965号公報には、読み取り面を上向きに配置された原稿を読み取る原稿読み取り装置において、原稿面上に所定角度で直線状の光を照射する照射手段と、撮像面の曲がり具合を検出する検出手段と、読み取り面を上向きに配置された原稿に対して原稿の上方に所定の間隔で配置された原稿読み取り手段と、を有し、原稿の歪みを補正することが開示されている。
【0004】
また、特開平4−199478号公報には、原稿表面の3次元位置を測定し、その3次元位置情報を利用して原稿の歪みを補正するものが開示されている。さらに、特開平10−65877号公報には、原稿を撮影して得られたエッジ情報から原稿のスキューを検出するエッジ検出手段と、原稿のスキューを検出するスキュー検出手段と、原稿のエッジ情報とスキュー情報から本の歪みを補正する補正手段とを有した撮像装置により、原稿の歪みを補正することが開示されている。
【0005】
また、投光器のパターンに液晶を使用し、撮影する被写体の大きさによって投光器のパターンを変化させて、被写体の3次元形状の計測制度を向上させるものが特開平5−113320号公報に開示されている。さらに、原稿画像を分割撮影し合成することにより、撮影画像の解像度を向上させるものが特公平8−13088号公報に開示されている。ここでは、原稿画像全体を撮影し、全体画像より原稿画像の大きさを算出し、全体画像の大きさと解像度より分割撮影のための分割画像領域を求めて分割画像を撮影し、これを合成して任意の解像度の原稿画像を得ている。
【0006】
また、画像シンポジウム2001において、「次世代ドキュメント撮影装置アイスキャナの試作」(講演番号:G−22、講演者:富士ゼロックス)の講演でデジタルカメラと、Cubicscope(市販のパターン投光ユニット)を使用することによって、分割撮影による高解像度撮影と被写体画像の歪み補正を可能にした撮影装置が発表されている。
【0007】
【発明が解決しようとする課題】
しかしながら、3次元計測で使用される投光手段が撮像部と一体化していることが多い従来の装置にあっては、被写体画像を高解像度で撮影を行なうために、撮像部と支持台の接合部にある二軸回転機構を利用して原稿画像の分割撮影を行なう際に、撮像部が移動するので、投光手段と被写体の位置関係に変化が生じる。
【0008】
これをさらに図3、図27〜図29を参照して説明すると、図3に示すように、被写体21と投光パターン22の位置関係が最適な状態であれば、図28に示すように縞模様のパターンが被写体21(製本された原稿)に照射されるため、被写体画像の歪みが大きい方向、すなわち被写体画像の歪み補正に必要な3次元形状データが含まれる方向と分解能の高い3次元形状の計測が可能な方向とが一致するので、被写体画像の歪み補正を行なうに必要な3次元形状を多く得ることができる。しかし、原稿画像の分割撮影時には、投光器12と被写体21の位置関係に変化が生じるため、被写体21と投光パターン22との配置関係に対応してパターンを移動する手段がない場合には、図27に示すように、被写体21と投光パターン22が正確に配置されず、図29に示すように、投光パターン22が被写体21に照射されるため、被写体画像の歪みが大きい方向と分解能の高い3次元形状の計測が可能な方向とが一致しない。このため、被写体画像の歪み補正を行なうに必要な3次元形状データを多く得られず、この3次元形状データを用いた被写体画像の歪み補正を精度よく行なうことができないので、高解像度の撮影が実現されないという問題点があった。
【0009】
なお、特開昭62−143557号公報、特開平3−117965号公報に開示されている方法にあっては、画像の歪み補正を行なうだけのため、分割撮影による高解像度の画像撮影を行なうことができなかった。また、特開平5−113320号公報に開示されている方法にあっては、被写体と投光パターンの配置関係に対応して投光パターンを変化させる機能が設けられていないので、撮像部の移動によって被写体と投光パターンとの位置関係が変化すると3次元形状の計測精度を向上させることができなかった。さらに、特公平8−13088号公報にか開示されている方法では、分割撮影による高解像度の撮影を行なうだけのため、画像の歪み補正を行なうことができなかった。
【0010】
さて、今後、画像を用いたコミュニケーションが特に重要になってくると予想される。たとえば、会議など電子データを表示する大画面を囲んだコミュニケーションの場において、手元の被写体を画像入力装置(図1参照)を用いて取り込んで大画面に表示させることが多くなる。このようにコミュニケーションを行なっている最中に被写体を撮影し、被写体画像の歪み補正を行なうことを想定した場合、従来の技術では被写体とパターンを正確に配置する作業があるため、コミュニケーションの場が中断されることがある。
【0011】
ところが、特開平10−65877号公報に開示されている方法にあっては、スキュー検出手段を使用することにより、被写体とパターンが正確に配置されていない場合に対しても被写体画像の歪みを補正することができるものの、被写体画像の歪み補正に被写体画像のエッジ情報を使用するため、エッジ部分に急激な歪みまたは損傷があるような被写体においては被写体画像の歪みを補正することができなかった。なお、特開平4−199478号公報に開示されている方法にあっては、被写体を上方から撮影した場合を考慮したものではない。
【0013】
本発明は、上記に鑑みてなされたものであって、被写体とパターンが正確に配置されていなくても、かつエッジ部分に急激な歪みまたは損傷が存在するような被写体であっても、被写体画像の精度のよい歪み補正を可能にすることを目的とする。
【0014】
【課題を解決するための手段】
上記の目的を達成するために、請求項1にかかる画像入力装置にあっては、被写体を撮影する撮影手段と、前記被写体上に所定のパターンを照射する投光手段と、前記撮影手段と前記投光手段とを支持する支持手段と、前記撮影手段にて前記被写体の予備撮影を行ない、前記被写体と前記パターンとの位置関係を検出する位置検出手段と、前記位置検出手段の検出結果にしたがって前記被写体と前記パターンとの位置関係を、前記投光手段を前記支持手段に対して移動させて調整する位置調整手段と、前記位置調整手段により位置調整が行なわれた後に、前記投光手段により前記パターンが照射された被写体を被写体画像として前記撮影手段で撮影し、当該被写体画像から前記被写体の3次元形状を計測する計測手段と、前記計測手段により計測された3次元形状に基づいて、前記被写体画像の歪みを補正する補正手段と、を備えたものである。
【0016】
また、請求項2にかかる画像入力装置にあっては、前記位置検出手段は、予備撮影時に前記被写体と前記投光手段のパターンとの位置関係を画像の特徴から検出するものである。
【0018】
また、請求項3にかかる画像入力方法にあっては、撮影手段と投光手段とを支持する支持手段を有し、前記撮影手段により被写体を撮影する撮影工程と、投光手段により前記被写体上に所定のパターンを照射する投光工程と、位置検出手段により、前記撮影手段にて前記被写体の予備撮影を行ない、前記被写体と前記パターンとの位置関係を検出する位置検出工程と、位置調整手段により、前記位置検出工程の検出結果にしたがって前記被写体と前記パターンとの位置関係を、前記投光手段を前記支持手段に対して移動させて調整する位置調整工程と、計測手段により、前記位置調整手段により位置調整が行なわれた後に、前記投光手段により前記パターンが照射された被写体を被写体画像として前記撮影手段で撮影し、当該被写体画像から前記被写体の3次元形状を計測する計測工程と、補正手段により、前記計測工程で計測された3次元形状に基づいて、前記被写体画像の歪みを補正する補正工程と、を含むものである。
【0020】
また、請求項4にかかる画像入力方法にあっては、前記位置検出工程は、予備撮影時に前記被写体と前記投光手段のパターンとの位置関係を画像の特徴から検出するものである。
【0044】
【発明の実施の形態】
以下、本発明にかかる画像入力装置、画像入力方法、およびコンピュータ読み取り可能な記録媒体の好適な実施の形態について添付図面を参照し、詳細に説明する。なお、本発明はこの実施の形態に限定されるものではない。
【0045】
本発明は、被写体の高解像度の撮影を実現するために、撮像部を移動させて被写体画像の分割撮影を行なうものである。すなわち、分割撮影時に、移動させる撮影部に付随している投光器が移動する移動距離を検出し、その検出結果にしたがって照射パターンを変更する。さらに、被写体画像の歪みが大きい方向、つまり被写体画像の歪み補正に必要な3次元形状データが含まれる方向と分解能の高い3次元形状の計測が可能な方向とを一致させて撮影することにより、被写体画像の歪み補正を行なうに必要な3次元形状データを数多く取得する。また、この取得した3次元形状データより分割撮影時に撮影された被写体の分割画像の歪み補正を行なう。さらに、歪み補正後の複数枚の被写体画像を合成することにより、書籍などの湾曲している被写体画像の歪み補正の精度を向上させ、高解像度の撮影、および安価で汎用性の画像入力装置を実現するものである。以下、実施の形態1〜6において具体的な構成および動作について説明する。
【0046】
(実施の形態1)
図1は、本発明の実施の形態にかかる画像入力装置の概略構成を示す説明図である。この画像入力装置10は、撮像部11と、投光器12と、支持部13と、解像度指示部14と、移動部15と、撮影スイッチ16と、I/F部17と、後述する計測位置設定方法切換スイッチ18と、を備えている。なお、符号21は書籍などの被写体、符号22は投光パターンである。
【0047】
撮像部11と投光器12は、移動部15を介して支持部13によって支持され、支持部13に対して投光器12と撮像部11が上下、左右、斜め方向にその投光軸や撮像光軸を移動できるような首振り機構となっている。解像度指示部14により、被写体画像に要する解像度を指定する。解像度指示部14は、表示つきのタッチパネルなどで構成され、所望の解像度を選択できるように機能する。撮影スイッチ16を押下すると、支持部13が設置されている机などに配置されている被写体21を撮像する。I/F部17は、パーソナルコンピュータなどの外部装置に接続するために、RS232CやUSBなどの所定のインターフェイス仕様に準拠し、撮影した画像を転送するために用いられる。
【0048】
図2は、図1における撮像部11の構成を示すブロック図である。図2において、符号1はレンズ、符号2は絞り部、符号3は撮像素子、符号4は相関二重サンプリング回路(以下、CDSという)、符号5はA/D変換器、符号6はタイミングジェネレータ(以下、TGという)、符号7は画像前処理回路(以下、IPPという)、符号8はメモリ、符号9は撮影などの一連の動作を統括的に制御するMPUである。また、符号20は液晶パネルなどで構成され、投光パターン22を形成させるための投光パターンフィルタである。
【0049】
以上のように構成された画像入力装置10は、被写体21は、投光器12で照射されその反射画像が、レンズ1、絞り部2によって撮像素子3の上の結像される。撮像素子3からの画像信号はCDS4でサンプリングされた後、A/D変換器5でデジタルの信号に変換される。このときのタイミング信号はTG6で生成される。上記画像信号は、IPP7でアパーチャ補正などの画像処理、圧縮などが行なわれメモリ8に保存される。この一連の動作はMPU9によって制御される。
【0050】
また、投光器12も撮像部11のMPU9によって投光のタイミングが制御される。投光器12には投光パターンフィルタ20が設けられており、投光器12から照射される光が投光パターンフィルタ20を通過することにより特定のパターンが被写体21に投光される。
【0051】
投光パターン22は一般的に3次元形状を計測する際の計算処理の短縮化を考慮し、平面上の被写体にパターンを照射したときには、図3に示すように、パターン形状が直線状になることが多いが、他の模様であってもよい。
【0052】
つぎに、被写体の撮影動作について図4に示すフローチャートを参照し、説明する。まず、撮影開始前に解像度指示部14により、被写体21の画像撮影に関する画像解像度、または被写体の大きさを指定する(ステップS11)。さらに、解像度指示部14により指定された画像解像度または被写体の大きさにしたがって撮像部11を移動部15により回転させる(ステップS12)。
【0053】
さて、撮像部11と投光器12が一体化している構造であると撮像部11の回転に伴い、投光器12も回転し、投光器12が被写体21に対して最適なパターンを投光する位置からずれる場合がある。このような場合には投光器12の回転に応じて投光パターン20を変化させることにより、被写体21に照射するパターンを最適な撮影条件となるように変化させる(ステップS13)。
【0054】
続いて、解像度指示部14により指定された画像解像度に対応してズーム倍率を変更し、被写体12のテクスチャ画像の撮影を行なう(ステップS14)。さらに、投光器12より投光パターン22を被写体21に照射し、撮像部11により撮影を行ない(ステップS15)、撮影された画像から被写体21の3次元形状を計測し(ステップS16)、3次元形状の計測結果にしたがって被写体画像の歪みを補正する(ステップS17)。
【0055】
続いて、上述の撮影動作において、全体画像の撮影範囲まで撮影したか否かを判断し(ステップS18)、全体画像の撮影が行なわれていないと判断した場合には、上記ステップS12に戻り、以降の動作を全体画像の撮影終了まで繰り返し実行する。全体画像の撮影が行なわれると、補正された複数枚の画像を合成する(ステップS19)。
【0056】
つぎに、図4のステップS16における撮像画像から被写体21の3次元形状を計測する例として投光パターン22が直線状である場合について説明する。投光器12より投光パターン22を被写体21に照射し、撮像部11で撮像することにより、被写体21に照射されて歪んだパターンが撮影される。この歪みの程度より被写体表面上の点の3次元的な位置を検出することができる。この検出方法について図5を用いて説明する。
【0057】
投光器12から投光パターン22が照射された部分は、撮像素子3上の点(u,v)で結像される。撮像部11の光学中心を原点とする座標系を定義すると、投光パターン22が照射された被写体21上の奥行き距離zは次式(数1)で表される。
【0058】
【数1】
【0059】
上記式において、θ1は投光パターン22を照射した角度であり既知である。また、θ2は次式(数2)で与えられる。また、fは撮像部11の焦点距離である。
【0060】
【数2】
【0061】
上記式によりzが求まると、次式(数3)によりx,yが求まる。
【0062】
【数3】
【0063】
以上により、被写体21上の点の3次元位置が求まる。これを様々な点で求めることにより、被写体21の3次元形状が得られる。
【0064】
つぎに、図4におけるステップS12〜S18の分割撮影の方法について図6を用いて説明する。ここで、解像度指示部14により指示された解像度をrとし、被写体21までの距離をhとすると、光学系に焦点距離(画素換算値)fは、
f=r・h
となる。図6(a)は、被写体21の全体と、撮像部11の焦点距離の画素換算値f=r・hとしたときの撮影エリア25の概略を示したものである。
【0065】
まず、図6(b)に示すように、その画角で原稿の左上を第1分割画像▲1▼として撮影する。続いて、図6(c)に示すように、第1分割画像▲1▼に含まれていない領域の一部を撮影できるように、撮像部11を移動させ、第2分割画像▲2▼として撮影する。このような動作を繰り返し実行し、図6(d)に示すように、原稿全体(図中における▲1▼〜▲4▼)が撮影されれば終了する。
【0066】
ところで、分割撮影では、撮像部11を2軸回転機構によって図7に示すように回転移動させて撮影を行なうため、被写体21を斜めから撮影することになり、被写体21の撮影画像には図7に示すような画像のあおりが発生する。被写体21の位置回転前に撮影される画像の位置を(u1,v1)、回転後の画像の位置を(u2,v2)とすると、両者の間には次式(数4)の関係が成立する。
【0067】
【数4】
【0068】
上記式において、Rは2軸回転機構によって撮像部11が移動した回転を表す回転行列である。また、fは焦点距離の画素換算値であり、aは左辺の列ベクトルの第3成分をfに保つための係数である。
【0069】
回転前の画像範囲外の点(u1,v1)にある像は、回転後の画像の(u2,v2)の位置にある。したがって、(u1,v1)の画素値を(u2,v2)の画素値にすれば画像を修正することができる。また、(u2,v2)は整数値をとるとは限らないので、バイリニア法などで補間すると被写体画像の修正精度が向上する。
【0070】
つぎに、被写体画像の歪み補正方法について説明する。図8は、3次元形状から被写体画像の歪みを補正するまでの動作を示すフローチャートである。図9は、図8の動作における画像撮影座標系を示す説明図である。図8において、まず、被写体表面上の複数点の3次元位置(u,v,z)を入力し(ステップS21)、曲率を持たない方向(u方向)の高さの平均値z(v)を算出する(ステップS22)。続いて、被写体画像をu方向に伸張し(ステップS23)、さらに被写体画像をv方向に伸張する(ステップS24)。
【0071】
上記動作について図9を用いてさらに説明する。図9に示す画像撮影座標系u,vが、被写体21に対してv方向までの距離zは、u方向には曲率を持たないようにとる。理想的には、撮像面(画像面26)から被写体21までの距離zは、uに依存せずvのみの関数z(v)と表現できる。しかしながら、実際には3次元位置計測値は、ノイズや被写体21の特性などに起因してばらつくことがある。したがって、z(v)は以下の式(数5)で算出する。
【0072】
【数5】
【0073】
ここで、uがU1からU2の間に被写体21が確実に存在するものとする。また、すべての画素に撮像面から被写体21までの距離zの情報が割り当てられているわけではない。そこで、その範囲に撮像面(画像面26)から被写体21までの距離zの情報を有している画素の数をN(v)とする。このN(v)の数が多いほど歪み補正に使用される3次元形状の計測精度は向上する。
【0074】
分割撮影時には被写体21と投光パターン22の位置関係が変化するが、撮像部11の回転に対して投光パターン22を変化させることにより、v方向に伸びたマルチスリット光による3次元形状計測を行なうことができるので、被写体画像の歪み補正を行なうために必要な3次元形状データを多く計測することができる。理想的は、v方向の全画素についての3次元位置を算出することができる。しかし、被写体21に反射率が非常に小さい部分があるなどの場合、撮像面(画像面26)から被写体21までの距離zの情報を求めることはできない。あるvについて撮像面(画像面26)から被写体21までの距離zの情報を有する画素がない場合、あるいは極少数である場合、その上下で撮像面(画像面26)から被写体21までの距離zの情報を有する画素から、スプライン補間によって、撮像面(画像面26)から被写体21までの距離zを算出する。
【0075】
つぎに、撮像面(画像面26)から被写体21までの距離zを用いてu方向の歪みを補正する。被写体21の撮影画像30を図10に示す。まず、各列は、撮像面(画像面26)から被写体21までの距離zが異なることにより、撮影画像30上での、原稿領域の長さが変化するので、これを補正する。
【0076】
基準となる列v=V0のときの撮像面(画像面26)から被写体21までの距離zの平均値z(V0)を用い、以下の式(数6)にしたがって画素(u,v)を(u',v)に再配置する。なお、この式におけるcuは画像のu方向の中心位置である。
【0077】
【数6】
【0078】
上述した歪み補正処理により、u方向の歪みを除去することができ、四角い被写体21は四角形の画像になる。しかし、v方向の歪みが残っており、縦に縮んだような画像になっている。そこで、図11に示すように、v方向に画像を伸張することにより、撮像画像30の歪みを除去することができる。この歪み補正方法について図12を用いて説明する。
【0079】
図12において符号30は被写体21の3次元位置である。図12では、ある列内の画素Pi0〜Pi3に相当する3次元位置空間上での点の位置を白丸で示している。これらの点の隣接する点の間の距離L01〜L23を求める。さらに、長さを求めるために、各点の間をスプライン補間によって埋める。その後、再配置すべき画素の位置を、画像の基準線からの距離として、縮尺を合わせて順次足し合わせていくことにより決定する。
【0080】
たとえば、Pi3は、(L0+L12+L23)・f/Fの位置に再配置される。なお、fは焦点距離、Fは画像の中心点に相当する被写体21までの奥行きの距離である。この再配置処理と、各画素間の補間処理により、v方向の歪みが除去される。したがって、被写体21の分割された画像の歪み補正を行なうことができる。
【0081】
つぎに、分割撮影のために撮像部11が回転した角度に対応して投光パターン22を変化させる例について図13を用いて説明する。分割撮影時に投光パターン22が並ぶ方向に撮像部11を回転させても、平面状の物体に投影される投光パターン22の形状変化はないが、投光パターン22が伸びている方向に撮像部11を回転させたときには、投光器12から被写体21までの距離の変化により、図13に示すように、投光パターン22の並びは等ピッチの直線パターンではなく扇型に変化するために、被写体21に投光パターン22が照射される本数が減少して3次元形状を計測できる点数が少なくなる。そこで、撮像部11から被写体21までの距離の変化に応じて図14に示すように変化させることにより、撮像部21を回転させたときであっても、3次元形状を計測できる点数が減少しないようにすることができる。
【0082】
(実施の形態2)
上述した実施の形態1では、使用者が指定した被写体21の大きさの値に対応して撮像部11の回転量を判定したが、この実施の形態2では、使用者が被写体21の大きさを指定する作業をしなくても、撮像部11の回転量を自動的に判定し、撮影を開始するものである。なお、この実施の形態2における装置構成は実施の形態1と同一とする。
【0083】
図15は、本発明の実施の形態2にかかる撮影動作を示すフローチャートである。まず、撮影開始前に解像度指示部14から被写体21の撮影する際の画像解像度を指定する(ステップS31)。続いて、撮像部11の倍率を最小にし、撮影領域全体の画像を撮影し(ステップS32)、この撮影された全体画像から被写体21の大きさを抽出する(ステップS33)。なお、被写体21の範囲を抽出するには、被写体21の端部を示すエッジやコーナーなどの特徴を利用するとか、あるいは背景との輝度値の差異により抽出しても、あるいは3次元計測結果から被写体21の高さの差異により抽出してもよい。
【0084】
続いて、抽出された被写体21の大きさと指示された画像解像度にしたがって分割撮影のために回転させる撮像部11の回転角を算出する(ステップS34)。さらに、算出した回転角に応じて撮像部11を回転する(ステップS35)。その後は、前述した図4のステップS13〜S19と同様の動作を実行する(ステップS36〜S42)。これにより、被写体画像の歪み補正の精度を向上させ、高解像度の撮影が実現する。
【0085】
(実施の形態3)
実施の形態1で説明したように、投光器12から照射された投光パターン22の反射を撮像部11で撮影することにより、3次元形状の計測を行なっている。図5に示すように、撮像素子3の左側部分と右側部分では、投光器12から投光される投光パターン22が被写体2に照射される角度θ1に差が生じるために、被写体21の高さ方向の変化に対して投光パターン22が移動する割合が変化する。
【0086】
撮像素子3の場所に対する投光パターン22の移動の割合を図16を用いて説明する。投光パターン22を照射する間隔を投光パターン22の移動する割合に対応させて変化させることにより、撮影領域全体において所定の高さまで計測することができ、空間解像度を向上させ、3次元形状を計測することができる。
【0087】
すなわち、投光器12投光される投光パターン22が被写体2に照射される角度θ1が大きくなるほど、高さの変化に対する投光パターン22の移動量が小さくなり、反対に角度θ1が小さくなるにしたがって高さの変化に対する投光パターン22の移動量を大きくすることにより、投光パターン22の間隔を変化させる。
【0088】
(実施の形態4)
これまでの実施の形態1〜3においては3次元形状の計測精度を向上させるために投光パターン22を変化させる例について説明したが、この実施の形態4では、投光パターン22を変化させたときの形状情報を被写体21の画像情報に付随させて記憶させる例について説明する。
【0089】
図1の構成において、I/F部17にたとえばパーソナルコンピュータやサーバなどの外部計算装置を接続し、撮像部11で撮影した画像を転送し、記憶装置に記憶させる。また、撮影した画像情報に投光パターン22を変化させたときの形状情報を付随させてディスプレイに表示させることにより、撮影が終了した後であっても、被写体21の3次元形状の計測条件を容易に確認することが可能となる。
【0090】
(実施の形態5)
ところで、投光パターン22の模様を変化させると、投光パターンフィルタ20の場所によっては投光器12からの光が通過する面積に変化が生じる場合がある。この状態を図17に示す。図17に示すように、投光器12からの光量が強い部分と弱い部分では投光パターン22の線幅が異なる。すなわち、投光器22からの光量が強い部分では、投光パターン22の光量が弱くなる部分40aが生じ、反対に、投光器22からの光量が弱い部分では、投光パターン22の光量が強くなる部分40bが生じる。
【0091】
そこで、投光器12からの光が投光パターンフィルタ20を通過する面積が小さい箇所(左部分)では投光器12の光量を上昇させることによって、撮影領域全体に照射される投光パターン22の光量を一定にして撮影する。光量の調整は、投光器12と投光パターンフィルタ20の間に鏡を入れて光量の少ない場所に投光器12からの光を誘導してもよいし、投光パターンフィルタ20の透過率を投光パターン22の変化に応じて変化させるか、あるいは投光器12に複数台の発光素子を入れて光量を調整してもよい。
【0092】
(実施の形態6)
さて、書籍などの被写体21の形状は、被写体全体の3次元形状を計測しなくても、被写体21の一部分だけの3次元形状の情報より、被写体全体の3次元形状を推定することができる。図18に示すように、画像領域A,B,C内にある被写体21の3次元形状を計測することにより、被写体全体(A〜Iの画像領域)の形状を推定することができる。
【0093】
つぎに、図19に示すフローチャートを参照し、上述の一連の動作について説明する。まず、撮影領域全体を撮影し(ステップS51)、撮影領域内にある被写体21の位置と2次元平面状に投影されたときの形を検出し、撮影領域の全体画像から被写体21のエッジを検出する(ステップS52)。続いて、被写体21を2次元平面状に投影されたときの形が、長方形に近い形状であれば書籍とみなし、被写体21の3次元形状を計測する領域を判定する(ステップS53)。
【0094】
上記における計測する領域としては、たとえば図18における撮影領域A,B,Cだけでよい。続いて、撮影領域A,B,Cの3次元形状の計測を行なうために撮像部21を回転し(ステップS54)、投光パターン22を変化させ(ステップS55)、そのパターン投光画像を撮影し(ステップS56)、その撮影画像から3次元形状を計測する(ステップS57)。続いて、判定した撮影範囲まで撮影したか否かを判断し(ステップS58)、判定した撮影範囲まで撮影が行なわれた場合には、被写体全体の3次元形状を推定する(ステップS59)。この際、図18の撮影領域D,G内にある被写体21の3次元形状は、撮影領域A内にある被写体21の3次元形状とほぼ同じ形状になる(撮影領域B,E,H,C,F,Iにおいても同様)ので、撮影領域A,B,Cの3次元形状から被写体全体の3次元形状を推定することができる。
【0095】
一方、ステップS58において、判定した撮影範囲まで撮影していない場合にはステップS54に戻り、以降の動作を、判定した撮影範囲まで撮影が行なわれるまで繰り返し実行する。ステップS59の処理が終了すると、つぎに撮像部11を回転し(ステップS60)、テクスチャ画像を撮影し(ステップS61)、さらに、3次元形状の計測結果にしたがって被写体画像の歪みを補正する(ステップS62)。続いて、上述の撮影動作において、全体画像の撮影範囲まで撮影したか否かを判断し(ステップS63)、全体画像の撮影が行なわれていないと判断した場合には、上記ステップS60に戻り、以降の動作を全体画像の撮影終了まで繰り返し実行する。全体画像の撮影が行なわれると、補正された複数枚の画像を合成する(ステップS64)。
【0096】
また、上述した動作において、被写体21の3次元形状を計測する領域を撮影前から指定しておくことにより、撮影領域の全体画像の撮影と、被写体21のエッジを検出し3次元形状を計測する撮影領域を判定する作業が不要となる。さらに、ユーザが意図した3次元形状を計測する領域を切り換えるための計測位置設定方法切換スイッチ18(図1参照)を設けることにより、被写体21の3次元形状を計測する一部分を判定する方法を選択することができる。
【0097】
(実施の形態7)
この実施の形態7以降においては、図1および図2に示す画像入力装置を用い、予備撮影を行ない被写体21と投光パターン22との配置関係を検出(図5参照)し、その検出結果に応じて、被写体画像の歪み補正を実行するのに必要な3次元データを多く計測する最適な撮影条件となるように、被写体21と投光パターン22との配置位置を変化させることにより、撮影前に被写体21と投光パターン22との位置関係を正確に調整しなくても、被写体画像の歪み補正を精度よく行なえる例について説明する。
【0098】
図20は、本発明の実施の形態7にかかる撮影動作を示すフローチャートである。まず、画像入力装置1の撮影位置へ被写体21を適当に配置し、撮影スイッチ16を押下して予備撮影を行なう(ステップS71)。なお、予備撮影の詳細については後述する(実施の形態8、9参照)。続いて、この予備撮影で取得した画像情報から被写体21と投光パターン22との位置関係を検出し(ステップS72)、その検出結果にしたがって被写体21と投光パターン22と位置関係を調整する(ステップS73)。なお、この位置調整については後述する(実施の形態10〜12参照)。
【0099】
続いて、投光器12より投光パターン22を被写体21に対して投光し(ステップS74)、撮像部11により被写体21の撮影を実行する(ステップS75)。さらに、この撮影された画像から被写体21の3次元形状を前述した手順(実施の形態1)を計測し(ステップS76)、この計測した3次元形状にしたがって被写体画像の歪み補正を行なう(ステップS77)。
【0100】
なお、上記ステップS76,S77における3次元形状の計測処理および被写体画像の歪み補正処理は、画像入力装置10の計算処理の負荷を軽減させるために、画像情報を画像入力装置10からパーソナルコンピュータやサーバなどの外部計算機へ転送し、その計算機内で実行させるようにしてもよい。
【0101】
(実施の形態8)
この実施の形態8は、被写体21と投光パターン22との位置関係を検出するための予備撮影について記述するものである。図21は、本発明の実施の形態8にかかる撮影動作を示すフローチャートである。まず、画像入力装置10の撮影位置へ被写体21を適当にに配置し、撮影スイッチ16を押下することにより予備撮影が開始される(ステップS81)。投光器12より投光パターン22を被写体21に投光し(ステップS82)、撮像部11によって撮影を行なう(ステップS83)。さらに、撮像部11で取得した画像から3次元形状を計測し(ステップS84)、予備撮影を終了する(ステップS85)。
【0102】
続いて、上記ステップS81〜ステップS85の予備撮影処理にしたがって、前述の図20と同様に、被写体21と投光パターン22との位置検出、位置合わせ、3次元形状の計測、被写体画像の歪み補正を実行する(ステップS86〜ステップS91)。
【0103】
なお、上述の予備撮影において被写体21の3次元形状が計測されない場合には、投光器12を移動させ、再度、予備撮影を行ない、大まかな3次元形状が計測されるまで予備撮影を繰り返し実行する。また、この予備撮影に制限時間を設定し、当該制限時間を過ぎた場合に、たとえば音や投光パターン22などにより撮影不可能であることをユーザに知らせるようにしてもよい。
【0104】
(実施の形態9)
この実施の形態9は、被写体21と投光パターン22との位置関係を画像の特徴から検出する予備撮影について記述するものである。図22は、本発明の実施の形態9にかかる撮影動作を示すフローチャートである。まず、画像入力装置10の撮影位置へ被写体21を適当に配置し、撮影スイッチ16を押下することにより予備撮影が開始される(ステップS101)。続いて、撮像部11により被写体21のテクスチャ画像の撮影を行ない(ステップS102)、被写体21のテクスチャ画像の輝度情報にしたがって被写体21の特徴点の位置を抽出する(ステップS103)。これらの予備撮影を終了し(ステップS104)、予備撮影処理にしたがって、前述の図20と同様に、被写体21と投光パターン22との位置検出、位置合わせ、3次元形状の計測、被写体画像の歪み補正を実行する(ステップS105〜ステップS110)。
【0105】
上述した撮影処理において、被写体21が、たとえば製本された原稿など特徴点がほぼ決定しているものであれば、被写体21の特徴点の位置を計測することにより、被写体21と投光パターン22との位置関係を検出することができる。製本された原稿などの特徴点の抽出には、本の継ぎ目の部分など外光が照射されず影になって被写体21の輝度が低くなる部分や、被写体21のエッジ情報、被写体21に記載されている文字列などを利用することができる。
【0106】
このように、テクスチャ画像から被写体21と投光パターン22との位置関係を検出することにより、予備撮影時における3次元形状の計測処理が軽減されるので、撮影時間を短縮することができる。
【0107】
なお、上述の予備撮影において被写体21の特徴点が抽出されない場合には、投光器12を移動させ、再度、予備撮影を行ない、特徴点が抽出されるまで予備撮影を繰り返し実行する。また、この予備撮影に制限時間を設定し、当該制限時間を過ぎた場合に、たとえば音や投光パターン22などにより撮影不可能であることをユーザに知らせるようにしてもよい。
【0108】
(実施の形態10)
この実施の形態10では、被写体21と投光パターン22との位置関係を予備撮影によって求めた後に、その位置調整を、投光器11を支持部13に対して移動させて行なう例について説明する。画像入力装置10は、先に述べたように、投光器12が、移動部15を介して支持部13によって支持され、支持部13に対して投光器12が上下、左右、斜めに投光軸や撮影光軸を移動する機構を有している。
【0109】
図23は、本発明の実施の形態10にかかる撮影動作を示すフローチャートである。まず、画像入力装置10の撮影位置へ被写体21を適当に配置し、撮影スイッチ16を押下することにより予備撮影が開始される(ステップS111)。続いて、この予備撮影で取得した画像情報から被写体21と投光パターン22との位置関係を検出し(ステップS112)、その検出結果にしたがって被写体21と投光パターン22と位置関係の調整を開始し(ステップS113)、移動部15の首振り機構を用いて投光器12を支持部13から移動させ(ステップS114)、被写体21と投光パターン22と位置合わせを行なう(ステップS115)。その後、前述と同様に、投光パターン22の投光、被写体21の撮影、3次元形状の計測、被写体画像の歪み補正を実行する(ステップS116〜ステップS119)。
【0110】
(実施の形態11)
この実施の形態11では、被写体21と投光パターン22との位置関係を予備撮影によって求めた後に、その位置調整を、投光パターン22を変化させることにより行なう例について説明する。
【0111】
図24は、本発明の実施の形態11にかかる撮影動作を示すフローチャートである。まず、画像入力装置10の撮影位置へ被写体21を適当に配置し、撮影スイッチ16を押下することにより予備撮影を行なう(ステップS121)。続いて、この予備撮影で取得した画像情報から被写体21と投光パターン22との位置関係を検出し(ステップS122)、その検出結果にしたがって投光パターンフィルタ20を変化させて投光パターンを変化させ(ステップS124)、被写体21と投光パターン22と位置合わせを行なう(ステップS125)。
【0112】
なお、ステップS124では、投光器12の投光口に設置されている投光パターンフィルタ20の材料には液晶パネルなどを用い、たとえば図14に示すように、投光パターン22を可変させる。
【0113】
その後、前述と同様に、投光パターン22の投光、被写体21の撮影、3次元形状の計測、被写体画像の歪み補正を実行する(ステップS126〜ステップS129)。
【0114】
(実施の形態12)
この実施の形態12では、被写体21と投光パターン22との位置関係を予備撮影によって求めた後に、その位置調整を、被写体21を回転させることにより行なう例について説明する。被写体21を回転させる機構としては、たとえば図26に示すターンテーブル50を用いる。
【0115】
図25は、本発明の実施の形態12にかかる撮影動作を示すフローチャートである。まず、画像入力装置10の撮影位置へ被写体21を適当に配置し、撮影スイッチ16を押下することにより予備撮影を行なう(ステップS131)。続いて、この予備撮影で取得した画像情報から被写体21と投光パターン22との位置関係を検出し(ステップS132)、その検出結果にしたがって被写体21と投光パターン22の位置合わせを開始し(ステップS133)、被写体21をターンテーブル50で移動し(ステップS134)、被写体21と投光パターン22と位置合わせを行なう(ステップS135)。その後、前述と同様に、投光パターン22の投光、被写体21の撮影、3次元形状の計測、被写体画像の歪み補正を実行する(ステップS136〜ステップS139)。
【0116】
すなわち、撮影前に被写体21をターンテーブル50に載せ、被写体21と投光パターン22の位置関係の検出結果にしたがってターンテール50を回転させることにより、被写体21に照射される投光パターン22を変化させる。なお、ターンテーブル50の制御をパーソナルコンピュータ60やサーバなどを介して行なうことにより、画像入力装置10の処理負担が軽減する。
【0117】
【発明の効果】
以上説明したように、本発明にかかる画像入力装置(請求項1)によれば、撮影対象の被写体(たとえば書籍など)を撮影可能な適当な位置に配置し、その被写体に投光パターンを照射して予備撮影を行ない、そこで取得した被写体と投光パターンとの配置位置を検出し、当該検出結果にしたがって被写体と投光パターンとの配置位置を調整し、その調整された最適位置での撮影を行ない、その画像から被写体の3次元形状を計測し、さらにこの3次元形状の計測結果にしたがって被写体画像の歪み補正を実行することにより、被写体と投光パターンが正確に配置されない場合にも被写体画像の歪み補正が可能になるため、撮影前に被写体と投光パターンとの位置関係を正確に調整して合わすという煩わしい作業をしなくても、被写体画像の歪み補正を精度よく実行することができる。
【0118】
また、本発明にかかる画像入力装置(請求項2)によれば、請求項1において、位置調整手段により位置調整が行なわれた後に、前記投光手段により前記パターンが照射された被写体を被写体画像として前記撮影手段で撮影し、当該被写体画像から被写体と投光パターンとの位置関係を検出することにより、予備撮影時における3次元形状の計測処理が軽減されるので、撮影時間を短縮することができる。
【0119】
また、本発明にかかる画像入力方法(請求項3)によれば、撮影対象の被写体(たとえば書籍など)を撮影可能な適当な位置に配置し、その被写体に投光パターンを照射して予備撮影を行ない、そこで取得した被写体と投光パターンとの配置位置を検出し、当該検出結果にしたがって被写体と投光パターンとの配置位置を調整し、その調整された最適位置での撮影を行ない、その画像から被写体の3次元形状を計測し、さらにこの3次元形状の計測結果にしたがって被写体画像の歪み補正を実行することにより、被写体と投光パターンが正確に配置されない場合にも被写体画像の歪み補正が可能になるため、撮影前に被写体と投光パターンとの位置関係を正確に調整して合わすという煩わしい作業をしなくても、被写体画像の歪み補正を精度よく実行することができる。
【0120】
また、本発明にかかる画像入力方法(請求項4)によれば、請求項3において、位置調整手段により位置調整が行なわれた後に、前記投光手段により前記パターンが照射された被写体を被写体画像として前記撮影手段で撮影し、当該被写体画像から被写体と投光パターンとの位置関係を検出することにより、予備撮影時における3次元形状の計測処理が軽減されるので、撮影時間を短縮することができる。
【0121】
また、本発明にかかるコンピュータ読み取り可能な記録媒体(請求項5)によれば、請求項3または4に記載の画像入力方法をプログラムした記録媒体をコンピュータで読み取ることにより、請求項3または4に記載の画像入力方法をコンピュータ上で実行することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる画像入力装置の概略構成を示す説明図である。
【図2】図1における撮像部の構成を示すブロック図である。
【図3】投光器による直線状のパターン投光例を示す説明図である。
【図4】本発明の実施の形態1にかかる被写体の撮影動作を示すフローチャートである。
【図5】被写体表面上の点の3次元位置を検出する方法を示す説明図である。
【図6】分割撮影の方法を示す説明図である。
【図7】撮像部の回転による画像のあおり現象を示す説明図である。
【図8】3次元形状から被写体画像の歪み補正を行なう動作を示すフローチャートである。
【図9】図8における画像撮影座標系を示す説明図である。
【図10】歪み補正前の撮影画像およびu方向の歪み補正の状態を示す説明図である。
【図11】図10の撮影画像に対するv方向への伸張処理を示す説明図である。
【図12】図11におけるv方向の歪み補正方法を示す説明図である。
【図13】分割撮影時における撮像部回転に被写体までの距離の変化による投光パターンの状態および被写体画像の状態を示す説明図である。
【図14】撮像部の回転角度に対応して投光パターンを変化させる例を示す説明図である。
【図15】本発明の実施の形態2にかかる撮影動作を示すフローチャートである。
【図16】本発明の実施の形態3にかかる投光パターンの調整例を示す説明図である。
【図17】投光パターンフィルタの場所の違いによるパターンの変化状態およびその調整例を示す説明図である。
【図18】本発明の実施の形態6にかかる3次元形状の推定例を示す説明図である。
【図19】被写体の一部分の3次元形状から被写体全体の3次元形状を推定する動作などを示すフローチャートである。
【図20】本発明の実施の形態7にかかる撮影動作を示すフローチャートである。
【図21】本発明の実施の形態8にかかる撮影動作を示すフローチャートである。
【図22】本発明の実施の形態9にかかる撮影動作を示すフローチャートである。
【図23】本発明の実施の形態10にかかる撮影動作を示すフローチャートである。
【図24】本発明の実施の形態11にかかる撮影動作を示すフローチャートである。
【図25】本発明の実施の形態12にかかる撮影動作を示すフローチャートである。
【図26】本発明の実施の形態12にかかるシステム構成を示す説明図である。
【図27】被写体と投光パターンとの位置関係がずれた状態を示す説明図である。
【図28】図3の正常な投光時における撮影状態を示す説明図である。
【図29】図27の不正確な投光時における撮影状態を示す説明図である。
【符号の説明】
3 撮像素子
7 IPP
8 メモリ
9 MPU
10 画像入力装置
11 撮像部
12 投光器
13 支持部
14 解像度指示部
15 移動部
16 撮影スイッチ
17 I/F部
18 計測位置設定方法切換スイッチ
20 投光パターンフィルタ
21 被写体
22 投光パターン
50 ターンテーブル
Claims (5)
- 被写体を撮影する撮影手段と、
前記被写体上に所定のパターンを照射する投光手段と、
前記撮影手段と前記投光手段とを支持する支持手段と、
前記撮影手段にて前記被写体の予備撮影を行ない、前記被写体と前記パターンとの位置関係を検出する位置検出手段と、
前記位置検出手段の検出結果にしたがって前記被写体と前記パターンとの位置関係を、前記投光手段を前記支持手段に対して移動させて調整する位置調整手段と、
前記位置調整手段により位置調整が行なわれた後に、前記投光手段により前記パターンが照射された被写体を被写体画像として前記撮影手段で撮影し、当該被写体画像から前記被写体の3次元形状を計測する計測手段と、
前記計測手段により計測された3次元形状に基づいて、前記被写体画像の歪みを補正する補正手段と、
を備えたことを特徴とする画像入力装置。 - 前記位置検出手段は、予備撮影時に前記被写体と前記投光手段のパターンとの位置関係を画像の特徴から検出することを特徴とする請求項1に記載の画像入力装置。
- 撮影手段と投光手段とを支持する支持手段を有し、
前記撮影手段により被写体を撮影する撮影工程と、
投光手段により前記被写体上に所定のパターンを照射する投光工程と、
位置検出手段により、前記撮影手段にて前記被写体の予備撮影を行ない、前記被写体と前記パターンとの位置関係を検出する位置検出工程と、
位置調整手段により、前記位置検出工程の検出結果にしたがって前記被写体と前記パターンとの位置関係を、前記投光手段を前記支持手段に対して移動させて調整する位置調整工程と、
計測手段により、前記位置調整手段により位置調整が行なわれた後に、前記投光手段により前記パターンが照射された被写体を被写体画像として前記撮影手段で撮影し、当該被写体画像から前記被写体の3次元形状を計測する計測工程と、
補正手段により、前記計測工程で計測された3次元形状に基づいて、前記被写体画像の歪みを補正する補正工程と、
を含むことを特徴とする画像入力方法。 - 前記位置検出工程は、予備撮影時に前記被写体と前記投光手段のパターンとの位置関係を画像の特徴から検出することを特徴とする請求項3に記載の画像入力方法。
- 請求項3または4に記載の画像入力方法をプログラムし、これをコンピュータ上で実行可能とすることを特徴とするコンピュータ読み取り可能な記録媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002209947A JP4133060B2 (ja) | 2002-03-14 | 2002-07-18 | 画像入力装置、画像入力方法、およびコンピュータ読み取り可能な記録媒体 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002-70920 | 2002-03-14 | ||
JP2002070920 | 2002-03-14 | ||
JP2002209947A JP4133060B2 (ja) | 2002-03-14 | 2002-07-18 | 画像入力装置、画像入力方法、およびコンピュータ読み取り可能な記録媒体 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003338907A JP2003338907A (ja) | 2003-11-28 |
JP4133060B2 true JP4133060B2 (ja) | 2008-08-13 |
Family
ID=29714164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002209947A Expired - Fee Related JP4133060B2 (ja) | 2002-03-14 | 2002-07-18 | 画像入力装置、画像入力方法、およびコンピュータ読み取り可能な記録媒体 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4133060B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099510A1 (ko) * | 2015-12-09 | 2017-06-15 | 경북대학교산학협력단 | 영상 통계정보에 기반한 정지장면 분할장치 및 그 방법 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2426071B (en) * | 2005-05-11 | 2009-02-11 | Haroon Ahmed | Document imaging |
JP5633719B2 (ja) * | 2009-09-18 | 2014-12-03 | 学校法人福岡工業大学 | 三次元情報計測装置および三次元情報計測方法 |
JP2012195875A (ja) * | 2011-03-17 | 2012-10-11 | Seiko Epson Corp | 画像出力装置 |
KR20140015077A (ko) * | 2012-07-27 | 2014-02-06 | 삼성테크윈 주식회사 | 실물화상기 |
KR102233060B1 (ko) * | 2013-12-19 | 2021-03-30 | 코닝 인코포레이티드 | 사실상 원통형인 경면 반사면의 형상을 결정하기 위한 방법 |
JP6422362B2 (ja) * | 2014-05-22 | 2018-11-14 | キヤノン株式会社 | 画像読取装置、画像読取方法、及びプログラム |
JP2022098661A (ja) * | 2020-12-22 | 2022-07-04 | キヤノン株式会社 | 撮像装置およびその制御方法、測定装置、プログラム |
CN116141845B (zh) * | 2023-02-03 | 2023-10-13 | 广州一龙印刷有限公司 | 一种书刊装订用辅助校验装置及校验方法 |
-
2002
- 2002-07-18 JP JP2002209947A patent/JP4133060B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017099510A1 (ko) * | 2015-12-09 | 2017-06-15 | 경북대학교산학협력단 | 영상 통계정보에 기반한 정지장면 분할장치 및 그 방법 |
US10593050B2 (en) | 2015-12-09 | 2020-03-17 | Kyungpook National University Industry-Academic Cooperation Foundation | Apparatus and method for dividing of static scene based on statistics of images |
Also Published As
Publication number | Publication date |
---|---|
JP2003338907A (ja) | 2003-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4012710B2 (ja) | 画像入力装置 | |
US7139424B2 (en) | Stereoscopic image characteristics examination system | |
JP4297630B2 (ja) | 電子撮像装置 | |
JP5596972B2 (ja) | 撮像装置の制御装置および制御方法 | |
EP3468163B1 (en) | Intelligent internet high-definition scanner with laser correction | |
JP2005020314A (ja) | 表示特性補正データの算出方法、表示特性補正データの算出プログラム、表示特性補正データの算出装置 | |
JPWO2006064751A1 (ja) | 複眼撮像装置 | |
JP2002223381A (ja) | 文書カメラ | |
JPH05316302A (ja) | 画像入力装置 | |
JP3907008B2 (ja) | 写真のための被写界の深度を増大するための方法及び手段 | |
JP4133060B2 (ja) | 画像入力装置、画像入力方法、およびコンピュータ読み取り可能な記録媒体 | |
JP2006338584A (ja) | 画像処理装置、画像処理方法、画像処理プログラム、及び画像処理システム、並びに撮像装置 | |
JPH08181828A (ja) | 画像入力装置 | |
JP2003015218A (ja) | 投影型表示装置 | |
JP2007082005A (ja) | 画像読み取り装置、画像読み取り方法 | |
JP2899553B2 (ja) | 固体撮像素子の位置調整方法 | |
KR101816781B1 (ko) | 사진계측 방식의 3d스캐너 및 3d모델링의 고품질 입력 데이터를 위한 사진계측 방식의 촬영방법 | |
JP4390779B2 (ja) | 画像入力装置 | |
JP2001250114A (ja) | 画像処理方法と画像処理装置及びコンピュータ読み取り可能な記録媒体 | |
JP4833304B2 (ja) | 撮像装置 | |
CN109565544B (zh) | 位置指定装置及位置指定方法 | |
RU2368091C2 (ru) | Система и способ сканирования и копирования | |
JP2020067511A (ja) | カメラシステム、その制御方法およびプログラム | |
JP7463133B2 (ja) | 面積計測装置、面積計測方法、及びプログラム | |
JP3963219B2 (ja) | 非接触式形状計測装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050712 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080513 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080602 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110606 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120606 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130606 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |