JP4132113B2 - Flexure meshing gear unit - Google Patents

Flexure meshing gear unit Download PDF

Info

Publication number
JP4132113B2
JP4132113B2 JP31599896A JP31599896A JP4132113B2 JP 4132113 B2 JP4132113 B2 JP 4132113B2 JP 31599896 A JP31599896 A JP 31599896A JP 31599896 A JP31599896 A JP 31599896A JP 4132113 B2 JP4132113 B2 JP 4132113B2
Authority
JP
Japan
Prior art keywords
gear
tooth
flexible external
external gear
meshing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31599896A
Other languages
Japanese (ja)
Other versions
JPH10159917A (en
Inventor
秀夫 浅輪
隆弘 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmonic Drive Systems Inc
Original Assignee
Harmonic Drive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmonic Drive Systems Inc filed Critical Harmonic Drive Systems Inc
Priority to JP31599896A priority Critical patent/JP4132113B2/en
Publication of JPH10159917A publication Critical patent/JPH10159917A/en
Application granted granted Critical
Publication of JP4132113B2 publication Critical patent/JP4132113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Retarders (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、カップ状あるいはシルクハット状の可撓性外歯歯車を備えた撓み噛み合い式歯車に関し、可撓性外歯歯車のコーニングに起因する歯車の不適切な噛み合い状態等を回避可能な撓み噛み合い式歯車装置に関するものである。
【0002】
【従来の技術】
図2(A)に示すように、カップ型撓み噛み合い式歯車装置1は、円環状の剛性内歯歯車2と、この内側に配置されたカップ状の可撓性外歯歯車3と、当該歯車の内側に嵌め込まれた楕円形輪郭をした波動発生器4とを備えた構成となっている。カップ状の可撓性外歯歯車3は、円筒状の胴部31と、この胴部31の一方の端に連続して半径方向の内側に延びている環状のダイヤフラム32と、当該ダイヤフラム32の内周端に連続している厚肉のボス33と、胴部31の他方の端に連続している歯部34とを備えた形状をしており、歯部34の外周面には外歯35が形成されている。
【0003】
楕円形の波動発生器4は、楕円形輪郭の剛性カム板41と、このカム板41の外周面に嵌めたウエーブベアリング42とを備え、可撓性外歯歯車3の歯部34の内周面に嵌め込まれた状態では、ウエーブベアリング42によって、可撓性外歯歯車3に対して剛性カム板41が回転可能となっている。剛性カム板41の側はモータ軸等に連結されて高速回転する。剛性カム板41が高速回転すると、剛性カム板41によって楕円状に撓められてその楕円の長軸方向の両端の位置で噛み合っている両歯車2、3の噛み合い位置が円周方向に移動する。両歯車2、3の歯数には通常2枚の差があり、従って、この歯数差に応じて大幅に減速された回転が両歯車2、3の間に発生する。通常は剛性内歯歯車2の側を固定し、可撓性外歯歯車3のボス33に連結した出力軸の側から減速回転が取り出される。
【0004】
可撓性外歯歯車としては、シルクハット状のものも知られている。この形状の可撓性外歯歯車は、円筒状の胴部に連続しているダイヤフラムが半径方向の外側に向けて広がっており、当該ダイヤフラムの外周端に連続して厚肉のボスが形成された構成となっている。
【0005】
【発明が解決しようとする課題】
ここで、カップ状あるいはシルクハット状の可撓性外歯歯車を備えた撓み噛み合い式歯車装置では、波動発生器によって、可撓性外歯歯車はコーニングと呼ばれる三次元的な複雑な撓み状態になる。すなわち、カップ状あるいはシルクハット状の可撓性外歯歯車は、その開口端側の歯部が、そこに嵌め込まれている楕円形の波動発生器によって楕円状に撓められている。従って、図2(B)に示すように、楕円の長軸側では、可撓性外歯歯車の歯部およびこれに連続している胴部は中心軸線に対して外側に開く状態に変形し、楕円の短軸側では半径方向の内側に狭まる状態に変形する。このような可撓性外歯歯車の変形、すなわちコーニングのために、両歯車の噛み合い中心は、長軸上では可撓性外歯歯車の開口端の側となり、短軸側にいく程、胴部側に移動する。また、伝達負荷が増大すると、コーニング角が少なくなる方向に向けて歯部が撓み、両歯車の噛み合い中心が移動する。
【0006】
従って、カップ型撓み噛み合い式歯車装置では、カップ状可撓性外歯歯車のコーニングによって両歯車の歯部に偏摩耗が発生しやすいという問題がある。また、両歯車の噛み合い中心が適切な位置となるように、両歯車の歯形を修正することが一般に必要である。
【0007】
一方、波動発生器は、可撓性外歯歯車を上記のように三次元的に複雑に変形させているので、そこに作用するベアリング反力が大きなものとなる。耐久性等の点から、ベアリング反力は小さくした方が望ましい。
【0008】
本発明の課題は、このような点に着目し、コーニングによる三次元的な複雑な可撓性外歯歯車の撓み量を低減することにより、適切な噛み合い状態を形成可能であると共にウエーブベアリングに作用するベアリング反力も低減可能な撓み噛み合い式歯車装置を提案することにある。
【0009】
【課題を解決するための手段】
図1を参照して説明すると、本発明の撓み噛み合い式歯車装置5は、環状の剛性内歯歯車6と、全体としてカップ状あるいはシルクハット状をしており開口端側に外歯75が形成された歯部74を備えた可撓性外歯歯車7と、当該可撓性外歯歯車7を半径方向に撓めて前記剛性内歯歯車6に部分的に噛み合わせると共に当該噛み合わせ位置を円周方向に移動させる波動発生器8とを有するものにおいて、前記可撓性外歯歯車7の外歯75の歯幅Lを、当該外歯75のピッチ円直径PCDの5〜14%の範囲内の寸法にしたことを特徴としている。
【0010】
また、本発明の撓み噛み合い式歯車装置5では、上記の特徴に加えて、前記可撓性外歯歯車7は、前記歯部74に連続している円筒状の胴部71を備え、当該胴部71における前記歯部74への連続部分には、環状の薄肉部分76が隣接する部分に対して滑らかに連続するように形成されており、当該薄肉部分76の最小厚t(min)さは、当該該胴部の最大厚さt(max)に対して30〜80%の厚さであることを特徴としている。
【0011】
本発明の撓み噛み合い式歯車装置では、その可撓性外歯歯車7の外歯75の歯幅Lを短くしてあるので、当該可撓性外歯歯車7のコーニングによる三次元的な複雑で不安定な両歯車の噛み合い状態を解消できる。換言すると両歯車の噛み合い不良を解消できる。よって、従来のような歯幅の広い可撓性外歯歯車を用いる場合に比べて、歯形修正の度合いが少なくて済むとともに、歯部の偏摩耗を低減できる。また、可撓性外歯歯車7の歯部74を短くしたことに伴い、剛性内歯歯車6における内歯65が形成されている歯部も短くでき、さらには、波動発生器8も薄肉のものにできる。この結果、撓み噛み合い式歯車装置の軸長を短くできるという利点もある。
【0012】
また、本発明では、可撓性外歯歯車7の歯部74に隣接した胴部71に薄肉部分76を形成してあるので、歯部74を半径方向に変形させやすい。従って、波動発生器によって可撓性外歯歯車7の歯部74を理想的な形状に撓めることができる。同時に、波動発生器のウエーブベアリング82への反力も低減できる。これに加えて、撓み噛み合い式歯車装置の低負荷領域での剛性を改善できるという利点も得られる。
【図面の簡単な説明】
【図1】(A)は本発明を適用したカップ型撓み噛み合い式歯車装置の断面構成を示す概略構成図、(B)はその部分拡大図である。
【図2】(A)は一般的なカップ型撓み噛み合い式歯車装置の断面構成を示す概略構成図であり、(B)はそのカップ状可撓性外歯歯車のコーニングを示す説明図である。
【符号の説明】
5 撓み噛み合い式歯車装置
6 剛性内歯歯車
7 カップ状あるいはシルクハット状可撓性外歯歯車
71 胴部
74 歯部
75 外歯
76 薄肉部分
8 波動発生器
82 ウエーブベアリング
L 歯幅
PCD 外歯のピッチ円直径
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flexure meshing gear provided with a cup-shaped or top hat-shaped flexible external gear, and is capable of avoiding an inappropriate meshing state of the gear caused by the coning of the flexible external gear. The present invention relates to a meshing gear device.
[0002]
[Prior art]
As shown in FIG. 2 (A), a cup-type flexibly meshing gear device 1 includes an annular rigid internal gear 2, a cup-shaped flexible external gear 3 disposed on the inside, and the gear. And a wave generator 4 having an elliptical shape fitted inside. The cup-shaped flexible external gear 3 includes a cylindrical body portion 31, an annular diaphragm 32 extending continuously inward in the radial direction from one end of the body portion 31, and the diaphragm 32. It has a shape including a thick boss 33 continuing to the inner peripheral end and a tooth portion 34 continuing to the other end of the body portion 31, and external teeth are provided on the outer peripheral surface of the tooth portion 34. 35 is formed.
[0003]
The elliptical wave generator 4 includes an elliptical contour rigid cam plate 41 and a wave bearing 42 fitted to the outer peripheral surface of the cam plate 41, and the inner periphery of the tooth portion 34 of the flexible external gear 3. The rigid cam plate 41 is rotatable with respect to the flexible external gear 3 by the wave bearing 42 in the state of being fitted into the surface. The side of the rigid cam plate 41 is connected to a motor shaft or the like and rotates at a high speed. When the rigid cam plate 41 rotates at a high speed, the meshing positions of the two gears 2 and 3 that are bent elliptically by the rigid cam plate 41 and meshed at both ends of the long axis of the ellipse move in the circumferential direction. . There are usually two differences in the number of teeth of the two gears 2 and 3, and accordingly, a rotation that is greatly reduced in accordance with the difference in the number of teeth is generated between the two gears 2 and 3. Usually, the reduced speed rotation is taken out from the side of the output shaft fixed to the rigid internal gear 2 side and connected to the boss 33 of the flexible external gear 3.
[0004]
As a flexible external gear, a top hat-shaped gear is also known. In the flexible external gear of this shape, a diaphragm that is continuous with a cylindrical body portion spreads outward in the radial direction, and a thick-walled boss is formed continuously on the outer peripheral end of the diaphragm. It becomes the composition.
[0005]
[Problems to be solved by the invention]
Here, in a flexure meshing gear device having a cup-shaped or top hat-shaped flexible external gear, the flexible external gear is transformed into a three-dimensional complex flexure state called coning by a wave generator. Become. That is, the cup-shaped or top-hat-shaped flexible external gear has its teeth on the opening end side bent in an elliptical shape by an elliptical wave generator fitted therein. Therefore, as shown in FIG. 2 (B), on the long axis side of the ellipse, the tooth portion of the flexible external gear and the trunk portion continuous thereto are deformed to open outward with respect to the central axis. The ellipse is deformed so that it narrows inward in the radial direction on the short axis side. Due to the deformation of the flexible external gear, that is, coning, the meshing center of both gears is on the open end side of the flexible external gear on the long axis, and the barrel is further toward the short axis side. Move to the club side. Further, when the transmission load increases, the tooth portion bends in the direction in which the cornering angle decreases, and the meshing center of both gears moves.
[0006]
Therefore, in the cup-type flexure meshing gear device, there is a problem that uneven wear tends to occur at the tooth portions of both gears due to the coning of the cup-shaped flexible external gear. Moreover, it is generally necessary to correct the tooth profile of both gears so that the meshing center of both gears is in an appropriate position.
[0007]
On the other hand, since the wave generator deforms the flexible external gear in a three-dimensionally complex manner as described above, the bearing reaction force acting thereon is large. From the viewpoint of durability and the like, it is desirable to reduce the bearing reaction force.
[0008]
An object of the present invention is to pay attention to such points, and by reducing the amount of bending of a three-dimensional complex flexible external gear by coning, an appropriate meshing state can be formed and a wave bearing can be formed. An object of the present invention is to propose a flexibly meshing gear device capable of reducing the acting bearing reaction force.
[0009]
[Means for Solving the Problems]
Referring to FIG. 1, the flexure meshing gear device 5 of the present invention has an annular rigid internal gear 6 and a cup shape or a top hat shape as a whole, and external teeth 75 are formed on the opening end side. A flexible external gear 7 having a toothed portion 74, and the flexible external gear 7 is bent in the radial direction and partially meshed with the rigid internal gear 6 and the meshing position is set. In the one having the wave generator 8 moved in the circumferential direction, the tooth width L of the external tooth 75 of the flexible external gear 7 is in the range of 5 to 14% of the pitch circle diameter PCD of the external tooth 75. It is characterized by the inside dimensions.
[0010]
In addition, in the flexibly meshing gear device 5 of the present invention, in addition to the above features, the flexible external gear 7 includes a cylindrical body 71 continuous to the teeth 74, and the body In the continuous portion of the portion 71 to the tooth portion 74, an annular thin portion 76 is formed so as to be smoothly continuous with respect to an adjacent portion, and the minimum thickness t (min) of the thin portion 76 is The thickness is 30 to 80% with respect to the maximum thickness t (max) of the body portion.
[0011]
In the flexure meshing gear device of the present invention, since the tooth width L of the external tooth 75 of the flexible external gear 7 is shortened, it is a three-dimensional complex due to the coning of the flexible external gear 7. Unstable meshing of both gears can be eliminated. In other words, the meshing failure of both gears can be eliminated. Therefore, compared with the conventional case where a flexible external gear having a wide tooth width is used, the degree of correction of the tooth profile can be reduced and uneven wear of the tooth portion can be reduced. Further, along with the shortening of the tooth portion 74 of the flexible external gear 7, the tooth portion of the rigid internal gear 6 where the internal teeth 65 are formed can be shortened, and the wave generator 8 is also thin. Can be a thing. As a result, there is an advantage that the axial length of the flexure meshing gear device can be shortened.
[0012]
In the present invention, since the thin portion 76 is formed in the body portion 71 adjacent to the tooth portion 74 of the flexible external gear 7, the tooth portion 74 can be easily deformed in the radial direction. Therefore, the tooth portion 74 of the flexible external gear 7 can be bent into an ideal shape by the wave generator. At the same time, the reaction force of the wave generator to the wave bearing 82 can be reduced. In addition to this, there is also an advantage that the rigidity in the low load region of the flexure meshing gear device can be improved.
[Brief description of the drawings]
FIG. 1A is a schematic configuration diagram showing a cross-sectional configuration of a cup-type flexibly meshing gear device to which the present invention is applied, and FIG. 1B is a partially enlarged view thereof.
2A is a schematic configuration diagram showing a cross-sectional configuration of a general cup-type flexure meshing gear device, and FIG. 2B is an explanatory diagram showing coning of the cup-shaped flexible external gear. .
[Explanation of symbols]
5 flexure meshing gear device 6 rigid internal gear 7 cup-shaped or silk hat-shaped flexible external gear 71 body 74 tooth 75 external tooth 76 thin portion 8 wave generator 82 wave bearing L tooth width PCD external tooth Pitch circle diameter

Claims (1)

環状の剛性内歯歯車と、全体としてカップ状あるいはシルクハット状をしており開口端側に外歯が形成された歯部を備えた可撓性外歯歯車と、当該可撓性外歯歯車を半径方向に撓めて前記剛性内歯歯車に部分的に噛み合わせると共に当該噛み合わせ位置を円周方向に移動させる波動発生器とを有する撓み噛み合い式歯車装置において、
前記可撓性外歯歯車の外歯の歯幅、当該外歯のピッチ円直径の5〜14%の範囲内の寸法であり、
前記可撓性外歯歯車は、前記歯部に連続している円筒状の胴部を備え、
当該胴部における前記歯部への連続部分には、隣接する前記胴部の部分および隣接する前記歯部の歯底部分に対してそれぞれ滑らかに連続するように、これら隣接する胴部の部分および歯底部分より薄い環状の薄肉部分が形成されており、
前記薄肉部分の最小厚さは、前記胴部の最大厚さ30〜80%あることを特徴とする撓み噛み合い式歯車装置。
An annular rigid internal gear, a flexible external gear having a cup-shaped or silk-hat-shaped overall and having teeth formed on the opening end side, and the flexible external gear In a flexure meshing gear device having a wave generator that flexes in a radial direction and partially meshes with the rigid internal gear and moves the meshing position in the circumferential direction.
The tooth width of the external teeth of the flexible external gear is a dimension within a range of 5 to 14% of the pitch circle diameter of the external teeth ,
The flexible external gear includes a cylindrical body continuous with the tooth,
The continuous portion to the tooth portion of the body portion, so as to be continuous smoothly respectively the tooth bottom portion of the partial and adjacent the tooth portion of the body portion adjacent these parts of the adjacent body portion and An annular thin part thinner than the root part is formed,
The minimum thickness of the thin portion is flexible meshing type gear device, characterized in that 30 to 80% of the maximum thickness of the trunk portion.
JP31599896A 1996-11-27 1996-11-27 Flexure meshing gear unit Expired - Lifetime JP4132113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31599896A JP4132113B2 (en) 1996-11-27 1996-11-27 Flexure meshing gear unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31599896A JP4132113B2 (en) 1996-11-27 1996-11-27 Flexure meshing gear unit

Publications (2)

Publication Number Publication Date
JPH10159917A JPH10159917A (en) 1998-06-16
JP4132113B2 true JP4132113B2 (en) 2008-08-13

Family

ID=18072108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31599896A Expired - Lifetime JP4132113B2 (en) 1996-11-27 1996-11-27 Flexure meshing gear unit

Country Status (1)

Country Link
JP (1) JP4132113B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4685383B2 (en) * 2004-08-18 2011-05-18 株式会社ハーモニック・ドライブ・システムズ Wave gear device
JP2010190373A (en) 2009-02-20 2010-09-02 Harmonic Drive Syst Ind Co Ltd Wave gear device
WO2013046274A1 (en) * 2011-09-29 2013-04-04 株式会社ハーモニック・ドライブ・システムズ Wave gear device having tapered flexible external gear
DE112012000049B4 (en) 2012-05-23 2024-06-13 Harmonic Drive Systems Inc. Wave gear and flexible, externally toothed gear
CN103671844A (en) * 2013-11-28 2014-03-26 苏州绿的谐波传动科技有限公司 Compact-structure harmonic reducer
WO2019030843A1 (en) * 2017-08-09 2019-02-14 株式会社ハーモニック・ドライブ・システムズ Wave gear device
JP7081878B2 (en) * 2018-05-11 2022-06-07 日本電産シンポ株式会社 Wave gear device
CN114402149A (en) * 2019-09-27 2022-04-26 谐波传动系统有限公司 Flat wave gear device

Also Published As

Publication number Publication date
JPH10159917A (en) 1998-06-16

Similar Documents

Publication Publication Date Title
US5715732A (en) Harmonic flexible meshing gear device
JP2535503Y2 (en) Meshing structure of external teeth and internal teeth in cup-type gear type harmonic transmission
US5850765A (en) Flat wave gear drive
JP5031649B2 (en) Flexspline and wave gear device
JP4357054B2 (en) Negative displacement flexure meshing gear system having overtake type maximum tooth profile
TWI614428B (en) Dual type strain wave gearing
WO2005124189A1 (en) Wave gear device having negative deflection meshing tooth profile
JP3580506B2 (en) Silk hat type flexible meshing gear device
JP6656781B2 (en) External gear of wave gear device
JP6719855B2 (en) Wave gearing
JP4132113B2 (en) Flexure meshing gear unit
TW201727100A (en) Flexible externally toothed gear and strain wave gearing
TWI608184B (en) Dual type strain wave gearing and method of setting a flexing amount in a radial direction of an externally toothed gear of the strain wave gearing
JP2001146944A (en) Deflection meshing gfar device having deflection meshing involute tooth form
JP4133018B2 (en) Method of assembling a wave generator for a top hat type wave gear device, and a top hat-shaped flexible external gear used in the method
JP3611052B2 (en) Top hat flexure meshing gear system
WO1998053224A1 (en) Flat wave gearing
JPH05141486A (en) Flat type wave motion gear device having low speed reduction ratio
JPH0617888A (en) Flexible cup shape member in harmonic speed change gear
JP2000179631A (en) Wave motive gear
JPH0438121Y2 (en)
JP3916101B2 (en) Flexure meshing gear unit
JP3800659B2 (en) Top hat flexure meshing gear system
JPH08312731A (en) Silk hat-type wave gear device
JPH05141485A (en) Cup type wave motion gear device having low speed reduction ratio

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061218

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term