JP4131474B2 - Microparticle layer type high efficiency solar cell - Google Patents

Microparticle layer type high efficiency solar cell Download PDF

Info

Publication number
JP4131474B2
JP4131474B2 JP2004244445A JP2004244445A JP4131474B2 JP 4131474 B2 JP4131474 B2 JP 4131474B2 JP 2004244445 A JP2004244445 A JP 2004244445A JP 2004244445 A JP2004244445 A JP 2004244445A JP 4131474 B2 JP4131474 B2 JP 4131474B2
Authority
JP
Japan
Prior art keywords
type
junction
microparticles
micro
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004244445A
Other languages
Japanese (ja)
Other versions
JP2006041452A5 (en
JP2006041452A (en
Inventor
浩 北村
Original Assignee
浩 北村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浩 北村 filed Critical 浩 北村
Priority to JP2004244445A priority Critical patent/JP4131474B2/en
Publication of JP2006041452A publication Critical patent/JP2006041452A/en
Publication of JP2006041452A5 publication Critical patent/JP2006041452A5/ja
Application granted granted Critical
Publication of JP4131474B2 publication Critical patent/JP4131474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、n型及びp型シリコンをn型マイクロ粒子及びp型マイクロ微粒子に成形し、それらをpnマイクロ接合によってpnマイクロ接合層を形成させたことで高効率化を図っただけでなく、光拡散材の使用によっても高効率化を図ったことを特徴とする太陽電池に関する。The present invention not only achieves high efficiency by forming n-type and p-type silicon into n-type microparticles and p-type microparticles and forming pn microjunction layers by pn microjunction, The present invention relates to a solar cell characterized in that high efficiency is achieved by using a light diffusing material.

従来の太陽電池は光電効果によってなされるもので、これはpn接合面を持つn型シリコンに光を照射すると、バンド間遷移等によって電子と正孔の対がpn接合面の付近で発生し、空乏層のドリフト効果等によって正負の電極ができる現象を利用している。Conventional solar cells intended to be made by the photoelectric effect, which is irradiated with light to n-type silicon having a pn junction surface, electron-hole pairs are generated near the pn junction surface by interband transitions, etc., It utilizes the phenomenon that positive and negative electrodes can be formed by the drift effect of the depletion layer.

しかし、太陽光の持つエネルギー密度が低いため、従来の太陽電池は大きく分けて太陽光をそのままの状態で利用する平板型と、光学系等を使って高密度化してから太陽電池に入射させる集光型の二つになっている。However, since the energy density of sunlight is low, conventional solar cells can be broadly divided into a flat plate type that uses sunlight as it is, and a concentrator that uses an optical system or the like to increase the density and then enter the solar cell. There are two types of light.

通常では、前者の太陽光をそのままの状態でn型及びp型シリコンで形成されたpn接合の構造によって電力を得る平板型が最も一般的な太陽電池であり、そのほとんどがインゴッドにしたシリコン固体から、結晶板(ウエハ)を製作する方法となっている。Usually, the flat plate type that obtains electric power by the structure of a pn junction formed of n-type and p-type silicon with the former sunlight as it is is the most common solar cell, most of which is an ingot silicon solid Therefore, it is a method of manufacturing a crystal plate (wafer).

その中で、「球状マイクロソーラセル」という名称で、京セミ株式会社が球状のpn接合を持つ商品を開発したものがある(例えば、非特許文献1参照)。  Among them, there is a product developed by Kyosemi Corporation having a spherical pn junction under the name of “spherical micro solar cell” (for example, see Non-Patent Document 1).

その内容は、「直径が1〜2mm程度の小さなシリコン単結晶を用いて、シリコンの表面から1ミクロンメートル程度の深さまで不純物を拡散して、球状面のpn接合を形成し、そのPとnの表面に対向した1対の電極を設けてセルを作る〜」というものである。  The contents are as follows: "A small silicon single crystal having a diameter of about 1 to 2 mm is used to diffuse impurities from the surface of silicon to a depth of about 1 micrometer to form a pn junction having a spherical surface. A cell is formed by providing a pair of electrodes opposed to the surface of the cell.

つまり、直径1〜2mmのシリコンボールを作り、それらの1個ずつに、中身をP型シリコンとして外側をn型シリコンとすることで、中身と外側の境目にpn接合面を作り、さらにその1個ずつの球状の端と端に正負の電極を取り付けるというものである。  That is, a silicon ball having a diameter of 1 to 2 mm is made, and for each of them, the content is P-type silicon and the outside is n-type silicon, thereby creating a pn junction surface at the boundary between the content and the outside. In this case, positive and negative electrodes are attached to each spherical end and end.

一方、単に球状半導体を用いて太陽電池としたものもある。球状にした第1型半導体の表面に、pn接合を形成するように第2型の半導体層と透明の電導膜を一緒に張り、個々の球状半導体同士を細い導体で繋ぐ方法のものである(例えば、特許文献1参照)  On the other hand, some solar cells are simply made using spherical semiconductors. This is a method in which a second type semiconductor layer and a transparent conductive film are stretched together on the surface of a first type semiconductor formed into a spherical shape so as to form a pn junction, and individual spherical semiconductors are connected by a thin conductor ( For example, see Patent Document 1)

さらに、球状太陽電池をp型及びn型領域と接触する糸状の導体を横糸として、不良導体を縦糸とした構成でモジュール化したものがある(例えば、特許文献2参照。)。
「京セミ株式会社インターネットHP球状マイクロソーラセル」 特開2001−156315 公報 特開平09−162434 公報
Furthermore, there is a spherical solar cell that is modularized with a configuration in which a thread-like conductor in contact with the p-type and n-type regions is a weft and a defective conductor is a warp (see, for example, Patent Document 2).
"Kyosemi Corporation Internet HP Spherical Micro Solar Cell" JP 2001-156315 A JP 09-162434 A

従来の太陽電池では、太陽光の持つエネルギー密度が低いため、変換効率が結晶系シリコン太陽電池のpn接合であっても15〜19%程度と低く、太陽光を十分に電力変換しているとは言えなかった。例えば1KWの電力を得るためには、約7mもの受光面積(Pn接合面)が必要であり、モジュールも大規模となって製造コストが割高となっていた。また太陽の軌道に沿った受光が難しく、安定的な強度の光も得られにくかった。In the conventional solar cell, since the energy density of sunlight is low, the conversion efficiency is as low as about 15 to 19% even in the case of a pn junction of a crystalline silicon solar cell. I could not say. For example, in order to obtain 1 KW of electric power, a light receiving area (Pn junction surface) of about 7 m 2 is required, and the module is also large-scale and the manufacturing cost is high. In addition, it was difficult to receive light along the sun's orbit, and it was difficult to obtain light of stable intensity.

これは、従来の太陽電池の原理が光電効果によってなされるからであり、電子と正孔の対を発生するpn接合面の広さが最も影響しているからである。This is because the principle of a conventional solar cell is made by the photoelectric effect, because the width of the pn junction plane is most influential to generate electron-hole pairs.

そのため、太陽光によって光電効果を起こすpn接合において、その単位面積当たりのpn接合面積を増加させることが、より現実的に小型化を可能とし、かつ高い変換効率となる太陽電池を実現させることとなる。Therefore, in the pn junction causing photoelectric effect by sunlight, increasing the pn junction area per unit area, and possible to realize a solar cell more realistically to allow miniaturization and a high conversion efficiency that Do not.

本発明は、このような問題を解決しようとするものであり、p型及びn型シリコンのマイクロ粒子化によるpnマイクロ接合層の形成によって単位面積当たりのpn接合面積を大幅に増加向上させ、小型化が可能となる高い変換効率の太陽電池の実現と、フレキシブルで高効率な太陽電池の実現を目的とするものである。 The present invention is intended to solve such a problem. The formation of a pn microjunction layer by micronization of p-type and n-type silicon significantly increases and improves the pn junction area per unit area. The purpose is to realize a solar cell with high conversion efficiency that can be realized and a flexible and highly efficient solar cell.

本発明は、上記目的を達成するために、太陽電池のpn接合において、n型及びp型シリコンを、例えばn型マイクロ粒子とp型マイクロ微粒子に成形して、それらを一体的に組み合わせて立体的な厚みを持つ「pnマイクロ接合層」を形成させることにより、結果として起電力を大幅に増加向上させるもので、単位面積当たりのpn接合面積を大幅に増大させることで小型化やコスト低減を図るものである。In order to achieve the above object, the present invention achieves a three-dimensional structure by forming n-type and p-type silicon into, for example, n-type microparticles and p-type microparticles at a pn junction of a solar cell and combining them together. By forming a “pn micro-junction layer” with an appropriate thickness, the electromotive force is greatly increased and improved as a result. By greatly increasing the pn junction area per unit area, downsizing and cost reduction can be achieved. It is intended.

まずn型シリコンをマイクロレベルの粒子(n型マイクロ粒子)として、それを、例えば段ボールの箱に野球ボールを積み込むように積み上げる(野球ボールを例としたので、積み上げるという表現にしている。)。First, n-type silicon is made into micro-level particles (n-type micro-particles), and they are stacked, for example, so as to load a baseball ball in a cardboard box (the baseball is taken as an example, so it is expressed as stacked).

次に、p型シリコンをマイクロレベルの微粒子(p型マイクロ微粒子)として、上記n型マイクロ粒子の層の隙間に、このp型マイクロ微粒子を充填させるように一体的に組み合わせて「pnマイクロ接合層」を形成する。なお、当該層の組み合わせ方には、請求項3記載にもある通り、p型マイクロ粒子とn型マイクロ微粒子の場合も当然に含まれる。Next, p-type silicon is used as micro-level fine particles (p-type micro fine particles), and the p-type micro fine particles are integrally combined so that gaps between the layers of the n-type micro particles are filled. ”. In addition, the method of combining the layers naturally includes the case of p-type microparticles and n-type microparticles as described in claim 3.

この状態では、n型マイクロ粒子の球状面部分に、それより小さいp型マイクロ微粒子が密接に接合することで、pn接合面積は平面に比して球状面分がおよそ増加することとなる。In this state, when the smaller p-type microparticles are closely bonded to the spherical surface portion of the n-type microparticle, the pn junction area is approximately increased by the spherical surface portion compared to the plane.

そして、このpnマイクロ接合層をp型及びn型シリコン層で両側から夾み込み、電極等(等は反射防止薄膜。)を備えることで基本的なマイクロ粒子層型の高効率太陽電地ができあがる。The pn micro junction layer is sandwiched between the p-type and n-type silicon layers from both sides, and an electrode or the like (such as anti-reflection thin film) is provided, so that a basic micro particle layer type high-efficiency solar electric field can be obtained. It ’s done.

また、pnマイクロ接合層を厚くしたり、より多くの入射光を必要とする場合には、受光面とするn型シリコン層においてn型シリコンをn型マイクロ粒子として配置し、そこに生じる隙間にn型マイクロ粒子より微細に成形した光拡散材(クリスタル、ガラス及び石英ガラス。以下略。)を充填して一体的に組み合わせ、マイクロ粒子化されたn型シリコン層の受光面とすることで十分に対応可能となる。In addition, when the pn micro junction layer is thickened or more incident light is required, n-type silicon is arranged as n-type microparticles in the n-type silicon layer serving as the light receiving surface, and a gap formed there It is sufficient to fill the light diffusion material (crystal, glass and quartz glass; hereinafter abbreviated) finely formed from the n-type microparticles and combine them together to form the light-receiving surface of the micronized n-type silicon layer. It becomes possible to cope with.

これは、光拡散材による反射や屈折作用によって、太陽光がpnマイクロ接合層の深部まで誘導されるので、pnマイクロ接合層をより厚くしたり、より多くの角度から入射光が得られることとなるからである。This is because sunlight is induced to the deep part of the pn micro junction layer by reflection and refraction action by the light diffusing material, so that the pn micro junction layer can be made thicker or incident light can be obtained from more angles. Because it becomes.

これらの解決手段による作用は、次の通りである。The effect | action by these solutions is as follows.

まず太陽電池の原理は、半導体の陰極に光を照射すると、バンド間遷移等によってpn接合面付近から生成キャリアの電子と正孔の対が発生する。ただし、pn接合面から離れた場所では、電子と正孔の再結合化によって発生した電子と正孔は消滅するが、pn接合面付近では空乏層という内蔵電界域ができあがり、ドリフト効果等が発生して電子と正孔が再結合化せずに分極され、電位差が生じて起電力が発生するというものである。First, the principle of a solar cell is that when a semiconductor cathode is irradiated with light, pairs of electrons and holes of generated carriers are generated from the vicinity of the pn junction due to interband transition or the like. However, electrons and holes generated by recombination of electrons and holes disappear at a location away from the pn junction surface, but a built-in electric field region called a depletion layer is created near the pn junction surface, and drift effects and the like occur. Thus, electrons and holes are polarized without being recombined, and a potential difference is generated to generate an electromotive force.

すなわち、変換効率を向上させようとするためには、pn接合面付近で生成する電子と正孔の対を、より多く発生させて分極させることが必要となる。That is, in order to improve the conversion efficiency, it is necessary to generate and polarize more pairs of electrons and holes generated near the pn junction surface.

そのために、従来のpn接合面を本発明のpnマイクロ接合層とすることで、単位面積当たりのpn接合面積が従来の平面に比して球状面の部分がおよそ増加し、結果として、より多くの電子と正孔の対が発生して分極させることができるのである。Therefore, by using the conventional pn junction surface as the pn micro-junction layer of the present invention, the pn junction area per unit area is approximately increased as compared to the conventional plane, and the spherical surface portion is increased. The pair of electrons and holes can be generated and polarized.

また、受光面とするn型シリコン層に光拡散材を用い、当該層内で反射や屈折を繰り返させることで、太陽光をpnマイクロ接合層の深部まで誘導できるので、結果としてpnマイクロ接合層をより厚くしたり、より多くの角度から入射光を得ることが可能となる。Further, by using a light diffusing material for the n-type silicon layer as the light receiving surface and repeating reflection and refraction in the layer, sunlight can be guided to the deep part of the pn micro junction layer, and as a result, the pn micro junction layer Can be made thicker or incident light can be obtained from more angles.

さらに、n型及びp型シリコン層をマイクロレベル(ナノレベルを含む。)の粒子としてpnマイクロ接合層と一体的に組み合わせることで、全ての接合点が力学的にはピン接合に近くなるので、従来の太陽電池に比して僅かでもフレキシブルな形態が可能になると思われる。Further, by combining the n-type and p-type silicon layers as micro-level (including nano-level) particles with the pn micro-junction layer, all junction points are mechanically close to pin junctions, It seems that a slightly flexible form is possible as compared with the conventional solar cell.

上述したように、従来のpn接合面を本発明のpnマイクロ接合層としたことにより、従来のpn接合面が有する光電効果を全く損なうことなくpn接合面積の増大を実現させたものであり、従来の1KWの電力を得るために7mAs described above, by using the conventional pn junction surface as the pn micro junction layer of the present invention, an increase in the pn junction area is realized without any loss of the photoelectric effect of the conventional pn junction surface. 7m to get the conventional 1KW power 2 程度の受光面積を必要としていたものが、より小さな受光面積で賄えることとなる。What required a light receiving area of a certain level can be covered by a smaller light receiving area.

すなわち、高い変換効率ばかりでなく、従来の太陽電池に要した規模においても大幅に小型化できることとなり、運搬及び取付工事が容易になるばかりか、コスト面においても工事費及び維持経費等が大幅に低減される。In other words, not only high conversion efficiency but also the scale required for the conventional solar cell can be greatly reduced, which not only facilitates transportation and installation work, but also greatly increases construction costs and maintenance costs. Reduced.

また、販売価格も低減されることから、より多くの太陽光発電(太陽電池)の普及が見込まれる。例えば、小型化によって家庭及び業務用の電気製品あるいは自動車等への普及が進むこととなる。Moreover, since the selling price is also reduced, more solar power generation (solar cells) is expected to become popular. For example, downsizing will lead to widespread use in household and commercial electrical products or automobiles.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施例の形態を図1〜図に基づいて説明する。ただし、本発明はこれらに限定されるものではない。It will be described below with reference to embodiments of the present invention in FIGS. However, the present invention is not limited to these.

図1〜図3において、1aはマイクロ粒子層型の高効率太陽電池(基本型)、1bはマイクロ粒子層型の高効率太陽電池(光拡散型)、1cはマイクロ粒子層型の高効率太陽電池(フレキシブル型)の構成内容である。  1 to 3, 1a is a microparticle layer type high efficiency solar cell (basic type), 1b is a microparticle layer type high efficiency solar cell (light diffusion type), and 1c is a microparticle layer type high efficiency solar cell. It is the content of a battery (flexible type).

まず図1では、n型マイクロ粒子5を単位面積当たりのpn接合面積を増大させるために数層〜数十層程度に積み上げ、その際に生じる隙間にp型マイクロ粒子6を充填させて形成したpnマイクロ接合層4を、受光面側のn型シリコン2aと裏面側のp型シリコン3aで夾むように接合することで、生成キャリアである電子と正孔の対を発生させる機能を有することとなる。First, in FIG. 1, n-type stacked microparticles 5 to about several layers to several tens of layers in order to increase the pn junction area per unit area, by filling a p-type micro-fine particles 6 in the gap created when the formation The pn micro junction layer 4 is bonded so as to be sandwiched between the n-type silicon layer 2a on the light-receiving surface side and the p-type silicon layer 3a on the back surface side, thereby generating a pair of electrons and holes as generated carriers. It will be.

そして、n型シリコン2aの外側に反射防止膜9を置き、当該太陽電池の両端となるn型シリコン2a及びp型シリコン3aにそれぞれ電極7を配置することで上記1aの太陽電池(基本型)が形成される。Then, place the anti-reflection film 9 to the outside of the n-type silicon layer 2a, the solar cell of the 1a by placing the respective n-type silicon layer 2a and the p-type silicon layer 3a electrodes 7 serving as both ends of the solar cell ( Basic type) is formed .

図2では、pnマイクロ接合層4とp型シリコン3aは変えずに、受光面側のn型シリコン(光拡散型)2bを、垂直入射光だけでなく散乱光や弱い光をより多くpnマイクロ接合層4の深部まで誘導させるために、n型マイクロ粒子5と光拡散材8によって一体的に組み合せる。In FIG. 2, the pn micro junction layer 4 and the p-type silicon layer 3a are not changed, but the n-type silicon layer (light diffusion type) 2b on the light-receiving surface side is made to receive not only the normal incident light but also more scattered light and weak light. In order to guide to the deep part of the pn micro junction layer 4, the n type micro particles 5 and the light diffusion material 8 are combined together.

そして、n型シリコン(光拡散型)2bの外側に反射防止膜9を配置し、上記同様に電極7を両端に配置することで、上記1bの太陽電池(光拡散型)が形成される。The antireflection film 9 is disposed outside the n-type silicon layer (light diffusion type) 2b, and the electrodes 7 are disposed at both ends in the same manner as described above, whereby the solar cell 1b (light diffusion type) is formed. .

図3は、pnマイクロ接合層4は変えずに、受光面側のn型シリコン層2aと裏面側のp型シリコン層3aをそれぞれマイクロ粒子化したもので、まず受光面側のn型シリコン層2aをn型マイクロ粒子5とし、その際に生じる隙間にそれより小さいn型マイクロ微粒子10を充填させて一体的に組み合わせ、n型シリコン層(粒子型)2cを形成する。In FIG. 3, the n-type silicon layer 2a on the light-receiving surface side and the p-type silicon layer 3a on the back surface side are made into microparticles without changing the pn micro junction layer 4, and first, the n-type silicon layer on the light-receiving surface side. The n-type microparticles 2a are filled with n-type microparticles 10 smaller than the n-type microparticles 5 and combined together to form an n-type silicon layer (particle type) 2c.

また、上記同様にして裏面側のp型シリコン層3aをp型シリコン層(粒子型)3bに形成する。すなわち、受光面側のn型シリコン層(粒子型)2cと裏面側のp型シリコン層(粒子型)3bでpnマイクロ接合層4を挟み込み、電極7を両端に配置すること等で上記1cの太陽電池(フレキシブル型)が形成される。Similarly, the p-type silicon layer 3a on the back side is formed on the p-type silicon layer (particle type) 3b. That is, the pn micro junction layer 4 is sandwiched between the n-type silicon layer (particle type) 2c on the light-receiving surface side and the p-type silicon layer (particle type) 3b on the back surface side, and the electrodes 7 are arranged at both ends. A solar cell (flexible type) is formed.

本発明の実施例の形態を示すマイクロ粒子層型の高効率太陽電池(基本型)の断面図Sectional drawing of the microparticle layer type | mold high efficiency solar cell (basic type) which shows the form of the Example of this invention 同マイクロ粒子層型の高効率太陽電池(光拡散型)の断面図Sectional view of the microparticle layer type high efficiency solar cell (light diffusion type) 同マイクロ粒子層型の高効率太陽電池(フレキシブル型)の断面図Sectional view of the microparticle layer type high efficiency solar cell (flexible type)

符号の説明Explanation of symbols

1a マイクロ粒子層型の高効率太陽電池(基本型)1a Microparticle layer type high efficiency solar cell (basic type)
1b 同 (光拡散型)1b Same (light diffusion type)
1c 同 (フレキシブル型)1c Same (Flexible type)
2a n型シリコン層2a n-type silicon layer
2b 同 (光拡散型)2b Same (light diffusion type)
2c 同 (粒子型)2c Same (Particle type)
3a p型シリコン層3a p-type silicon layer
3b 同 (粒子型)3b Same (Particle type)
4 pnマイクロ接合層4 pn micro junction layer
5 n型マイクロ粒子5 n-type microparticles
6 p型マイクロ微粒子6 p-type micro fine particles
7 電極7 electrodes
8 光拡散材(クリスタル、石英ガラス等)8 Light diffusing material (crystal, quartz glass, etc.)
9 反射防止膜9 Anti-reflective coating
10 n型マイクロ微粒子10 n-type micro particle
11 p型マイクロ粒子11 p-type microparticles

Claims (1)

n型及びp型シリコン(単結晶、多結晶、微結晶、アモルファスシリコン及び化合物半導体を含む。以下略。)によるpn接合(pin接合を含む。以下略。)において、例えばn型シリコンをマイクロレベルの粒子(以下「n型マイクロ粒子」とし、p型マイクロ粒子より細かいものを「n型マイクロ微粒子」として、ナノレベルの粒子を含む。以下略。)にして、幾つかの層に積み上げ、その隙間を、n型マイクロ粒子より微細なp型シリコンのマイクロレベルの粒子(以下「p型マイクロ微粒子」とし、n型マイクロ粒子と同程度の大きさのものを「p型マイクロ粒子」とし、ナノレベルの粒子を含む。以下略。)で、すべて充填させて、従来では平面形状であったpn接合面を、n型マイクロ粒子とp型マイクロ微粒子を一体的に組み合わせて立体的に厚みを持たせたpn接合層(以下「pnマイクロ接合層」とし、p型マイクロ粒子とn型マイクロ微粒子による組合せ及びpin接合を含む。以下略。)に形成し、pnマイクロ接合層のみならず、受光面となるn型シリコン層及び裏面となるp型シリコン層において、それら全てをマイクロレベルの粒子及び微粒子(ナノレベルを含む。)に成形して一体的に組み合わせた構成としたことを特徴とする太陽電池。In a pn junction (including a pin junction, hereinafter omitted) by n-type and p-type silicon (including single crystal, polycrystalline, microcrystalline, amorphous silicon, and a compound semiconductor), for example, n-type silicon is converted to a micro level. Particles (hereinafter referred to as “n-type microparticles”, those finer than p-type microparticles as “n-type microparticles”, including nano-level particles, hereinafter abbreviated), and stacked in several layers. P-type silicon micro-level particles finer than n-type microparticles (hereinafter referred to as “p-type microparticles”, and “p-type microparticles” having the same size as n-type microparticles are used as gaps. All of which are filled, and the n-type microparticles and the p-type microparticles are integrally assembled to form a planar pn junction surface. It is formed into a pn junction layer (hereinafter referred to as “pn micro junction layer”, including a combination of p-type microparticles and n-type microparticles and a pin junction, hereinafter abbreviated). Not only the bonding layer but also the n-type silicon layer serving as the light receiving surface and the p-type silicon layer serving as the back surface, all of which are molded into micro-level particles and fine particles (including nano-level) and integrally combined A solar cell characterized by that.
JP2004244445A 2004-07-29 2004-07-29 Microparticle layer type high efficiency solar cell Expired - Fee Related JP4131474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244445A JP4131474B2 (en) 2004-07-29 2004-07-29 Microparticle layer type high efficiency solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244445A JP4131474B2 (en) 2004-07-29 2004-07-29 Microparticle layer type high efficiency solar cell

Publications (3)

Publication Number Publication Date
JP2006041452A JP2006041452A (en) 2006-02-09
JP2006041452A5 JP2006041452A5 (en) 2007-08-16
JP4131474B2 true JP4131474B2 (en) 2008-08-13

Family

ID=35906081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244445A Expired - Fee Related JP4131474B2 (en) 2004-07-29 2004-07-29 Microparticle layer type high efficiency solar cell

Country Status (1)

Country Link
JP (1) JP4131474B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100258189A1 (en) * 2007-07-18 2010-10-14 Seamus Curran Wrapped solar cel
JP5069163B2 (en) * 2008-03-28 2012-11-07 三菱電機株式会社 Solar cell and method for manufacturing the same
KR101294770B1 (en) 2008-11-25 2013-08-08 현대중공업 주식회사 Quantum dots photovoltaic

Also Published As

Publication number Publication date
JP2006041452A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
CN101803035A (en) Nanowire-based solar cell structure
JP2008135740A (en) Amorphous-crystalline tandem nanostructured solar cell
US10763377B2 (en) Bifacial P-type PERC solar cell and module, system, and preparation method thereof
US20200127149A1 (en) Bifacial p-type perc solar cell and module, system, and preparation method thereof
ITVA20090011A1 (en) SOLAR PANEL WITH TWO MONOLITHIC MULTICELLULAR PHOTOVOLTAIC MODULES OF DIFFERENT TECHNOLOGY
TW201327882A (en) Apparatus and methods for enhancing photovoltaic efficiency
US20130000695A1 (en) Light harvesting in photovoltaic systems
US11824130B2 (en) Solar cell having a plurality of sub-cells coupled by cell level interconnection
JP2010028120A (en) Electric lamp-type condensing solar cell module
Pei et al. Numerical simulation on the photovoltaic behavior of an amorphous-silicon nanowire-array solar cell
JP2009545184A (en) High-efficiency solar cell with surrounding silicon scavenger cell
TWI483406B (en) Photovoltaic cell
US20130174901A1 (en) Active solar cell and method of manufacture
JP4131474B2 (en) Microparticle layer type high efficiency solar cell
US20120152346A1 (en) Light absorption-enhancing substrate stacks
TWI506801B (en) Solar battery
US20110056548A1 (en) Wafer-Based Solar Cell with Deeply Etched Structure
TWI467785B (en) A solar cell substrate
Dutta et al. High-efficiency solar cells based on micro-nano scale structures
Dutta Prospects of nanotechnology for high-efficiency solar cells
KR20190056550A (en) Solar cell module with Metal Wrap Through type solar cell and wire interconnector
JP2023033940A (en) Solar battery cell and solar battery
US20040154654A1 (en) High efficiency solar cells
US20160118514A1 (en) Solar cell, solar cell panel, and solar cell film
US20090014067A1 (en) Photovoltaic assembly

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070518

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070629

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees