JP4131386B2 - Method for forming electroplating film on article surface - Google Patents

Method for forming electroplating film on article surface Download PDF

Info

Publication number
JP4131386B2
JP4131386B2 JP2002308336A JP2002308336A JP4131386B2 JP 4131386 B2 JP4131386 B2 JP 4131386B2 JP 2002308336 A JP2002308336 A JP 2002308336A JP 2002308336 A JP2002308336 A JP 2002308336A JP 4131386 B2 JP4131386 B2 JP 4131386B2
Authority
JP
Japan
Prior art keywords
metal
film
article
forming
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002308336A
Other languages
Japanese (ja)
Other versions
JP2003286586A (en
Inventor
吉村  公志
文秋 菊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002308336A priority Critical patent/JP4131386B2/en
Publication of JP2003286586A publication Critical patent/JP2003286586A/en
Application granted granted Critical
Publication of JP4131386B2 publication Critical patent/JP4131386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、物品の表面材質や表面性状に依存することなくその表面に均一で緻密な電気めっき被膜を優れた密着性でもって形成する方法に関する。
【0002】
【従来の技術】
装飾性、耐候性、帯電防止などのための表面導電性、電磁波遮断性、抗菌性、耐衝撃性などを物品に付与する目的で、その表面に金属被膜を形成することが従来から行われている。金属被膜を形成するための方法は各種あるが、中でも、電気めっき処理による電気めっき被膜形成方法は、大量生産にも適していることから広く実用化されている。
【0003】
しかしながら、物品表面に電気めっき被膜を形成するためには、物品表面に導電性が必要となる。従って、プラスチック、木材、紙、ガラス、セラミックス、ゴム、コンクリートなどの非導電性材質からなる物品表面に直接的に電気めっき被膜を形成することはできない。また、マグネシウムやアルミニウムやチタンなどの金属材質からなる物品(携帯電話やノート型パーソナルコンピュータの筐体など)表面に金属被膜を形成したい場合があるが、マグネシウムは金属の中でも特に卑な金属である。従って、その表面に電気めっき被膜を形成しようとしても、めっき浴に浸漬した途端に急激な置換めっき反応が起こってしまうので、良質の電気めっき被膜を形成することは困難である。アルミニウムやチタンは非常に酸化しやすい金属であり、通常、その表面は非常に緻密な金属酸化膜で覆われている。従って、これらの金属はイオン化傾向が低いにもかかわらず、その表面の電位が高くなっているので、電気めっき処理を行うことは困難である。表面に存在する金属酸化膜を除去すれば、電気めっき被膜を形成することは可能となるが、特殊なエッチング技術が必要となる上に、金属酸化膜を除去した後は、再び金属酸化膜が生成するまでに電気めっき処理を行わなくてはならないといった時間的制約が発生するので、実用上問題があるといわざるを得ない。水酸化ナトリウムと水酸化亜鉛を含有する溶液に浸漬することで、強アルカリ環境下にてエッチングを行うと同時に亜鉛の置換めっき被膜を形成する所謂ジンケート処理をした後、無電解めっき被膜を形成する工程を介して電気めっき処理を行う方法もあるが全体工程が複雑である。
また、木製バットやレンガやダイカスト品などのように表面に空孔部や微細溝や凹凸を有する物品表面に均一な電気めっき被膜を形成しようとした場合には、物品表面に対して導電性を如何に付与するかという点とともに物品表面の平滑性を如何に確保するかという点を解決しなければならない。
また、マグネシウムなどの金属のように腐食性の高い材質からなる物品は、電気めっき処理を行った際に腐食することがあるので、このような物品に対して電気めっき被膜を形成することには困難が伴う。
【0004】
【発明が解決しようとする課題】
公知の技術を利用して上記の問題を解決しようとした場合、特開昭61−210183号公報に記載された、物品表面に金属粉末を分散させた樹脂からなる樹脂被膜を形成した後、この樹脂被膜表面に無電解めっき被膜を形成する方法を採用し、こうして形成される無電解めっき被膜表面に電気めっき被膜を形成する方法が考えられる。しかしながら、無電解めっき被膜は、めっき液中の金属イオンを還元剤の作用により還元して被めっき物表面に金属析出させることで形成される被膜であるので、被めっき物との密着性に劣るとともに成膜効率の点においても劣る。パラジウム触媒や白金触媒を使用して成膜効率を向上させる方法もあるが、この方法ではコストアップが避けられない。また、無電解めっき被膜に含まれる還元剤由来の不純物がその表面への電気めっき被膜の形成に悪影響を及ぼすことが否定できない。
そこで本発明は、物品の表面材質や表面性状に依存することなくその表面に均一で緻密な電気めっき被膜を優れた密着性でもって形成する方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記の点に鑑みて本発明者らが種々の検討を行ったことにより完成された本発明の物品表面への電気めっき被膜の形成方法は、請求項1記載の通り、物品表面に、平均粒径が2μm〜30μmの第1金属の粉末を分散させた樹脂からなる体積抵抗率が1×10 Ω・cm以上の非導電性被膜を形成した後、この非導電性被膜形成物品を第1金属より貴な電位を有する第2金属のイオンを含む溶液に浸漬することで非導電性被膜表面に第2金属の置換めっき被膜を形成し、さらに置換めっき被膜表面に第3金属の電気めっき被膜を形成することを特徴とする(但し物品として希土類系永久磁石は除く)。
た、請求項記載の形成方法は、請求項1記載の形成方法において、樹脂被膜中における第1金属の粉末の分散量が50重量%〜99重量%であることを特徴とする
た、請求項記載の形成方法は、請求項1記載の形成方法において、樹脂被膜の膜厚が1μm〜100μmであることを特徴とする。
また、請求項記載の形成方法は、請求項1乃至のいずれかに記載の形成方法において、第1金属が亜鉛で第2金属がニッケルであることを特徴とする。
また、請求項記載の形成方法は、請求項1乃至のいずれかに記載の形成方法において、第1金属がニッケルで第2金属が銅であることを特徴とする。
また、請求項記載の形成方法は、請求項1乃至のいずれかに記載の形成方法において、第2金属と第3金属が同じ金属であることを特徴とする。
また、請求項記載の形成方法は、請求項記載の形成方法において、置換めっき被膜を形成する工程と電気めっき被膜を形成する工程を一つのめっき浴において行うことを特徴とする。
また、請求項記載の形成方法は、請求項1乃至のいずれかに記載の形成方法において、置換めっき被膜の膜厚が0.05μm〜2μmであることを特徴とする。
また、本発明の物品は、請求項記載の通り、請求項1乃至のいずれかに記載の形成方法により表面に電気めっき被膜が形成されていることを特徴とする(但し希土類系永久磁石は除く)
また、本発明の物品表面への置換めっき被膜の形成方法は、請求項10記載の通り、物品表面に、平均粒径が2μm〜30μmの第1金属の粉末を分散させた樹脂からなる体積抵抗率が1×10 Ω・cm以上の非導電性被膜を形成した後、この非導電性被膜形成物品を第1金属より貴な電位を有する第2金属のイオンを含む溶液に浸漬することで非導電性被膜表面に第2金属の置換めっき被膜を形成することを特徴とする(但し物品として希土類系永久磁石は除く)
また、本発明の物品は、請求項11記載の通り、請求項13記載の形成方法により表面に置換めっき被膜が形成されていることを特徴とする(但し希土類系永久磁石は除く)
【0006】
【発明の実施の形態】
本発明の物品表面への電気めっき被膜の形成方法は、物品表面に第1金属の粉末を分散させた樹脂からなる樹脂被膜を形成した後、この樹脂被膜形成物品を第1金属より貴な電位を有する第2金属のイオンを含む溶液に浸漬することで樹脂被膜表面に第2金属の置換めっき被膜を形成し、さらに置換めっき被膜表面に第3金属の電気めっき被膜を形成することを特徴とするものである。
【0007】
本発明の物品表面への電気めっき被膜の形成方法においては、物品表面に第1金属の粉末を分散させた樹脂からなる樹脂被膜を形成し、次に、この樹脂被膜表面やその近傍に存在する第1金属の粉末を起点とする置換めっき反応を利用することで密着性に優れた第2金属の置換めっき被膜を樹脂被膜表面全体に形成する。これにより結果として物品表面全体に導電性が付与されることになるので、置換めっき被膜表面に均一で緻密な第3金属の電気めっき被膜を優れた密着性でもって形成することが可能となる。従って、物品の表面材質や表面性状に依存することなく、プラスチック、木材、紙、ガラス、セラミックス、ゴム、コンクリート、金属などのあらゆる材質からなる物品表面に均一で緻密な電気めっき被膜を優れた密着性でもって形成することができる。
以下、本発明の物品表面への電気めっき被膜の形成方法について、順を追って説明する。
【0008】
工程1:
まず、物品表面に第1金属の粉末を分散させた樹脂からなる樹脂被膜を形成する。樹脂被膜の主体となる樹脂としては、例えば、熱硬化性樹脂を使用することができる。具体的には、フェノール樹脂、エポキシ樹脂、メラミン樹脂、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ポリイミド樹脂、スチレンアクリル樹脂およびこれらの混合樹脂などが挙げられる。
【0009】
樹脂被膜中に分散される第1金属の粉末の種類に特段の制限はないが、後の工程において置換めっき反応を起すためには、第1金属は第2金属よりも卑な電位を有することが必須となる。従って、第1金属は第2金属との電位差を考慮して適宜選択される。第1金属と第2金属の組合せの具体例としては、第1金属が亜鉛で第2金属がニッケルの組合せや、第1金属がニッケルで第2金属が銅の組合せなどが挙げられる。
【0010】
第1金属の粉末を分散させた樹脂からなる樹脂被膜は非導電性被膜とする。マグネシウムなどの金属のように腐食性の高い材質からなる物品表面に形成する樹脂被膜は非導電性被膜であることが望ましい。置換めっき処理や電気めっき処理を行った際に樹脂被膜表面が腐食したとしても、また、樹脂被膜表面に置換めっき被膜を介して形成された電気めっき被膜にピンホールや傷などの欠陥が生じ、当該欠陥を通じるなどして樹脂被膜表面が腐食したとしても、樹脂被膜内部を通して腐食が物品表面まで進行してしまうといったことを防止することができるからである。
【0011】
第1金属の粉末を分散させた樹脂からなる非導電性被膜は、例えば、第1金属の粉末を分散させた非導電性の樹脂自体を、また、必要であればこのような樹脂を有機溶剤を用いて希釈して調製した溶液を処理液として物品表面にスプレー塗装したり、処理液中に物品を浸漬して浸漬塗装を行ったりした後、これを乾燥させることにより形成する。金属粉末を分散させた非導電性の樹脂は市販されているものもあり、簡便に入手することができる。第1金属の粉末を分散させた樹脂が導電性であっても、有機分散媒を添加して個々の金属粉末を均一に分散させて隔離することで処理液を非導電性のものとすることもできる。この場合、有機分散媒としては、アニオン性分散媒(脂肪族系多価カルボン酸、ポリエーテルポリエステルカルボン酸塩、高分子ポリエステル酸ポリアミン塩、高分子量ポリカルボン酸長鎖アミン塩など)、非イオン性分散媒(ポリオキシエチレンアルキルエーテルやソルビタンエステルなどのカルボン酸塩やスルフォン酸塩やアンモニウム塩など)、高分子分散媒(水溶性エポキシのカルボン酸塩やスルフォン酸塩やアンモニウム塩など、スチレン−アクリル酸共重合物、ニカワなど)などが金属粉末との親和性やコストの点から好適に使用される。また、非導電性被膜を形成することができる処理液であれば、それ自体が導電性であってもよい。処理液の調製に際しては、ボールミルやアトライターやサンドミルなどの分散機を適宜使用することができる。
【0012】
第1金属の粉末を分散させた樹脂からなる非導電性被膜は、たとえ被膜表面が腐食したとしても、被膜内部を通じて腐食が物品表面まで進行してしまうことを防止するので、それ自体が物品に対して耐食性を付与するという効果を有する。この効果には、被膜が有する自己修復作用(第1金属の腐食化合物(第1金属が亜鉛の場合にはZnCl・4Zn(OH)やZnOなどが該当する)の生成や樹脂の膨潤による体積増加により被膜にピンホールや傷などの欠陥が存在しても当該欠陥を埋没させてしまうという作用)や第1金属が有する犠牲防食作用なども寄与しているものと考えられる。この効果をより確実なものとするために、非導電性被膜の体積抵抗率を1×10Ω・cm以上とする。前述の有機分散媒を処理液中に添加して処理液中における金属粉末の凝集沈降を抑制し、金属粉末の分散性を高めることで体積抵抗率を高めるようにしてもよい。
【0013】
樹脂被膜中の金属粉末が置換めっき反応の起点となり、樹脂被膜表面全体に置換めっき被膜が形成されるためには、樹脂被膜表面やその近傍に金属粉末が均一にしかもリッチに存在することが有利である。従って、この観点からは、樹脂被膜中における金属粉末の分散量が50重量%以上となるように処理液を調製することが望ましい。樹脂被膜中における金属粉末の分散量の上限は限定されるものではないが、通常、金属粉末の分散量が99重量%を越える樹脂被膜を形成するための処理液を調製することは困難である(処理液中において金属粉末が凝集沈降するといった問題や処理液の粘性が上昇して取扱性に劣るといった問題が生じるため)。従って、製造上においては樹脂被膜中における金属粉末の分散量の上限は99重量%である。
なお、金属粉末が均一分散した処理液を調製するために、金属粉末の平均粒径はμm〜30μmとするがμm〜12μmであることが望ましく、2μm〜10μmであることがより望ましい。
【0014】
第1金属の粉末を分散させた樹脂からなる樹脂被膜表面を平滑なものとするとともに、樹脂被膜表面やその近傍に金属粉末を均一にしかもリッチに存在させ、樹脂被膜表面全体に優れた密着性を有する均一な置換めっき被膜が形成されるようにするためには、樹脂被膜の膜厚は1μm〜100μmであることが望ましい。しかしながら、樹脂被膜の膜厚が増大すると、ともすれば、均一な電気めっき被膜の形成に悪影響を及ぼすことがある。従って、この点を考慮すると、樹脂被膜の膜厚の上限は30μmであることがより望ましい。
【0015】
なお、第1金属の粉末を分散させた樹脂からなる樹脂被膜を形成するための工程を行う前に、物品表面と樹脂被膜との界面の密着性を向上させるため、物品表面の脱脂などによる自体公知の清浄化やバレル研磨による投錨効果の付与などを行ってもよい。
【0016】
工程2:
次に、工程1で樹脂被膜がその表面に形成された物品を第1金属より貴な電位を有する第2金属のイオンを含む溶液に浸漬することで樹脂被膜表面に第2金属の置換めっき被膜を形成する。第2金属の置換めっき被膜は、物品表面全体に導電性を付与する機能を有するとともに、第1金属の粉末が樹脂被膜から脱粒することを防止し、物品表面清浄性の向上に寄与する。この工程は置換めっき被膜を形成するための常法に従って行えばよいが、後の工程において均一で緻密な第3金属の電気めっき被膜を形成するために十分な導電性を確保するという観点からは、0.05μm以上の膜厚を有する被膜を形成することが望ましい。置換めっき被膜を形成する前に、樹脂被膜表面を平滑なものとするとともに樹脂被膜中に均一分散された第1金属の粉末の活性面を露出させる目的で樹脂被膜がその表面に形成された物品に対してバレル研磨を施してもよい。なお、置換めっき被膜の膜厚の上限は特段限定されるものではないが、製造コストの点に鑑みれば2μm以下とすることが望ましい。なお、装飾性や帯電防止などのための表面導電性などを物品に付与する目的においては、表面に置換めっき被膜が形成されたこの段階のものであっても実用上満足できるに足る効果を得ることができる。
【0017】
工程3:
最後に、工程2で形成された置換めっき被膜表面に第3金属の電気めっき被膜を形成する。この工程は電気めっき被膜を形成するための常法に従って行えばよい。前述のように、第1金属と第2金属との組合せについては両者の電位差を考慮しなければならないが、第3金属については第2金属との関係において特段考慮しなければならない事情はなく、例えば、Ni、Cu、Sn、Co、Zn、Cr、Ag、Au、Pb、Ptなどのような、通常、電気めっき被膜として形成される金属が第3金属として適用される。従って、第2金属と第3金属が同じ金属であっても何ら問題はない。
【0018】
第2金属と第3金属を同じ金属とする場合、即ち、置換めっき被膜を構成する金属と電気めっき被膜を構成する金属を同じ金属とする場合には、置換めっき被膜を形成する工程2と電気めっき被膜を形成する工程3を一つのめっき浴において行うことが好都合である。即ち、例えば、その表面に第1金属の粉末を分散させた樹脂からなる樹脂被膜が形成された物品をめっき浴に浸漬した当初、電圧をかけないことで置換めっき反応を進行させて置換めっき被膜を形成した後、電圧をかけることで電気めっき被膜を形成することができる。また、その表面に第1金属の粉末を分散させた樹脂からなる樹脂被膜が形成された物品をめっき浴に浸漬した当初から電圧をかけた場合でも、浸漬初期の段階においては樹脂被膜の体積抵抗率が高いので、樹脂被膜表面ではまず第1金属と第2金属の電位差による置換めっき反応が起こって置換めっき被膜が形成される。これにより結果として物品表面全体に導電性が付与されて、置換めっき被膜表面に均一で緻密な電気めっき被膜が形成される。電気めっき被膜の膜厚は、その目的に応じて適宜設定すればよい。
【0019】
例えば、物品表面に置換Niめっき被膜と電気Niめっき被膜を一つのめっき浴において形成する場合においては、めっき浴槽は物品の形状に応じて種々の浴槽を使用することができる。めっき浴としては、ワット浴、スルファミン酸浴、ウッド浴などの公知のめっき浴を用いればよい。第1金属の粉末を分散させた樹脂からなる非導電性被膜表面に密着性に優れた置換Niめっき被膜を形成するためには、例えば、低ニッケル高硫酸塩浴などを使用し、第1金属とニッケルとの間の過度な置換効率(置換Niめっき被膜の成膜速度)を抑制することが望ましい。好適な低ニッケル高硫酸塩浴としては、硫酸ニッケル・5水和物100g/L〜170g/L、硫酸ナトリウム160g/L〜270g/L、塩化アンモニウム8g/L〜18g/L、ホウ酸13g/L〜23g/Lからなるめっき浴が挙げられる。めっき浴のpHは4.0〜8.0とすることが望ましい。4.0未満であると酸性条件に不安定な物品に対して悪影響を及ぼす恐れがある一方、8.0を超えると形成された置換Niめっき被膜の密着性が劣る恐れがあるからである。また、めっき浴のpHを4.0〜8.0とすることには、Niよりも卑な電位を有する第1金属が急激に溶出して粗雑な置換Niめっき被膜が形成され、その表面に形成される電気Niめっき被膜との密着性に悪影響を及ぼすといったことを効果的に抑制する目的もある。めっき浴の浴温は30℃〜70℃とすることが望ましい。30℃未満であると形成された置換Niめっき被膜の表面が粗雑なものになる恐れがある一方、70℃を超えると浴温管理が難しく、均一な置換Niめっき被膜が形成されない恐れがあるからである。このようなめっき浴を用いて置換Niめっき被膜を形成した後に電気Niめっき被膜を形成するに際しては、電流密度は0.2A/dm2〜20A/dm2とすることが望ましい。0.2A/dm2未満であると成膜速度が遅くて生産性に劣る恐れがある一方、20A/dm2を超えると形成された電気Niめっき被膜の表面が粗雑なものとなり、ピンホールが多数発生する恐れがあるからである。なお、陽極には電解Ni板を用いるが、Niの溶出を安定させるために、電解Ni板としてSを含有したニッケルチップを使用することが望ましい。
【0020】
例えば、物品表面に置換Cuめっき被膜と電気Cuめっき被膜を一つのめっき浴において形成する場合においても、めっき浴槽は物品の形状に応じて種々の浴槽を使用することができる。めっき浴のpHは5.0〜8.5であることが望ましい。5.0未満であると酸性条件に不安定な物品に対して悪影響を及ぼす恐れがある一方、8.5を超えると形成された置換Cuめっき被膜の密着性が劣る恐れがあるからである。めっき浴の浴温は25℃〜70℃とすることが望ましい。25℃未満であると形成された置換Cuめっき被膜の表面が粗雑なものになる恐れがある一方、70℃を超えると浴温管理が難しく、均一な置換Cuめっき被膜が形成されない恐れがあるからである。このようなめっき浴を用いて置換Cuめっき被膜を形成した後に電気Cuめっき被膜を形成するに際しては、電流密度は0.1A/dm2〜5.0A/dm2とすることが望ましい。0.1A/dm2未満であると成膜速度が遅くて生産性に劣る恐れがある一方、5.0A/dm2を超えると形成された電気Cuめっき被膜の表面が粗雑なものとなり、ピンホールが多数発生する恐れがあるからである。なお、めっき浴としては腐食性と浸透性が低い中性Cuめっき浴が望ましく、とりわけ、硫酸銅とエチレンジアミン四酢酸と亜硫酸ナトリウムを主成分とする中性Cu−EDTA浴が望ましい。
【0021】
なお、以上のようにして形成される電気めっき被膜の上に、更に別の電気めっき被膜などを積層形成してもよい。このような構成を採用することによって、電気めっき被膜の特性を増強・補完したり、更なる機能性を付与したりすることができる。
【0022】
【実施例】
本発明を以下の実施例によってさらに詳細に説明するが、本発明はこれに限定されるものではない。
【0023】
実施例1(透明アクリル板表面への電気めっき被膜の形成)
小型振動バレル(チップトン社製:VM−10)に、縦60mm×横20mm×厚さ2mmの透明アクリル板5枚と容積にして2L分のアルミナメディア(チップトン社製:PSφ4)を装填し、透明アクリル板の表面研磨を30分間行った。次に表面研磨が施された透明アクリル板をアセトン中に1分間浸漬して表面脱脂した後、自然乾燥させた。
非導電性の亜鉛粉末分散樹脂としてエポローバル(ローバル社製の商品名:亜鉛粉末の平均粒径は4μm)を使用し、これをエポローバル専用シンナー(ローバル社製の商品名)で希釈した後(重量比でエポローバル:シンナー=1:0.7)、均一に攪拌することにより非導電性の亜鉛粉末分散樹脂溶液を調製した。得られた溶液をガン口径1.2mmのエアスプレー装置を使用し、吹付圧力0.2MPaの条件にて透明アクリル板表面全面に吹付け、スプレー塗装を行った後、常温(20℃)における60分間の乾燥と200℃における30分間の焼付けを行い、亜鉛粉末の分散量が96重量%である膜厚15μm(断面観察による)の非導電性被膜(体積抵抗率2×105Ω・cm:JIS−H0505による)を透明アクリル板表面に形成した。
小型振動バレル(チップトン社製:VM−10)に、工程1で得られた表面に非導電性被膜が形成された透明アクリル板5枚と容積にして2L分のアルミナメディア(チップトン社製:PSφ4)を装填し、非導電性被膜の表面研磨を30分間行った。
表面研磨が施された非導電性被膜を有する透明アクリル板を、硫酸ニッケル・5水和物240g/L、塩化ニッケル・5水和物45g/L、ホウ酸35g/Lを含み、塩基性炭酸ニッケルでpHを4.2に調整した液温55℃のワット浴に浸漬し、30分間電圧をかけずに非導電性被膜表面に置換Niめっき被膜を形成した。5枚の透明アクリル板の内の2枚をこの時点でワット浴から取り出し、形成された置換Niめっき被膜の膜厚を調べたところ、その平均値は1μmであった(断面観察による)。このようにして形成された置換Niめっき被膜は、金属Niとしての表面性状を呈し、体積抵抗率が5×10-6Ω・cmであった。従って、装飾性や帯電防止などのための表面導電性などを付与する目的においては、この段階のものであっても実用上満足できるに足ることがわかった。
残りの3枚の透明アクリル板について、その後、電圧をかけて電流密度1.5A/dm2の条件にて90分間電気Niめっき処理を行い、置換Niめっき被膜表面に電気Niめっき被膜を形成した。
以上のようにして得られた最表面に電気Niめっき被膜を有する透明アクリル板を3分間超音波水洗した後、100℃にて60分間乾燥させた。
3枚の透明アクリル板の最表面の電気Niめっき被膜を拡大鏡(×4)にて外観検査したところ、ピンホールや突起や異物付着などを有する不良品は存在せず、全てが均質な被膜で良品と評価された。非導電性被膜表面に形成されたNiめっき被膜の総厚の平均値(n=3)は25μmであったことから(断面観察による)、電気Niめっき被膜の膜厚の平均値(n=3)は24μmであることがわかった。
【0024】
実施例2(木製マスコットバット表面への電気めっき被膜の形成)
長さ240mm×直径約10mmの木製マスコットバットに対して実施例1と同様にしてその表面に均一で緻密な電気Niめっき被膜を優れた密着性でもって形成した。
【0025】
実施例3(ダンボール紙表面への電気めっき被膜の形成)
縦60mm×横20mm×厚さ2mmのダンボール紙に対して実施例1と同様にして(但し、小型振動バレルを使用した2回の表面研磨工程は省略)その表面に均一で緻密な電気Niめっき被膜を優れた密着性でもって形成した。
【0026】
実施例4(透明ガラス板表面への電気めっき被膜の形成)
縦60mm×横20mm×厚さ2mmの透明ガラス板に対して実施例1と同様にしてその表面に均一で緻密な電気Niめっき被膜を優れた密着性でもって形成した。
【0027】
実施例5(アルミニウム板表面への電気めっき被膜の形成)
縦60mm×横20mm×厚さ2mmのアルミニウム板に対して実施例1と同様にしてその表面に均一で緻密な電気Niめっき被膜を優れた密着性でもって形成した。
【0028】
実施例6(マグネシウム合金板表面への電気めっき被膜の形成)
縦60mm×横20mm×厚さ2mmのマグネシウム合金板に対して実施例1と同様にしてその表面に均一で緻密な電気Niめっき被膜を優れた密着性でもって形成した。
【0029】
【発明の効果】
本発明によれば、物品の表面材質や表面性状に依存することなくその表面に均一で緻密な電気めっき被膜を優れた密着性でもって形成する方法が提供される。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a uniform and dense electroplating film on a surface of the article with excellent adhesion without depending on the surface material and surface properties of the article.
[0002]
[Prior art]
For the purpose of imparting surface conductivity, electromagnetic wave shielding properties, antibacterial properties, impact resistance, and the like for decorativeness, weather resistance, antistatic properties, etc., a metal film has been conventionally formed on the surface. Yes. There are various methods for forming a metal film, and among them, an electroplating film forming method by electroplating is widely used because it is suitable for mass production.
[0003]
However, in order to form an electroplated film on the article surface, the article surface needs to be conductive. Therefore, it is not possible to directly form an electroplating film on the surface of an article made of a nonconductive material such as plastic, wood, paper, glass, ceramics, rubber, or concrete. In addition, there is a case where it is desired to form a metal film on the surface of an article made of a metal material such as magnesium, aluminum or titanium (such as a case of a mobile phone or a notebook personal computer). Magnesium is a particularly base metal among metals. . Therefore, even if an electroplating film is to be formed on the surface, an abrupt displacement plating reaction occurs as soon as it is immersed in the plating bath, and it is difficult to form a high-quality electroplating film. Aluminum and titanium are highly oxidizable metals, and their surfaces are usually covered with a very dense metal oxide film. Therefore, although these metals have a low ionization tendency, the surface potential is high, and it is difficult to perform electroplating. If the metal oxide film on the surface is removed, an electroplated film can be formed. However, a special etching technique is required, and after the metal oxide film is removed, the metal oxide film is formed again. Since there is a time restriction that the electroplating process must be performed before the generation, it must be said that there is a problem in practical use. By soaking in a solution containing sodium hydroxide and zinc hydroxide, etching is performed in a strong alkaline environment, and at the same time, a so-called zincate treatment is performed to form a zinc replacement plating film, and then an electroless plating film is formed. There is a method of performing electroplating treatment through the process, but the whole process is complicated.
In addition, when a uniform electroplating film is formed on the surface of an article having pores, fine grooves or irregularities on the surface, such as a wooden bat, brick, or die-cast product, the surface of the article is made conductive. It must be solved how to ensure smoothness of the article surface as well as how to impart it.
In addition, since an article made of a highly corrosive material such as a metal such as magnesium may corrode when an electroplating process is performed, it is necessary to form an electroplating film on such an article. There are difficulties.
[0004]
[Problems to be solved by the invention]
When trying to solve the above problem using a known technique, after forming a resin film made of a resin in which metal powder is dispersed on the surface of an article, described in JP-A-61-210183, A method of forming an electroless plating film on the surface of the resin film and a method of forming an electroplating film on the surface of the electroless plating film thus formed can be considered. However, since the electroless plating film is a film formed by reducing metal ions in the plating solution by the action of a reducing agent and depositing metal on the surface of the object to be plated, it has poor adhesion to the object to be plated. At the same time, the film formation efficiency is poor. There is a method of improving the film formation efficiency using a palladium catalyst or a platinum catalyst, but this method cannot avoid an increase in cost. Moreover, it cannot be denied that impurities derived from the reducing agent contained in the electroless plating film adversely affect the formation of the electroplating film on the surface.
Therefore, an object of the present invention is to provide a method for forming a uniform and dense electroplated film on the surface with excellent adhesion without depending on the surface material or surface property of the article.
[0005]
[Means for Solving the Problems]
  In view of the above points, the method for forming an electroplated film on the surface of an article of the present invention, which has been completed through various studies by the present inventors, is as follows.The average particle size is 2 μm to 30 μmMade of resin in which powder of first metal is dispersedVolume resistivity is 1 × 10 4 Non-conductive more than Ω · cmAfter forming the film, thisNon-conductiveBy immersing the film-forming article in a solution containing ions of the second metal having a potential more noble than the first metalNon-conductiveA replacement plating film of a second metal is formed on the surface of the coating, and an electroplating film of a third metal is further formed on the surface of the replacement plating film.(However, rare earth permanent magnets are excluded as articles).
MaClaim2The forming method according to claim 1, wherein the dispersion amount of the powder of the first metal in the resin film is 50 wt% to 99 wt% in the forming method according to claim 1..
MaClaim3The forming method according to claim 1 is characterized in that in the forming method according to claim 1, the film thickness of the resin film is 1 μm to 100 μm.
  Claims4The forming method according to claim 1 to claim 1.3In the forming method according to any one of the above, the first metal is zinc and the second metal is nickel.
  Claims5The forming method according to claim 1 to claim 1.3In the forming method according to any one of the above, the first metal is nickel and the second metal is copper.
  Claims6The forming method according to claim 1 to claim 1.5In the forming method according to any one of the above, the second metal and the third metal are the same metal.
  Claims7The forming method described in claim6The forming method described above is characterized in that the step of forming the displacement plating film and the step of forming the electroplating film are performed in one plating bath.
  Claims8The forming method according to claim 1 to claim 1.7In the forming method according to any one of the above, the thickness of the displacement plating film is 0.05 μm to 2 μm.
  The article of the present invention is also claimed9As described, claims 1 to8An electroplated film is formed on the surface by the forming method according to any one of(Excluding rare earth permanent magnets).
  Further, the method for forming a displacement plating film on the surface of the article of the present invention is as follows.10As stated, on the surface of the articleThe average particle size is 2 μm to 30 μmMade of resin in which powder of first metal is dispersedVolume resistivity is 1 × 10 4 Non-conductive more than Ω · cmAfter forming the film, thisNon-conductiveBy immersing the film-forming article in a solution containing ions of the second metal having a potential more noble than the first metalNon-conductiveForming a replacement plating film of a second metal on the surface of the film;(Excluding rare earth permanent magnets as articles).
  The article of the present invention is also claimed11As described, a displacement plating film is formed on the surface by the forming method according to claim 13.(Excluding rare earth permanent magnets).
[0006]
DETAILED DESCRIPTION OF THE INVENTION
According to the method of forming an electroplated film on the surface of an article of the present invention, a resin film made of a resin in which a powder of a first metal is dispersed is formed on the surface of the article, and then the resin film-formed article has a higher potential than the first metal. A second metal displacement plating film is formed on the surface of the resin film by immersing in a solution containing ions of the second metal having a metal, and a third metal electroplating film is further formed on the surface of the replacement plating film. To do.
[0007]
In the method for forming an electroplated film on the surface of an article of the present invention, a resin film made of a resin in which a powder of the first metal is dispersed is formed on the article surface, and then exists on or near the resin film surface. By using a displacement plating reaction starting from the powder of the first metal, a displacement plating film of the second metal having excellent adhesion is formed on the entire surface of the resin film. As a result, since conductivity is imparted to the entire surface of the article, it is possible to form a uniform and dense third metal electroplating film on the surface of the displacement plating film with excellent adhesion. Therefore, it has excellent adhesion to the surface of the article made of any material such as plastic, wood, paper, glass, ceramics, rubber, concrete, metal, etc. without depending on the surface material and surface properties of the article. It can be formed with sex.
Hereinafter, the method for forming an electroplated film on the surface of the article of the present invention will be described in order.
[0008]
Step 1:
First, a resin film made of a resin in which a first metal powder is dispersed is formed on the surface of an article. For example, a thermosetting resin can be used as the resin that is the main component of the resin coating. Specific examples include phenol resins, epoxy resins, melamine resins, acrylic resins, polyester resins, urethane resins, polyimide resins, styrene acrylic resins, and mixed resins thereof.
[0009]
There is no particular restriction on the type of the first metal powder dispersed in the resin coating, but the first metal has a lower potential than the second metal in order to cause a displacement plating reaction in a later step. Is essential. Therefore, the first metal is appropriately selected in consideration of the potential difference with the second metal. Specific examples of the combination of the first metal and the second metal include a combination of the first metal being zinc and the second metal being nickel, and the first metal being nickel and the second metal being copper.
[0010]
  The resin film made of resin in which the powder of the first metal is dispersed is,Non-conductive coatingAndThe resin film formed on the surface of an article made of a highly corrosive material such as a metal such as magnesium is preferably a non-conductive film. Even if the surface of the resin film corrodes during the displacement plating process or electroplating process, defects such as pinholes and scratches occur in the electroplated film formed on the resin film surface via the displacement plating film, This is because even if the surface of the resin coating corrodes through the defect or the like, it is possible to prevent the corrosion from proceeding to the surface of the article through the resin coating.
[0011]
The non-conductive film made of a resin in which the powder of the first metal is dispersed is, for example, the non-conductive resin itself in which the powder of the first metal is dispersed, and if necessary, such a resin is used as an organic solvent. After the solution prepared by diluting with is spray-coated on the surface of the article as a treatment liquid, or the article is immersed in the treatment liquid for dip-coating, it is formed by drying. Some non-conductive resins in which metal powder is dispersed are commercially available and can be easily obtained. Even if the resin in which the powder of the first metal is dispersed is conductive, the treatment liquid can be made non-conductive by adding an organic dispersion medium to uniformly disperse and isolate the individual metal powder. You can also. In this case, as an organic dispersion medium, an anionic dispersion medium (aliphatic polyvalent carboxylic acid, polyether polyester carboxylate, polymer polyester acid polyamine salt, high molecular weight polycarboxylic acid long chain amine salt, etc.), nonionic -Soluble dispersion media (carboxylates such as polyoxyethylene alkyl ethers and sorbitan esters, sulfonates, and ammonium salts), polymer dispersion media (carboxylates, sulfonates, and ammonium salts of water-soluble epoxies, styrene- Acrylic acid copolymer, glue, etc.) are preferably used from the viewpoint of affinity with metal powder and cost. Moreover, as long as it is a process liquid which can form a nonelectroconductive film, itself may be electroconductive. In preparing the treatment liquid, a dispersing machine such as a ball mill, an attritor or a sand mill can be used as appropriate.
[0012]
  The non-conductive coating made of resin in which the powder of the first metal is dispersed prevents the corrosion from proceeding to the surface of the article through the inside of the coating even if the coating surface is corroded. On the other hand, it has the effect of imparting corrosion resistance. This effect includes the self-repairing action of the coating (corrosion compound of the first metal (ZnCl when the first metal is zinc).2・ 4Zn (OH)2Or ZnO, etc.) and the effect of burying the defects even if defects such as pinholes and scratches are present in the coating due to the increase in volume due to the generation of the resin and swelling of the resin) and the sacrificial anticorrosive action of the first metal Etc. are also considered to contribute. To make this effect more certainIn addition,The volume resistivity of the non-conductive coating is 1 × 104Ω · cm or moreTheThe above-mentioned organic dispersion medium may be added to the treatment liquid to suppress the aggregation and sedimentation of the metal powder in the treatment liquid, thereby increasing the volume resistivity by increasing the dispersibility of the metal powder.
[0013]
  In order for the metal powder in the resin film to be the starting point for the displacement plating reaction and to form the displacement plating film on the entire surface of the resin film, it is advantageous that the metal powder be present uniformly and richly on the resin film surface or in the vicinity thereof. It is. Therefore, from this viewpoint, it is desirable to prepare the treatment liquid so that the dispersion amount of the metal powder in the resin coating is 50% by weight or more. The upper limit of the dispersion amount of the metal powder in the resin coating is not limited, but it is usually difficult to prepare a treatment liquid for forming a resin coating in which the dispersion amount of the metal powder exceeds 99% by weight. (Since the problem that the metal powder aggregates and settles in the processing solution and the viscosity of the processing solution increases and the handling property is inferior). Therefore, the upper limit of the amount of dispersion of the metal powder in the resin coating is 99% by weight in production.
  In order to prepare a treatment liquid in which metal powder is uniformly dispersedIn addition,The average particle size of the metal powder is2μm-30μmBut,2It should be μm-12μmHopePreferably, it should be 2 μm to 10 μmThandesirable.
[0014]
The surface of the resin film made of resin in which the powder of the first metal is dispersed is made smooth, and the metal powder is uniformly and richly present on the surface of the resin film and in the vicinity thereof. Excellent adhesion to the entire surface of the resin film In order to form a uniform displacement plating film having a thickness, the film thickness of the resin film is preferably 1 μm to 100 μm. However, an increase in the thickness of the resin coating may adversely affect the formation of a uniform electroplating coating. Therefore, considering this point, the upper limit of the film thickness of the resin coating is more preferably 30 μm.
[0015]
In addition, before performing the process for forming the resin film which consists of resin which disperse | distributed the 1st metal powder, in order to improve the adhesiveness of the interface of an article surface and a resin film, itself by degreasing of the article surface etc. You may perform the giving of the throwing effect by well-known cleaning or barrel polishing.
[0016]
Step 2:
Next, the second metal displacement plating film is formed on the surface of the resin film by immersing the article in which the resin film is formed on the surface in Step 1 in a solution containing ions of the second metal having a higher potential than the first metal. Form. The displacement plating film of the second metal has a function of imparting conductivity to the entire surface of the article, and prevents the powder of the first metal from degranulating from the resin film, thereby contributing to improvement of the article surface cleanliness. This step may be carried out in accordance with a conventional method for forming a displacement plating film, but from the viewpoint of ensuring sufficient conductivity to form a uniform and dense third metal electroplating film in a later step. It is desirable to form a film having a film thickness of 0.05 μm or more. Prior to forming the displacement plating film, an article having a resin film formed on the surface for the purpose of smoothing the surface of the resin film and exposing the active surface of the first metal powder uniformly dispersed in the resin film Barrel polishing may be applied to the surface. In addition, although the upper limit of the film thickness of a displacement plating film is not specifically limited, when it considers the point of manufacturing cost, it is desirable to set it as 2 micrometers or less. In addition, for the purpose of imparting surface conductivity, etc. for decoration and antistatic properties to the article, a practically satisfactory effect can be obtained even at this stage where a displacement plating film is formed on the surface. be able to.
[0017]
Step 3:
Finally, an electroplating film of a third metal is formed on the surface of the displacement plating film formed in step 2. This step may be performed according to a conventional method for forming an electroplated film. As described above, for the combination of the first metal and the second metal, the potential difference between the two must be considered, but for the third metal there is no particular reason to consider in relation to the second metal, For example, a metal usually formed as an electroplating film such as Ni, Cu, Sn, Co, Zn, Cr, Ag, Au, Pb, Pt, etc. is applied as the third metal. Therefore, there is no problem even if the second metal and the third metal are the same metal.
[0018]
When the second metal and the third metal are the same metal, that is, when the metal that constitutes the displacement plating film and the metal that constitutes the electroplating film are the same metal, the step 2 and the electric forming the displacement plating film It is convenient to perform step 3 of forming the plating film in one plating bath. That is, for example, when an article having a resin film made of a resin in which a first metal powder is dispersed on the surface is immersed in a plating bath, the displacement plating reaction is allowed to proceed by applying no voltage to the displacement plating film. After forming, an electroplated film can be formed by applying a voltage. Further, even when a voltage is applied from the beginning of immersing an article in which a resin film made of a resin in which the first metal powder is dispersed on the surface is immersed in a plating bath, the volume resistance of the resin film is in the initial stage of immersion. Since the rate is high, a replacement plating film is first formed on the surface of the resin film by a displacement plating reaction due to a potential difference between the first metal and the second metal. As a result, conductivity is imparted to the entire surface of the article, and a uniform and dense electroplating film is formed on the surface of the displacement plating film. What is necessary is just to set the film thickness of an electroplating film suitably according to the objective.
[0019]
For example, in the case where the replacement Ni plating film and the electric Ni plating film are formed on the surface of the article in one plating bath, various baths can be used as the plating bath depending on the shape of the article. As the plating bath, a known plating bath such as a watt bath, a sulfamic acid bath, or a wood bath may be used. In order to form a substituted Ni plating film having excellent adhesion on the surface of the non-conductive film made of a resin in which the powder of the first metal is dispersed, for example, a low nickel high sulfate bath is used, and the first metal It is desirable to suppress excessive substitution efficiency (deposition rate of substitutional Ni plating film) between nickel and nickel. Suitable low nickel high sulfate baths include nickel sulfate pentahydrate 100 g / L to 170 g / L, sodium sulfate 160 g / L to 270 g / L, ammonium chloride 8 g / L to 18 g / L, boric acid 13 g / L. A plating bath composed of L to 23 g / L can be mentioned. The pH of the plating bath is preferably 4.0 to 8.0. This is because if it is less than 4.0, there is a risk of adversely affecting an article that is unstable in acidic conditions, while if it exceeds 8.0, the adhesion of the formed substituted Ni plating film may be inferior. In addition, when the pH of the plating bath is set to 4.0 to 8.0, the first metal having a base potential lower than that of Ni is rapidly eluted to form a rough substituted Ni plating film on the surface. There is also an object of effectively suppressing adverse effects on the adhesion with the formed electric Ni plating film. The bath temperature of the plating bath is desirably 30 ° C to 70 ° C. If the temperature is lower than 30 ° C., the surface of the formed substituted Ni plating film may become rough. On the other hand, if it exceeds 70 ° C., bath temperature management is difficult, and a uniform replacement Ni plating film may not be formed. It is. When an electric Ni plating film is formed after forming a replacement Ni plating film using such a plating bath, the current density is 0.2 A / dm.2~ 20A / dm2Is desirable. 0.2 A / dm2On the other hand, if it is less than 20A / dm, the film formation rate is slow and the productivity may be inferior.2This is because the surface of the formed electric Ni plating film becomes rough when it exceeds the range, and a large number of pinholes may be generated. Although an electrolytic Ni plate is used for the anode, it is desirable to use a nickel tip containing S as the electrolytic Ni plate in order to stabilize the elution of Ni.
[0020]
For example, even when the substitution Cu plating film and the electric Cu plating film are formed on the surface of the article in one plating bath, various baths can be used as the plating bath depending on the shape of the article. The pH of the plating bath is desirably 5.0 to 8.5. This is because if it is less than 5.0, it may adversely affect articles that are unstable in acidic conditions, while if it exceeds 8.5, the adhesion of the formed substituted Cu plating film may be inferior. The bath temperature of the plating bath is preferably 25 ° C to 70 ° C. If the temperature is lower than 25 ° C., the surface of the formed substituted Cu plating film may become rough. On the other hand, if it exceeds 70 ° C., bath temperature management is difficult, and a uniform replacement Cu plating film may not be formed. It is. When forming an electric Cu plating film after forming a replacement Cu plating film using such a plating bath, the current density is 0.1 A / dm.2~ 5.0A / dm2Is desirable. 0.1 A / dm2On the other hand, if it is less than 5.0A / dm, the film formation rate is slow and the productivity may be inferior.2This is because the surface of the formed electric Cu plating film becomes rough and the number of pinholes may be generated. As the plating bath, a neutral Cu plating bath having low corrosiveness and low permeability is desirable, and in particular, a neutral Cu-EDTA bath mainly composed of copper sulfate, ethylenediaminetetraacetic acid and sodium sulfite is desirable.
[0021]
In addition, another electroplating film or the like may be laminated on the electroplating film formed as described above. By adopting such a configuration, it is possible to enhance / complement the characteristics of the electroplated film or to impart further functionality.
[0022]
【Example】
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.
[0023]
Example 1 (Formation of electroplated film on transparent acrylic plate surface)
A small vibrating barrel (Chipton: VM-10) is loaded with 5 liters of transparent acrylic plate 60mm long x 20mm wide x 2mm thick and 2L of alumina media (Chipton: PSφ4) in volume. Surface polishing of the acrylic plate was performed for 30 minutes. Next, the surface-polished transparent acrylic plate was immersed in acetone for 1 minute to degrease the surface, and then naturally dried.
Epoloval (trade name made by Roval: the average particle diameter of zinc powder is 4 μm) is used as a non-conductive zinc powder dispersion resin, and diluted with an epovalar thinner (trade name, made by Roval) (weight) A non-conductive zinc powder-dispersed resin solution was prepared by stirring uniformly at a ratio of Epoval: Thinner = 1: 0.7). The obtained solution was sprayed on the entire surface of the transparent acrylic plate under a spray pressure of 0.2 MPa using an air spray device having a gun diameter of 1.2 mm, sprayed, and then heated at room temperature (20 ° C.). Non-conductive film (volume resistivity 2 × 10) having a thickness of 15 μm (according to cross-sectional observation) in which the amount of zinc powder dispersed is 96% by weight.FiveΩ · cm: according to JIS-H0505) was formed on the surface of the transparent acrylic plate.
A small vibrating barrel (made by Chipton: VM-10), 5 transparent acrylic plates with a non-conductive coating formed on the surface obtained in step 1 and alumina media for 2 L in volume (made by Chipton: PSφ4) The surface of the non-conductive coating was polished for 30 minutes.
A transparent acrylic plate having a non-conductive film that has been subjected to surface polishing, contains nickel sulfate pentahydrate 240 g / L, nickel chloride pentahydrate 45 g / L, boric acid 35 g / L, The substrate was immersed in a watt bath having a liquid temperature of 55 ° C. adjusted to pH 4.2 with nickel, and a substituted Ni plating film was formed on the surface of the non-conductive film without applying a voltage for 30 minutes. Two of the five transparent acrylic plates were taken out of the watt bath at this point and the thickness of the formed substituted Ni plating film was examined. The average value was 1 μm (according to cross-sectional observation). The substituted Ni plating film thus formed exhibits surface properties as metallic Ni and has a volume resistivity of 5 × 10 5.-6It was Ω · cm. Therefore, it has been found that even at this stage, it is sufficient to be practically satisfactory for the purpose of imparting decorativeness and surface conductivity for antistatic purposes.
The remaining three transparent acrylic plates were then subjected to a voltage and a current density of 1.5 A / dm.2The electric Ni plating treatment was performed for 90 minutes under the above conditions to form an electric Ni plating film on the surface of the replacement Ni plating film.
The transparent acrylic plate having the electric Ni plating film on the outermost surface obtained as described above was ultrasonically washed with water for 3 minutes and then dried at 100 ° C. for 60 minutes.
When the appearance of the electric Ni plating film on the outermost surface of three transparent acrylic plates was inspected with a magnifying glass (× 4), there was no defective product with pinholes, protrusions, foreign matter adhesion, etc., and all the films were homogeneous. It was evaluated as a good product. Since the average value (n = 3) of the total thickness of the Ni plating film formed on the surface of the non-conductive film was 25 μm (according to cross-sectional observation), the average value of the thickness of the electric Ni plating film (n = 3) ) Was found to be 24 μm.
[0024]
Example 2 (Formation of electroplated film on the surface of a wooden mascot bat)
A uniform and dense electric Ni plating film was formed on the surface of a wooden mascot bat having a length of 240 mm and a diameter of about 10 mm in the same manner as in Example 1 with excellent adhesion.
[0025]
Example 3 (Formation of electroplated film on corrugated paper surface)
Similar to Example 1 (corresponding to the surface polishing step using a small vibration barrel is omitted) on a corrugated cardboard having a length of 60 mm, a width of 20 mm, and a thickness of 2 mm. A coating was formed with excellent adhesion.
[0026]
Example 4 (Formation of electroplated film on transparent glass plate surface)
A uniform and dense electric Ni plating film was formed on the surface of a transparent glass plate 60 mm long × 20 mm wide × 2 mm thick in the same manner as in Example 1 with excellent adhesion.
[0027]
Example 5 (Formation of electroplated film on aluminum plate surface)
In the same manner as in Example 1, a uniform and dense electric Ni plating film was formed on the surface of an aluminum plate 60 mm long × 20 mm wide × 2 mm thick with excellent adhesion.
[0028]
Example 6 (Formation of electroplated film on the surface of magnesium alloy plate)
A uniform and dense electric Ni plating film was formed on the surface of a magnesium alloy plate 60 mm long × 20 mm wide × 2 mm thick in the same manner as in Example 1 with excellent adhesion.
[0029]
【The invention's effect】
According to the present invention, there is provided a method of forming a uniform and dense electroplated film on the surface with excellent adhesion without depending on the surface material and surface properties of the article.

Claims (11)

物品表面に、平均粒径が2μm〜30μmの第1金属の粉末を分散させた樹脂からなる体積抵抗率が1×10 Ω・cm以上の非導電性被膜を形成した後、この非導電性被膜形成物品を第1金属より貴な電位を有する第2金属のイオンを含む溶液に浸漬することで非導電性被膜表面に第2金属の置換めっき被膜を形成し、さらに置換めっき被膜表面に第3金属の電気めっき被膜を形成することを特徴とする物品表面への電気めっき被膜の形成方法(但し物品として希土類系永久磁石は除く)。 A non-conductive film having a volume resistivity of 1 × 10 4 Ω · cm or more is formed on the surface of the article , which is made of a resin in which a powder of a first metal having an average particle diameter of 2 μm to 30 μm is dispersed . By immersing the film-forming article in a solution containing ions of the second metal having a higher potential than the first metal, a replacement plating film of the second metal is formed on the surface of the non-conductive film, and the second plating film is further formed on the surface of the replacement plating film. 3. A method of forming an electroplated film on the surface of an article, wherein an electroplated film of three metals is formed (except for rare earth permanent magnets as an article). 非導電性被膜中における第1金属の粉末の分散量が50重量%〜99重量%であることを特徴とする請求項1記載の形成方法 2. The forming method according to claim 1, wherein the dispersion amount of the powder of the first metal in the non-conductive coating is 50 wt% to 99 wt% . 非導電性被膜の膜厚が1μm〜100μmであることを特徴とする請求項1記載の形成方法。The formation method according to claim 1, wherein the film thickness of the non-conductive coating is 1 μm to 100 μm. 第1金属が亜鉛で第2金属がニッケルであることを特徴とする請求項1乃至のいずれかに記載の形成方法。Forming method according to any one of claims 1 to 3 first metal and the second metal in zinc and wherein the nickel. 第1金属がニッケルで第2金属が銅であることを特徴とする請求項1乃至のいずれかに記載の形成方法。Forming method according to any one of claims 1 to 3 first metal, wherein the second metal nickel is copper. 第2金属と第3金属が同じ金属であることを特徴とする請求項1乃至のいずれかに記載の形成方法。A method according to any one of claims 1 to 5 second metal and the third metal is characterized in that the same metal. 置換めっき被膜を形成する工程と電気めっき被膜を形成する工程を一つのめっき浴において行うことを特徴とする請求項記載の形成方法。7. The forming method according to claim 6 , wherein the step of forming the displacement plating film and the step of forming the electroplating film are performed in one plating bath. 置換めっき被膜の膜厚が0.05μm〜2μmであることを特徴とする請求項1乃至のいずれかに記載の形成方法。A method according to any one of claims 1 to 7 the thickness of the displacement plating coating is characterized in that it is a 0.05Myuemu~2myuemu. 請求項1乃至のいずれかに記載の形成方法により表面に電気めっき被膜が形成されていることを特徴とする物品(但し希土類系永久磁石は除く)Article, characterized in that the electric plating film on the surface by forming method according to any one of claims 1 to 8 is formed (except rare earth metal-based permanent magnets). 物品表面に、平均粒径が2μm〜30μmの第1金属の粉末を分散させた樹脂からなる体積抵抗率が1×10 Ω・cm以上の非導電性被膜を形成した後、この非導電性被膜形成物品を第1金属より貴な電位を有する第2金属のイオンを含む溶液に浸漬することで非導電性被膜表面に第2金属の置換めっき被膜を形成することを特徴とする物品表面への置換めっき被膜の形成方法(但し物品として希土類系永久磁石は除く) A non-conductive film having a volume resistivity of 1 × 10 4 Ω · cm or more is formed on the surface of the article , which is made of a resin in which a powder of a first metal having an average particle diameter of 2 μm to 30 μm is dispersed . To a surface of an article characterized in that a displacement plating film of a second metal is formed on the surface of a non-conductive film by immersing the film-formed article in a solution containing ions of a second metal having a noble potential than the first metal. (1) Except for rare earth permanent magnets as an article . 請求項10記載の形成方法により表面に置換めっき被膜が形成されていることを特徴とする物品(但し希土類系永久磁石は除く)An article having a displacement plating film formed on the surface by the forming method according to claim 10 (excluding rare earth permanent magnets) .
JP2002308336A 2002-01-25 2002-10-23 Method for forming electroplating film on article surface Expired - Lifetime JP4131386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308336A JP4131386B2 (en) 2002-01-25 2002-10-23 Method for forming electroplating film on article surface

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-17686 2002-01-25
JP2002017686 2002-01-25
JP2002308336A JP4131386B2 (en) 2002-01-25 2002-10-23 Method for forming electroplating film on article surface

Publications (2)

Publication Number Publication Date
JP2003286586A JP2003286586A (en) 2003-10-10
JP4131386B2 true JP4131386B2 (en) 2008-08-13

Family

ID=29253228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308336A Expired - Lifetime JP4131386B2 (en) 2002-01-25 2002-10-23 Method for forming electroplating film on article surface

Country Status (1)

Country Link
JP (1) JP4131386B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961445B2 (en) * 2009-02-13 2012-06-27 東光株式会社 Mold coil manufacturing method and mold coil
JP5388191B2 (en) * 2009-05-26 2014-01-15 Jx日鉱日石金属株式会社 Plating object having through silicon via and method for forming the same
JP2011012293A (en) * 2009-06-30 2011-01-20 Daiwa Fine Chemicals Co Ltd (Laboratory) Plating method for magnesium or magnesium alloy

Also Published As

Publication number Publication date
JP2003286586A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
US5302464A (en) Method of plating a bonded magnet and a bonded magnet carrying a metal coating
JP5820950B1 (en) Method for producing nickel plating solution and solid fine particle-attached wire
JPS5932553B2 (en) How to form a strippable copper coating on aluminum
US20190156974A1 (en) Nd-fe-b magnet including a composite coating disposed thereon and a method of depositing a composite coating on the nd-fe-b magnet
CN112030213B (en) Wear-resistant super-hydrophobic nickel-tungsten/tungsten carbide composite coating and preparation method thereof
KR20140047077A (en) Printed circuit boards and related articles including electrodeposited coatings
JPH08250865A (en) Method for improving further reliability of electronic housing by preventing formation of metallic whisker on sheetutilized for manufacture of the electronic housing
KR100921874B1 (en) Method for forming electroplated coating on surface of article
JP4131386B2 (en) Method for forming electroplating film on article surface
CN209779038U (en) Production system of corrosion-resistant and wear-resistant stainless steel-based coating structure
CN113061890A (en) Method for constant-voltage electrodeposition of Ni-SiC composite coating on aluminum alloy surface
JPWO2013039097A1 (en) Solid particulate adhering wire and method for producing the solid particulate adhering wire
JP2019002070A (en) Environmentally friendly nickel electroplating composition and method
US5186802A (en) Electro-deposition coated member and process for producing it
JPS5811518B2 (en) Metal-diamond composite plating method
CN108642532A (en) The preparation method and application of scandium additive use and nanometer crystalline Ni-B-Sc coating
JP2005068445A (en) Metallic member covered with metal
CN114182241A (en) Ni-W-P/Ni-P nano cerium oxide composite anticorrosive coating and process
JPH07161516A (en) Bond magnet and its production
JP2719658B2 (en) Bond magnet plating method
JP4131385B2 (en) Rare earth permanent magnet manufacturing method
JP2001257112A (en) Permanent magnet material
CN110257867B (en) Ni-Co/Cu super-hydrophobic coating and preparation method thereof
CN112522749B (en) Preparation method of rare earth permanent magnet material surface corrosion-resistant coating and product
JP2003147548A (en) Reel made of aluminum or aluminum alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4131386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

EXPY Cancellation because of completion of term