JP4131362B2 - Internal combustion engine control device - Google Patents

Internal combustion engine control device Download PDF

Info

Publication number
JP4131362B2
JP4131362B2 JP32990699A JP32990699A JP4131362B2 JP 4131362 B2 JP4131362 B2 JP 4131362B2 JP 32990699 A JP32990699 A JP 32990699A JP 32990699 A JP32990699 A JP 32990699A JP 4131362 B2 JP4131362 B2 JP 4131362B2
Authority
JP
Japan
Prior art keywords
signal
ignition
injection
circuit
discrimination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32990699A
Other languages
Japanese (ja)
Other versions
JP2001152939A (en
Inventor
秀樹 河村
千葉  朋成
哲也 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP32990699A priority Critical patent/JP4131362B2/en
Priority to US09/713,228 priority patent/US6694959B1/en
Priority to DE10057076.3A priority patent/DE10057076B4/en
Priority to GB0320074A priority patent/GB2392955A/en
Priority to GB0028265A priority patent/GB2356428B/en
Publication of JP2001152939A publication Critical patent/JP2001152939A/en
Priority to US10/647,214 priority patent/US6895933B2/en
Application granted granted Critical
Publication of JP4131362B2 publication Critical patent/JP4131362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、点火系を駆動する点火駆動回路と、燃料噴射弁を駆動する噴射駆動回路とを備えた内燃機関制御装置に関するものである。
【0002】
【従来の技術】
近年の自動車のエンジン制御は、車載コンピュータでエンジン運転条件に応じて燃料噴射量や点火時期を演算し、各気筒の噴射信号を噴射駆動回路に出力して各気筒の燃料噴射弁を駆動すると共に、各気筒の点火信号を点火駆動回路に出力して各気筒の点火プラグに火花放電を発生させるようにしている。
【0003】
【発明が解決しようとする課題】
従来の点火駆動回路と噴射駆動回路は、互いに離れた場所に配置され、別個に構成されていたため、回路構成上、共通化できる箇所があっても、配線が困難であるために共通化することができず、回路規模が大きくなり、コスト高になるという欠点があった。
【0004】
また、従来のエンジン制御システムでは、エンジン制御コンピュータから各気筒の点火信号と噴射信号を出力する信号ラインの本数が多くなり、その分、広い配線スペースが必要になると共に、信号ラインの配線が煩雑になり、総じてコスト高になるという欠点もあった。
【0005】
また、各気筒内の燃焼状態を検出するために、各気筒毎に燃焼センサを取り付けると、コスト高になるという欠点もあった。
また、点火駆動回路や噴射駆動回路に設けられたコイルは、通電オフ直後に残留磁気エネルギを放出するが、このエネルギは、熱として放散され、有効に使用されていなかった。
【0006】
本発明はこれらの事情を考慮してなされたものであり、本発明の目的は、内燃機関の制御のための回路構成を簡素化してコストを低減できるようにすることである。
【0007】
【課題を解決するための手段
【0008】
請求項1に係る発明は、点火系を駆動する点火駆動回路と、燃料噴射弁を駆動する噴射駆動回路と、これら両駆動回路を制御する制御コンピュータとを備えた内燃機関制御装置において、制御コンピュータと両駆動回路との間に信号判別回路を設け、この信号判別回路は、制御コンピュータから出力される複数の信号の組み合わせによって気筒判別及び点火・噴射の判別を行い、その判別結果に応じて両駆動回路に各気筒の点火信号と噴射信号を出力するように構成することで、該信号判別回路の入力信号の合計数が出力信号の合計数よりも少なくなるように構成したものである。つまり、図2(4気筒エンジンの例)に示すように、従来のエンジン制御コンピュータ(ECU)は、気筒毎に点火信号IGT1〜IGT4と噴射信号IJT1〜IJT4を出力していたため、各気筒の点火信号と噴射信号を出力する信号ラインの本数が気筒数の2倍必要であったが、請求項の発明は、複数の信号の組み合わせによって気筒判別及び点火・噴射の判別を行うため、制御コンピュータに接続する信号ラインの本数を従来より大幅に少なくすることができる。これにより、信号ラインの配線スペースを減らすことができると共に、信号ラインの配線も容易となり、製造コストを低減することができる。
【0009】
この場合、請求項のように、制御コンピュータは、気筒判別信号、点火判別信号及び噴射判別信号を信号判別回路に出力し、且つ、該点火判別信号及び該噴射判別信号のパルス幅をそれぞれ点火駆動時間及び噴射時間に応じて変化させ、信号判別回路は、前記気筒判別信号、前記点火判別信号及び前記噴射判別信号の組み合わせによって気筒判別及び点火・噴射の判別を行い、且つ、前記点火判別信号のパルス幅によって点火信号のパルス幅を決定すると共に、前記噴射判別信号のパルス幅によって噴射信号のパルス幅を決定するように構成することで、該信号判別回路の入力信号である前記気筒判別信号、前記点火判別信号及び前記噴射判別信号の合計数が該信号判別回路の出力信号である前記点火信号と前記噴射信号の合計数よりも少なくなるように構成しても良い。このようにすれば、4気筒以上のエンジンの場合、制御コンピュータに接続する信号ラインの本数を従来の半数以下に減少させることができる。例えば、4気筒エンジンの場合、信号ラインの本数を4本(従来は8本)とすることができ、6気筒エンジンの場合、信号ラインの本数を5本(従来は12本)とすることができる。
【0012】
[実施形態(1)]
以下、本発明に関連する参考例としての実施形態(1)を図1に基づいて説明する。本実施形態(1)では、点火系を駆動する点火駆動回路11と、燃料噴射弁12を駆動する噴射駆動回路13とを同一の回路基板(図示せず)に構成して点火駆動回路11と噴射駆動回路13とを一体化し、且つ、両駆動回路11,13の同一機能部分である電源安定回路14を共通化している。この電源安定回路14は、バッテリ15の電圧変動やノイズを抑制するために、バッテリ15のプラス端子とグランド端子との間に、コイル16とコンデンサ17を直列に接続したLCローパスフィルタにより構成され、コイル16とコンデンサ17との間の接続点を電源安定回路14の出力端子18とし、この出力端子18から電源ライン19a,19bを通してバッテリ電圧VB を点火駆動回路11と噴射駆動回路13に供給する。
【0013】
次に、点火駆動回路11の構成を説明する。電源安定回路14から電源ライン19aを通して供給されるバッテリ電圧VB は、昇圧回路20で昇圧され、逆流防止用のダイオード21を介してコンデンサ22に充電される。昇圧回路20は、コイル23とスイッチング素子24と抵抗25を直列に接続して構成され、スイッチング素子24のオン/オフを点火制御回路26によって制御することで、コイル23の出力電圧を昇圧する。この昇圧回路20は、スイッチング素子24のオン期間中にコイル23に電流を流して、その電流値を抵抗25の端子電圧によってモニタし、該電流値が所定値になる毎にスイッチング素24をオフするという動作を繰り返してコイル23の出力電圧を昇圧してコンデンサ22に充電する。点火制御回路26は、コンデンサ22の充電電圧をモニタし、この充電電圧が所定電圧となったときに昇圧回路20の昇圧動作を停止させる。
【0014】
点火コイル27の一次巻線28に接続されたスイッチング素子29がオンしたときに、コンデンサ22の充電電荷が、点火コイル27の一次巻線28→スイッチング素子29→抵抗30→グランド端子の経路で放電され、点火コイル27の一次巻線28に電流(一次電流)が流れる。点火コイル27の二次巻線32には点火プラグ33が接続されている。尚、図示はされていないが、点火プラグ33、点火コイル27、スイッチング素子29及び抵抗30の点火回路は、各気筒毎に設けられ、各気筒の点火回路がコンデンサ22の充電電圧によって駆動されるようになっている。
【0015】
点火コイル27の一次電流を断続するスイッチング素子29のオン/オフは、エンジン制御コンピュータ(図示せず)から出力される点火信号に基づいて点火制御回路26によって制御される。点火制御回路26は、点火信号の立ち上がりタイミングで、スイッチング素子29をオンして、点火コイル27に一次電流を流し、点火信号の立ち下がりタイミングで、スイッチング素子29をオフして、点火コイル27の一次電流を遮断する。これにより、点火コイル27の二次巻線32に高電圧を発生させて、点火プラグ33に火花放電を発生させる。尚、点火コイル27の一次電流の遮断時には、点火コイル27の残留磁気エネルギがフライホイールダイオード31を介して放出される。
【0016】
次に、噴射駆動回路13の構成を説明する。電源安定回路14から電源ライン19bを通して供給されるバッテリ電圧VB は、定電圧回路34に供給されて定電圧Vccに変換され、各回路部の電源電圧として用いられる。更に、電源安定回路14から電源ライン19bを通して供給されるバッテリ電圧VB はコイル35に印加され、この電圧が昇圧回路36によって昇圧される。昇圧回路36は、DC−DCコンバータ37、スイッチング素子38、抵抗39等から構成され、DC−DCコンバータ37は、単安定マルチバイブレータ40の出力がローレベルの時に、スイッチング素子38をオンさせてコイル35に電流を流し、その電流値を抵抗39の端子電圧によってモニタし、該電流値が所定値になる毎にスイッチング素子38をオフするという動作を繰り返してコイル35の出力電圧を昇圧する。昇圧された電圧は、逆流防止用のダイオード41を介してコンデンサ42に充電される。DC−DCコンバータ37は、コンデンサ42の充電電圧をモニタし、この充電電圧が所定電圧となったときに昇圧動作を停止する。
【0017】
燃料噴射弁12の駆動コイル12aへの通電をオン/オフするスイッチング素子43は、単安定マルチバイブレータ40の出力によって駆動され、単安定マルチバイブレータ40の出力がハイレベルの時に、スイッチング素子43がオンしてコンデンサ42の充電電圧が燃料噴射弁12の駆動コイル12aに印加されると共に、ダイオード44を介して供給されるバッテリ電圧VB も燃料噴射弁12の駆動コイル12aに印加される。ダイオード44とスイッチング素子43の回路には、スイッチング素子45と逆流防止用のダイオード46の回路が並列に設けられ、スイッチング素子45のオン時には、バッテリ電圧VB がスイッチング素子45とダイオード46の回路でも燃料噴射弁12の駆動コイル12aに印加される。
【0018】
燃料噴射弁12の駆動コイル12aとグランド端子との間には、スイッチング素子47と抵抗48が直列に接続されている。このスイッチング素子47のオン/オフを制御する定電流制御回路49には、エンジン制御コンピュータ(図示せず)から出力される噴射信号が波形整形回路50を介して入力される。定電流制御回路49は、噴射信号が入力されている期間中は、スイッチング素子47をオン状態に維持して、燃料噴射弁12の駆動コイル12aに駆動電流を流して燃料噴射弁12を開弁駆動すると共に、この駆動電流を抵抗48の端子電圧によってモニタしながら、駆動電流が所定値に維持されるようにスイッチング素子45のオン/オフを制御する。噴射信号の立ち下がりタイミングで、スイッチング素子47がオフされて燃料噴射弁12の駆動コイル12aへの通電が遮断されると、燃料噴射弁12が閉弁すると共に、燃料噴射弁12の駆動コイル12aの残留磁気エネルギがフライホイールダイオード51を介して放出される。
【0019】
前述したDC−DCコンバータ37とスイッチング素子43を駆動制御する単安定マルチバイブレータ40には、波形整形回路50を介して噴射信号が入力される。これにより、単安定マルチバイブレータ40は、噴射信号の立ち上がりから一定時間幅のハイレベル信号をDC−DCコンバータ37とスイッチング素子43に出力し、このハイレベル信号の期間中は、DC−DCコンバータ37の動作を停止して昇圧動作を停止すると共に、スイッチング素子43をオン状態に保持して、燃料噴射弁12の駆動コイル12aに駆動電流を流して燃料噴射弁12を開弁駆動する。その後、単安定マルチバイブレータ40の出力がローレベルに反転すると、DC−DCコンバータ37の動作を開始して昇圧動作を開始すると共に、スイッチング素子43をオフしてコンデンサ42への充電を開始する。
【0020】
尚、単安定マルチバイブレータ40のハイレベル信号のパルス幅は、噴射信号のパルス幅よりも短く設定されている。従って、単安定マルチバイブレータ40の出力がローレベルに反転してスイッチング素子43がオフされても、噴射信号が立ち下がるまでは、スイッチング素子45を通して燃料噴射弁12の駆動コイル12aにバッテリ電圧VB を印加し続けて燃料噴射弁12を開弁状態に保持し続ける。そして、噴射信号の立ち下がりタイミングで、スイッチング素子47をオフして燃料噴射弁12の駆動コイル12aへの通電を遮断し、燃料噴射弁12を閉弁する。
【0021】
以上説明した実施形態(1)によれば、点火駆動回路11と噴射駆動回路13とを同一の回路基板に構成して点火駆動回路11と噴射駆動回路13とを一体化したので、両駆動回路11,13間の配線の形成が極めて容易となり、両駆動回路11,13の同一機能部分である電源安定回路14を簡単に共通化することができる。これにより、点火・噴射系の回路構成を簡素化できると共に、組付作業も簡単になり、製造コストを低減することができる。
【0022】
、点火駆動回路11と噴射駆動回路13とを同一の回路基板に構成する場合に限定されず、例えば、点火駆動回路11と噴射駆動回路13とを別個の回路基板に形成して、両回路基板を1つのケース内にコンパクトに収容することで、点火駆動回路11と噴射駆動回路13とを一体化するようにしても良い。
【0023】
[実施形態(2)]
次に、本発明の実施形態(2)を図2乃至図5を用いて説明する。
【0024】
まず、本実施形態(2)の理解を容易にするために、図2に基づいて従来の構成を説明する。図2は、従来の4気筒エンジンのエンジン制御コンピュータ(ECU)の各気筒の点火信号IGT1〜IGT4と噴射信号IJT1〜IJT4の信号ラインを示している。従来の4気筒エンジンのECUは、各気筒毎に別々の出力ポートから点火信号IGT1〜IGT4と噴射信号IJT1〜IJT4を出力するため、4気筒分の点火信号IGT1〜IGT4と噴射信号IJT1〜IJT4を出力するには、合計8本の信号ラインが必要となり、信号ラインの本数が多くなる欠点があった。
【0025】
そこで、本発明の実施形態(2)では、ECUの信号ラインの本数を少なくするために、図3乃至図5に示すように構成している。図3乃至図5は、本発明を4気筒エンジンに適用した実施形態であり、ECUは、2つの気筒判別信号IGA,IGBと点火判別信号WTG及び噴射判別信号WTJを信号判別回路55に出力する。そして、信号判別回路55は、これら4つの信号IGA,IGB,WTG,WTJのON(ハイレベル)とOFF(ローレベル)の組み合わせが、図4の8種類のいずれの組み合わせに該当するかを判別して、気筒判別と点火・噴射の判別を行う。つまり、信号判別回路55は2つの気筒判別信号IGA,IGBのONとOFFの組み合わせによって気筒判別を行い、点火判別信号WTGと噴射判別信号WTJのONとOFFの組み合わせによって点火・噴射の判別を行い、その判別結果に応じて、気筒毎に点火信号IGO1〜IGO4と噴射信号IJO1〜IJO4を点火駆動回路(図示せず)と噴射駆動回路(図示せず)に出力する。
【0026】
更に、図5に示すように、ECUは、点火判別信号WTGと噴射判別信号WTJのパルス幅をそれぞれ点火駆動時間と噴射時間に応じて変化させ、信号判別回路55は、点火判別信号WTGのパルス幅によって点火信号IGO1〜IGO4のパルス幅(点火駆動時間)を決定すると共に、噴射判別信号WTJのパルス幅によって噴射信号IJO1〜IJO4のパルス幅(噴射時間)を決定する。以上説明した信号判別回路55は論理回路で構成すれば良い。
【0027】
尚、信号判別回路55には、点火回数を設定する入力端子IGWが設けられ、多重点火にも対応できるようになっている。また、信号判別回路55には、点火・噴射動作をモニタするモニタ回路(図示せず)が内蔵され、点火モニタ信号と噴射モニタ信号を出力する2つの出力端子Igf,Ijfが設けられ、点火モニタ信号と噴射モニタ信号をECUで検出することで、点火・噴射が正常であるか否かを判断できるようになっている。
【0028】
以上説明した本実施形態(2)では、例えば、4気筒エンジンの場合に、4つの信号IGA,IGB,WTG,WTJのONとOFFの組み合わせによって、気筒判別と点火・噴射の判別を行い、且つ、点火判別信号WTGと噴射判別信号WTJのパルス幅によって点火信号IGO1〜IGO4のパルス幅(点火駆動時間)と噴射信号IJO1〜IJO4のパルス幅(噴射時間)を決定するようにしたので、ECUの信号ラインの本数を従来の半数にすることができ、信号ラインの配線スペースを節減できると共に、信号ラインの配線も容易となり、製造コストを低減することができる。
【0029】
尚、本発明は、4気筒エンジンに限定されず、3気筒以上のエンジンに適用して実施すれば、ECUの信号ラインの本数を従来より減少させることができ、4気筒以上のエンジンでは、ECUの信号ラインの本数を従来の半数以下に減少させることができる。例えば、6気筒エンジンの場合、ECUの信号ラインの従来の本数は12本であるのに対し、本発明では、5本(気筒判別3本、点火判別1本、噴射判別1本)にすることができる。
【0030】
また、点火信号IGO1〜IGO4と噴射信号IJO1〜IJO4のパルス幅を決定するための信号は、点火判別信号WTGと噴射判別信号WTJとは別に出力するようにしても良い。
【0031】
その他、本発明は、信号判別回路55の信号の判別方法を適宜変更しても良く、例えば、ECUの出力信号のパルス幅や一定時間内のパルス数によって気筒判別や点火・噴射の判別を行うようにしても良い。
【0032】
[実施形態(3)]
次に、本発明に関連する参考例としての実施形態(3)を図6を用いて説明する。本実施形態(3)のエンジン60は、燃料噴射弁61から気筒内に燃料を直接噴射する筒内噴射エンジンである。ECU62は、各気筒の点火時期に同期して点火信号を点火駆動回路63に出力して各気筒の点火プラグ64に火花放電を発生させると共に、各気筒の噴射時期に同期して噴射信号を噴射駆動回路65に出力して各気筒の燃料噴射弁61を開弁し、気筒内に燃料を直接噴射する。
【0033】
本実施形態(3)では、燃料噴射弁61の駆動手段として圧電素子を用い、噴射時に圧電素子に電圧を印加して燃料噴射弁61の弁体を開弁し、噴射終了時に圧電素子への電圧印加をオフして燃料噴射弁61の弁体を閉弁する。筒内噴射エンジン60では、燃料噴射弁61の噴射口が気筒内に露出しているため、燃料噴射弁61の噴射口を開閉する弁体に気筒内の燃焼圧力が作用し、その燃焼圧力が弁体を介して圧電素子に作用する。このため、燃焼時の筒内圧力の上昇に応じて圧電素子に電圧が発生する。
【0034】
そこで、本実施形態(3)では、噴射駆動回路64に、圧電素子に発生する電圧を検出する燃焼検出回路66を設け、この燃焼検出回路66で検出した圧電素子の電圧によって燃焼状態(例えば失火の有無、プレイグニッション等)を検出する。このようにすれば、燃料噴射弁61の駆動手段(圧電素子)を燃焼センサとして兼用することができるので、各気筒に新たに燃焼センサを取り付ける必要がなく、その分、コストを削減することができる。
【0035】
、圧電素子で駆動する燃料噴射弁を用いる場合に限定されず、電磁石で駆動する燃料噴射弁を用いる場合には、燃焼時の筒内圧力の上昇に応じて燃料噴射弁の電磁石の電磁コイルに発生する電圧を検出して燃焼状態を検出するようにすれば良い。
【0036】
[実施形態(4)]
次に、本発明に関連する参考例としての実施形態(4)を図7を用いて説明する。本実施形態(4)においても、前記実施形態(1)と同じく、噴射駆動回路71と点火駆動回路72とを同一の回路基板(図示せず)に構成して噴射駆動回路71と点火駆動回路72とを一体化している。図7は、噴射駆動回路71と点火駆動回路72の構成を簡略化して図示しており、噴射駆動回路71と点火駆動回路72の構成は前記実施形態(1)の噴射駆動回路13と点火駆動回路11の構成と実質的に同じであるので、前記実施形態(1)と同一部分には同一符号を付して説明を省略する。
【0037】
本実施形態(4)の特徴は、噴射駆動回路71の噴射終了時の燃料噴射弁12の駆動コイル12aの残留磁気エネルギを回収して点火駆動回路72に供給するエネルギ回収回路73を設けたことである。エネルギ回収回路73は、燃料噴射弁12の駆動コイル12aのグランド側と点火駆動回路72の充電用のコンデンサ22のプラス側との間に2個のスイッチング素子74,75を直列に接続し、両スイッチング素子74,75間の接続点とグランド端子との間にエネルギ回収用のコンデンサ76を接続して構成している。このエネルギ回収回路73は、噴射駆動回路71と点火駆動回路72と共に同一の回路基板に構成されている。
【0038】
燃料噴射弁12の開弁中は、噴射駆動回路71のスイッチング素子47をオンして燃料噴射弁12の駆動コイル12aに駆動電流を流すと共に、エネルギ回収回路73のスイッチング素子74,75をオフする。噴射終了時に、噴射駆動回路71のスイッチング素子47をオフして燃料噴射弁12の駆動コイル12aへの通電を遮断すると同時に、エネルギ回収回路73の上側のスイッチング素子74をオンする。これにより、噴射終了時に、燃料噴射弁12の駆動コイル12aの残留磁気エネルギをスイッチング素子74を介してエネルギ回収用のコンデンサ76に回収する。
【0039】
その後、エネルギ回収回路73の上側のスイッチング素子74をオフして、下側のスイッチング素子75をオンし、エネルギ回収用のコンデンサ76の充電電荷を下側のスイッチング素子75を介して点火駆動回路72の充電用のコンデンサ22に充電する。エネルギ回収用のコンデンサ76の放電後、エネルギ回収回路73の下側のスイッチング素子74をオフして、点火駆動回路72からエネルギ回収用のコンデンサ76への電流の逆流を阻止すると共に、点火駆動回路72のスイッチング素子24のオン/オフを繰り返すことで、コイル23の出力電圧を昇圧してコンデンサ22に充電し、このコンデンサ22の充電電圧を電源として点火コイル27に一次電流を流し、点火信号の立ち下がりタイミングで、スイッチング素子29をオフして、点火コイル27の一次電流を遮断する。これにより、点火コイル27の二次巻線32に高電圧を発生させて、点火プラグ33に火花放電を発生させる。
【0040】
以上説明した実施形態(4)では、噴射駆動回路71の噴射終了時の残留磁気エネルギをエネルギ回収回路73で回収して点火駆動回路72に供給するようにしたので、噴射駆動回路71の噴射終了時の残留磁気エネルギを有効に利用することができ、燃費向上にもつながる。
【0041】
尚、点火駆動回路72の余剰エネルギを回収して噴射駆動回路71に供給するエネルギ回収回路を設けるようにしても良い。
【0042】
また、本実施形態(4)で説明した発明は、噴射駆動回路71と点火駆動回路72とエネルギ回収回路73とを同一の回路基板に構成する場合に限定されず、例えば、噴射駆動回路71と点火駆動回路72とを別個の回路基板に形成して、いずれか一方の回路基板にエネルギ回収回路73を構成したり、或は、エネルギ回収回路73を、両駆動回路71,72とは別の回路基板に形成しても良い。
また、上記各実施形態(1)〜(4)を適宜組み合わせて実施しても良い。
【図面の簡単な説明】
【図1】 本発明に関連する参考例としての実施形態(1)の点火・噴射系の回路構成を示す電気回路図
【図2】 従来のECUの信号ラインの本数を説明する図
【図3】 本発明の実施形態(2)のECUの信号ラインの本数を説明する図
【図4】 4つの信号IGA,IGB,WTG,WTJのON・OFFの組み合わせによって気筒判別と点火・噴射の判別を行う方法を説明する図
【図5】 各信号の波形を示すタイムチャート
【図6】 本発明に関連する参考例としての実施形態(3)を示す点火・噴射系の概略構成を示す図
【図7】 本発明に関連する参考例としての実施形態(4)の点火・噴射系の回路構成を示す電気回路図
【符号の説明】
11…点火駆動回路、12…燃料噴射弁、12a…駆動コイル、13…噴射駆動回路、14…電源安定回路(同一機能部分)、15…バッテリ、16…コイル、17…コンデンサ、19a,19b…電源ライン、22…コンデンサ、27…点火コイル、28…一次巻線、29…スイッチング素子、32…二次巻線、33…点火プラグ、42…コンデンサ、47…スイッチング素子、55…信号判別回路、60…筒内噴射エンジン、61…燃料噴射弁、62…ECU、63…点火駆動回路、64…点火プラグ、65…噴射駆動回路、66…燃焼検出回路、71…噴射駆動回路、72…点火駆動回路、73…エネルギ回収回路、74,75…スイッチング素子、76…エネルギ回収用のコンデンサ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an internal combustion engine control device that includes an ignition drive circuit that drives an ignition system and an injection drive circuit that drives a fuel injection valve.
[0002]
[Prior art]
In recent automobile engine control, an in-vehicle computer calculates a fuel injection amount and ignition timing according to engine operating conditions, and outputs an injection signal of each cylinder to an injection drive circuit to drive a fuel injection valve of each cylinder. The ignition signal of each cylinder is output to the ignition drive circuit to generate a spark discharge in the ignition plug of each cylinder.
[0003]
[Problems to be solved by the invention]
Since the conventional ignition drive circuit and injection drive circuit are arranged separately from each other and are configured separately, even if there are places that can be shared in the circuit configuration, they must be shared because wiring is difficult However, the circuit scale becomes large and the cost is high.
[0004]
Further, in the conventional engine control system, the number of signal lines for outputting the ignition signal and the injection signal of each cylinder from the engine control computer is increased, so that a large wiring space is required and the wiring of the signal line is complicated. As a result, there was a drawback that the cost was generally high.
[0005]
Further, if a combustion sensor is attached to each cylinder in order to detect the combustion state in each cylinder, there is a disadvantage that the cost increases.
In addition, the coils provided in the ignition drive circuit and the injection drive circuit release residual magnetic energy immediately after the energization is turned off, but this energy is dissipated as heat and is not used effectively.
[0006]
The present invention has been made in view of these circumstances, and an object of the present invention is to simplify the circuit configuration for controlling the internal combustion engine and reduce the cost .
[0007]
[Means for Solving the Problems ]
[0008]
According to a first aspect of the present invention, there is provided an internal combustion engine control apparatus comprising: an ignition drive circuit that drives an ignition system; an injection drive circuit that drives a fuel injection valve; and a control computer that controls both drive circuits. A signal discrimination circuit is provided between the drive circuit and the drive circuit. The signal discrimination circuit performs cylinder discrimination and ignition / injection discrimination based on a combination of a plurality of signals output from the control computer. the drive circuit is be configured to output an ignition signal and the injection signal for each cylinder, which is constituted so that the total number of input signals of the signal discrimination circuit is less than the total number of output signals. That is, as shown in FIG. 2 (example of a four-cylinder engine), the conventional engine control computer (ECU) outputs the ignition signals IGT1 to IGT4 and the injection signals IJT1 to IJT4 for each cylinder. The number of signal lines for outputting a signal and an injection signal is twice as many as the number of cylinders. However, in the invention of claim 1 , a control computer is used to perform cylinder discrimination and ignition / injection discrimination by combining a plurality of signals. The number of signal lines connected to can be significantly reduced as compared with the prior art. As a result, the wiring space of the signal line can be reduced, the wiring of the signal line can be facilitated, and the manufacturing cost can be reduced.
[0009]
In this case, as in claim 2 , the control computer outputs the cylinder discrimination signal, the ignition discrimination signal, and the injection discrimination signal to the signal discrimination circuit, and ignites the pulse widths of the ignition discrimination signal and the injection discrimination signal, respectively. The signal discrimination circuit performs cylinder discrimination and ignition / injection discrimination based on a combination of the cylinder discrimination signal, the ignition discrimination signal, and the injection discrimination signal, and the ignition discrimination signal. And determining the pulse width of the ignition signal based on the pulse width of the injection determination signal, and determining the pulse width of the injection signal based on the pulse width of the injection determination signal, whereby the cylinder determination signal that is an input signal of the signal determination circuit The total number of the ignition determination signal and the injection determination signal is smaller than the total number of the ignition signal and the injection signal which are output signals of the signal determination circuit. Kunar so on may be configured. In this way, in the case of an engine with four or more cylinders, the number of signal lines connected to the control computer can be reduced to less than half of the conventional number. For example, in the case of a four-cylinder engine, the number of signal lines can be four (conventionally eight), and in the case of a six-cylinder engine, the number of signal lines can be five (conventionally twelve). it can.
[0012]
[Embodiment (1)]
Hereinafter, embodiments (1) as a reference example relating to the present invention will be described with reference to FIG. In this embodiment (1), the ignition drive circuit 11 for driving the ignition system and the injection drive circuit 13 for driving the fuel injection valve 12 are configured on the same circuit board (not shown), The injection drive circuit 13 is integrated, and the power supply stabilization circuit 14 that is the same function part of both the drive circuits 11 and 13 is shared. The power supply stabilization circuit 14 is configured by an LC low-pass filter in which a coil 16 and a capacitor 17 are connected in series between a positive terminal and a ground terminal of the battery 15 in order to suppress voltage fluctuation and noise of the battery 15. A connection point between the coil 16 and the capacitor 17 is used as an output terminal 18 of the power supply stabilization circuit 14, and the battery voltage VB is supplied from the output terminal 18 to the ignition drive circuit 11 and the injection drive circuit 13 through the power supply lines 19 a and 19 b.
[0013]
Next, the configuration of the ignition drive circuit 11 will be described. The battery voltage VB supplied from the power supply stabilization circuit 14 through the power supply line 19a is boosted by the booster circuit 20 and charged to the capacitor 22 via the diode 21 for preventing backflow. The booster circuit 20 is configured by connecting a coil 23, a switching element 24, and a resistor 25 in series, and boosts the output voltage of the coil 23 by controlling on / off of the switching element 24 by an ignition control circuit 26. The booster circuit 20 causes a current to flow through the coil 23 during the ON period of the switching element 24, monitors the current value with the terminal voltage of the resistor 25, and turns off the switching element 24 every time the current value reaches a predetermined value. This operation is repeated to boost the output voltage of the coil 23 and charge the capacitor 22. The ignition control circuit 26 monitors the charging voltage of the capacitor 22 and stops the boosting operation of the boosting circuit 20 when the charging voltage reaches a predetermined voltage.
[0014]
When the switching element 29 connected to the primary winding 28 of the ignition coil 27 is turned on, the charge of the capacitor 22 is discharged through the path of the primary winding 28 → the switching element 29 → the resistor 30 → the ground terminal of the ignition coil 27. Then, a current (primary current) flows through the primary winding 28 of the ignition coil 27. A spark plug 33 is connected to the secondary winding 32 of the ignition coil 27. Although not shown, an ignition circuit for the ignition plug 33, the ignition coil 27, the switching element 29, and the resistor 30 is provided for each cylinder, and the ignition circuit for each cylinder is driven by the charging voltage of the capacitor 22. It is like that.
[0015]
On / off of the switching element 29 that interrupts the primary current of the ignition coil 27 is controlled by the ignition control circuit 26 based on an ignition signal output from an engine control computer (not shown). The ignition control circuit 26 turns on the switching element 29 at the rising timing of the ignition signal, causes the primary current to flow through the ignition coil 27, and turns off the switching element 29 at the falling timing of the ignition signal. Cut off the primary current. As a result, a high voltage is generated in the secondary winding 32 of the ignition coil 27 and a spark discharge is generated in the spark plug 33. When the primary current of the ignition coil 27 is interrupted, the residual magnetic energy of the ignition coil 27 is released through the flywheel diode 31.
[0016]
Next, the configuration of the injection drive circuit 13 will be described. The battery voltage VB supplied from the power supply stabilizing circuit 14 through the power supply line 19b is supplied to the constant voltage circuit 34 and converted to the constant voltage Vcc, and used as the power supply voltage of each circuit unit. Further, the battery voltage VB supplied from the power supply stabilization circuit 14 through the power supply line 19 b is applied to the coil 35, and this voltage is boosted by the booster circuit 36. The booster circuit 36 is composed of a DC-DC converter 37, a switching element 38, a resistor 39, and the like. The DC-DC converter 37 turns on the switching element 38 when the output of the monostable multivibrator 40 is at a low level and turns on the coil. An electric current is passed through 35, the current value is monitored by the terminal voltage of the resistor 39, and the operation of turning off the switching element 38 every time the current value reaches a predetermined value is repeated to boost the output voltage of the coil 35. The boosted voltage is charged into the capacitor 42 via the backflow preventing diode 41. The DC-DC converter 37 monitors the charging voltage of the capacitor 42 and stops the boosting operation when the charging voltage becomes a predetermined voltage.
[0017]
The switching element 43 that turns on / off the energization of the drive coil 12a of the fuel injection valve 12 is driven by the output of the monostable multivibrator 40. When the output of the monostable multivibrator 40 is high, the switching element 43 is on. Then, the charging voltage of the capacitor 42 is applied to the drive coil 12a of the fuel injection valve 12, and the battery voltage VB supplied via the diode 44 is also applied to the drive coil 12a of the fuel injection valve 12. The circuit of the diode 44 and the switching element 43 is provided with a circuit of the switching element 45 and a backflow prevention diode 46 in parallel, and when the switching element 45 is turned on, the battery voltage VB is fueled even in the circuit of the switching element 45 and the diode 46. It is applied to the drive coil 12a of the injection valve 12.
[0018]
A switching element 47 and a resistor 48 are connected in series between the drive coil 12a of the fuel injection valve 12 and the ground terminal. An injection signal output from an engine control computer (not shown) is input via a waveform shaping circuit 50 to the constant current control circuit 49 that controls on / off of the switching element 47. The constant current control circuit 49 maintains the switching element 47 in the ON state during the period when the injection signal is input, and flows the drive current to the drive coil 12a of the fuel injection valve 12 to open the fuel injection valve 12. While driving, while monitoring this drive current by the terminal voltage of the resistor 48, the switching element 45 is controlled to be turned on / off so that the drive current is maintained at a predetermined value. When the switching element 47 is turned off at the falling timing of the injection signal and the power supply to the drive coil 12a of the fuel injection valve 12 is cut off, the fuel injection valve 12 is closed and the drive coil 12a of the fuel injection valve 12 is closed. Of residual magnetic energy is released through the flywheel diode 51.
[0019]
An injection signal is input via the waveform shaping circuit 50 to the monostable multivibrator 40 that drives and controls the DC-DC converter 37 and the switching element 43 described above. As a result, the monostable multivibrator 40 outputs a high level signal having a certain time width from the rise of the injection signal to the DC-DC converter 37 and the switching element 43, and during this period of the high level signal, the DC-DC converter 37. Is stopped and the boosting operation is stopped, the switching element 43 is held in the ON state, and a drive current is supplied to the drive coil 12a of the fuel injection valve 12 to open the fuel injection valve 12. Thereafter, when the output of the monostable multivibrator 40 is inverted to a low level, the operation of the DC-DC converter 37 is started to start the boosting operation, and the switching element 43 is turned off to start charging the capacitor 42.
[0020]
The pulse width of the high level signal of the monostable multivibrator 40 is set shorter than the pulse width of the injection signal. Therefore, even if the output of the monostable multivibrator 40 is inverted to a low level and the switching element 43 is turned off, the battery voltage VB is applied to the drive coil 12a of the fuel injection valve 12 through the switching element 45 until the injection signal falls. The fuel injection valve 12 continues to be applied and kept in the open state. Then, at the falling timing of the injection signal, the switching element 47 is turned off to cut off the energization to the drive coil 12a of the fuel injection valve 12, and the fuel injection valve 12 is closed.
[0021]
According to the embodiment (1) described above, the ignition drive circuit 11 and the injection drive circuit 13 are configured on the same circuit board, and the ignition drive circuit 11 and the injection drive circuit 13 are integrated. It is very easy to form a wiring between 11 and 13, and the power supply stabilization circuit 14 which is the same function part of both the drive circuits 11 and 13 can be easily shared. As a result, the circuit configuration of the ignition / injection system can be simplified, the assembly work can be simplified, and the manufacturing cost can be reduced.
[0022]
Incidentally, not limited to the case of forming the a point fire drive circuit 11 and the ejection driving circuit 13 on the same circuit board, for example, to form an ignition drive circuit 11 and the ejection driving circuit 13 to separate the circuit board, both You may make it integrate the ignition drive circuit 11 and the injection drive circuit 13 by accommodating a circuit board compactly in one case.
[0023]
[Embodiment (2)]
Next, Embodiment (2) of this invention is demonstrated using FIG. 2 thru | or FIG.
[0024]
First, in order to facilitate understanding of the present embodiment (2), a conventional configuration will be described based on FIG. FIG. 2 shows signal lines of ignition signals IGT1 to IGT4 and injection signals IJT1 to IJT4 of each cylinder of an engine control computer (ECU) of a conventional four cylinder engine. Since the ECU of a conventional four-cylinder engine outputs ignition signals IGT1 to IGT4 and injection signals IJT1 to IJT4 from separate output ports for each cylinder, the ignition signals IGT1 to IGT4 and injection signals IJT1 to IJT4 for four cylinders are output. In order to output, a total of 8 signal lines are required, and the number of signal lines is increased.
[0025]
Therefore, in the embodiment (2) of the present invention, the configuration shown in FIGS. 3 to 5 is used in order to reduce the number of signal lines of the ECU. 3 to 5 show an embodiment in which the present invention is applied to a four-cylinder engine. The ECU outputs two cylinder discrimination signals IGA and IGB, an ignition discrimination signal WTG, and an injection discrimination signal WTJ to the signal discrimination circuit 55. . Then, the signal discrimination circuit 55 discriminates which of the 8 types of combinations in FIG. 4 corresponds to the combination of ON (high level) and OFF (low level) of these four signals IGA, IGB, WTG, and WTJ. Then, cylinder discrimination and ignition / injection discrimination are performed. That is, the signal discriminating circuit 55 discriminates cylinders by combining ON and OFF of the two cylinder discriminating signals IGA and IGB, and discriminates ignition and injection by combining the ignition discriminating signal WTG and the injection discriminating signal WTJ. Depending on the determination result, ignition signals IGO1 to IGO4 and injection signals IJO1 to IJO4 are output to an ignition drive circuit (not shown) and an injection drive circuit (not shown) for each cylinder.
[0026]
Further, as shown in FIG. 5, the ECU changes the pulse widths of the ignition determination signal WTG and the injection determination signal WTJ according to the ignition drive time and the injection time, respectively, and the signal determination circuit 55 performs the pulse determination of the ignition determination signal WTG. The pulse width (ignition drive time) of the ignition signals IGO1 to IGO4 is determined by the width, and the pulse width (injection time) of the injection signals IJO1 to IJO4 is determined by the pulse width of the injection determination signal WTJ. The signal discrimination circuit 55 described above may be configured with a logic circuit.
[0027]
The signal discriminating circuit 55 is provided with an input terminal IGW for setting the number of times of ignition so that it can cope with multiple ignition. The signal determination circuit 55 has a built-in monitor circuit (not shown) for monitoring the ignition / injection operation, and is provided with two output terminals Igf and Ijf for outputting the ignition monitor signal and the injection monitor signal. By detecting the signal and the injection monitor signal by the ECU, it can be determined whether or not the ignition / injection is normal.
[0028]
In the embodiment (2) described above, for example, in the case of a four-cylinder engine, cylinder discrimination and ignition / injection discrimination are performed by a combination of ON and OFF of four signals IGA, IGB, WTG, WTJ, and Since the pulse widths of the ignition signals IGO1 to IGO4 (ignition drive time) and the pulse widths (injection time) of the injection signals IJO1 to IJO4 are determined by the pulse widths of the ignition determination signal WTG and the injection determination signal WTJ. The number of signal lines can be reduced to half of the conventional number, and the wiring space of the signal lines can be reduced, and the signal lines can be easily wired, and the manufacturing cost can be reduced.
[0029]
Note that the present invention is not limited to a four-cylinder engine, and when applied to an engine having three or more cylinders, the number of signal lines of the ECU can be reduced as compared with the conventional one. The number of signal lines can be reduced to less than half of the conventional number. For example, in the case of a 6-cylinder engine, the conventional number of signal lines of the ECU is 12, whereas in the present invention, it is 5 (3 cylinder discrimination, 1 ignition discrimination, 1 injection discrimination). Can do.
[0030]
The signals for determining the pulse widths of the ignition signals IGO1 to IGO4 and the injection signals IJO1 to IJO4 may be output separately from the ignition determination signal WTG and the injection determination signal WTJ.
[0031]
In addition, in the present invention, the signal determination method of the signal determination circuit 55 may be changed as appropriate. For example, the cylinder determination and the ignition / injection determination are performed based on the pulse width of the output signal of the ECU and the number of pulses within a predetermined time. You may do it.
[0032]
[Embodiment (3)]
Next, an embodiment (3) as a reference example related to the present invention will be described with reference to FIG. The engine 60 of the present embodiment (3) is an in-cylinder injection engine that directly injects fuel from the fuel injection valve 61 into the cylinder. The ECU 62 outputs an ignition signal to the ignition drive circuit 63 in synchronization with the ignition timing of each cylinder to generate a spark discharge in the ignition plug 64 of each cylinder and injects an injection signal in synchronization with the injection timing of each cylinder. It outputs to the drive circuit 65, the fuel injection valve 61 of each cylinder is opened, and a fuel is directly injected in a cylinder.
[0033]
In the present embodiment (3), a piezoelectric element is used as a driving means for the fuel injection valve 61, a voltage is applied to the piezoelectric element at the time of injection to open the valve body of the fuel injection valve 61, and the piezoelectric element is applied to the piezoelectric element at the end of injection. The voltage application is turned off and the valve body of the fuel injection valve 61 is closed. In the cylinder injection engine 60, since the injection port of the fuel injection valve 61 is exposed in the cylinder, the combustion pressure in the cylinder acts on the valve body that opens and closes the injection port of the fuel injection valve 61, and the combustion pressure is reduced. It acts on the piezoelectric element through the valve body. For this reason, a voltage is generated in the piezoelectric element in accordance with an increase in the in-cylinder pressure during combustion.
[0034]
Therefore, in the present embodiment (3), the injection drive circuit 64 is provided with a combustion detection circuit 66 for detecting the voltage generated in the piezoelectric element, and the combustion state (for example, misfire) is detected by the voltage of the piezoelectric element detected by the combustion detection circuit 66. Presence / absence, pre-ignition, etc.). In this way, since the driving means (piezoelectric element) of the fuel injection valve 61 can be used as a combustion sensor, it is not necessary to attach a new combustion sensor to each cylinder, and the cost can be reduced accordingly. it can.
[0035]
The present invention is not limited to the case of using a fuel injection valve driven by pressure-electronic device, in the case of using a fuel injection valve driven by the electromagnet, the electromagnetic electromagnets of the fuel injection valve in response to an increase in in-cylinder pressure during combustion The combustion state may be detected by detecting the voltage generated in the coil.
[0036]
[Embodiment (4)]
Next, an embodiment (4) as a reference example related to the present invention will be described with reference to FIG. Also in the present embodiment (4), the injection drive circuit 71 and the ignition drive circuit are configured by configuring the injection drive circuit 71 and the ignition drive circuit 72 on the same circuit board (not shown) as in the above-described embodiment (1). 72 is integrated. FIG. 7 shows a simplified configuration of the injection drive circuit 71 and the ignition drive circuit 72. The configuration of the injection drive circuit 71 and the ignition drive circuit 72 is the same as that of the injection drive circuit 13 and the ignition drive of the embodiment (1). Since the configuration is substantially the same as that of the circuit 11, the same reference numerals are given to the same portions as those of the embodiment (1), and the description thereof is omitted.
[0037]
The feature of the present embodiment (4) is that an energy recovery circuit 73 that recovers residual magnetic energy of the drive coil 12a of the fuel injection valve 12 at the end of injection of the injection drive circuit 71 and supplies it to the ignition drive circuit 72 is provided. It is. The energy recovery circuit 73 connects two switching elements 74 and 75 in series between the ground side of the drive coil 12a of the fuel injection valve 12 and the positive side of the charging capacitor 22 of the ignition drive circuit 72. An energy recovery capacitor 76 is connected between the connection point between the switching elements 74 and 75 and the ground terminal. The energy recovery circuit 73 is configured on the same circuit board together with the injection drive circuit 71 and the ignition drive circuit 72.
[0038]
While the fuel injection valve 12 is open, the switching element 47 of the injection drive circuit 71 is turned on to pass a drive current to the drive coil 12a of the fuel injection valve 12, and the switching elements 74 and 75 of the energy recovery circuit 73 are turned off. . At the end of injection, the switching element 47 of the injection drive circuit 71 is turned off to cut off the energization to the drive coil 12a of the fuel injection valve 12, and at the same time, the switching element 74 on the upper side of the energy recovery circuit 73 is turned on. Thereby, at the end of injection, the residual magnetic energy of the drive coil 12a of the fuel injection valve 12 is recovered to the energy recovery capacitor 76 via the switching element 74.
[0039]
Thereafter, the upper switching element 74 of the energy recovery circuit 73 is turned off, the lower switching element 75 is turned on, and the charging charge of the energy recovery capacitor 76 is ignited via the lower switching element 75. The capacitor 22 for charging is charged. After the energy recovery capacitor 76 is discharged, the switching element 74 on the lower side of the energy recovery circuit 73 is turned off to prevent the backflow of current from the ignition drive circuit 72 to the energy recovery capacitor 76 and the ignition drive circuit. By repeating ON / OFF of the switching element 24 of 72, the output voltage of the coil 23 is boosted and charged to the capacitor 22, and a primary current is supplied to the ignition coil 27 using the charging voltage of the capacitor 22 as a power source. At the falling timing, the switching element 29 is turned off, and the primary current of the ignition coil 27 is cut off. As a result, a high voltage is generated in the secondary winding 32 of the ignition coil 27 and a spark discharge is generated in the spark plug 33.
[0040]
In the embodiment (4) described above, since the residual magnetic energy at the end of the injection of the injection drive circuit 71 is recovered by the energy recovery circuit 73 and supplied to the ignition drive circuit 72, the injection end of the injection drive circuit 71 is completed. The residual magnetic energy at the time can be used effectively, leading to improved fuel efficiency.
[0041]
An energy recovery circuit that recovers surplus energy of the ignition drive circuit 72 and supplies it to the injection drive circuit 71 may be provided.
[0042]
The invention described in this embodiment (4) is not limited to the case where the injection drive circuit 71, the ignition drive circuit 72, and the energy recovery circuit 73 are configured on the same circuit board. The ignition drive circuit 72 is formed on a separate circuit board, and the energy recovery circuit 73 is configured on one of the circuit boards, or the energy recovery circuit 73 is separated from the drive circuits 71 and 72. It may be formed on a circuit board.
Moreover, you may implement combining said each embodiment (1)-(4) suitably.
[Brief description of the drawings]
FIG. 1 is an electric circuit diagram showing a circuit configuration of an ignition / injection system according to an embodiment (1) as a reference example related to the present invention. FIG. 2 is a diagram for explaining the number of signal lines of a conventional ECU. FIG. 4 is a diagram for explaining the number of signal lines of an ECU according to an embodiment (2) of the present invention. FIG. 4 is a cylinder discrimination and an ignition / injection discrimination by a combination of ON / OFF of four signals IGA, IGB, WTG, WTJ. FIG. 5 is a time chart showing the waveform of each signal. FIG. 6 is a diagram showing a schematic configuration of an ignition / injection system showing an embodiment (3) as a reference example related to the present invention. 7] Electric circuit diagram showing circuit configuration of ignition / injection system of embodiment (4) as reference example related to the present invention
DESCRIPTION OF SYMBOLS 11 ... Ignition drive circuit, 12 ... Fuel injection valve, 12a ... Drive coil, 13 ... Injection drive circuit, 14 ... Power supply stabilization circuit (same function part), 15 ... Battery, 16 ... Coil, 17 ... Capacitor, 19a, 19b ... Power line, 22 ... capacitor, 27 ... ignition coil, 28 ... primary winding, 29 ... switching element, 32 ... secondary winding, 33 ... spark plug, 42 ... capacitor, 47 ... switching element, 55 ... signal discrimination circuit, DESCRIPTION OF SYMBOLS 60 ... In-cylinder injection engine, 61 ... Fuel injection valve, 62 ... ECU, 63 ... Ignition drive circuit, 64 ... Spark plug, 65 ... Injection drive circuit, 66 ... Combustion detection circuit, 71 ... Injection drive circuit, 72 ... Ignition drive Circuit 73 ... Energy recovery circuit 74, 75 ... Switching element 76 ... Energy recovery capacitor

Claims (2)

点火系を駆動する点火駆動回路と、燃料噴射弁を駆動する噴射駆動回路と、これら両駆動回路を制御する制御コンピュータとを備えた内燃機関制御装置において、
前記制御コンピュータと前記両駆動回路との間に信号判別回路を設け、この信号判別回路は、前記制御コンピュータから出力される複数の信号の組み合わせによって気筒判別及び点火・噴射の判別を行い、その判別結果に応じて前記両駆動回路に各気筒の点火信号と噴射信号を出力するように構成することで、該信号判別回路の入力信号の合計数が出力信号の合計数よりも少なくなるように構成したことを特徴とする内燃機関制御装置。
In an internal combustion engine control device comprising an ignition drive circuit that drives an ignition system, an injection drive circuit that drives a fuel injection valve, and a control computer that controls both drive circuits,
A signal discriminating circuit is provided between the control computer and the two drive circuits. The signal discriminating circuit discriminates cylinders and ignition / injection based on a combination of a plurality of signals output from the control computer. According to the result, it is configured to output the ignition signal and the injection signal of each cylinder to both the drive circuits, so that the total number of input signals of the signal discrimination circuit is smaller than the total number of output signals. An internal combustion engine control device characterized by that.
前記制御コンピュータは、気筒判別信号、点火判別信号及び噴射判別信号を前記信号判別回路に出力し、且つ、該点火判別信号及び該噴射判別信号のパルス幅をそれぞれ点火駆動時間及び噴射時間に応じて変化させ、
前記信号判別回路は、前記気筒判別信号、前記点火判別信号及び前記噴射判別信号の組み合わせによって気筒判別及び点火・噴射の判別を行い、且つ、前記点火判別信号のパルス幅によって前記点火信号のパルス幅を決定すると共に、前記噴射判別信号のパルス幅によって前記噴射信号のパルス幅を決定するように構成することで、該信号判別回路の入力信号である前記気筒判別信号、前記点火判別信号及び前記噴射判別信号の合計数が該信号判別回路の出力信号である前記点火信号と前記噴射信号の合計数よりも少なくなるように構成したことを特徴とする請求項に記載の内燃機関制御装置。
The control computer outputs a cylinder discrimination signal, an ignition discrimination signal, and an injection discrimination signal to the signal discrimination circuit, and sets a pulse width of the ignition discrimination signal and the injection discrimination signal in accordance with an ignition drive time and an injection time, respectively. Change
The signal determination circuit performs cylinder determination and ignition / injection determination based on a combination of the cylinder determination signal, the ignition determination signal, and the injection determination signal, and a pulse width of the ignition signal based on a pulse width of the ignition determination signal. And determining the pulse width of the injection signal based on the pulse width of the injection determination signal, whereby the cylinder determination signal, the ignition determination signal, and the injection that are input signals of the signal determination circuit 2. The internal combustion engine controller according to claim 1 , wherein the total number of discrimination signals is configured to be smaller than the total number of the ignition signals and the injection signals that are output signals of the signal discrimination circuit.
JP32990699A 1999-11-19 1999-11-19 Internal combustion engine control device Expired - Fee Related JP4131362B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP32990699A JP4131362B2 (en) 1999-11-19 1999-11-19 Internal combustion engine control device
US09/713,228 US6694959B1 (en) 1999-11-19 2000-11-16 Ignition and injection control system for internal combustion engine
DE10057076.3A DE10057076B4 (en) 1999-11-19 2000-11-17 Ignition control device for internal combustion engines
GB0320074A GB2392955A (en) 1999-11-19 2000-11-20 Ignition and injection control system for internal combustion engine
GB0028265A GB2356428B (en) 1999-11-19 2000-11-20 Ignition and injection control system for internal combustion engine
US10/647,214 US6895933B2 (en) 1999-11-19 2003-08-26 Ignition and injection control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32990699A JP4131362B2 (en) 1999-11-19 1999-11-19 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2001152939A JP2001152939A (en) 2001-06-05
JP4131362B2 true JP4131362B2 (en) 2008-08-13

Family

ID=18226592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32990699A Expired - Fee Related JP4131362B2 (en) 1999-11-19 1999-11-19 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4131362B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7240856B2 (en) 2003-10-24 2007-07-10 Keihin Corporation Fuel injection control device
DE102005036190A1 (en) * 2005-08-02 2007-02-08 Robert Bosch Gmbh Method and device for controlling an injection system of an internal combustion engine
JP6387659B2 (en) * 2014-04-10 2018-09-12 株式会社デンソー Ignition device for internal combustion engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07279730A (en) * 1994-04-14 1995-10-27 Hitachi Ltd Engine control device
JP2958604B2 (en) * 1994-06-27 1999-10-06 株式会社ユニシアジェックス Combustion pressure detector for direct injection engines
JPH0861125A (en) * 1994-08-24 1996-03-05 Toyota Motor Corp Actuator driving circuit
JPH0960540A (en) * 1995-08-25 1997-03-04 Yamaha Motor Co Ltd Control unit for internal combustion engine

Also Published As

Publication number Publication date
JP2001152939A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
US8649151B2 (en) Injector drive circuit
US20040040535A1 (en) Ignition and injection control system for internal combustion engine
GB2397623A (en) I.c. engine ignition diagnosis using ionization signal
US20090229569A1 (en) Multiple Spark Plug Per Cylinder Engine With Individual Plug Control
US20140316673A1 (en) System and method for providing spark to an engine
GB2395017A (en) A device to provide a regulated power supply for an in-cylinder ionization detector
JP2002168170A (en) Ionic current detection device for internal combustion engine
US7856867B2 (en) Injector control performance diagnostic systems
GB2396187A (en) I.c. engine in-cylinder ionization detection system with ionization detection circuit and ignition coil driver circuit integrated into a single package
US5272914A (en) Ignition system for internal combustion engines
GB2396186A (en) Integrated i.c. engine ignition coil with driver and ionization detection circuits and multiplexed ionization and coil charge current feedback signals
JP2008522066A (en) Fast multi-spark ignition
JP3699372B2 (en) In-vehicle engine controller
JP2935499B2 (en) Driving device for piezo type injection valve for diesel engine
JP4420951B2 (en) Ignition diagnosis device for internal combustion engine and control device for internal combustion engine
US20170030318A1 (en) Ignition device for internal combustion engines
US7055372B2 (en) Method of detecting cylinder ID using in-cylinder ionization for spark detection following partial coil charging
JPH04143463A (en) Ignition device for internal combustion engine
US6155241A (en) Method for identifying knocking combustion in an internal combustion engine with an alternating current ignition system
JPS5823279A (en) Ignition device of internal combustion engine
JP4131362B2 (en) Internal combustion engine control device
US5842456A (en) Programmed multi-firing and duty cycling for a coil-on-plug ignition system with knock detection
JP6627644B2 (en) Ignition control device
CN1071843C (en) Ignition system
JPS63243456A (en) Igniter for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees