JP4130968B2 - Leak detection device - Google Patents

Leak detection device Download PDF

Info

Publication number
JP4130968B2
JP4130968B2 JP2003137167A JP2003137167A JP4130968B2 JP 4130968 B2 JP4130968 B2 JP 4130968B2 JP 2003137167 A JP2003137167 A JP 2003137167A JP 2003137167 A JP2003137167 A JP 2003137167A JP 4130968 B2 JP4130968 B2 JP 4130968B2
Authority
JP
Japan
Prior art keywords
pipe
gas introduction
valve
compression ratio
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003137167A
Other languages
Japanese (ja)
Other versions
JP2004340726A (en
Inventor
英二郎 落合
弦 大嶋
規正 瀬戸
善和 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003137167A priority Critical patent/JP4130968B2/en
Publication of JP2004340726A publication Critical patent/JP2004340726A/en
Application granted granted Critical
Publication of JP4130968B2 publication Critical patent/JP4130968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、希ガスであるヘリウムをトレーサーガスとして、例えば冷凍機に使用されているコンプレッサーやCVD、スパッタリング装置等の薄膜形成装置などの気密を要する機器のガス漏れを検知するのに使用される漏洩検知装置に関する。
【0002】
【従来の技術】
この種の漏洩検知装置では、大容積の被試験体の漏洩検知を短時間で開始できると共に、検出感度が高く、その反応速度が速いことが望まれる。このことから、ヘリウムを検出できる分析管に、ターボ分子ポンプとドラックポンプから構成される複合分子ポンプと背圧側にロータリポンプとを設けた主管路を接続すると共に、被試験体に接続したテストポートに排気管路を接続し、この排気管路を3箇所で分岐し、この分岐した第1、第2及び第3の各気体導入管路を、第1、第2及び第3の各開閉弁を介して複合分子ポンプの圧縮比の異なる個所にそれぞれ接続して構成したものが知られている(特許文献1)。
【0003】
この場合、第1の気体導入管路は、低い圧縮比が得られるターボ分子ポンプとドラックポンプとの中間の位置に接続され、高感度の漏洩検知ができる。また、第3の気体導入管路はフォアバルブを介してこの複合分子ポンプの圧縮比の最も高い位置に、第2の気体導入管路は、これらの中間の圧縮比の位置にそれぞれ接続されている。そして、このフォアバルブ及び各気体導入管路に設けた各開閉弁の開閉を制御するため、排気管路にピラニ真空計を設け、ピラニ真空計の検出圧力に応じて、各気体導入管路の各開閉弁の開閉を制御し、主管路の圧縮比が高い気体導入管路から圧縮比の低い気体導入管路に順次切換えつつ、逆拡散の原理を用いて低感度から高感度までの漏洩検知ができるようにしている。
【0004】
ところで、近年の漏洩試験では、被試験体の微小な漏れを検知したいという要請が多い。上記構成のものでは、開閉弁の空気に対する圧縮比が10程度あり、また、第1の気体導入管路から導入されたヘリウムのほぼ全体が分析管に到達するものではないため、被試験体の漏れが微小である場合、分析管でヘリウムを検出できない場合がある。ヘリウムの検出感度を高めて微小な漏れを検知するため、複合分子ポンプのより圧縮比が低い位置、例えば分析管と複合分子ポンプとの間に、高感度用の気体導入管路を接続することが提案される。
【0005】
【特許文献1】
特許2655315号公報(例えば、特許請求の範囲の記載)
【0006】
【発明が解決しようとする課題】
ここで、ピラニ真空計が安定して圧力を測定できるのは数Paまでの範囲であるため、上記のように、より圧縮比が低い位置に高感度用の気体導入管路を接続すると、この気体導入管路に切換えるための圧力がピラニ真空計の測定範囲を逸脱する場合がある。高感度用の気体導入管に切換えたときに分析管内の圧力が上昇すると漏洩試験に影響が出るので、排気管路内の圧力を正確に把握する必要がある。この場合、排気管路に、ピラニ真空計に加えて、高真空領域の圧力を測定できる電離真空計などの真空計を別途設けることが考えられるが、これでは、部品点数が増えてコスト高を招くという問題が生じる。
【0007】
そこで、本発明は、上記点に鑑み、部品点数を増やすことなく、低コストで高感度の漏洩試験ができるようにした漏洩検知装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の漏洩検知装置は、トレーサーガスである希ガスの分析を行い得る分析管を備え、この分析管に主管路を接続すると共に、この主管路に高真空排気手段とこの高真空排気手段の背圧側に補助真空排気手段とを設け、被試験体に接続したテストポートに排気管路を接続すると共に、この排気管路を複数の箇所で分岐し、この分岐した気体導入管路を、開閉弁を介して主管路の圧縮比の異なる箇所にそれぞれ接続して構成し、各開閉弁を開閉を制御して、主管路の圧縮比が高い気体導入管路から圧縮比の低い気体導入管路に順次切換え、前記分析管で希ガスの分析を行うことで被試験体の漏れを検出できるようにした漏洩検知装置において、前記各開閉弁の開閉の制御による気体導入管路の切換を、前記分析管における希ガスの分圧に基いて行うことを特徴とする。
【0009】
本発明によれば、前記各開閉弁の制御による気体導入管路の切換を、前記分析管で測定されている希ガスのバックグランド値に基いて行うので、排気管路内の圧力を検出しなくても、分析管内の圧力が上昇しないように高感度用の気体導入管路に切換えることができる。これにより、部品点数が増えてコスト高を招くことが防止される。
【0010】
尚、前記バックグランド値は、例えば分析管で分析されている希ガスの分圧とすればよい。
【0011】
また、前記高真空排気手段と補助真空排気手段との間にフォアバルブを介設すると共に、フォアバルブと補助真空排気手段との間に低感度用の気体導入管路を接続し、この気体導入管路に設けた開閉弁の開閉及びフォアバルブの開閉を制御する真空計を排気管路に設けておけば、主管路の圧縮比が高い気体導入管路から圧縮比の低い気体導入管路に順次切換えつつ、逆拡散の原理を用いて低感度から高感度までの漏洩検知ができる。
【0012】
この場合、前記主管路の圧縮比の低い高感度用の気体導入管路を、前記分析管と高真空排気手段との間に接続しておけば、被試験体の極めて小さな漏れを検出する高感度の漏洩試験が可能になる。
【0013】
【発明の実施の形態】
図1を参照して、1は、例えばヘリウムをトレーサーガスとして器具の漏洩検知ができる本発明の漏洩検知装置である。漏洩検知装置1は、質量分析管2を有する。この質量分析管2は、公知の四重極型若しくは磁場偏向型のものであり、ヘリウムイオンを検出するようにしたものである。質量分析管2には、高真空排気手段である複合分子ポンプ31と、その背圧側にフォアバルブ32を介して補助真空排気手段であるロータリポンプ33を設けた主管路3が接続され、質量分析管2内を所定圧力以下(≦10ー2Pa)に保持する。複合分子ポンプ31は、公知の構造を有し、主管路3への接続部を有するポンプケーシングに、ターボ分子ポンプとドラッグポンプとを内蔵したものである。補助真空排気手段は、メンブレンポンプ等でもよい。
【0014】
他方で、例えば冷凍機に使用されているコンプレッサーやCVD、スパッタリング装置等の薄膜形成装置などの気密を要する機器である被試験体4のテストポート41には排気管路5が接続され、この排気管路5は3箇所で分岐され、分岐した第1、第2及び第3の気体導入管路6a、6b、6cが、第1、第2及び第3の各開閉弁7a、7b、7cを介して、複合分子ポンプ31の圧縮比の異なる位置にそれぞれ接続されている。本実施の形態では、第1の気体導入管路6aは、被試験体4の微小な漏れを検知できるように、複合分子ポンプ31の100〜1000(N)の圧縮比が得られる位置に接続されている。第3の気体導入管路6cは、フォアバルブ32とロータリポンプ33との間であって150000(N)の圧縮比が得られる位置に接続されている。第2の気体導入管路6bは、複合分子ポンプ31の10000(N)の圧縮比が得られる中間位置に接続されている。これにより、質量分析管2内の圧力を10ー3Pa以下に保持できて正確に質量分析を行うことができると共にカウンターフローが得られるため極めて小さな漏れまで漏洩検知できる。
【0015】
排気管路5には、テストポート41の圧力を検出するピラニ真空計51が設けられ、このピラニ真空計51は、第2及び第3の各開閉弁7b、7cの開閉とフォアバルブ32の開閉とを制御するのに使用される。また、排気管路5には、標準リーク71を開閉弁71aを介して接続すると共に、ベントバルブ72を設けている。これらの機器の作動は、漏洩検知装置1に設けた制御手段(図示せず)によって制御され、制御手段によって、複合分子ポンプ31及びロータリポンプ33を作動させ、各気体導入管路6a、6b、6cの各開閉弁7a、7b、7cの開閉を制御し、圧縮比が高い気体導入管路6cから圧縮比の低い気体導入管路6aに順次切換えつつ、逆拡散の原理を用いて低感度から高感度までの漏洩検知ができる。
【0016】
ところで、第1の気体導入管路6aを、上記のように圧縮比が小さい位置に接続すると、第2の開閉弁7bを閉弁して第2の気体導入管路6bから、第1の開閉弁7aを開弁して第1の気体導入管路6aに切換える場合のテストポート4の圧力がピラニ真空計51で正確に測定できる範囲を逸脱する。この場合、第1の気体導入管路6aに切換えたときに、質量分析管2の圧力が上昇したのでは高感度の漏洩試験に影響が出る。
【0017】
ところで、圧縮比が高い気体導入管路6cから圧縮比の低い気体導入管路6aに順次切換えて低感度から高感度まで漏洩検知が行う場合、図2に示すように、例えば質量分析管2内で分析されているヘリウムの分圧であるバックグランド値は、排気管路5の圧力低下とほぼ比例して低下する。このことから、本実施の形態では、このバックグランド値を第2の気体導入管路6bから第1の気体導入管路6aに切換える場合の閾値として使用し、このバックグランド値が所定値になった場合に第1の気体導入管路6aに切換えることとした。これにより、制御手段によって質量分析管2の圧力が上昇しないように第1の気体導入管路6aに自動的に切換えることができ、また、第1の気体導入管路6aへの切換えにぺニング真空計などの他の高真空用真空計は必要なく、低コストにできる。
【0018】
次に、本発明の漏洩検知装置1の作動を説明する。制御手段によってロータリポンプ33と複合分子ポンプ31を作動させる。この場合、フォアバルブ32及びベントバルブ72を開弁し、その他の弁を閉弁する。そして、制御手段によって漏洩検知の開始が指示されると、フォアバルブ32とベントバルブ72とが閉弁され、第3開閉弁7cが開弁され、ロータリポンプ33によって被試験体4内が真空排気される。ピラニ真空計51で検出した圧力が1000Paになると、フォアバルブ32が開弁され、大きな漏れを検出する低感度の漏洩試験が開始される。この場合、試験者は、スプレーガン等によって被試験体4にヘリウムを吹付け、被試験体4に漏洩箇所があると、その漏洩箇所を介して侵入したヘリウムがテストポート41から第3の気体導入管路6cを経て複合分子ポンプ31の最も高い圧縮比の部分に導入され、このヘリウムがフォアバルブ32及び複合分子ポンプ31を逆拡散して質量分析管2で捕捉され、漏れが確認される。
【0019】
質量分析管2でヘリウムが捕捉されず漏れが確認できないときは、そのまま真空排気を継続し、ピラニ真空計51の検出圧力が100Paになると、制御手段によって第3の開閉弁7cを閉弁して第2の開閉弁7bを開弁し、第3の気体導入管路6cから第2の気体導入管路6bに切換えられ、中感度の漏洩試験が開始される。この場合、上記と同様に、試験者が被試験体4にヘリウムを吹付け、被試験体4に漏洩箇所があると、その漏洩箇所から侵入したヘリウムがテストポート41から第2の気体導入管路6bを経て複合分子ポンプ31の中間の圧縮比の部分に導入され、逆拡散したヘリウムが質量分析管2で捕捉されて漏れが確認される。
【0020】
さらに漏れが確認できないときは、そのまま真空排気を継続し、質量分析管2でのヘリウムのバックグランド値が、第1の気体導入管路6aに切換えても質量分析管2の圧力が上昇しない値、例えば1×10ー10Pa・m/sになった場合に、制御手段によって第2の開閉弁7bを閉弁して第1の開閉弁7aを開弁し、第2の気体導入管路6bから第1の気体導入管路6aに切換えられ、極めて小さな漏れを検出する高感度の漏洩試験が開始される。この場合、上記と同様に、試験者が被試験体4にヘリウムを吹付け、被試験体4に漏洩箇所があると、その漏洩箇所から侵入したヘリウムがテストポート41から第1の気体導入管路6aを経て複合分子ポンプ31の最も低い圧縮比の部分に導入され、逆拡散したヘリウムが質量分析管2で捕捉されて漏れが確認される。
【0021】
尚、本実施の形態では、第1の気体導入管路6aを、被試験体4の微小な漏れを検知できるように、複合分子ポンプ31の100〜1000(N)の圧縮比が得られる位置に接続したが、これに限定されるものではなく、100(N)以下の圧縮比が得られる位置、例えば、図3に示すように、圧縮比がゼロになる位置に第1の気体導入管路6aを接続してもよい。この場合、極めて小さな漏れを検出できる。
【0022】
【発明の効果】
以上説明したように、本発明の漏洩検知装置は、部品点数を増やすことなく、低コストで高感度の漏洩試験できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の漏洩試験装置の構成を概略的に説明する図
【図2】質量分析管のバックグランド値とテストポートの圧力との関係を示すグラフ
【図3】本発明の漏洩試験装置の構成の変形例を概略的に説明する図
【符号の説明】
1 漏洩検知装置
2 質量分析管
3 主管路
31 高真空排気手段
33 補助真空排気手段
4 被試験体
41 テストポート
5 排気管路
51 真空計
6 気体導入管路
7 開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention uses rare gas helium as a tracer gas, for example, to detect gas leaks in devices requiring airtightness such as compressors used in refrigerators, thin film forming devices such as CVD and sputtering devices, etc. The present invention relates to a leak detection device.
[0002]
[Prior art]
In this type of leakage detection device, it is desired that leakage detection of a large volume of a test object can be started in a short time, that detection sensitivity is high, and that the reaction rate is high. Therefore, a test port connected to the device under test is connected to the analysis tube capable of detecting helium with a main pipeline with a composite molecular pump composed of a turbo molecular pump and a drag pump and a rotary pump on the back pressure side. An exhaust pipe is connected to the pipe, the exhaust pipe is branched at three locations, and the branched first, second, and third gas introduction pipes are connected to the first, second, and third on-off valves. There is known a structure in which the composite molecular pump is connected to a portion having a different compression ratio via the above (Patent Document 1).
[0003]
In this case, the first gas introduction pipe is connected to an intermediate position between the turbo molecular pump and the drag pump that can obtain a low compression ratio, and can detect leaks with high sensitivity. Further, the third gas introduction line is connected to the position of the highest compression ratio of the complex molecular pump via the fore valve, and the second gas introduction line is connected to the position of the intermediate compression ratio. Yes. And in order to control opening and closing of each on-off valve provided in this fore valve and each gas introduction pipe line, a Pirani vacuum gauge is provided in the exhaust pipe line, and according to the detected pressure of the Pirani vacuum gauge, each gas introduction pipe line Leak detection from low sensitivity to high sensitivity using the principle of reverse diffusion while controlling the opening and closing of each on-off valve and switching sequentially from gas introduction pipe with high compression ratio of main pipe to gas introduction pipe with low compression ratio To be able to.
[0004]
By the way, in recent leak tests, there are many requests for detecting minute leaks in the device under test. In the above-described structure is located approximately 10 4 compression ratio to air on-off valve, also for substantially the entire helium introduced from the first gas inlet pipe is not intended to reach the analyzer tube, the test object If the leakage of water is very small, helium may not be detected by the analysis tube. In order to detect helium leaks by increasing the sensitivity of detection of helium, a high-sensitivity gas introduction line should be connected between a position where the compression ratio of the complex molecular pump is lower, for example, between the analysis tube and the complex molecular pump. Is proposed.
[0005]
[Patent Document 1]
Japanese Patent No. 2655315 (for example, description of claims)
[0006]
[Problems to be solved by the invention]
Here, since it is in the range up to several Pa that the Pirani gauge can stably measure the pressure, as described above, when a high-sensitivity gas introduction conduit is connected to a position where the compression ratio is lower, this The pressure for switching to the gas introduction line may deviate from the measurement range of the Pirani gauge. If the pressure in the analysis tube rises when switching to a high-sensitivity gas inlet tube, the leak test will be affected, so it is necessary to accurately grasp the pressure in the exhaust pipe. In this case, it may be possible to separately provide a vacuum gauge such as an ionization vacuum gauge that can measure the pressure in the high vacuum region in addition to the Pirani vacuum gauge, but this increases the number of parts and increases the cost. The problem of inviting arises.
[0007]
In view of the above, the present invention has an object to provide a leak detection apparatus that can perform a leak test with high sensitivity at low cost without increasing the number of components.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, a leak detection apparatus of the present invention includes an analysis tube capable of analyzing a rare gas that is a tracer gas, and a main line is connected to the analysis pipe, and a high vacuum exhaust is provided to the main line. And an auxiliary vacuum exhaust means on the back pressure side of the high vacuum exhaust means, and an exhaust pipe is connected to a test port connected to the device under test, and the exhaust pipe is branched at a plurality of locations. The gas introduction pipelines are connected to the locations where the compression ratios of the main pipelines are different via the on-off valves, respectively, and the on-off valves are controlled to open and close, so that the gas introduction pipelines with a high compression ratio of the main pipelines In a leak detection device that can detect a leak of a device under test by sequentially switching to a gas introduction pipe having a low compression ratio and analyzing a rare gas in the analysis pipe, the gas by controlling the opening and closing of each on-off valve The introduction pipe is switched by the analysis pipe. And performing based on the partial pressure of the definitive noble gas.
[0009]
According to the present invention, since the switching of the gas introduction line by the control of each on-off valve is performed based on the background value of the rare gas measured in the analysis pipe, the pressure in the exhaust line is detected. Even without this, it is possible to switch to a high-sensitivity gas introduction line so that the pressure in the analysis tube does not increase. This prevents an increase in the number of parts and an increase in cost.
[0010]
The background value may be, for example, the partial pressure of a rare gas analyzed by an analysis tube.
[0011]
In addition, a fore valve is interposed between the high vacuum evacuation means and the auxiliary vacuum evacuation means, and a low-sensitivity gas introduction conduit is connected between the fore valve and the auxiliary vacuum evacuation means. If a vacuum gauge that controls the opening and closing of the on-off valve and the opening and closing of the fore valve provided in the pipe line is provided in the exhaust pipe line, the gas introduction pipe line with a high compression ratio of the main pipe line is changed to a gas introduction pipe line with a low compression ratio. While switching sequentially, leakage detection from low sensitivity to high sensitivity can be performed using the principle of despreading.
[0012]
In this case, if a high-sensitivity gas introduction pipe having a low compression ratio of the main pipe is connected between the analysis pipe and the high vacuum evacuation means, it is possible to detect a very small leak of the test object. Sensitivity leakage test is possible.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Referring to FIG. 1, reference numeral 1 denotes a leak detection apparatus according to the present invention, which can detect leaks of instruments using, for example, helium as a tracer gas. The leak detection device 1 has a mass spectrometer tube 2. This mass spectrometer tube 2 is of a known quadrupole type or magnetic field deflection type and detects helium ions. The mass analysis tube 2 is connected to a main molecular line 3 provided with a complex molecular pump 31 that is a high vacuum exhaust means and a rotary pump 33 that is an auxiliary vacuum exhaust means on the back pressure side via a forevalve 32. The inside of the tube 2 is maintained at a predetermined pressure or lower (≦ 10−2 Pa). The complex molecular pump 31 has a known structure, and has a turbo molecular pump and a drag pump built in a pump casing having a connection portion to the main pipeline 3. The auxiliary vacuum exhaust means may be a membrane pump or the like.
[0014]
On the other hand, for example, an exhaust pipe 5 is connected to a test port 41 of a device under test 4 which is a device requiring airtightness such as a compressor used in a refrigerator, a thin film forming apparatus such as a CVD or sputtering apparatus, and the like. The pipe 5 is branched at three locations, and the branched first, second and third gas introduction pipes 6a, 6b and 6c connect the first, second and third on-off valves 7a, 7b and 7c. And are connected to different positions of the composite molecular pump 31 at different compression ratios. In the present embodiment, the first gas introduction pipe 6a is located at a position where a compression ratio of 100 to 1000 (N 2 ) of the complex molecular pump 31 is obtained so that minute leakage of the DUT 4 can be detected. It is connected. The third gas introduction pipe 6c is connected between the fore valve 32 and the rotary pump 33 at a position where a compression ratio of 150000 (N 2 ) is obtained. The second gas introduction pipe 6b is connected to an intermediate position where a compression ratio of 10000 (N 2 ) of the complex molecular pump 31 is obtained. As a result, the pressure in the mass spectrometer tube 2 can be maintained at 10 −3 Pa or less, and mass analysis can be performed accurately, and a counter flow can be obtained, so that even a very small leak can be detected.
[0015]
The exhaust pipe 5 is provided with a Pirani vacuum gauge 51 for detecting the pressure of the test port 41. The Pirani vacuum gauge 51 opens and closes the second and third on-off valves 7b and 7c and opens and closes the fore valve 32. Used to control. In addition, a standard leak 71 is connected to the exhaust pipe line 5 via an on-off valve 71a, and a vent valve 72 is provided. The operation of these devices is controlled by a control means (not shown) provided in the leak detection device 1, and the composite molecular pump 31 and the rotary pump 33 are operated by the control means, and the gas introduction pipes 6 a, 6 b, 6c controls the opening and closing of each on-off valve 7a, 7b, 7c, and switches from the gas introduction pipe 6c having a high compression ratio to the gas introduction pipe 6a having a low compression ratio, while using the principle of reverse diffusion to reduce the sensitivity. Leak detection up to high sensitivity is possible.
[0016]
By the way, when the first gas introduction line 6a is connected to the position where the compression ratio is small as described above, the second opening / closing valve 7b is closed and the first gas introduction line 6b is connected to the first opening / closing line. The pressure of the test port 4 when the valve 7 a is opened and switched to the first gas introduction pipe 6 a deviates from the range in which the Pirani vacuum gauge 51 can accurately measure the pressure. In this case, if the pressure in the mass spectrometer tube 2 is increased when switching to the first gas introduction line 6a, a highly sensitive leak test is affected.
[0017]
By the way, when leak detection is performed from low sensitivity to high sensitivity by sequentially switching from the gas introduction pipe 6c having a high compression ratio to the gas introduction pipe 6a having a low compression ratio, for example, as shown in FIG. The background value, which is the partial pressure of helium analyzed in (1), decreases substantially in proportion to the pressure drop in the exhaust pipe 5. Therefore, in the present embodiment, this background value is used as a threshold value when switching from the second gas introduction line 6b to the first gas introduction line 6a, and this background value becomes a predetermined value. In this case, the first gas introduction pipe 6a is switched. As a result, the control means can automatically switch to the first gas introduction line 6a so that the pressure of the mass spectrometer tube 2 does not increase, and the switching to the first gas introduction line 6a is possible. Other high-vacuum gauges such as a vacuum gauge are not necessary and can be made at low cost.
[0018]
Next, the operation of the leak detection apparatus 1 of the present invention will be described. The rotary pump 33 and the complex molecular pump 31 are operated by the control means. In this case, the fore valve 32 and the vent valve 72 are opened, and the other valves are closed. When the start of leakage detection is instructed by the control means, the fore valve 32 and the vent valve 72 are closed, the third on-off valve 7c is opened, and the inside of the DUT 4 is evacuated by the rotary pump 33. Is done. When the pressure detected by the Pirani gauge 51 reaches 1000 Pa, the fore valve 32 is opened, and a low-sensitivity leak test for detecting a large leak is started. In this case, the tester sprays helium on the DUT 4 with a spray gun or the like, and if the DUT 4 has a leaked portion, the helium that has entered through the leaked portion passes from the test port 41 to the third gas. The helium is introduced into the portion of the composite molecular pump 31 having the highest compression ratio through the introduction pipe 6c, and this helium is back-diffused through the fore valve 32 and the composite molecular pump 31, and is captured by the mass spectrometer tube 2 to confirm leakage. .
[0019]
When helium is not captured by the mass spectrometer tube 2 and no leakage can be confirmed, evacuation is continued as it is, and when the detected pressure of the Pirani vacuum gauge 51 reaches 100 Pa, the control unit closes the third on-off valve 7c. The second on-off valve 7b is opened and switched from the third gas introduction line 6c to the second gas introduction line 6b, and a medium sensitivity leak test is started. In this case, in the same manner as described above, when the tester sprays helium on the DUT 4 and there is a leaked part in the DUT 4, helium that has entered from the leaked part passes from the test port 41 to the second gas introduction pipe. Helium introduced into the intermediate compression ratio portion of the complex molecular pump 31 via the path 6b and back-diffused is captured by the mass spectrometer tube 2 and leakage is confirmed.
[0020]
When no further leaks can be confirmed, evacuation is continued as it is, and the background value of helium in the mass spectrometer tube 2 is a value at which the pressure of the mass spectrometer tube 2 does not increase even if the helium background value is switched to the first gas introduction line 6a. For example, when the pressure reaches 1 × 10−10 Pa · m 3 / s, the control unit closes the second on-off valve 7b to open the first on-off valve 7a, and the second gas introduction pipe The line 6b is switched to the first gas introduction line 6a, and a highly sensitive leak test for detecting extremely small leaks is started. In this case, in the same manner as described above, when the tester sprays helium on the DUT 4 and there is a leaked part in the DUT 4, helium that has entered from the leaked part passes from the test port 41 to the first gas introduction pipe. Helium introduced into the portion of the lowest compression ratio of the complex molecular pump 31 via the path 6a and back-diffused helium is captured by the mass spectrometer tube 2 and leakage is confirmed.
[0021]
In the present embodiment, a compression ratio of 100 to 1000 (N 2 ) of the complex molecular pump 31 is obtained so that the first gas introduction pipe 6a can detect minute leakage of the DUT 4. However, the present invention is not limited to this, and the first gas is located at a position where a compression ratio of 100 (N 2 ) or less is obtained, for example, at a position where the compression ratio becomes zero as shown in FIG. The introduction pipe line 6a may be connected. In this case, an extremely small leak can be detected.
[0022]
【The invention's effect】
As described above, the leak detection device of the present invention has an effect that a leak test with high sensitivity can be performed at low cost without increasing the number of parts.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating the configuration of a leak test apparatus according to the present invention. FIG. 2 is a graph showing the relationship between the background value of a mass spectrometer tube and the pressure at a test port. FIG. 6 is a diagram schematically illustrating a modification of the device configuration.
DESCRIPTION OF SYMBOLS 1 Leak detection apparatus 2 Mass spectrometer tube 3 Main pipe 31 High vacuum exhaust means 33 Auxiliary vacuum exhaust means 4 Test object 41 Test port 5 Exhaust pipe 51 Vacuum gauge 6 Gas introduction pipe 7 On-off valve

Claims (3)

トレーサーガスである希ガスの分析を行い得る分析管を備え、この分析管に主管路を接続すると共に、この主管路に高真空排気手段とこの高真空排気手段の背圧側に補助真空排気手段とを設け、
被試験体に接続したテストポートに排気管路を接続すると共に、この排気管路を複数の箇所で分岐し、この分岐した気体導入管路を、開閉弁を介して主管路の圧縮比の異なる箇所にそれぞれ接続して構成し、
各開閉弁を開閉を制御して、主管路の圧縮比が高い気体導入管路から圧縮比の低い気体導入管路に順次切換え、前記分析管で希ガスの分析を行うことで被試験体の漏れを検出できるようにした漏洩検知装置において、
前記各開閉弁の開閉の制御による気体導入管路の切換を、前記分析管における希ガスの分圧に基いて行うことを特徴とする漏洩検知装置。
An analysis tube capable of analyzing a rare gas which is a tracer gas is provided. A main pipe is connected to the analysis pipe, and a high vacuum evacuation means is connected to the main pipe, and an auxiliary vacuum evacuation means is provided on the back pressure side of the high vacuum evacuation means. Provided,
The exhaust pipe is connected to the test port connected to the device under test, the exhaust pipe is branched at a plurality of locations, and the branched gas introduction pipe is connected to the main pipe through a switching valve with different compression ratios. Connected to each location,
Control the opening and closing of each on-off valve, and sequentially switch from a gas introduction line with a high compression ratio of the main line to a gas introduction line with a low compression ratio, and analyze the noble gas in the analysis tube. In a leak detection device that can detect leaks,
A leak detection apparatus characterized in that switching of a gas introduction line by controlling opening and closing of each on-off valve is performed based on a partial pressure of a rare gas in the analysis pipe.
前記高真空排気手段と補助真空排気手段との間にフォアバルブを介設すると共に、フォアバルブと補助真空排気手段との間に低感度用の気体導入管路を接続し、この気体導入管路に設けた開閉弁の開閉及びフォアバルブの開閉を制御する真空計を排気管路に設けたことを特徴とする請求項1記載の漏洩検知装置。A fore valve is interposed between the high vacuum exhaust means and the auxiliary vacuum exhaust means, and a low-sensitivity gas introduction pipe is connected between the fore valve and the auxiliary vacuum exhaust means. 2. The leak detection device according to claim 1, wherein a vacuum gauge for controlling the opening and closing of the on-off valve and the opening and closing of the fore valve is provided in the exhaust pipe. 前記主管路の圧縮比の低い高感度用の気体導入管路を、前記分析管と高真空排気手段との間に接続したことを特徴とする請求項1または請求項2記載の漏洩検知装置。 3. The leak detection device according to claim 1 , wherein a high-sensitivity gas introduction pipe having a low compression ratio of the main pipe is connected between the analysis pipe and the high vacuum exhaust means.
JP2003137167A 2003-05-15 2003-05-15 Leak detection device Expired - Lifetime JP4130968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137167A JP4130968B2 (en) 2003-05-15 2003-05-15 Leak detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137167A JP4130968B2 (en) 2003-05-15 2003-05-15 Leak detection device

Publications (2)

Publication Number Publication Date
JP2004340726A JP2004340726A (en) 2004-12-02
JP4130968B2 true JP4130968B2 (en) 2008-08-13

Family

ID=33526898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137167A Expired - Lifetime JP4130968B2 (en) 2003-05-15 2003-05-15 Leak detection device

Country Status (1)

Country Link
JP (1) JP4130968B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4865532B2 (en) * 2006-12-22 2012-02-01 株式会社アルバック Mass spectrometry unit and method of using mass spectrometry unit
EP2642266A4 (en) * 2010-11-16 2017-08-09 ULVAC, Inc. Leak detector
JP6322507B2 (en) * 2014-07-18 2018-05-09 株式会社アルバック Leak detection method

Also Published As

Publication number Publication date
JP2004340726A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP5990172B2 (en) Leak detector
JP2655315B2 (en) Leak detection device using compound molecular pump
US3690151A (en) Leak detector
US6286362B1 (en) Dual mode leak detector
US7779675B2 (en) Leak indicator comprising a sniffer probe
US8752412B2 (en) Sniffing leak detector
JPS6287825A (en) Method and device for detecting leakage of large quantity ofgas
US20200264066A1 (en) Pressure Measurement at a Test Gas Inlet
JPH07501622A (en) Leak detection device for vacuum equipment and method for performing leak detection in vacuum equipment
JP2635587B2 (en) Device for calibrating the detector of the leak inspection device
JP2013532833A (en) Leak detector
JP2006525498A (en) Leak detector
US20240019336A1 (en) Gas leak detection device and gas leak detection method for identifying a gas leak in a test object
US20050066708A1 (en) Test gas leakage detector
JP3737132B2 (en) A method for inspecting leaks of many similar subjects
JP4130968B2 (en) Leak detection device
JPH11153508A (en) Helium leakage detector apparatus for vacuum apparatus
US6282946B1 (en) Leak detector
JP3219549U (en) Leak detection device
JPH04268430A (en) Leakage detecting apparatus
JP3246390U (en) Mass spectrometer and leak detector
CN117501083A (en) Leak detector
RU2002111643A (en) Leak test method and leak detector vacuum system implementing it
JPH11326108A (en) Helium leak detector
JPH0240519A (en) Gas leak checking apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4130968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term