JP2004340726A - Leakage detecting device - Google Patents

Leakage detecting device Download PDF

Info

Publication number
JP2004340726A
JP2004340726A JP2003137167A JP2003137167A JP2004340726A JP 2004340726 A JP2004340726 A JP 2004340726A JP 2003137167 A JP2003137167 A JP 2003137167A JP 2003137167 A JP2003137167 A JP 2003137167A JP 2004340726 A JP2004340726 A JP 2004340726A
Authority
JP
Japan
Prior art keywords
gas introduction
valve
compression ratio
line
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003137167A
Other languages
Japanese (ja)
Other versions
JP4130968B2 (en
Inventor
Eijiro Ochiai
英二郎 落合
Gen Oshima
弦 大嶋
Norimasa Seto
規正 瀬戸
Yoshikazu Matsumoto
善和 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2003137167A priority Critical patent/JP4130968B2/en
Publication of JP2004340726A publication Critical patent/JP2004340726A/en
Application granted granted Critical
Publication of JP4130968B2 publication Critical patent/JP4130968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leakage detecting device in which a gas exhaust pipe is branched and the branched gas feed pipe line is connected to a position having a different compression ratio of a main pipe with an evacuation means, enabling switching the gas feed pipe line not to affect a leakage test without providing a vacuum meter for high-vacuum area measuring when connecting the gas feed pipe line to a position having a smaller compression ratio. <P>SOLUTION: Each of on-off valves 7 controls switching of the gas feed pipe line 6 based on a background value of a noble gas measured by an analyzer tube 2. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、希ガスであるヘリウムをトレーサーガスとして、例えば冷凍機に使用されているコンプレッサーやCVD、スパッタリング装置等の薄膜形成装置などの気密を要する機器のガス漏れを検知するのに使用される漏洩検知装置に関する。
【0002】
【従来の技術】
この種の漏洩検知装置では、大容積の被試験体の漏洩検知を短時間で開始できると共に、検出感度が高く、その反応速度が速いことが望まれる。このことから、ヘリウムを検出できる分析管に、ターボ分子ポンプとドラックポンプから構成される複合分子ポンプと背圧側にロータリポンプとを設けた主管路を接続すると共に、被試験体に接続したテストポートに排気管路を接続し、この排気管路を3箇所で分岐し、この分岐した第1、第2及び第3の各気体導入管路を、第1、第2及び第3の各開閉弁を介して複合分子ポンプの圧縮比の異なる個所にそれぞれ接続して構成したものが知られている(特許文献1)。
【0003】
この場合、第1の気体導入管路は、低い圧縮比が得られるターボ分子ポンプとドラックポンプとの中間の位置に接続され、高感度の漏洩検知ができる。また、第3の気体導入管路はフォアバルブを介してこの複合分子ポンプの圧縮比の最も高い位置に、第2の気体導入管路は、これらの中間の圧縮比の位置にそれぞれ接続されている。そして、このフォアバルブ及び各気体導入管路に設けた各開閉弁の開閉を制御するため、排気管路にピラニ真空計を設け、ピラニ真空計の検出圧力に応じて、各気体導入管路の各開閉弁の開閉を制御し、主管路の圧縮比が高い気体導入管路から圧縮比の低い気体導入管路に順次切換えつつ、逆拡散の原理を用いて低感度から高感度までの漏洩検知ができるようにしている。
【0004】
ところで、近年の漏洩試験では、被試験体の微小な漏れを検知したいという要請が多い。上記構成のものでは、開閉弁の空気に対する圧縮比が10程度あり、また、第1の気体導入管路から導入されたヘリウムのほぼ全体が分析管に到達するものではないため、被試験体の漏れが微小である場合、分析管でヘリウムを検出できない場合がある。ヘリウムの検出感度を高めて微小な漏れを検知するため、複合分子ポンプのより圧縮比が低い位置、例えば分析管と複合分子ポンプとの間に、高感度用の気体導入管路を接続することが提案される。
【0005】
【特許文献1】
特許2655315号公報(例えば、特許請求の範囲の記載)
【0006】
【発明が解決しようとする課題】
ここで、ピラニ真空計が安定して圧力を測定できるのは数Paまでの範囲であるため、上記のように、より圧縮比が低い位置に高感度用の気体導入管路を接続すると、この気体導入管路に切換えるための圧力がピラニ真空計の測定範囲を逸脱する場合がある。高感度用の気体導入管に切換えたときに分析管内の圧力が上昇すると漏洩試験に影響が出るので、排気管路内の圧力を正確に把握する必要がある。この場合、排気管路に、ピラニ真空計に加えて、高真空領域の圧力を測定できる電離真空計などの真空計を別途設けることが考えられるが、これでは、部品点数が増えてコスト高を招くという問題が生じる。
【0007】
そこで、本発明は、上記点に鑑み、部品点数を増やすことなく、低コストで高感度の漏洩試験ができるようにした漏洩検知装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
上記課題を解決するため、本発明の漏洩検知装置では、トレーサーガスである希ガスの分析を行い得る分析管を備え、この分析管に主管路を接続すると共に、この主管路に高真空排気手段とこの高真空排気手段の背圧側に補助真空排気手段とを設け、被試験体に接続したテストポートに排気管路を接続すると共に、この排気管路を複数の箇所で分岐し、この分岐した気体導入管路を、開閉弁を介して主管路の圧縮比の異なる箇所にそれぞれ接続して構成し、各開閉弁を開閉を制御して、主管路の圧縮比が高い気体導入管路から圧縮比の低い気体導入管路に順次切換え、前記分析管で希ガスの分析を行うことで被試験体の漏れを検出できるようにした漏洩検知装置において、前記各開閉弁の開閉の制御による気体導入管路の切換を、前記分析管における希ガスのバックグランド値に基いて行うことを特徴とする。
【0009】
本発明によれば、前記各開閉弁の制御による気体導入管路の切換を、前記分析管で測定されている希ガスのバックグランド値に基いて行うので、排気管路内の圧力を検出しなくても、分析管内の圧力が上昇しないように高感度用の気体導入管路に切換えることができる。これにより、部品点数が増えてコスト高を招くことが防止される。
【0010】
尚、前記バックグランド値は、例えば分析管で分析されている希ガスの分圧とすればよい。
【0011】
また、前記高真空排気手段と補助真空排気手段との間にフォアバルブを介設すると共に、フォアバルブと補助真空排気手段との間に低感度用の気体導入管路を接続し、この気体導入管路に設けた開閉弁の開閉及びフォアバルブの開閉を制御する真空計を排気管路に設けておけば、主管路の圧縮比が高い気体導入管路から圧縮比の低い気体導入管路に順次切換えつつ、逆拡散の原理を用いて低感度から高感度までの漏洩検知ができる。
【0012】
この場合、前記主管路の圧縮比の低い高感度用の気体導入管路を、前記分析管と高真空排気手段との間に接続しておけば、被試験体の極めて小さな漏れを検出する高感度の漏洩試験が可能になる。
【0013】
【発明の実施の形態】
図1を参照して、1は、例えばヘリウムをトレーサーガスとして器具の漏洩検知ができる本発明の漏洩検知装置である。漏洩検知装置1は、質量分析管2を有する。この質量分析管2は、公知の四重極型若しくは磁場偏向型のものであり、ヘリウムイオンを検出するようにしたものである。質量分析管2には、高真空排気手段である複合分子ポンプ31と、その背圧側にフォアバルブ32を介して補助真空排気手段であるロータリポンプ33を設けた主管路3が接続され、質量分析管2内を所定圧力以下(≦10ー2Pa)に保持する。複合分子ポンプ31は、公知の構造を有し、主管路3への接続部を有するポンプケーシングに、ターボ分子ポンプとドラッグポンプとを内蔵したものである。補助真空排気手段は、メンブレンポンプ等でもよい。
【0014】
他方で、例えば冷凍機に使用されているコンプレッサーやCVD、スパッタリング装置等の薄膜形成装置などの気密を要する機器である被試験体4のテストポート41には排気管路5が接続され、この排気管路5は3箇所で分岐され、分岐した第1、第2及び第3の気体導入管路6a、6b、6cが、第1、第2及び第3の各開閉弁7a、7b、7cを介して、複合分子ポンプ31の圧縮比の異なる位置にそれぞれ接続されている。本実施の形態では、第1の気体導入管路6aは、被試験体4の微小な漏れを検知できるように、複合分子ポンプ31の100〜1000(N)の圧縮比が得られる位置に接続されている。第3の気体導入管路6cは、フォアバルブ32とロータリポンプ33との間であって150000(N)の圧縮比が得られる位置に接続されている。第2の気体導入管路6bは、複合分子ポンプ31の10000(N)の圧縮比が得られる中間位置に接続されている。これにより、質量分析管2内の圧力を10ー3Pa以下に保持できて正確に質量分析を行うことができると共にカウンターフローが得られるため極めて小さな漏れまで漏洩検知できる。
【0015】
排気管路5には、テストポート41の圧力を検出するピラニ真空計51が設けられ、このピラニ真空計51は、第2及び第3の各開閉弁7b、7cの開閉とフォアバルブ32の開閉とを制御するのに使用される。また、排気管路5には、標準リーク71を開閉弁71aを介して接続すると共に、ベントバルブ72を設けている。これらの機器の作動は、漏洩検知装置1に設けた制御手段(図示せず)によって制御され、制御手段によって、複合分子ポンプ31及びロータリポンプ33を作動させ、各気体導入管路6a、6b、6cの各開閉弁7a、7b、7cの開閉を制御し、圧縮比が高い気体導入管路6cから圧縮比の低い気体導入管路6aに順次切換えつつ、逆拡散の原理を用いて低感度から高感度までの漏洩検知ができる。
【0016】
ところで、第1の気体導入管路6aを、上記のように圧縮比が小さい位置に接続すると、第2の開閉弁7bを閉弁して第2の気体導入管路6bから、第1の開閉弁7aを開弁して第1の気体導入管路6aに切換える場合のテストポート4の圧力がピラニ真空計51で正確に測定できる範囲を逸脱する。この場合、第1の気体導入管路6aに切換えたときに、質量分析管2の圧力が上昇したのでは高感度の漏洩試験に影響が出る。
【0017】
ところで、圧縮比が高い気体導入管路6cから圧縮比の低い気体導入管路6aに順次切換えて低感度から高感度まで漏洩検知が行う場合、図2に示すように、例えば質量分析管2内で分析されているヘリウムの分圧であるバックグランド値は、排気管路5の圧力低下とほぼ比例して低下する。このことから、本実施の形態では、このバックグランド値を第2の気体導入管路6bから第1の気体導入管路6aに切換える場合の閾値として使用し、このバックグランド値が所定値になった場合に第1の気体導入管路6aに切換えることとした。これにより、制御手段によって質量分析管2の圧力が上昇しないように第1の気体導入管路6aに自動的に切換えることができ、また、第1の気体導入管路6aへの切換えにぺニング真空計などの他の高真空用真空計は必要なく、低コストにできる。
【0018】
次に、本発明の漏洩検知装置1の作動を説明する。制御手段によってロータリポンプ33と複合分子ポンプ31を作動させる。この場合、フォアバルブ32及びベントバルブ72を開弁し、その他の弁を閉弁する。そして、制御手段によって漏洩検知の開始が指示されると、フォアバルブ32とベントバルブ72とが閉弁され、第3開閉弁7cが開弁され、ロータリポンプ33によって被試験体4内が真空排気される。ピラニ真空計51で検出した圧力が1000Paになると、フォアバルブ32が開弁され、大きな漏れを検出する低感度の漏洩試験が開始される。この場合、試験者は、スプレーガン等によって被試験体4にヘリウムを吹付け、被試験体4に漏洩箇所があると、その漏洩箇所を介して侵入したヘリウムがテストポート41から第3の気体導入管路6cを経て複合分子ポンプ31の最も高い圧縮比の部分に導入され、このヘリウムがフォアバルブ32及び複合分子ポンプ31を逆拡散して質量分析管2で捕捉され、漏れが確認される。
【0019】
質量分析管2でヘリウムが捕捉されず漏れが確認できないときは、そのまま真空排気を継続し、ピラニ真空計51の検出圧力が100Paになると、制御手段によって第3の開閉弁7cを閉弁して第2の開閉弁7bを開弁し、第3の気体導入管路6cから第2の気体導入管路6bに切換えられ、中感度の漏洩試験が開始される。この場合、上記と同様に、試験者が被試験体4にヘリウムを吹付け、被試験体4に漏洩箇所があると、その漏洩箇所から侵入したヘリウムがテストポート41から第2の気体導入管路6bを経て複合分子ポンプ31の中間の圧縮比の部分に導入され、逆拡散したヘリウムが質量分析管2で捕捉されて漏れが確認される。
【0020】
さらに漏れが確認できないときは、そのまま真空排気を継続し、質量分析管2でのヘリウムのバックグランド値が、第1の気体導入管路6aに切換えても質量分析管2の圧力が上昇しない値、例えば1×10ー10Pa・m/sになった場合に、制御手段によって第2の開閉弁7bを閉弁して第1の開閉弁7aを開弁し、第2の気体導入管路6bから第1の気体導入管路6aに切換えられ、極めて小さな漏れを検出する高感度の漏洩試験が開始される。この場合、上記と同様に、試験者が被試験体4にヘリウムを吹付け、被試験体4に漏洩箇所があると、その漏洩箇所から侵入したヘリウムがテストポート41から第1の気体導入管路6aを経て複合分子ポンプ31の最も低い圧縮比の部分に導入され、逆拡散したヘリウムが質量分析管2で捕捉されて漏れが確認される。
【0021】
尚、本実施の形態では、第1の気体導入管路6aを、被試験体4の微小な漏れを検知できるように、複合分子ポンプ31の100〜1000(N)の圧縮比が得られる位置に接続したが、これに限定されるものではなく、100(N)以下の圧縮比が得られる位置、例えば、図3に示すように、圧縮比がゼロになる位置に第1の気体導入管路6aを接続してもよい。この場合、極めて小さな漏れを検出できる。
【0022】
【発明の効果】
以上説明したように、本発明の漏洩検知装置は、部品点数を増やすことなく、低コストで高感度の漏洩試験できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明の漏洩試験装置の構成を概略的に説明する図
【図2】質量分析管のバックグランド値とテストポートの圧力との関係を示すグラフ
【図3】本発明の漏洩試験装置の構成の変形例を概略的に説明する図
【符号の説明】
1 漏洩検知装置
2 質量分析管
3 主管路
31 高真空排気手段
33 補助真空排気手段
4 被試験体
41 テストポート
5 排気管路
51 真空計
6 気体導入管路
7 開閉弁
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used as a tracer gas of helium, which is a rare gas, for example, to detect gas leaks in airtight equipment such as a thin film forming apparatus such as a compressor, a CVD, and a sputtering apparatus used in a refrigerator. The present invention relates to a leak detection device.
[0002]
[Prior art]
In this type of leak detection device, it is desired that the leak detection of a large volume test object can be started in a short time, the detection sensitivity is high, and the reaction speed is high. From this, a main pipe line provided with a composite molecular pump composed of a turbo molecular pump and a drag pump and a rotary pump on the back pressure side is connected to an analysis tube capable of detecting helium, and a test port connected to a device under test is connected. , And the exhaust pipe is branched at three points, and the first, second, and third branched gas introduction pipes are connected to first, second, and third on-off valves. Is known in which a composite molecular pump is connected to a portion having a different compression ratio via a pressure sensor (Patent Document 1).
[0003]
In this case, the first gas introduction pipe is connected to an intermediate position between the turbo molecular pump and the drag pump where a low compression ratio can be obtained, and high-sensitivity leak detection can be performed. The third gas introduction line is connected to the highest compression ratio of the composite molecular pump via a fore valve, and the second gas introduction line is connected to the intermediate compression ratio position. I have. In order to control the opening and closing of the fore-valve and the respective on-off valves provided in each gas introduction pipe, a Pirani vacuum gauge is provided in the exhaust pipe, and the gas introduction pipes of each gas introduction pipe are provided in accordance with the detection pressure of the Pirani vacuum gauge. Controls the opening and closing of each on-off valve, and sequentially switches from a gas introduction line with a high compression ratio to a gas introduction line with a low compression ratio in the main line, and detects leakage from low to high sensitivity using the principle of back diffusion. I can do it.
[0004]
By the way, in recent leak tests, there are many demands for detecting a minute leak of a device under test. In the above configuration, the compression ratio of the on-off valve to air is about 10 4, and almost all of the helium introduced from the first gas introduction pipe does not reach the analysis pipe. Helium may not be detected by the analysis tube when the leakage of the gas is very small. To increase the sensitivity of helium detection and to detect minute leaks, connect a gas inlet line for high sensitivity at a position where the compression ratio of the composite molecular pump is lower, for example, between the analysis tube and the composite molecular pump. Is proposed.
[0005]
[Patent Document 1]
Japanese Patent No. 2655315 (for example, description of claims)
[0006]
[Problems to be solved by the invention]
Here, since the Pirani vacuum gauge can stably measure the pressure up to a range of several Pa, as described above, when a gas introduction pipe for high sensitivity is connected to a position with a lower compression ratio, The pressure for switching to the gas introduction line may deviate from the measurement range of the Pirani gauge. If the pressure in the analysis tube rises when switching to a high-sensitivity gas introduction tube, the leak test will be affected, so it is necessary to accurately grasp the pressure in the exhaust line. In this case, in addition to the Pirani vacuum gauge, a vacuum gauge such as an ionization vacuum gauge capable of measuring the pressure in a high vacuum region may be separately provided in the exhaust pipe, but this increases the number of parts and increases the cost. This causes a problem of inviting.
[0007]
In view of the above, an object of the present invention is to provide a leak detection device capable of performing a leak test with high sensitivity at low cost without increasing the number of parts.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the leak detection device of the present invention includes an analysis tube capable of analyzing a rare gas as a tracer gas, connects a main line to the analysis tube, and connects a high vacuum exhaust means to the main line. And an auxiliary evacuation means on the back pressure side of the high evacuation means, connecting an evacuation line to a test port connected to the device under test, branching the evacuation line at a plurality of locations, and branching out. The gas introduction pipelines are connected to each other at different compression ratios of the main pipeline via on / off valves, and each on / off valve is controlled to open and close to compress from the gas introduction pipeline with a high compression ratio of the main pipeline. In the leak detection device, which sequentially switches to a gas introduction pipe having a low ratio and analyzes a rare gas in the analysis pipe to detect a leak of a test object, gas introduction by controlling opening and closing of each of the on-off valves is provided. Switch the pipeline by the analysis tube And performing on the basis of the background value of the definitive noble gases.
[0009]
According to the present invention, the switching of the gas introduction pipe by controlling each of the on-off valves is performed based on the background value of the rare gas measured in the analysis pipe, so that the pressure in the exhaust pipe is detected. Even if it is not necessary, it is possible to switch to a gas introduction line for high sensitivity so that the pressure in the analysis tube does not increase. This prevents an increase in the number of parts and an increase in cost.
[0010]
Note that the background value may be, for example, the partial pressure of the rare gas being analyzed in the analysis tube.
[0011]
In addition, a fore valve is provided between the high vacuum evacuation means and the auxiliary evacuation means, and a low-sensitivity gas introduction pipe is connected between the fore valve and the auxiliary evacuation means. If a vacuum gauge that controls the opening and closing of the on-off valve and the opening and closing of the fore valve provided in the pipeline is provided in the exhaust pipeline, the gas pipeline with the high compression ratio of the main pipeline can be changed to the gas pipeline with the low compression ratio. While switching sequentially, leakage detection from low sensitivity to high sensitivity can be performed using the principle of despreading.
[0012]
In this case, if a high-sensitivity gas introduction line having a low compression ratio of the main line is connected between the analysis tube and the high-vacuum evacuation means, a high-pressure detecting device for detecting an extremely small leak of the DUT is provided. Leak test of sensitivity becomes possible.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIG. 1, reference numeral 1 denotes a leak detection device of the present invention that can detect leaks of instruments using, for example, helium as a tracer gas. The leak detection device 1 has a mass analysis tube 2. This mass spectrometer tube 2 is of a known quadrupole type or a magnetic field deflection type, and detects helium ions. The mass spectrometer tube 2 is connected to a main molecular line 3 provided with a compound molecular pump 31 as a high vacuum evacuation means and a rotary pump 33 as an auxiliary evacuation means on the back pressure side via a fore valve 32. The inside of the tube 2 is maintained at a predetermined pressure or less (≦ 10−2 Pa). The composite molecular pump 31 has a known structure, and includes a turbo molecular pump and a drag pump built in a pump casing having a connection to the main pipeline 3. The auxiliary evacuation unit may be a membrane pump or the like.
[0014]
On the other hand, an exhaust pipe 5 is connected to a test port 41 of a device under test 4 which is a device requiring airtightness such as a compressor used in a refrigerator or a thin film forming device such as a CVD or sputtering device. The pipe 5 is branched at three places, and the first, second and third gas introduction pipes 6a, 6b and 6c are connected to the first, second and third on-off valves 7a, 7b and 7c. The pumps are respectively connected to the composite molecular pumps 31 at different compression ratios. In the present embodiment, the first gas introduction pipe line 6a is located at a position where a compression ratio of 100 to 1000 (N 2 ) of the composite molecular pump 31 is obtained so that a minute leak of the test object 4 can be detected. It is connected. The third gas introduction pipe 6c is connected between the fore valve 32 and the rotary pump 33 at a position where a compression ratio of 150,000 (N 2 ) is obtained. The second gas introduction pipe line 6b is connected to an intermediate position where a compression ratio of 10,000 (N 2 ) of the composite molecular pump 31 is obtained. This enables leak detection to very small leak because the counter flow is obtained with the pressure in the mass spectrometer tube 2 can be accurately mass spectrometry can be held below 10 @ 3 Pa.
[0015]
The exhaust pipe 5 is provided with a Pirani vacuum gauge 51 for detecting the pressure of the test port 41. The Pirani vacuum gauge 51 opens and closes the second and third on-off valves 7b and 7c and opens and closes the fore valve 32. Used to control and. In addition, a standard leak 71 is connected to the exhaust pipe 5 via an on-off valve 71a, and a vent valve 72 is provided. The operation of these devices is controlled by control means (not shown) provided in the leak detection device 1. The control means activates the composite molecular pump 31 and the rotary pump 33, and the gas introduction pipes 6a, 6b, The opening and closing of each of the on-off valves 7a, 7b, 7c of 6c is controlled to sequentially switch from the gas introduction line 6c having a high compression ratio to the gas introduction line 6a having a low compression ratio, and from the low sensitivity using the principle of reverse diffusion. Leak detection up to high sensitivity is possible.
[0016]
By the way, when the first gas introduction line 6a is connected to the position where the compression ratio is small as described above, the second opening / closing valve 7b is closed and the first opening / closing is performed from the second gas introduction line 6b. When the valve 7a is opened to switch to the first gas introduction pipe line 6a, the pressure at the test port 4 deviates from the range that can be accurately measured by the Pirani vacuum gauge 51. In this case, if the pressure in the mass spectrometer tube 2 rises when switching to the first gas introduction pipe line 6a, a leak test with high sensitivity is affected.
[0017]
By the way, when the leak detection is performed from low sensitivity to high sensitivity by sequentially switching from the gas introduction line 6c having a high compression ratio to the gas introduction line 6a having a low compression ratio, as shown in FIG. The background value, which is the partial pressure of helium analyzed in the above, decreases almost in proportion to the pressure decrease in the exhaust pipe 5. For this reason, in the present embodiment, this background value is used as a threshold when switching from the second gas introduction pipe 6b to the first gas introduction pipe 6a, and this background value becomes a predetermined value. In this case, it is decided to switch to the first gas introduction pipe line 6a. As a result, the control means can automatically switch to the first gas introduction line 6a so that the pressure of the mass spectrometer tube 2 does not increase, and can switch to the first gas introduction line 6a. Other high vacuum gauges such as a vacuum gauge are not required, and the cost can be reduced.
[0018]
Next, the operation of the leak detection device 1 of the present invention will be described. The rotary pump 33 and the composite molecular pump 31 are operated by the control means. In this case, the fore valve 32 and the vent valve 72 are opened, and the other valves are closed. When the start of the leak detection is instructed by the control means, the fore valve 32 and the vent valve 72 are closed, the third on-off valve 7c is opened, and the inside of the test object 4 is evacuated by the rotary pump 33. Is done. When the pressure detected by the Pirani vacuum gauge 51 reaches 1000 Pa, the fore valve 32 is opened, and a low-sensitivity leak test for detecting a large leak is started. In this case, the tester sprays helium on the test object 4 with a spray gun or the like, and when there is a leak point in the test object 4, helium that has entered through the leak point passes from the test port 41 to the third gas. The helium is introduced into the portion of the highest compression ratio of the composite molecular pump 31 through the introduction line 6c, and this helium is back-diffused through the fore valve 32 and the composite molecular pump 31 and is captured by the mass spectrometer tube 2, and leakage is confirmed. .
[0019]
When helium is not captured by the mass spectrometer tube 2 and no leakage is confirmed, the evacuation is continued as it is, and when the detection pressure of the Pirani vacuum gauge 51 reaches 100 Pa, the third opening / closing valve 7c is closed by the control means. The second on-off valve 7b is opened to switch from the third gas introduction line 6c to the second gas introduction line 6b, and a leak test with medium sensitivity is started. In this case, as described above, the tester sprays helium on the DUT 4 and, if there is a leak in the DUT 4, the helium that has entered from the leak is passed from the test port 41 to the second gas introduction pipe. The helium introduced into the composite molecular pump 31 through the passage 6b at an intermediate compression ratio is captured by the mass spectrometer tube 2, and leakage is confirmed.
[0020]
If no further leakage can be confirmed, the vacuum evacuation is continued as it is, and the background value of helium in the mass spectrometer tube 2 is set to a value at which the pressure of the mass spectrometer tube 2 does not increase even if the background gas is switched to the first gas introduction line 6a. For example, when the pressure becomes 1 × 10 −10 Pa · m 3 / s, the second on-off valve 7b is closed by the control means to open the first on-off valve 7a, and the second gas introduction pipe is opened. The line 6b is switched to the first gas introduction line 6a, and a highly sensitive leak test for detecting an extremely small leak is started. In this case, in the same manner as above, the tester sprays helium on the test object 4, and if there is a leak point in the test object 4, helium that has entered from the leak point passes from the test port 41 to the first gas introduction pipe. The helium that has been introduced into the portion of the composite molecular pump 31 having the lowest compression ratio via the passage 6a and is back-diffused is captured by the mass spectrometer tube 2, and leakage is confirmed.
[0021]
In the present embodiment, a compression ratio of 100 to 1000 (N 2 ) of the composite molecular pump 31 is obtained in the first gas introduction pipe 6 a so that a minute leak of the device under test 4 can be detected. Although connected to the position, the present invention is not limited to this. The first gas is connected to a position where a compression ratio of 100 (N 2 ) or less is obtained, for example, as shown in FIG. The introduction conduit 6a may be connected. In this case, an extremely small leak can be detected.
[0022]
【The invention's effect】
As described above, the leak detection device of the present invention has an effect that a low-cost and high-sensitivity leak test can be performed without increasing the number of components.
[Brief description of the drawings]
FIG. 1 is a diagram schematically illustrating the configuration of a leak test apparatus of the present invention. FIG. 2 is a graph showing the relationship between the background value of a mass spectrometer tube and the pressure of a test port. FIG. 3 is a leak test of the present invention. FIG. 3 is a diagram schematically illustrating a modification of the configuration of the apparatus.
DESCRIPTION OF SYMBOLS 1 Leak detection device 2 Mass spectrometer tube 3 Main line 31 High vacuum exhaust unit 33 Auxiliary evacuation unit 4 DUT 41 Test port 5 Exhaust line 51 Vacuum gauge 6 Gas introduction line 7 Open / close valve

Claims (4)

トレーサーガスである希ガスの分析を行い得る分析管を備え、この分析管に主管路を接続すると共に、この主管路に高真空排気手段とこの高真空排気手段の背圧側に補助真空排気手段とを設け、
被試験体に接続したテストポートに排気管路を接続すると共に、この排気管路を複数の箇所で分岐し、この分岐した気体導入管路を、開閉弁を介して主管路の圧縮比の異なる箇所にそれぞれ接続して構成し、
各開閉弁を開閉を制御して、主管路の圧縮比が高い気体導入管路から圧縮比の低い気体導入管路に順次切換え、前記分析管で希ガスの分析を行うことで被試験体の漏れを検出できるようにした漏洩検知装置において、
前記各開閉弁の開閉の制御による気体導入管路の切換を、前記分析管における希ガスのバックグランド値に基いて行うことを特徴とする漏洩検知装置。
An analysis tube capable of analyzing a rare gas that is a tracer gas is provided, and a main line is connected to the analysis tube, and a high vacuum exhaust unit and an auxiliary vacuum exhaust unit are provided on the back pressure side of the high vacuum exhaust unit. And
An exhaust pipe is connected to a test port connected to the device under test, and the exhaust pipe is branched at a plurality of locations. The branched gas introduction pipes have different compression ratios of a main pipe via an on-off valve. Connected to each part and configured,
By controlling the opening and closing of each on-off valve, the compression ratio of the main line is sequentially switched from the gas introduction line having a high compression ratio to the gas introduction line having a low compression ratio, and the rare gas is analyzed by the analysis tube. In a leak detection device that can detect leaks,
A leakage detection device, wherein switching of a gas introduction pipe line by controlling opening and closing of each of said on-off valves is performed based on a background value of a rare gas in said analysis pipe.
前記バックグランド値は、分析管で分析されている希ガスの分圧であることを特徴とする請求項1記載の漏洩検知装置。The leak detection device according to claim 1, wherein the background value is a partial pressure of a rare gas being analyzed in an analysis tube. 前記高真空排気手段と補助真空排気手段との間にフォアバルブを介設すると共に、フォアバルブと補助真空排気手段との間に低感度用の気体導入管路を接続し、この気体導入管路に設けた開閉弁の開閉及びフォアバルブの開閉を制御する真空計を排気管路に設けたことを特徴とする請求項1または請求項2記載の漏洩検知装置。A fore valve is interposed between the high vacuum evacuation means and the auxiliary evacuation means, and a low-sensitivity gas introduction pipe is connected between the fore valve and the auxiliary evacuation means. 3. The leak detecting device according to claim 1, wherein a vacuum gauge for controlling the opening and closing of the on-off valve and the opening and closing of the fore valve provided in the exhaust pipe is provided. 前記主管路の圧縮比の低い高感度用の気体導入管路を、前記分析管と高真空排気手段との間に接続したことを特徴とする請求項1乃至請求項3のいずれか1項に記載の漏洩検知装置。4. The high-sensitivity gas introduction line having a low compression ratio of the main line is connected between the analysis tube and the high vacuum evacuation means. The leak detection device according to claim 1.
JP2003137167A 2003-05-15 2003-05-15 Leak detection device Expired - Lifetime JP4130968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003137167A JP4130968B2 (en) 2003-05-15 2003-05-15 Leak detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003137167A JP4130968B2 (en) 2003-05-15 2003-05-15 Leak detection device

Publications (2)

Publication Number Publication Date
JP2004340726A true JP2004340726A (en) 2004-12-02
JP4130968B2 JP4130968B2 (en) 2008-08-13

Family

ID=33526898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003137167A Expired - Lifetime JP4130968B2 (en) 2003-05-15 2003-05-15 Leak detection device

Country Status (1)

Country Link
JP (1) JP4130968B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157727A (en) * 2006-12-22 2008-07-10 Ulvac Japan Ltd Mass analyzer unit and utilization method therefor
JP5581398B2 (en) * 2010-11-16 2014-08-27 株式会社アルバック Leak detector
JP2016024011A (en) * 2014-07-18 2016-02-08 株式会社アルバック Leak detection method
CN118376362A (en) * 2024-04-30 2024-07-23 上海衍梓智能科技有限公司 Vacuum reaction cavity air leakage detection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157727A (en) * 2006-12-22 2008-07-10 Ulvac Japan Ltd Mass analyzer unit and utilization method therefor
JP5581398B2 (en) * 2010-11-16 2014-08-27 株式会社アルバック Leak detector
JP2016024011A (en) * 2014-07-18 2016-02-08 株式会社アルバック Leak detection method
CN118376362A (en) * 2024-04-30 2024-07-23 上海衍梓智能科技有限公司 Vacuum reaction cavity air leakage detection method

Also Published As

Publication number Publication date
JP4130968B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
JP2655315B2 (en) Leak detection device using compound molecular pump
JP5990172B2 (en) Leak detector
US8752412B2 (en) Sniffing leak detector
CN108369151B (en) Pressure measurement at test gas inlet
JPH07501622A (en) Leak detection device for vacuum equipment and method for performing leak detection in vacuum equipment
JPS6287825A (en) Method and device for detecting leakage of large quantity ofgas
KR101456843B1 (en) Leak detector
US11428598B2 (en) Leak detector for checking sealing tightness of an object comprising a pumping device including a turbomolecular pump and first and second vacuum pumps having at least one first and second pumping stage wherein the outlet of the second vacuum pump is connected between pumping stages of the first vacuum pump
JP2013532833A (en) Leak detector
US20240019336A1 (en) Gas leak detection device and gas leak detection method for identifying a gas leak in a test object
JP3737132B2 (en) A method for inspecting leaks of many similar subjects
WO2011132365A1 (en) Leakage detection method and vacuum processing device
JP4130968B2 (en) Leak detection device
JPH11153508A (en) Helium leakage detector apparatus for vacuum apparatus
JP3219549U (en) Leak detection device
US6282946B1 (en) Leak detector
US20240310234A1 (en) Leak detectors
JP3246390U (en) Mass spectrometer and leak detector
JPH0240519A (en) Gas leak checking apparatus
US20240361201A1 (en) Leak detection device
RU2002111643A (en) Leak test method and leak detector vacuum system implementing it
JPH11326108A (en) Helium leak detector
TW202413911A (en) Method for determining the ambient concentration of a light gas with a mass-spectrometric counterflow leak detection device
CN118984931A (en) Leak detection device and leak detection method for detecting gas leak in test sample
TW202409533A (en) Leak detection device and leak detection method for detecting a gas leak in a test specimen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080401

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4130968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term