JP4129623B2 - Evaluation device - Google Patents

Evaluation device Download PDF

Info

Publication number
JP4129623B2
JP4129623B2 JP2002253115A JP2002253115A JP4129623B2 JP 4129623 B2 JP4129623 B2 JP 4129623B2 JP 2002253115 A JP2002253115 A JP 2002253115A JP 2002253115 A JP2002253115 A JP 2002253115A JP 4129623 B2 JP4129623 B2 JP 4129623B2
Authority
JP
Japan
Prior art keywords
measurement object
detector
measurement
evaluation apparatus
drive source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002253115A
Other languages
Japanese (ja)
Other versions
JP2004093264A (en
Inventor
泰之 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002253115A priority Critical patent/JP4129623B2/en
Publication of JP2004093264A publication Critical patent/JP2004093264A/en
Application granted granted Critical
Publication of JP4129623B2 publication Critical patent/JP4129623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、駆動源の発生する動力で測定物又は検出器を駆動して、測定物と検出器との間に所定の相対運動を発生させ、その時の検出器の出力信号に基づいて測定物に対する評価を行う評価装置に関するものである。
【0002】
【従来の技術】
図4は、従来の評価装置の概略構成を示したものである。
この評価装置41は、駆動源43の発生する回転力で、測定物45を回転駆動して、測定物45と検出器46との間に所定の相対運動を発生させ、その時の検出器46の出力信号を図示せぬ情報処理手段によって収集・分析して、測定物45に対する評価を行う。
【0003】
駆動源43は、通常、電動モータで、架台48上に形成された動力源支持部48aに据え付けられている。図中の矢印(イ)は、モータの出力軸の回転方向である。
測定物45は、例えば、円筒状を成す転がり軸受外輪又は内輪等で、自己の回転軸線回りに回転可能に、架台48上に形成された測定対象支持部48bに支持されている。図中の矢印(ロ)は、測定対象支持部48b上での測定物45の回転方向である。
【0004】
また、検出器46は、先端を測定物45の表面45aに当接する触針46aを有し、測定物45の回転時に表面45aの凹凸や振動等で触針46aに振れが生じると、触針46aの振れに応じた電気信号を出力するものである。この検出器46は、触針46aの先端が表面45aに当接するように、架台48上に形成された検出手段支持部48cに取り付けられている。
駆動源43の出力軸から測定対象支持部48bのスピンドルへの回転伝達は、適宜動力伝達機構49を介して行われる。図示例の動力伝達機構49は、所謂、ベルト式の動力伝達機構である。
【0005】
検出器46aの出力信号を処理する情報処理手段は、予め判断基準として記憶させた基準データや演算式に基づいて入力データを処理するコンピュータで、例えば、検出器46aの出力信号に基づいて、測定物の表面の真円度を評価したり、あるいは、測定物の振動特性を評価する。
【0006】
このような構成をなす評価装置は、複数のメーカーが、測定精度や装置寸法等を、用途に応じて工夫したものを開発している。
例えば、転がり軸受の内外輪や転動体の転動面表面の真円度の評価用としては、テーラホブソン社(英国)のタリロンド型真円度測定機が有名であり、また、転動部品の表面のうねり品質の評価用としてはウェービネス測定器が有名である。また、主に転がり軸受の振動特性の評価用としては、(株)菅原研究所のアンデロンメータが有名である。
【0007】
【発明が解決しようとする課題】
ところで、転がり軸受の転動部材の真円度や振動特性を評価する評価装置としては、測定対象となる軸受の高精度化や、高性能化に伴い、測定精度の向上が要求され、そのために、測定対象支持部48bに装備するスピンドルに、超高精度な回転を実現可能にするエアスピンドルを使用することなどが提案されている。しかし、図4に示した従来の評価装置41では、エアスピンドルのような高価な高性能部品を採用しても、それを測定精度の向上に十分に活かすことができないという問題が生じた。
【0008】
それは、動力源支持部48a,測定対象支持部48b,検出手段支持部48cが、何れも共通の単一の架台48上に形成されているため、駆動源43の発生する振動が、図4に黒塗りの矢印で示すように、架台48上を伝搬して測定対象支持部48b上の測定物45や,検出手段支持部48c上の検出器46に伝達されることによる。つまり、駆動源43が発生する振動が、測定物45の表面の凹凸や測定物45自体の振動特性に起因する本来の測定振動に加算されて検出器46に検出されてしまい、検出器46において検出する振動のSN比を低下させて、測定精度の低下、測定結果の信頼性低下を招いたためである。
【0009】
本発明は上記事情に鑑みなされたもので、駆動源の発生する振動が、測定対象支持部上の測定物や,検出手段支持部上の検出器に伝達され難く、よって、検出器において検出する信号のSN比を向上させて、スピンドルの高精度化や高性能化を測定精度の向上に十分に活かすことができ、測定精度の向上及び測定結果の信頼性向上を図ることのできる評価装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するための本発明に係る評価装置は、駆動源の発生する動力で測定物を回転駆動して、該測定物と検出器との間に所定の相対運動を発生させ、前記検出器が検出した一定の物理量の出力信号を情報処理手段によって収集・分析して、前記測定物に対する評価を行う評価装置において、
前記測定物を支持する測定対象支持部がスピンドルからばね、間座、調心球及び駆動腕を備えた回転機構を介して前記測定物に回転を伝達し、且つ前記駆動源を支持する動力源支持部を、前記測定対象支持部や前記検出器を支持する検出手段支持部を有する第1架台とは別の独立した第2架台に設けたことを特徴とする。
【0011】
そして、上記構成によれば、測定物や検出器を支持している第1架台と、駆動源を支持している第2架台とは互いに独立した別体構造であるため、測定物と検出器と駆動源とを同一の架台上に搭載する従来の評価装置と比較すると、駆動源の発生する振動が、架台を伝搬して直接測定対象支持部上の測定物や,検出手段支持部上の検出器に伝達され難い。従って、駆動源の発生する振動が、検出器において検出する振動のSN比の低下要因から除外される。
そして、測定対象支持部の回転機構にエアスピンドルが用いられたことで、その超高精度な回転の実現により、架台の別体構造と相まって測定精度の向上を図ることができる。
【0012】
なお、好ましくは、前記評価装置において、前記駆動源の出力を前記測定物に伝達するために弾性材料製のベルトを用いた構成とすると良い。
このようにすると、駆動源の発生する振動が、動力伝達機構に使用されているベルトを伝搬する際、ベルトの弾性特性による制振機能によって低減され、動力伝達機構を介して駆動源の発生した振動が測定物等に伝達されることも抑制できる。
【0013】
なお、好ましくは、前記評価装置において、軸受構成部品の転動面の真円度や転動面表面の凹凸等を評価させる場合には、前記測定対象支持部は測定物を回転可能に支持し、前記検出器は測定物の表面に接触させた触針の変位に応じて電気信号を出力する構成で、前記測定物の回転運動時の前記検出器の出力信号から前記測定物の表面形状の評価を行う構成とすると良い。
【0014】
また、前記評価装置において、軸受の回転時の振動特性を評価させる場合には、前記測定対象支持部は測定物である軸受を回転可能に支承し、前記検出器は測定物の表面に接触させた触針の変位に応じて電気信号を出力する構成で、前記情報処理手段は前記測定物である軸受の回転時の前記検出器の出力信号から軸受の振動特性の評価を行う構成とすると良い。
また、前記評価装置において、転がり軸受の転動体の特性を評価する場合には、測定対象を転がり軸受の転動体とすると良い。
【0015】
【発明の実施の形態】
以下、添付図面に基づいて本発明に係る評価装置の好適な実施の形態を詳細に説明する。
図1及び図2は本発明に係る評価装置の参考例を示したもので、図1は評価装置の概略構成図、図2は図1に示した評価装置と従来装置との実際の測定時のSN比の比較を示す説明図である。
【0016】
この参考例の評価装置51は、測定物53を支持する測定対象支持部62と、測定物53に対して一定の物理量の検出を行うための検出器55と、この検出器55を支持する検出手段支持部64と、検出器55と測定物53との間に測定用の相対運動に必要な動力を発生する駆動源57と、駆動源57を支持する動力源支持部73と、駆動源57の発生する動力を測定物53に伝達して検出器55と測定物53との間に測定用の相対運動を生じさせる動力伝達機構59と、検出器55と測定物53との間の相対運動時の検出器55の出力信号を収集・分析して測定物53に対する評価を行う図示せぬ情報処理手段とを備えて構成される。
【0017】
また、測定対象支持部62や検出手段支持部64は第1架台61に設け、動力源支持部73は、第1架台61とは別の独立した第2架台71に設けている。
【0018】
駆動源57は、回転力を出力する電動モータで、図中の矢印(ハ)は、モータの出力軸の回転方向である。
測定物53は、例えば、円筒状をなす転がり軸受外輪又は内輪等で、自己の回転軸線回りに回転可能に、第1架台61上の測定対象支持部62に支持されている。図中の矢印(ニ)は、測定対象支持部62上での測定物53の回転方向である。
【0019】
また、検出器55は、先端を測定物53の表面53aに当接する触針55aを有し、測定物53の回転時に表面53aの凹凸や振動等で触針55aに振れが生じると、触針55aの振れに応じた電気信号を出力するものである。この検出器55は、触針55aの先端が表面53aに当接するように、第1架台61上に形成された検出手段支持部64に取り付けられている。
【0020】
参考例の場合、駆動源57の出力軸から測定対象支持部62のエアスピンドルへ回転を伝達することで測定物53を回転運動させる動力伝達機構59は、弾性材料製のベルト81と、このベルトを巻き掛ける図示せぬプーリとを組み合わせたベルト式動力伝達機構である。
【0021】
また、検出器55の出力信号を処理する図示せぬ情報処理手段は、予め判断基準として記憶させた基準データや演算式に基づいて入力データを処理するコンピュータで、本実施の形態の場合は、例えば、検出器55の出力信号に基づいて、測定物としての軸受構成部品の表面の真円度など、転動部品の表面形状の評価を行う。
【0022】
以上に説明した評価装置51では、測定物53や検出器55を支持している第1架台61と、駆動源57を支持している第2架台71とは互いに独立した別体構造であるため、測定物53と検出器55と駆動源57とを同一の架台上に搭載する従来の評価装置と比較すると、駆動源57の発生する振動が、架台を伝搬して直接測定対象支持部62上の測定物53や,検出手段支持部64上の検出器55に伝達され難く、駆動源57の発生する振動が、検出器55において検出する振動のSN比の低下要因から除外される。
従って、検出器55において検出する信号のSN比を向上させることができ、例えば、評価装置51に搭載する回転機構のスピンドル等の部品の高精度化や高性能化を実際の測定精度の向上に十分に活かして、測定精度の向上及び測定結果の信頼性向上を図ることができる。
【0023】
また、本参考例では、駆動源57の出力を測定物53に伝達する動力伝達機構59が、弾性材料製のベルトを利用したベルト式動力伝達機構で、駆動源57の発生する振動が、動力伝達機構59に使用されているベルト81を伝搬する際、ベルトの弾性特性による制振機能によって低減され、動力伝達機構59を介して駆動源57の発生した振動が測定物53等に伝達されることも抑制でき、検出器55において検出する信号のSN比を更に向上させることができる。
【0024】
従って、例えば、軸受で使用する内外輪や内外輪間に装備する転動体としての球体の表面の真円度や転動面表面の凹凸等を評価する場合に、評価結果の信頼性を向上させることができる。
【0025】
上記参考例の構成の効力を検証するために、円筒状の測定部の表面形状の評価試験を実施した際に検出器が検出する振動信号のSN比を、上記の参考例の評価装置51と、図4に示した従来の評価装置41とで測定した。測定結果は、図2に示す通りで、本参考例の装置では、SN比が顕著に改善されていることが確認できた。
【0026】
尚、本発明の評価装置において、測定物を回転させる動力伝達機構や測定対象支持部の具体的な構成は、上記の参考例の構成に限定するものではなく、公知の種々の構造を採用することが可能である。
図3は、本発明に係る評価装置の実施の形態を示している。
ここに示した評価装置91は、玉軸受で転動体として使用する玉6の表面のうねりを評価する。
【0027】
具体的には、この評価装置91は、回転案内具7により玉6を、鉛直軸を中心とする回転のみ自在に支持している。また、玉6は、駆動源によって回転駆動されるスピンドル22から、圧縮コイルばね26、間座27、調心球28、駆動腕8を介して回転力が伝達されて、鉛直軸回りに回転運動させる。玉6の赤道部分には、検出器の触針10の平坦な先端面11が突き当てられていて、この赤道部分の表面のうねりを、鉛直軸回りの回転時の振動として検出する。
この評価装置91においても、測定物である玉6を支持する回転案内具7を第1架台20に装備すると共に、この第1架台20とは別体の独立した第2架台を用意し、この第2架台上に、スピンドル22を駆動する駆動源を搭載することで、前述した参考例の形態の場合と同様に、駆動源の発生する振動が、玉6や検出器に伝達されて、SN比の低下を招くことを防止することができる。
【0028】
なお、本発明に係る評価装置の用途は、測定物の表面形状の評価に限らない。例えば、測定対象支持部は測定物としての軸受を回転可能に支承する構成とし、更に、検出器は測定物の表面に接触させた触針の変位に応じて電気信号を出力する構成として、情報処理手段は測定物としての軸受の回転時の検出器の出力信号から軸受の振動特性の評価を行う構成とすることで、軸受の固有振動数や共振周波数等の振動特性の評価を行う評価装置に流用することもできる。
【0029】
【発明の効果】
本発明の評価装置によれば、測定物や検出器を支持している第1架台と、駆動源を支持している第2架台とは互いに独立した別体構造であるため、測定物と検出器と駆動源とを同一の架台上に搭載する従来の評価装置と比較すると、駆動源の発生する振動が、架台を伝搬して直接測定対象支持部上の測定物や,検出手段支持部上の検出器に伝達され難い。従って、駆動源の発生する振動が、検出器において検出する振動のSN比の低下要因から除外される。よって、検出器において検出する信号のSN比を向上させて、例えば、評価装置に搭載する回転機構のスピンドル等の部品の高精度化や高性能化を実際の測定精度の向上に十分に活かすことができ、測定精度の向上及び測定結果の信頼性向上を図ることができる。
【0030】
また、請求項に記載の構成にすると、駆動源の発生する振動が、動力伝達機構に使用されているベルトを伝搬する際、ベルトの弾性特性による制振機能によって低減され、動力伝達機構を介して駆動源の発生した振動が測定物等に伝達されることも防止でき、検出器において検出する信号のSN比を更に向上させることができる。
【0031】
また、請求項に記載の構成にすると、軸受構成部品の転動面の真円度や転動面表面の凹凸等の評価など、測定物の表面形状の評価を行う評価装置として有用である。なお、本発明は特開2001−91241号公報(発明の名称:球面体の表面形状評価方法及び評価装置)記載の装置に適用することも可能である。
【0032】
更に、請求項に記載の構成にすると、軸受の回転時の振動特性の評価など、測定物の振動特性の評価を行う評価装置として有用である。
【図面の簡単な説明】
【図1】本発明に係る評価装置の第1の実施の形態の概略構成図である。
【図2】図1に示した評価装置と従来装置との測定時のSN比の比較を示す説明図である。
【図3】本発明を適用する評価装置の第2の実施の形態の要部の縦断面図である。
【図4】従来の評価装置の概略構成図である。
【符号の説明】
51 評価装置
53 測定物
53a 表面
55 検出器
55a 触針
57 駆動源(モータ)
59 動力伝達機構
61 第1架台
62 測定対象支持部
64 検出手段支持部
71 第2架台
73 動力源支持部
81 ベルト
[0001]
BACKGROUND OF THE INVENTION
The present invention drives a measurement object or a detector with power generated by a driving source to generate a predetermined relative motion between the measurement object and the detector, and the measurement object based on an output signal of the detector at that time. It is related with the evaluation apparatus which performs evaluation with respect to.
[0002]
[Prior art]
FIG. 4 shows a schematic configuration of a conventional evaluation apparatus.
The evaluation device 41 rotationally drives the measurement object 45 with the rotational force generated by the drive source 43 to generate a predetermined relative motion between the measurement object 45 and the detector 46, and the detector 46 at that time The output signal is collected and analyzed by information processing means (not shown), and the measurement object 45 is evaluated.
[0003]
The drive source 43 is usually an electric motor and is installed on a power source support portion 48 a formed on the gantry 48. The arrow (A) in the figure is the rotation direction of the output shaft of the motor.
The measurement object 45 is, for example, a cylindrical rolling bearing outer ring or inner ring, and is supported by a measurement target support portion 48b formed on the gantry 48 so as to be rotatable about its own rotation axis. The arrow (B) in the figure is the direction of rotation of the measurement object 45 on the measurement object support 48b.
[0004]
The detector 46 has a stylus 46a whose tip abuts on the surface 45a of the measurement object 45. When the measurement object 45 rotates, the stylus 46a is shaken due to irregularities or vibrations of the surface 45a. An electric signal corresponding to the shake of 46a is output. The detector 46 is attached to a detection means support 48c formed on the gantry 48 so that the tip of the stylus 46a contacts the surface 45a.
Rotational transmission from the output shaft of the drive source 43 to the spindle of the measurement target support portion 48b is appropriately performed via the power transmission mechanism 49. The illustrated power transmission mechanism 49 is a so-called belt-type power transmission mechanism.
[0005]
The information processing means for processing the output signal of the detector 46a is a computer that processes input data based on reference data and arithmetic expressions stored in advance as judgment criteria, for example, based on the output signal of the detector 46a. The roundness of the surface of the object is evaluated, or the vibration characteristics of the object to be measured are evaluated.
[0006]
As for the evaluation apparatus having such a configuration, a plurality of manufacturers have developed measurement devices, device dimensions, and the like that are devised according to applications.
For example, for evaluation of the roundness of the inner and outer rings of rolling bearings and the rolling surface of rolling elements, the Talyron type roundness measuring machine of Taylor Hobson (UK) is well known. A webiness measuring instrument is well known for evaluating the surface waviness quality. In addition, the Anderon meter of Ebara Laboratories is famous for evaluating the vibration characteristics of rolling bearings.
[0007]
[Problems to be solved by the invention]
By the way, as an evaluation device that evaluates the roundness and vibration characteristics of rolling members of rolling bearings, improvement in measurement accuracy is required along with higher accuracy and higher performance of bearings to be measured. In addition, it has been proposed to use an air spindle capable of realizing ultra-high accuracy rotation for the spindle provided in the measurement target support portion 48b. However, the conventional evaluation apparatus 41 shown in FIG. 4 has a problem that even if an expensive high-performance component such as an air spindle is adopted, it cannot be fully utilized for improving measurement accuracy.
[0008]
The power source support 48a, the measurement target support 48b, and the detection means support 48c are all formed on a common single frame 48, so that the vibration generated by the drive source 43 is shown in FIG. As indicated by the solid arrows, it propagates on the gantry 48 and is transmitted to the measurement object 45 on the measurement object support portion 48b and the detector 46 on the detection means support portion 48c. That is, the vibration generated by the driving source 43 is added to the original measurement vibration caused by the unevenness of the surface of the measurement object 45 and the vibration characteristics of the measurement object 45 itself, and is detected by the detector 46. This is because the S / N ratio of the vibration to be detected is reduced, leading to a decrease in measurement accuracy and a decrease in reliability of measurement results.
[0009]
The present invention has been made in view of the above circumstances, and vibration generated by the drive source is difficult to be transmitted to the measurement object on the measurement object support part or the detector on the detection means support part, and is thus detected by the detector. An evaluation device that can improve the measurement accuracy and reliability of measurement results by improving the signal-to-noise ratio of the signal and making full use of the high accuracy and high performance of the spindle to improve the measurement accuracy. The purpose is to provide.
[0010]
[Means for Solving the Problems]
Evaluation apparatus according to the present invention for achieving the above object, and rotating the workpiece by the power generated by the drive Dogen, to generate a predetermined relative movement between the workpiece and the detector, wherein In an evaluation apparatus that collects and analyzes an output signal of a certain physical quantity detected by a detector by an information processing means and evaluates the measurement object,
A power source that supports rotation of the object to be measured by the measurement object support unit that transmits rotation from the spindle to the object to be measured via a rotation mechanism including a spring, a spacer, a centering ball, and a driving arm. The support portion is provided on a second stand independent from the first stand having the detection means support portion for supporting the measurement target support portion and the detector.
[0011]
Then, according to the above Ki構 formed, since the first frame supporting the workpiece and the detector, and the second frame supporting the drive source is a separate structure independent of each other, a workpiece Compared with a conventional evaluation device in which the detector and the drive source are mounted on the same frame, the vibration generated by the drive source propagates through the frame and directly measures the object on the measurement target support unit or the detection means support unit. It is hard to be transmitted to the upper detector. Therefore, the vibration generated by the drive source is excluded from the factors that decrease the SN ratio of the vibration detected by the detector.
Then, by the air spindle rotating mechanism of the measuring object supporting section is used, it is possible to achieve the realization of ultra-precision rotation, the improvement of the combined measurement accuracy and separate structure of the stand.
[0012]
Note that it preferably, in the evaluation device, when configuration using belts made of elastic material in order to transmit the output of the driving source to the measured object.
In this way, when the vibration generated by the drive source propagates through the belt used in the power transmission mechanism, it is reduced by the vibration suppression function based on the elastic characteristics of the belt, and the drive source is generated via the power transmission mechanism. It is also possible to suppress the vibration from being transmitted to the measurement object.
[0013]
Preferably, in the evaluation apparatus, when the roundness of the rolling surface of the bearing component or the unevenness of the surface of the rolling surface is evaluated, the measurement target support unit rotatably supports the measurement object. The detector is configured to output an electrical signal in accordance with the displacement of the stylus brought into contact with the surface of the measurement object, and the surface shape of the measurement object is determined from the output signal of the detector during the rotational movement of the measurement object. It is preferable that the evaluation be performed.
[0014]
Further, in the evaluation apparatus, when the vibration characteristics at the time of rotation of the bearing are evaluated, the measurement object support portion rotatably supports the bearing as the measurement object, and the detector is brought into contact with the surface of the measurement object. The information processing means may be configured to evaluate the vibration characteristics of the bearing from the output signal of the detector during rotation of the bearing as the measurement object. .
Further, in the evaluation device, when evaluating the characteristics of the rolling elements of the rolling bearing, the measurement object may be a rolling element of the rolling bearing.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an evaluation apparatus according to the invention will be described in detail with reference to the accompanying drawings.
1 and 2 show a reference example of an evaluation apparatus according to the present invention, FIG. 1 is a schematic configuration diagram of the evaluation apparatus, and FIG. 2 is an actual measurement time of the evaluation apparatus shown in FIG. 1 and a conventional apparatus. It is explanatory drawing which shows the comparison of SN ratio.
[0016]
The evaluation apparatus 51 of the reference example includes a measurement object support unit 62 that supports the measurement object 53, a detector 55 for detecting a certain physical quantity with respect to the measurement object 53, and a detection that supports the detector 55. Means support 64, a drive source 57 that generates power necessary for relative movement for measurement between the detector 55 and the measurement object 53, a power source support 73 that supports the drive source 57, and a drive source 57 Is transmitted to the measurement object 53 to generate a relative movement for measurement between the detector 55 and the measurement object 53, and the relative movement between the detector 55 and the measurement object 53. And an information processing means (not shown) for collecting and analyzing the output signal of the detector 55 and evaluating the measurement object 53.
[0017]
Further, the measurement object support unit 62 and the detection means support unit 64 are provided on the first frame 61, and the power source support unit 73 is provided on a second frame 71 independent from the first frame 61.
[0018]
The drive source 57 is an electric motor that outputs a rotational force, and an arrow (C) in the figure indicates the rotation direction of the output shaft of the motor.
The measurement object 53 is, for example, a cylindrical rolling bearing outer ring or inner ring, and is supported by the measurement target support portion 62 on the first pedestal 61 so as to be rotatable about its own rotation axis. The arrow (d) in the figure is the rotation direction of the measurement object 53 on the measurement target support portion 62.
[0019]
The detector 55 has a stylus 55a whose tip abuts on the surface 53a of the measurement object 53. When the measurement object 53 rotates, if the stylus 55a shakes due to unevenness or vibration of the surface 53a, the stylus An electric signal corresponding to the fluctuation of 55a is output. The detector 5 5, so that the tip of the stylus 55a abuts against the surface 53a, is attached to the detecting unit support portion 64 formed on the first frame 61.
[0020]
In the case of this reference example , the power transmission mechanism 59 for rotating the measurement object 53 by transmitting the rotation from the output shaft of the drive source 57 to the air spindle of the measurement object support unit 62 includes a belt 81 made of an elastic material, This is a belt-type power transmission mechanism combined with a pulley (not shown) around which the belt is wound.
[0021]
The information processing means (not shown) that processes the output signal of the detector 55 is a computer that processes input data based on reference data or arithmetic expressions stored in advance as a determination reference. In the case of this embodiment, For example, based on the output signal of the detector 55, the surface shape of the rolling component such as the roundness of the surface of the bearing component as the measurement object is evaluated.
[0022]
In the evaluation apparatus 51 described above, the first gantry 61 that supports the measurement object 53 and the detector 55 and the second gantry 71 that supports the drive source 57 have separate structures. Compared with the conventional evaluation apparatus in which the measurement object 53, the detector 55, and the drive source 57 are mounted on the same frame, the vibration generated by the drive source 57 propagates through the frame and directly on the measurement target support unit 62. Therefore, the vibration generated by the drive source 57 is excluded from the cause of the decrease in the S / N ratio of the vibration detected by the detector 55.
Therefore, the signal-to-noise ratio of the signal detected by the detector 55 can be improved. For example, improving the accuracy and performance of components such as the spindle of the rotating mechanism mounted on the evaluation device 51 can be improved. Taking full advantage, it is possible to improve the measurement accuracy and the reliability of measurement results.
[0023]
In this reference example , the power transmission mechanism 59 that transmits the output of the drive source 57 to the measurement object 53 is a belt-type power transmission mechanism that uses a belt made of an elastic material. When propagating through the belt 81 used in the transmission mechanism 59, the vibration is reduced by the vibration suppression function based on the elastic characteristics of the belt, and the vibration generated by the drive source 57 is transmitted to the measurement object 53 and the like via the power transmission mechanism 59. This can be suppressed, and the SN ratio of the signal detected by the detector 55 can be further improved.
[0024]
Therefore, for example, when evaluating the roundness of the surface of a sphere as a rolling element to be installed between the inner and outer rings used in the bearing or the unevenness of the surface of the rolling surface, the reliability of the evaluation result is improved. be able to.
[0025]
In order to verify the effectiveness of the configuration of the reference example , the SN ratio of the vibration signal detected by the detector when the evaluation test of the surface shape of the cylindrical measuring unit is performed is the same as the evaluation device 51 of the reference example. The measurement was made with the conventional evaluation apparatus 41 shown in FIG. The measurement results are as shown in FIG. 2, and it was confirmed that the SN ratio was remarkably improved in the apparatus of this reference example .
[0026]
In the evaluation apparatus of the present invention, the specific configuration of the power transmission mechanism for rotating the measurement object and the measurement target support portion is not limited to the configuration of the reference example described above, and various known structures are employed. It is possible.
FIG. 3 shows an embodiment of the evaluation apparatus according to the present invention.
The evaluation device 91 shown here evaluates the undulation of the surface of the ball 6 used as a rolling element in a ball bearing.
[0027]
Specifically, the evaluation device 91 supports the ball 6 by the rotation guide 7 such that the ball 6 can freely rotate about the vertical axis. Further, the ball 6 is rotated about the vertical axis by the rotational force transmitted from the spindle 22 rotated by the drive source through the compression coil spring 26, the spacer 27, the aligning ball 28, and the drive arm 8. Let A flat front end surface 11 of the stylus 10 of the detector is abutted against the equator portion of the ball 6, and the undulation of the surface of the equator portion is detected as vibration during rotation around the vertical axis.
Also in this evaluation apparatus 91, the first guide 20 is equipped with the rotation guide 7 that supports the ball 6 that is a measurement object, and a second stand that is independent from the first stand 20 is prepared. By mounting the drive source for driving the spindle 22 on the second frame, the vibration generated by the drive source is transmitted to the ball 6 and the detector as in the case of the above-described reference example , and the SN It is possible to prevent the ratio from being lowered.
[0028]
The application of the evaluation apparatus according to the present invention is not limited to the evaluation of the surface shape of the measurement object. For example, the measurement target support unit is configured to rotatably support a bearing as a measurement object, and the detector is configured to output an electrical signal in accordance with the displacement of a stylus brought into contact with the surface of the measurement object. The processing means is configured to evaluate the vibration characteristics of the bearing from the output signal of the detector at the time of rotation of the bearing as the measurement object, thereby evaluating the vibration characteristics such as the natural frequency and resonance frequency of the bearing. It can also be diverted to.
[0029]
【The invention's effect】
According to the evaluation device of the present invention, since a first frame that supports the workpiece and the detector, and the second frame supporting the drive source is a separate structure independent of each other, a workpiece Compared with a conventional evaluation device in which the detector and the drive source are mounted on the same frame, the vibration generated by the drive source propagates through the frame and directly measures the object on the measurement target support unit or the detection means support unit. It is hard to be transmitted to the upper detector. Therefore, the vibration generated by the drive source is excluded from the factors that decrease the SN ratio of the vibration detected by the detector. Therefore, by improving the signal-to-noise ratio of the signal detected by the detector, for example, the high precision and high performance of components such as the spindle of the rotating mechanism mounted on the evaluation apparatus can be fully utilized to improve the actual measurement precision. It is possible to improve measurement accuracy and reliability of measurement results.
[0030]
According to the second aspect of the present invention, when the vibration generated by the drive source propagates through the belt used in the power transmission mechanism, the vibration transmission function is reduced by the elastic characteristic of the belt, and the power transmission mechanism is Therefore, it is possible to prevent the vibration generated by the drive source from being transmitted to the measurement object or the like, and to further improve the SN ratio of the signal detected by the detector.
[0031]
Moreover, if it is set as the structure of Claim 3 , it is useful as an evaluation apparatus which evaluates the surface shape of a measurement object, such as evaluation of the roundness of the rolling surface of a bearing component, the unevenness | corrugation of the surface of a rolling surface, etc. . The present invention can also be applied to an apparatus described in Japanese Patent Application Laid-Open No. 2001-91241 (invention name: surface shape evaluation method and evaluation apparatus for spherical body).
[0032]
Furthermore, if it is set as the structure of Claim 4 , it is useful as an evaluation apparatus which evaluates the vibration characteristic of a measured object, such as evaluation of the vibration characteristic at the time of rotation of a bearing.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a first embodiment of an evaluation apparatus according to the present invention.
FIG. 2 is an explanatory diagram showing a comparison of SN ratios during measurement between the evaluation apparatus shown in FIG. 1 and a conventional apparatus.
FIG. 3 is a longitudinal sectional view of an essential part of a second embodiment of an evaluation apparatus to which the present invention is applied.
FIG. 4 is a schematic configuration diagram of a conventional evaluation apparatus.
[Explanation of symbols]
51 Evaluation Device 53 Measurement Object 53a Surface 55 Detector 55a Stylus 57 Drive Source (Motor)
59 Power transmission mechanism 61 First mount 62 Measuring object support 64 Detection means support 71 Second mount 73 Power source support 81 Belt

Claims (4)

駆動源の発生する動力で測定物を回転駆動して、該測定物と検出器との間に所定の相対運動を発生させ、前記検出器が検出した一定の物理量の出力信号を情報処理手段によって収集・分析して、前記測定物に対する評価を行う評価装置において、
前記測定物を支持する測定対象支持部がスピンドルからばね、間座、調心球及び駆動腕を備えた回転機構を介して前記測定物に回転を伝達し、且つ前記駆動源を支持する動力源支持部を、前記測定対象支持部や前記検出器を支持する検出手段支持部を有する第1架台とは別の独立した第2架台に設けたことを特徴とする評価装置。
The measurement object is rotationally driven by the power generated by the drive source to generate a predetermined relative motion between the measurement object and the detector, and an output signal of a certain physical quantity detected by the detector is processed by the information processing means. In an evaluation device that collects and analyzes and evaluates the measurement object,
A power source that supports rotation of the object to be measured by the measurement object support unit that transmits rotation from the spindle to the object to be measured via a rotation mechanism including a spring, a spacer, a centering ball, and a driving arm. An evaluation apparatus, wherein the support portion is provided on a second stand independent from the first stand having a detection means support portion for supporting the measurement target support portion and the detector.
前記駆動源の出力を前記測定物に伝達するために弾性材料製のベルトを用いたことを特徴とする請求項1に記載の評価装置。The evaluation apparatus according to claim 1, wherein a belt made of an elastic material is used to transmit the output of the driving source to the measurement object. 前記測定対象支持部は測定物を回転可能に支持し、前記検出器は測定物の表面に接触させた触針の変位に応じて電気信号を出力する構成で、前記測定物の回転運動時の前記検出器の出力信号から前記測定物の表面形状の評価を行うことを特徴とする請求項1に記載の評価装置。The measurement object support unit rotatably supports the measurement object, and the detector outputs an electrical signal according to the displacement of the stylus in contact with the surface of the measurement object. The evaluation apparatus according to claim 1, wherein the surface shape of the measurement object is evaluated from an output signal of the detector. 前記測定物が転がり軸受の転動体であり、前記転がり軸受の転動体の測定された特性を評価することを特徴とする請求項1〜3のいずれか1項に記載の評価装置。The evaluation apparatus according to claim 1, wherein the measurement object is a rolling element of a rolling bearing, and the measured characteristics of the rolling element of the rolling bearing are evaluated.
JP2002253115A 2002-08-30 2002-08-30 Evaluation device Expired - Fee Related JP4129623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002253115A JP4129623B2 (en) 2002-08-30 2002-08-30 Evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002253115A JP4129623B2 (en) 2002-08-30 2002-08-30 Evaluation device

Publications (2)

Publication Number Publication Date
JP2004093264A JP2004093264A (en) 2004-03-25
JP4129623B2 true JP4129623B2 (en) 2008-08-06

Family

ID=32059219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002253115A Expired - Fee Related JP4129623B2 (en) 2002-08-30 2002-08-30 Evaluation device

Country Status (1)

Country Link
JP (1) JP4129623B2 (en)

Also Published As

Publication number Publication date
JP2004093264A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP2913913B2 (en) Method and apparatus for measuring the contact angle of a rolling bearing
US8234925B2 (en) Device and method for monitoring the vibratory condition of a rotating machine
JP3823635B2 (en) Method and apparatus for evaluating surface shape of ball bearing ball
JP4129623B2 (en) Evaluation device
JP2001091241A5 (en)
JP3736250B2 (en) Method and apparatus for measuring radial resonance frequency of rolling bearing unit
JP2972203B2 (en) Surface waviness measuring method and apparatus
JP2006145530A (en) Bearing device for use in device for detecting unbalance and nonuniformity, and method for detecting unbalance and nonuniformity
JP2004061151A (en) Contact angle measuring method and apparatus for bearing device
JP2003329512A (en) Apparatus and method for measurement of natural oscillation frequency of roller bearing
JP4207069B2 (en) Spherical surface shape evaluation device
JP4075030B2 (en) Rolling bearing device
JP4265243B2 (en) Bearing unit preload measuring machine
JP2003075298A (en) Equipment for inspecting vibration characteristics
CN210323068U (en) Horizontal instrument detection device
JP3951982B2 (en) Spherical surface shape evaluation method and evaluation apparatus
JP2006278698A (en) Crack detection method and its detector for silicon wafer
JP2001194223A5 (en) Method and apparatus for measuring radial resonance frequency of rolling bearing unit
JP2004191146A (en) Bearing inspection apparatus
JP3882435B2 (en) Machine part surface shape measuring device
JP2580514Y2 (en) Bearing roller rotating device for eddy current inspection
JP2000186927A (en) Evaluating method for detector
JP2004170243A (en) Nrro profiler and sensor device for nrro
JP2877220B2 (en) Cylinder drum runout measuring device
JPH0522846Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050830

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080506

R150 Certificate of patent or registration of utility model

Ref document number: 4129623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees