JP4129310B2 - Cutting method for residual ducts of radioactive contaminants - Google Patents

Cutting method for residual ducts of radioactive contaminants Download PDF

Info

Publication number
JP4129310B2
JP4129310B2 JP36056597A JP36056597A JP4129310B2 JP 4129310 B2 JP4129310 B2 JP 4129310B2 JP 36056597 A JP36056597 A JP 36056597A JP 36056597 A JP36056597 A JP 36056597A JP 4129310 B2 JP4129310 B2 JP 4129310B2
Authority
JP
Japan
Prior art keywords
ducts
cutting
explosive
sealed chamber
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36056597A
Other languages
Japanese (ja)
Other versions
JPH11188531A (en
Inventor
昌久 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taihei Dengyo Kaisha Ltd
Original Assignee
Taihei Dengyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taihei Dengyo Kaisha Ltd filed Critical Taihei Dengyo Kaisha Ltd
Priority to JP36056597A priority Critical patent/JP4129310B2/en
Publication of JPH11188531A publication Critical patent/JPH11188531A/en
Application granted granted Critical
Publication of JP4129310B2 publication Critical patent/JP4129310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は原子力発電施設の原子炉圧力容器周りの密閉室を貫通する放射性汚染物を残存するダクト類を切断する方法に関する。
【0002】
【従来の技術】
原子力発電施設は商業用として運転を開始してから約30年になり、増設して着実に進展しているが、その運転期間は一般に30〜40年と想定されており、今後順次運転を終了するものがでてくることが予想される。
その場合、運転を終了した後の原子力発電施設の廃止措置が必要である。原子力発電施設の廃止措置については、安全性を前提として、より経済的に措置するための検討がされている。
【0003】
原子力発電施設を構成する金属製の機器及びダクト、配管(以下、ダクト類という)は、材質、板厚、形状等が多岐にわたっているため、それぞれの機器、ダクト類に適した工法が要求される。このうち、炉内構造物、原子炉圧力容器、これに接続する1次系ダクト類は強く放射能で汚染されており、切断、撤去をより安全に措置しなければならない。
【0004】
図4は沸騰水型原子力発電施設の概略図である。図4に示すように、沸騰水型原子力発電施設は大別して原子炉を収めた建物1とタービン6、発電機7を収めた建物2が隣接されている。原子炉を収めた建物1には原子炉圧力容器3が原子炉格納容器4内に設置されている。原子炉圧力容器3の周りには遮蔽壁5が設けられている。原子炉圧力容器3とタービン6との間には蒸気配管8が設置され、原子炉圧力容器3で発生した蒸気によりタービン6を回し、発電機7で発電する。蒸気はタービン6を回した後に複水機9に入り、給水管10を通じて原子炉圧力容器3に循環している。
【0005】
原子炉圧力容器3の周りには遮蔽壁5等による密閉室が多く設けられている。各密閉室は各々図示しない換気系統装置を設け、且つ外部への放射能の漏洩を防止している。各密閉室には蒸気配管、換気系統装置等によるタクト等が貫通されて多く設置されている。
【0006】
炉内構造物の解体技術としては、炉内構造物は大部分がステンレス鋼で、放射能濃度が高く、構造が複雑なので、遠隔操作による水中プラズマアーク切断技術が知られている。
原子炉圧力容器3の切断技術としては、遠隔操作によるアークソー切断技術が知られている。
【0007】
原子炉圧力容器接続ダクト類の解体技術としては、ディスクカツタ切断技術及び成型爆薬切断技術が知られている。
ディスクカツタ切断技術については、円筒状のカッタを配管の内部からシリンダによる油圧力により配管に押付けながら回転させ、金属を塑性変形させることにより切断するものであり、切断に際しては切粉が発生しない。
【0008】
一方、成型爆薬切断技術については、図5に示すように、爆薬11を銅またはアルミニウム製の凹型に成型したケーシング12に包んで電気雷管13と金属ライナ14を装備した成型爆薬15を切断対象の配管16の内部に設置し、爆発させて、爆発によりケーシング12の金属ライナ14が高速メタル粒子のジェットとなつて配管16に当たり、その衝撃力で切断する。
【0009】
【発明が解決しようとする課題】
上述した原子力発電施設を構成する金属製の機器及びダクト類は、原子力発電施設の廃止措置のために、解体前に機器、ダクト類を系内除染した後に、更に、解体後に機器の表面、内面に付着した放射能を除染して機器、ダクト類の再利用を図り、放射性廃棄物量の低減が図られる。一般に炉内構造物、原子炉圧力容器等に先立つて切断、撤去されるが、しかし、ダクト類は原子炉圧力容器の周りの密閉室を貫通しているために、密閉室内の限られた場所で切断しなければならない。そのために、大型の切断装置を密閉室内に搬入して、ダクト類を切断する場合は切断作業が煩雑であり、被爆を伴う。また、ダクト類の内壁等には放射性汚染物が残存しているので、汚染拡大の拡散防止に努めなければならならない。また、切断作業に時間を要する。
【0010】
また、密閉室内のダクト類の切断に、前述したディスクカツタ切断技術及び成型爆薬切断技術を用いた場合は以下の問題がある。
ディスクカツタ切断技術は、円筒状のカッタを配管の内部から油圧力により配管に押付けながら回転させ、金属を切断するものであり、予め配管の一端を他の切断装置等によって切断して、カッタがダクト類内に挿入できるようにしなければならない。
【0011】
また、成型爆薬切断技術は、成型爆薬15を切断対象の配管16の内部に設置し、爆発させて、その衝撃力で切断するものであり、ディスクカツタ切断技術の場合と同じく、予め配管16の一端を他の切断装置等によって切断して、成型爆薬15がダクト類内に挿入できるようにしなければならない。また、成型爆薬15をダクト類内に挿入して、発破させるので、ダクト類内に残存している放射性汚染物も一緒に爆風に混じて密閉室内に放出される。そのために、切断後も密閉室内でのダクト類の除染措置が必要である。
【0012】
本発明は上記のような問題点の解決を図ったものであり、原子炉圧力容器周りの密閉室を貫通するダクト類を密閉室内で安全でコンパクトな手段により切断できる放射性汚染物を有するダクト類の切断方法を提供することを目的とする。
【0013】
【発明が解決しようとする課題】
第一の発明は、原子力発電施設の原子炉圧力容器周りの密閉室を貫通する金属製のダクト類を切断するにあたり、前記ダクト類に、前記密閉室の外側で吸引装置を接続させた枝管を付設し、前記密閉室の内側で外周方向の切断予定個所に爆薬を装填し、爆薬を装填した後、保護カバーで爆薬を包含させ、次いで、前記吸引装置を駆動させてダクト類内を負圧にして爆薬を起爆させ、ダクト類を切断することを特徴とする放射性汚染物を残存するダクト類の切断方法である。
【0014】
第二の発明は第一の発明において、ダクト類の外周方向の切断予定個所に爆薬を装填する前または後に、切断予定個所を包含させるグリーンハウスを仮設するものである。第三の発明は、第一または第二の発明において、密閉室の少なくとも一つの壁に開閉自在な扉を有する開口部を設け、該開口部外側に吸引装置を接続させたエアバツグを取付けたものである。本発明によれば、ダクト類の外周方向の切断予定個所に爆薬を装填して、発破するので、ダクト類は外側から衝撃力を受けて切断され、生じた爆風はダクト類内が負圧になつているので、爆風に混じた放射性汚染物はそのままダクト類に付設した枝管を介して吸引装置で吸引され、フイルター等で除染される。
【0016】
また、爆薬を包含させた保護カバーを用いることによつて、発破時の爆風をダクト類内に確実に吸引させることができる。
また、万一、保護カバーが破損しても、グリーンハウスで保護し、更に密閉室に漏れた爆風は開口部に取付けたエアバツグを介して、吸引装置で吸引され、フイルター等で除染される。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態を図によって詳述する。
図1は本発明の一実施の形態を示す全体の配置図であり、図2は保護カバーを取付ける前のA−A線矢視による断面図であり、図3は保護カバーを取付ける前のB−B線矢視による断面図である。
【0018】
図1に示すように、図示しない原子炉圧力容器の周りに設置された密閉室21には貫通する金属製のダクト22が設けられている。ダクト22は、密閉室21の外側で枝管23が付設されており、枝管23にはフイルター24を具えた吸引装置25が接続されている。ここでは密閉室21を貫通する単数のダクト22を示したが、複数のダクト22が貫通した場合も同様である。また、ダクトに限定されるものではなく、金属製の管等も切断の対象とする。
密閉室21には、切断対象のダクト22の外周方向の切断予定個所に爆薬を装填する前に、切断予定個所を包含させるグリーンハウス39を仮設する。グリーンハウス39はフレームとビニールシートで作られた簡易ハウスである。グリーンハウス39は爆薬を装填した後に、仮設することもできる。
【0019】
また、密閉室21の少なくとも一つの壁21aに開閉自在な扉26を有する開口部27が設けられている。開口部27の外側にはエアバツグ28が取付けられ、他端にフイルター29を有する吸引装置30が接続されている。
ダクト22を切断する場合、図示しないドアから作業者が密閉室内に入り、切断対象のダクト22の外周方向の切断予定個所に成型爆薬31を装填する。
成型爆薬31は、図2に示すように、内側中心部に周方向に連続した空間部38を形成させるリング状の帯板33と、帯板33の外側に設けたリング状の爆薬室34とからなり、爆薬室34には装填口35が設けられ、電気雷管36が取付けられている。ここでは二分割方式を採用しているが、これに限定されない。
成型爆薬31は、上記したものに限定されるものではなく、通常他分野等で知られている成型爆薬等も用いることができる。
【0020】
成型爆薬31が装填された後に、保護カバー32が成型爆薬31を覆うように取付けられる。保護カバー32によって、成型爆薬31を起爆させた後に発生する爆風を確実にダクト22内に吸引させることができる。
爆薬の装填及び保護カバーの取付けが完了した後、吸引装置25を駆動させてダクト22内を負圧にして、成型爆薬31を電気的に点火させて、ダクト22を切断する。
【0021】
発破によって発生した爆風はダクト22内に吸引される。爆風によりダクト22内壁等から剥離した粒子状の放射性汚染物は発破によって生じた金属粉等と共に、枝管23に設けた高性能のフィルター24により除去されて、爆風は浄化されて排気筒から排ガスとして放出される。また、排ガスの排出に当たっては放射性気体排気物のチェックがされて、それに伴う処置が充分に行われる。
これらの一連の操作は密閉室21の外に設けた制御装置37によって行われる。制御装置37にはダクト類の切断に必要なデータが入力されている。
【0022】
以上述べたダクト22等の切断方法は、原子力発電施設の廃止措置の一連の中で行われるのが普通であり、ダクト類の切断に当たり、予め原子炉圧力容器周りの一次冷却系の機器やダクト類は解体前の系内除染が行われ、その後に機器やダクト類が解体撤去され、そして炉内構造物、原子炉圧力容器等がプラズマアーク切断装置、アークソー切断装置等を用いた遠隔操作によって解体される。
そのために、枝管23の付設や、フイルター24を具えた吸引装置25の接続等は、原子力発電施設の廃止措置の一連の工事として行うことができる。フイルター24を具えた吸引装置25等は密閉室21の単数のダクト22にのみ用いるのではなく、時系列的に複数のダクト類の切断に用いることができる。
同様に密閉室21の開口部27に取付けられるエアバツグ28、フイルター29を具えた吸引装置30等は他の密閉室のダクト類の切断の場合にも時系列的に用いることができる。
【0023】
以上のように、本発明のダクト類の切断方法によれば、限られた狭い密閉室に貫通されている放射性汚染物を残存するダクト類をコンパクトな装置を用いて、短時間で切断できる。大きな設備や機器類を密閉室内に持ち運びすることなく、密閉室内のダクト類を切断できるので、切断作業が容易である。
また、本発明ではダクト類内を負圧にして、ダクト類の外側から成型爆薬を装填して、発破により切断するので、爆風等は密閉室内に飛散しない。
この場合、保護カバーによって、成型爆薬を起爆させた時に発生する爆風を確実にダクト類内に吸引させることができる。
【0024】
また、切断対象のダクト22の外周方向の切断予定個所に爆薬を装填する前または後に、切断予定個所を包含させるグリーンハウス39を仮設することによって、爆風がダクト22内に充分に吸引されない場合や、真空状態のところへ爆風が急激に入込んだ場合の逆圧(風)にクッションスペースとして対応できる。
【0025】
また、グリーンハウス39はダクト22切断後の切口を仮塞ぎするための仮設作業部屋として使用し、密閉室21内の汚染防止を行うことができる。
また、密閉室に開口部を設けて、エアバツグを取付け、フイルターを具えた吸引装置を接続して、万一、保護カバーやグリーンハウス39が破損しても、密閉室に漏洩した爆風等を密閉室内からエアバツグ内に吸引して適切な処置を行うことができる。
【0026】
【発明の効果】
以上のように、本発明によれば、コンパクトな手段により、原子炉圧力容器周りの密閉室を貫通する放射性汚染物の残存するダクト類を安全に切断することができる方法を提供でき、工業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明の一実施の形態を示す全体の配置図である。
【図2】図1の保護カバーを取付ける前のA−A線矢視による断面図である。
【図3】図1の保護カバーを取付ける前のB−B線矢視による断面図である。
【図4】通常の沸騰水型原子力発電施設の概略図である。
【図5】従来のダクト類の成型爆薬切断装置の状態を示す側面図である。
【符号の説明】
21 密閉室
22 金属製のダクト
23 枝管
24、29 フイルター
25、30 吸引装置
26 扉
27 開口部
28 エアバツグ
31 成型爆薬
32 保護カバー
33 帯板
34 薬室
35 装填口
36 電気雷管
37 制御装置
38 空間部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for cutting ducts that leave radioactive contaminants penetrating a sealed chamber around a reactor pressure vessel of a nuclear power plant.
[0002]
[Prior art]
Nuclear power generation facilities have been steadily progressing for about 30 years since the start of commercial operation, but the operation period is generally assumed to be 30 to 40 years, and the operation will be terminated in the future. It is expected that something will come out.
In that case, it is necessary to decommission nuclear power facilities after the operation is completed. As for decommissioning of nuclear power generation facilities, consideration is being given to more economical measures on the premise of safety.
[0003]
Metal equipment, ducts, and piping (hereinafter referred to as ducts) that make up nuclear power generation facilities vary widely in material, plate thickness, shape, etc., and construction methods suitable for each equipment and duct are required. . Of these, the reactor internals, the reactor pressure vessel, and the primary ducts connected to the reactor are strongly radioactively contaminated and must be cut and removed more safely.
[0004]
FIG. 4 is a schematic diagram of a boiling water nuclear power generation facility. As shown in FIG. 4, the boiling water nuclear power generation facility is roughly divided into a building 1 containing a nuclear reactor and a building 2 containing a turbine 6 and a generator 7. In a building 1 containing a nuclear reactor, a reactor pressure vessel 3 is installed in a reactor containment vessel 4. A shielding wall 5 is provided around the reactor pressure vessel 3. A steam pipe 8 is installed between the reactor pressure vessel 3 and the turbine 6, and the turbine 6 is rotated by the steam generated in the reactor pressure vessel 3 and the generator 7 generates power. The steam enters the double water machine 9 after turning the turbine 6 and is circulated to the reactor pressure vessel 3 through the water supply pipe 10.
[0005]
A large number of sealed chambers are provided around the reactor pressure vessel 3 by the shielding walls 5 and the like. Each sealed chamber is provided with a ventilation system device (not shown) and prevents leakage of radioactivity to the outside. Each sealed chamber is installed with many tacts by steam pipes and ventilation system devices.
[0006]
As for the dismantling technology of the in-furnace structure, the in-furnace structure is mostly stainless steel, the radioactive concentration is high, and the structure is complicated. Therefore, the underwater plasma arc cutting technology by remote control is known.
As a cutting technique of the reactor pressure vessel 3, an arc saw cutting technique by remote control is known.
[0007]
As a technique for dismantling reactor pressure vessel connection ducts, a disk cutter cutting technique and a molded explosive cutting technique are known.
Regarding the disk cutter cutting technique, a cylindrical cutter is rotated from the inside of the pipe while being pressed against the pipe by the hydraulic pressure of the cylinder, and is cut by plastically deforming the metal, and no chips are generated during the cutting.
[0008]
On the other hand, as shown in FIG. 5, the molded explosive cutting technology includes a casing 12 in which an explosive 11 is molded in a concave shape made of copper or aluminum, and a molded explosive 15 equipped with an electric detonator 13 and a metal liner 14 is cut. It is installed inside the pipe 16 and exploded, and the metal liner 14 of the casing 12 hits the pipe 16 as a jet of high-speed metal particles by the explosion, and is cut by the impact force.
[0009]
[Problems to be solved by the invention]
The metal equipment and ducts that make up the nuclear power generation facility mentioned above, after decommissioning the equipment and ducts in the system before dismantling for the decommissioning of the nuclear power generation facility, By decontaminating radioactivity attached to the inner surface, the equipment and ducts can be reused to reduce the amount of radioactive waste. Generally, it is cut and removed prior to the reactor internal structure, reactor pressure vessel, etc., but the ducts penetrate the sealed chamber around the reactor pressure vessel, so it is limited to a limited space in the sealed chamber. Must be cut off with. For this reason, when a large cutting device is carried into the sealed chamber and the ducts are cut, the cutting work is complicated and accompanied by an explosion. Also, since radioactive contaminants remain on the inner walls of ducts, efforts must be made to prevent the spread of contamination. Moreover, time is required for the cutting work.
[0010]
Further, when the above-described disc cutter cutting technique and molded explosive cutting technique are used for cutting ducts in the sealed chamber, there are the following problems.
The disc cutter cutting technology is a method in which a cylindrical cutter is rotated from the inside of a pipe while being pressed against the pipe by hydraulic pressure to cut the metal, and one end of the pipe is cut in advance by another cutting device or the like. It must be possible to insert into ducts.
[0011]
The molded explosive cutting technique is to install the molded explosive 15 inside the pipe 16 to be cut, explode it, and cut it with its impact force. One end must be cut by another cutting device or the like so that the molded explosive 15 can be inserted into the ducts. Further, since the molded explosive 15 is inserted into the ducts and blasted, the radioactive contaminants remaining in the ducts are mixed with the blast and released into the sealed chamber. Therefore, it is necessary to decontaminate the ducts in the sealed chamber even after cutting.
[0012]
The present invention has been made to solve the above-described problems, and the ducts having radioactive contaminants that can cut the ducts penetrating the sealed chamber around the reactor pressure vessel by a safe and compact means in the sealed chamber. An object of the present invention is to provide a cutting method.
[0013]
[Problems to be solved by the invention]
According to a first aspect of the present invention, when cutting metal ducts penetrating a sealed chamber around a reactor pressure vessel of a nuclear power plant, a branch pipe in which a suction device is connected to the ducts outside the sealed chamber. The explosive is loaded inside the sealed chamber at the location to be cut in the outer circumferential direction, and after the explosive is loaded, the explosive is covered with a protective cover, and then the suction device is driven to evacuate the ducts. A method for cutting ducts that leave radioactive contaminants , characterized in that the explosive is detonated under pressure and the ducts are cut.
[0014]
According to a second aspect of the present invention , in the first aspect of the invention, a green house that includes the planned cutting site is temporarily installed before or after the explosive is loaded at the planned cutting site in the outer circumferential direction of the ducts. According to a third invention, in the first or second invention, an opening having an openable / closable door is provided on at least one wall of the sealed chamber, and an air bag having a suction device connected to the outside of the opening is attached. It is. According to the present invention, explosives are loaded at the locations where the ducts are to be cut in the outer circumferential direction and blasted. Therefore, the ducts are cut by receiving an impact force from the outside, and the generated blast is brought to a negative pressure in the ducts. Therefore, the radioactive contaminants mixed in the blast are sucked by the suction device through the branch pipes attached to the ducts as they are, and decontaminated by the filter or the like.
[0016]
Moreover, by using a protective cover containing explosives, the blast at the time of blasting can be reliably sucked into the ducts.
Even if the protective cover is damaged, it is protected by the greenhouse, and the blast leaked into the sealed chamber is sucked by a suction device through an air bag attached to the opening and decontaminated by a filter or the like. .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below with reference to the drawings.
FIG. 1 is an overall layout showing an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line AA before attaching a protective cover, and FIG. It is sectional drawing by -B line arrow.
[0018]
As shown in FIG. 1, a metal duct 22 is provided in a sealed chamber 21 installed around a reactor pressure vessel (not shown). The duct 22 is provided with a branch pipe 23 outside the sealed chamber 21, and a suction device 25 including a filter 24 is connected to the branch pipe 23. Here, a single duct 22 penetrating the sealed chamber 21 is shown, but the same applies to the case where a plurality of ducts 22 penetrate. Moreover, it is not limited to a duct, A metal pipe | tube etc. are also made into the object of cutting.
In the sealed chamber 21, a green house 39 is temporarily installed to include the planned cutting site before the explosive is loaded into the planned cutting site in the outer circumferential direction of the duct 22 to be cut. The green house 39 is a simple house made of a frame and a vinyl sheet. The green house 39 can be temporarily set after loading the explosive.
[0019]
In addition, an opening 27 having a door 26 that can be opened and closed is provided in at least one wall 21 a of the sealed chamber 21. An air bag 28 is attached to the outside of the opening 27, and a suction device 30 having a filter 29 is connected to the other end.
When the duct 22 is cut, an operator enters the sealed chamber from a door (not shown), and the molded explosive 31 is loaded at a planned cutting location in the outer circumferential direction of the duct 22 to be cut.
As shown in FIG. 2, the molded explosive 31 includes a ring-shaped strip 33 that forms a space portion 38 that is continuous in the circumferential direction at the inner center, and a ring-shaped explosive chamber 34 that is provided outside the strip 33. The explosive chamber 34 is provided with a loading port 35 and an electric detonator 36 is attached. Although the two-division method is adopted here, the present invention is not limited to this.
The molded explosive 31 is not limited to the above-described one, and a molded explosive or the like generally known in other fields can also be used.
[0020]
After the molded explosive 31 is loaded, a protective cover 32 is attached so as to cover the molded explosive 31. By the protective cover 32, the blast generated after the molded explosive 31 is detonated can be reliably sucked into the duct 22.
After the loading of the explosive and the attachment of the protective cover are completed, the suction device 25 is driven to make the inside of the duct 22 have a negative pressure, the molded explosive 31 is electrically ignited, and the duct 22 is cut.
[0021]
The blast generated by the blasting is sucked into the duct 22. Particulate radioactive contaminants separated from the inner wall of the duct 22 by the blast are removed by the high-performance filter 24 provided in the branch pipe 23 together with the metal powder generated by blasting, and the blast is purified and exhausted from the exhaust pipe. Released as. In addition, when exhaust gas is discharged, the radioactive gas exhaust is checked, and measures associated therewith are sufficiently performed.
A series of these operations are performed by a control device 37 provided outside the sealed chamber 21. Data necessary for cutting the ducts is input to the control device 37.
[0022]
The above-described cutting method for the duct 22 and the like is normally performed in a series of decommissioning of nuclear power generation facilities. Prior to cutting the ducts, primary cooling system equipment and ducts around the reactor pressure vessel The system is decontaminated in the system before dismantling, after which the equipment and ducts are dismantled and removed, and the reactor internals, reactor pressure vessel, etc. are remotely operated using a plasma arc cutting device, arc saw cutting device, etc. Is demolished by.
Therefore, the attachment of the branch pipe 23, the connection of the suction device 25 including the filter 24, and the like can be performed as a series of works for decommissioning the nuclear power generation facility. The suction device 25 provided with the filter 24 can be used not only for the single duct 22 of the sealed chamber 21 but also for cutting a plurality of ducts in time series.
Similarly, the air bag 28 attached to the opening 27 of the sealed chamber 21, the suction device 30 provided with the filter 29, etc. can be used in time series when cutting ducts in other sealed chambers.
[0023]
As described above, according to the method for cutting ducts of the present invention, ducts remaining with radioactive contaminants penetrating through a limited narrow sealed chamber can be cut in a short time using a compact device. Since it is possible to cut the ducts in the sealed room without carrying large equipment and devices in the sealed room, the cutting work is easy.
Further, in the present invention, since the inside of the ducts is set to a negative pressure, a molded explosive is loaded from the outside of the ducts and cut by blasting, no blast or the like is scattered in the sealed chamber.
In this case, the blast generated when the molded explosive is detonated can be reliably sucked into the ducts by the protective cover.
[0024]
In addition, by temporarily installing the green house 39 that includes the planned cutting site before or after loading the explosive at the planned cutting site in the outer circumferential direction of the duct 22 to be cut, the blast is not sufficiently sucked into the duct 22 or It can be used as a cushion space against the reverse pressure (wind) when a blast suddenly enters a vacuum.
[0025]
Further, the green house 39 can be used as a temporary work room for temporarily closing the cut after the duct 22 is cut, thereby preventing contamination in the sealed chamber 21.
In addition, an opening is provided in the sealed chamber, an air bag is attached, and a suction device equipped with a filter is connected. Even if the protective cover or the greenhouse 39 is damaged, the blast leaked into the sealed chamber is sealed. Appropriate treatment can be performed by sucking into the air bag from the room.
[0026]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method capable of safely cutting the remaining ducts of radioactive contaminants penetrating the sealed chamber around the reactor pressure vessel by a compact means. Useful effects are brought about.
[Brief description of the drawings]
FIG. 1 is an overall layout showing an embodiment of the present invention.
2 is a cross-sectional view taken along line AA before attaching the protective cover of FIG. 1. FIG.
3 is a cross-sectional view taken along the line B-B before attaching the protective cover of FIG. 1;
FIG. 4 is a schematic view of a normal boiling water nuclear power generation facility.
FIG. 5 is a side view showing a state of a conventional explosive cutting device for ducts.
[Explanation of symbols]
21 Sealed chamber 22 Metal duct 23 Branch pipes 24, 29 Filters 25, 30 Suction device 26 Door 27 Opening portion 28 Air bag 31 Molded explosive 32 Protective cover 33 Band plate 34 Chamber 35 Loading port 36 Electric detonator 37 Control device 38 Space Part

Claims (3)

原子力発電施設の原子炉圧力容器周りの密閉室を貫通する金属製のダクト類を切断するにあたり、前記ダクト類に、前記密閉室の外側で吸引装置を接続させた枝管を付設し、前記密閉室の内側で外周方向の切断予定個所に爆薬を装填し、爆薬を装填した後、保護カバーで爆薬を包含させ、次いで、前記吸引装置を駆動させてダクト類内を負圧にして爆薬を起爆させ、ダクト類を切断することを特徴とする放射性汚染物を残存するダクト類の切断方法。When cutting metal ducts penetrating the sealed chamber around the reactor pressure vessel of the nuclear power generation facility, a branch pipe connected to a suction device outside the sealed chamber is attached to the ducts, and the sealed The explosive is loaded inside the chamber at the location to be cut in the outer peripheral direction. After the explosive is loaded, the explosive is contained by the protective cover, and then the suction device is driven to depressurize the inside of the ducts to initiate the explosive. It is allowed, characterized by cutting the ducting, the cutting method of ducting the remaining radioactive contaminants. ダクト類の外周方向の切断予定個所に爆薬を装填する前または後に、切断予定個所を包含させるグリーンハウスを仮設することを特徴とする請求項1に記載の放射性汚染物を残存するダクト類の切断方法。 The ducts that remain radioactive contaminants according to claim 1 , characterized in that a green house is temporarily installed to include the planned cutting site before or after loading the explosive at the planned cutting site in the outer circumferential direction of the duct. Cutting method. 密閉室の少なくとも一つの壁に開閉自在な扉を有する開口部を設け、該開口部外側に吸引装置を接続させたエアバツグを取付けたことを特徴とする、請求項1または2に記載の放射性汚染物を残存するダクト類の切断方法。 An opening having a reclosable door in at least one wall of the sealed chamber is provided, characterized in that attaching the airbag which is connected to a suction device outside the opening, according to claim 1 or 2, radioactive A method for cutting ducts that remain contaminated.
JP36056597A 1997-12-26 1997-12-26 Cutting method for residual ducts of radioactive contaminants Expired - Lifetime JP4129310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36056597A JP4129310B2 (en) 1997-12-26 1997-12-26 Cutting method for residual ducts of radioactive contaminants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36056597A JP4129310B2 (en) 1997-12-26 1997-12-26 Cutting method for residual ducts of radioactive contaminants

Publications (2)

Publication Number Publication Date
JPH11188531A JPH11188531A (en) 1999-07-13
JP4129310B2 true JP4129310B2 (en) 2008-08-06

Family

ID=18469956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36056597A Expired - Lifetime JP4129310B2 (en) 1997-12-26 1997-12-26 Cutting method for residual ducts of radioactive contaminants

Country Status (1)

Country Link
JP (1) JP4129310B2 (en)

Also Published As

Publication number Publication date
JPH11188531A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
US5574203A (en) Process and installation for destroying munitions containing toxic agents
EP1867946B1 (en) Pressure-resistant vessel and blasting treating facility having the same
JP4129310B2 (en) Cutting method for residual ducts of radioactive contaminants
JP2019138916A (en) Reactor building whole cover device, and reactor building preparation working method
JPH0192697A (en) Method for cutting and disassembling cylindrical structure
JP6075967B2 (en) Shield protection tent assembly
JP2016217987A (en) Method for opening reactor pressure vessel and method for taking out fuel debris
Ishikawa et al. JPDR decommissioning program—plan and experience
Carroll et al. Sodium Reactor Experiment decommissioning. Final report
USH194H (en) Decontamination apparatus and method
Laraia Dismantling and demolition techniques for cementitious systems
Yanagihara et al. Dismantling techniques for reactor steel piping
Spritzer et al. 2. CRYOFRACTURE AS A MOBILE DEMILITARIZATION TECHNOLOGY FOR NON-STOCKPILE CHEMICAL MUNITIONS
Uematsu et al. Decommissioning of a Plutonium-Contaminated Waste Incinerator Facility (I)
Ponomarev-Stepnoi et al. Extraction of radioactive wastes and liquidation of old repositories at the Russian Science Center Kurchatov Institute
FLEISCHER FREUND, HU
Kittinger 028 (STIR) 4. SNAP 8 Experimental Reactor Building 010 (S8ER)
JPH0447799B2 (en)
Barnes et al. Operation of the lithium pellet injector during DT operations on TFTR
JPH0350395Y2 (en)
Dadoumont et al. The BR3 decommissioning project: a pilot for submarine reactors
JPS6280599A (en) Method of processing construction of radioactive piping
Leffrang et al. The Bandsaw: A Highly Sophisticated Dismantling Technique for the Karlsruhe Multi Purpose Research Reactor
JPH0718262B2 (en) Method for dismantling structure and its equipment
Tanaka et al. The Japan Power Demonstration Reactor Decommissioning Program—Overview and Lessons Learned

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term