JP4129069B2 - Method for producing acylated peptides - Google Patents

Method for producing acylated peptides Download PDF

Info

Publication number
JP4129069B2
JP4129069B2 JP25038997A JP25038997A JP4129069B2 JP 4129069 B2 JP4129069 B2 JP 4129069B2 JP 25038997 A JP25038997 A JP 25038997A JP 25038997 A JP25038997 A JP 25038997A JP 4129069 B2 JP4129069 B2 JP 4129069B2
Authority
JP
Japan
Prior art keywords
parts
acid
acylated peptides
protein
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25038997A
Other languages
Japanese (ja)
Other versions
JPH1180191A (en
Inventor
五郎 山本
悦正 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP25038997A priority Critical patent/JP4129069B2/en
Publication of JPH1180191A publication Critical patent/JPH1180191A/en
Application granted granted Critical
Publication of JP4129069B2 publication Critical patent/JP4129069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Detergent Compositions (AREA)
  • Peptides Or Proteins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アシル化ペプチド類の製造方法、該製造方法により得られたアシル化ペプチド類並びに界面活性剤に関する。
【0002】
【従来の技術】
アシル化ペプチド類は古くから知られているアニオン性界面活性剤である。アシル化ペプチドは動植物由来の蛋白質を原料としていることから安全性が高く、皮膚刺激性が少ないので、シャンプー、ヘアコンディショナー等のトイレタリー製品や化粧品等に使用されている。特に、近年の自然指向・天然物指向から需要が高まっているといわれている。
【0003】
アシル化ペプチド類の製造方法は古くから検討されている。一般に、アシル化ペプチド類は、
1)原料蛋白質を加水分解する工程;
2)加水分解させた蛋白質をアシル化する工程;
3)アシル化した蛋白質を精製し、中和する工程;
を経て製造される。
しかし、アシル化ペプチド類は蛋白質という天然の素材を直接原料としているので、製造上様々な問題点を有している。例えば、蛋白質中の窒素成分は臭気の原因となるので、これらの臭気成分は最終製品からは完全に除去されていなければならない。又、アシル化剤として好まれて使用される脂肪酸ハライドは反応性が高いため、溶媒中にアルコール等が存在するとそれと反応して副生成物を生成する原因となる。又、未反応のまま存在すると、後の中和工程で中和剤と反応して石鹸等を生成する。
【0004】
【発明が解決しようとする課題】
上記の工程のうち、加水分解させた蛋白質をアシル化する工程では、加水分解させた蛋白質を脂肪酸ハライド等のアシル化剤によってアシル化するが、その際の溶媒としてエタノール、プロピレングリコール、1,3−ブタンジオール等を使用してアシル化する方法が特公平5−37637号に開示されている。
しかし、上記の方法は、溶媒として1級の水酸基を有するアルコールを使用しているため、アシル化剤である脂肪酸ハライドと反応して副生成物を生成したり、アシル化剤を消費して、蛋白質のアシル化反応を阻害しアシル化度を低下させる原因となることがわかってきた。
【0005】
アシル化ペプチド類は主に人体に直接触れるトイレタリー製品に配合されるので、副生成物の生成や臭気成分の混入は極力避けねば製品としての価値がなくなってしまう。
従って、本発明の目的は、従来の方法に比べて副生成物や臭気成分を含有しない、トイレタリー製品等に配合される界面活性剤として好適なアシル化ペプチド類の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
即ち、本発明は、蛋白質又は蛋白質加水分解物をアシル化剤によってアシル化する際に、溶媒として少なくとも2−プロパノール及びプロピレングリコールを使用することを特徴とする下記の一般式(1)
【化2】

Figure 0004129069
(式中、Rは炭化水素基を表わし、Rはアミノ酸側鎖を表わし、Mは水素原子、金属原子又はアンモニウムを表わし、nは1以上の数を表わす。)
で表わされるアシル化ペプチド類の製造方法である。
【0007】
【発明の実施の形態】
本発明のアシル化ペプチド類の製造方法の原料である蛋白質としては例えばまゆ、まゆ屑、生糸、生糸屑等に由来するシルク、骨、軟骨、腱、筋膜、皮膚、魚鱗等に由来するコラーゲン、コラーゲンから誘導されるゼラチン、獣毛、毛髪、羽毛、爪、角、蹄、鱗等に由来するケラチン、絹フィブロイン、牛乳、やぎ乳、人乳等に由来するカゼイン、アルブミン、グロブリン、植物性蛋白等が挙げられる。植物性蛋白としては、米、コメヌカ、小麦、はと麦、ライ麦、大麦、燕麦、トウモロコシ、大豆、アーモンド、ナッツ、ごま、落花生、そば、わかめ、あまのり、いわのり、かわのり、まつも等が挙げられる。又、これらの動物性蛋白又は植物性蛋白の部分加水分解物であってもよい。
【0008】
一般式(1)において、R2はアミノ酸側鎖である。アミノ酸としては例えばグリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、スレオニン、システイン、シスチン、メチオニン、アスパラギン、アスパラギン酸、グルタミン、グルタミン酸、リシン、アルギニン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン、ヒドロキシプロリン等が挙げられる。
【0009】
上記の蛋白質は通常、加水分解処理されたものがアシル化ペプチド類の原料として使用される。蛋白質を加水分解処理する場合は、酸を使用する方法、アルカリを使用する方法及び酵素を使用する方法が好ましい。
【0010】
酸を使用する方法においては、酸及び水の存在下、常圧下又は加圧下、40〜120℃程度で2〜24時間程度処理すれば蛋白質加水分解物が得られる。酸としては例えば、塩酸、硫酸、リン酸、硝酸、臭化水素酸、ギ酸、酢酸等を使用することができる。
【0011】
アルカリを使用する方法においては、アルカリ及び水の存在下、常圧で室温〜100℃程度で30分〜24時間程度処理すれば蛋白質加水分解物が得られる。アルカリとしては例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化バリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、トリエチルアミン、ピリジン等を使用することができ、特に水酸化ナトリウム又は水酸化カリウムが好ましい。
【0012】
酵素を使用する方法においては、酵素及び水の存在下、常圧で室温〜45℃程度で3〜24時間程度処理すれば得ることができる。酵素としては例えば、ペプシン、プロクターゼ、パパイン、ブロメライン、サーモライシン、トリプシン、プロナーゼ、キモトリプシン、スブリチン、スタフイロコカスプロテアーゼなどを使用することができる。又、酵素を使用して蛋白質を加水分解する場合は、系内を酵素の最適pHに調整することが好ましい。pHを調整するためには酢酸/酢酸ナトリウム緩衝液、リン酸緩衝液などの緩衝液や、酸又はアルカリ等によって調整することが好ましい。
【0013】
上記加水分解処理を行うと、原料として使用した蛋白質は低分子量のポリペプチドに分解される。該ポリペプチドの分子量は、上記加水分解処理の反応条件、例えば酸、酵素又はアルカリの量、水の量、処理時間、処理温度等を制御することにより制御することが可能である。本発明の製造方法によって得られたアシル化ペプチド類を界面活性剤として使用する場合は、ポリペプチドの平均分子量を150〜2,000に調整することが好ましい。尚、ポリペプチドの重合度nは1(完全に加水分解した場合)以上の整数である。
【0014】
又、上記加水分解処理した場合には、アンモニアや低級アミン等の不純物が生成する場合があるが、これらはアシル化剤と反応して副生成物を生成する原因となったり、臭気成分となったりするので、アスピレーター、真空ポンプ等により反応系を減圧して除去することが好ましい。減圧度は通常100mmHg以下、好ましくは50mmHg以下、より好ましくは20mmHg以下である。減圧除去する際の温度は特に限定されないが、通常加水分解処理時の温度の上下20℃程度である。減圧除去の時間は特に限定されないが、好ましくは10分〜8時間、より好ましくは10分〜6時間、更に好ましくは10分〜3時間程度である。
【0015】
本発明の製造方法においては、上記蛋白質又は蛋白質加水分解物をアシル化する際の溶媒として、少なくとも2−プロパノールとプロピレングリコールの混合溶媒を使用する。この他に、メタノール、エタノール、1−プロパノール、ブタノール、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、メトキシエタノール、エトキシエタノール、ブトキシエタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルエーテル、ジエチルエーテル、エチルメチルエーテル、水等の溶媒を加えることもできる。
【0016】
2−プロパノールの使用量は特に限定されないが、蛋白質又は蛋白質加水分解物に対して、1〜100重量%が好ましく、5〜80重量%がより好ましく、10〜50重量%が更に好ましい。又、2−プロパノールとプロピレングリコールの混合比は2−プロパノール:プロピレングリコール=9:1〜1:9が好ましく、4:1〜1:2がより好ましい。
【0017】
アシル化剤としては、例えばカルボン酸、カルボン酸ハライド、カルボン酸メチルエステル、カルボン酸エチルエステル等を使用することができるが、反応性が高いカルボン酸又はカルボン酸ハライドを使用することが好ましい。カルボン酸又はそのハライドとしては例えばぎ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、エルカ酸、リノール酸、リノレン酸又はこれらのクロリド等が挙げられる。通常原料とされるのは、炭素数8〜22程度の単一又は混合脂肪酸又はそのクロリドである。通常は、天然油脂から得られる脂肪酸又はこれらをクロロ化した脂肪酸クロリドを使用する。天然油脂としては例えば、アマニ油、オリーブ油、カカオ脂、ゴマ油、コメヌカ油、サフラワー油、大豆油、ツバキ油、コーン油、ナタネ油、パーム油、パーム核油、ひまし油、ひまわり油、綿実油、ヤシ油等の植物性油脂、牛脂、豚脂、乳脂、魚油、鯨油等の動物性油脂が挙げられる。尚、このアシル化反応に使用されたカルボン酸又はそのハライドにより、生成するアシル化ペプチドのR1が決定される。
【0018】
アシル化反応を行う際の温度は特に限定されないが、あまりに低温で行うと反応速度が遅いため効率的ではなく、あまりに高温で行うと原料の蛋白質の劣化や変性が起こり、又ペプチドやアミノ酸の分解を引き起こすので、0〜100℃で行うことが好ましく、10〜90℃で行うことがより好ましく、20〜80℃で行うことが最も好ましい。アシル化反応を行う時間は特に限定されないが、好ましくは10分〜12時間、より好ましくは20分〜8時間、更に好ましくは30分〜6時間程度である。又、アシル化反応にカルボン酸クロリドを使用する場合は、反応促進のためにアルカリによってカルボン酸クロリドのpHをアルカリ性に調整して反応系に添加することが好ましい。
【0019】
以上の反応により一般式(1)で表わされるアシル化ペプチド類を得ることができるが、アシル化反応終了後の任意の段階で、塩酸、硫酸、硝酸等の酸でpHを酸性に調整し、水洗すると、副反応物、不純物、未反応の原料及び残存する触媒等を容易に除去することができる。水洗に使用する水の量は特に限定されないが、好ましくは、アシル化ペプチド類、溶媒、アシル化剤等の系内に残存する反応混合物に対して5〜200重量%程度であり、より好ましくは10〜100重量%程度である。このように酸性下で水洗処理を行った場合は一般式(1)におけるMが水素原子であるアシル化ペプチド類が得られる。
【0020】
又、アシル化反応終了後の任意の段階で、アシル化ペプチド類にプロピレングリコールを添加し、減圧脱気することにより、副反応物、溶媒及び未反応の原料等に由来する臭気成分や不純物を除去することができる。この処理に使用するプロピレングリコールの量は特に限定されないが、好ましくは、アシル化ペプチド類、溶媒、アシル化剤等の系内に残存する反応混合物に対して5〜200重量%程度であり、より好ましくは10〜100重量%程度である。減圧脱気を行う場合は、アスピレーター、真空ポンプ等により反応系を減圧すればよく、減圧度は通常100mmHg以下、好ましくは50mmHg以下、より好ましくは20mmHg以下である。減圧脱気する際の温度は特に限定されないが、通常10〜80℃程度である。減圧脱気の時間は特に限定されないが、好ましくは10分〜8時間、より好ましくは10分〜6時間、更に好ましくは10分〜3時間程度である。
【0021】
又、得られたアシル化ペプチド類又は上記精製処理を行ったアシル化ペプチド類をアルカリ又はアミン等で処理してアシル化ペプチド類を塩の形態とすることもできる。この場合は使用したアルカリ又はアミンによりMが決定される。アルカリとしては前述のものが、アミンとしては例えばアンモニア、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、(イソ)プロピルアミン、ジ(イソ)プロピルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、2−アミノ−2−メチル−1,3−プロパンジオール、アミノエチルエタノールアミン、N,N,N’,N’−テトラキス(2−ヒドロキシプロピル)エチレンジアミン等が挙げられる。
【0022】
本発明の製造方法により製造されたアシル化ペプチド類は、アニオン性界面活性剤として使用することができ、主に洗浄剤に配合して使用することができる。洗浄剤としては例えばヘアーシャンプー、ヘアーリンス、ヘアーコンディショナー、ヘアートリートメント、ボディシャンプー、台所用洗剤、食器用洗浄剤、衣服用洗剤等が挙げられる。その他、パーマネントウェーブ剤、ヘアークリーム、ヘアーフォーム、ヘアーブリーチ、ヘアーローション、ヘアーリキッド、ヘアートニック、化粧水、シェービングクリーム、アフターシェービングローション、プレシェービングローション、フェイスローション、モイスチャークリーム、クレンジングクリーム、コールドクリーム等の化粧品に配合して使用することができる。
【0023】
【実施例】
以下、実施例により本発明を更に具体的に説明する。尚、以下の実施例中、特に記載が無い限り「部」又は「%」は重量基準である。
(実施例1)
減圧可能な反応装置に食用ゼラチン100部、水酸化ナトリウム20部及び水50部を仕込み、50〜60℃で6時間攪拌混合して加水分解処理を行い、固形分55%、平均分子量約250のポリペプチドを得た。次いでこのポリペプチド100部に対して2−プロパノール20部、プロピレングリコール10部を加え、水酸化ナトリウムでpH10に調整しつつラウリン酸クロリド40部を50℃で滴下した。滴下終了後40〜50℃で1時間熟成した。その後、塩酸を加え、系のpHを2にした後水洗した。油層を分離し、油層100部に対して30部のプロピレングリコールを加え、20mmHgで2時間減圧脱気を行った。その後水酸化ナトリウムで中和して、固形分41%、外観は透明であるコラーゲン加水分解ペプチドラウリン酸縮合物ナトリウム塩を得た。
【0024】
(実施例2)
減圧可能な反応装置に食用ゼラチン100部、水酸化ナトリウム14部及び水46部を仕込み、50〜60℃で6時間攪拌混合して加水分解処理を行い、固形分52%、平均分子量約300のポリペプチドを得た。次いでこのポリペプチド100部に対して2−プロパノール20部、プロピレングリコール10部を加え、水酸化ナトリウムでpH10に調整しつつラウリン酸クロリド33部を50℃で滴下した。滴下終了後40〜50℃で1時間熟成した。その後、塩酸を加え、系のpHを2にした後水洗した。油層を分離し、油層100部に対して30部のプロピレングリコールを加え、20mmHgで2時間減圧脱気を行った。その後水酸化ナトリウムで中和して、固形分39%、外観は透明であるコラーゲン加水分解ペプチドラウリン酸縮合物ナトリウム塩を得た。
【0025】
(実施例3)
減圧可能な反応装置に食用ゼラチン100部、水酸化ナトリウム14部及び水46部を仕込み、50〜60℃で6時間攪拌混合して加水分解処理を行い、固形分52%、平均分子量約300のポリペプチドを得た。次いでこのポリペプチド100部に対して2−プロパノール20部、プロピレングリコール10部を加え、水酸化ナトリウムでpH10に調整しつつミリスチン酸クロリド37部を50℃で滴下した。滴下終了後40〜50℃で1時間熟成した。その後、塩酸を加え、系のpHを2にした後水洗し、次いで20mmHgで2時間減圧脱気を行った。その後水酸化ナトリウムで中和して、固形分40%、外観は透明であるコラーゲン加水分解ペプチドミリスチン酸縮合物ナトリウム塩を得た。
【0027】
(実施例
減圧可能な反応装置に大豆分離蛋白100部、水酸化ナトリウム10部及び水190部を仕込み、50〜60℃で6時間攪拌混合して加水分解処理を行った。反応系を50℃まで冷却した後、20mmHgで減圧脱気を1時間行い、固形分48%、平均分子量約400のポリペプチドを得た。次いでこのポリペプチド100部に対して2−プロパノール20部、プロピレングリコール10部を加え、水酸化ナトリウムでpH10に調整しつつラウリン酸クロリド25部を50℃で滴下した。滴下終了後40〜50℃で1時間熟成した。その後、塩酸を加え、系のpHを2にした後水洗し、次いで20mmHgで2時間減圧脱気を行った。その後水酸化ナトリウムで中和して、固形分35%、外観は透明である大豆蛋白加水分解ペプチドラウリン酸縮合物ナトリウム塩を得た。
【0028】
(実施例
減圧可能な反応装置に小麦分離蛋白100部、水酸化ナトリウム10部及び水190部を仕込み、50〜60℃で6時間攪拌混合して加水分解処理を行った。反応系を50℃まで冷却した後、20mmHgで減圧脱気を1時間行い、固形分47%、平均分子量約400のポリペプチドを得た。次いでこのポリペプチド100部に対して2−プロパノール20部、プロピレングリコール10部を加え、水酸化ナトリウムでpH10に調整しつつラウリン酸クロリド25部を50℃で滴下した。滴下終了後40〜50℃で1時間熟成した。その後、塩酸を加え、系のpHを2にした後水洗し、次いで20mmHgで2時間減圧脱気を行った。その後水酸化ナトリウムで中和して、固形分34%、外観は透明である小麦蛋白加水分解ペプチドラウリン酸縮合物ナトリウム塩を得た。
【0029】
(実施例
減圧可能な反応装置にとうもろこし分離蛋白100部、水酸化ナトリウム15部及び水260部を仕込み、50〜60℃で6時間攪拌混合して加水分解処理を行った。反応系を50℃まで冷却した後、20mmHgで減圧脱気を1時間行い、固形分47%、平均分子量約300のポリペプチドを得た。次いでこのポリペプチド100部に対して2−プロパノール20部、プロピレングリコール10部を加え、水酸化ナトリウムでpH10に調整しつつラウリン酸クロリド44部を50℃で滴下した。滴下終了後40〜50℃で1時間熟成した。その後、塩酸を加え、系のpHを2にした後水洗し、次いで20mmHgで2時間減圧脱気を行った。その後水酸化ナトリウムで中和して、固形分42%、外観は透明であるとうもろこし蛋白加水分解ペプチドラウリン酸縮合物ナトリウム塩を得た。
【0030】
(比較例1)
4つ口フラスコに食用ゼラチン100部、水酸化ナトリウム20部及び水50部を仕込み、50〜60℃で6時間攪拌混合して加水分解処理を行い、固形分55%、平均分子量約250のポリペプチドを得た。次いでこのポリペプチド100部に対してプロピレングリコール30部を加え、水酸化ナトリウムでpH10に調整しつつラウリン酸クロリド40部を50℃で滴下した。滴下終了後40〜50℃で1時間熟成した。その後、水酸化ナトリウムで中和して、固形分40%、外観は透明であるコラーゲン加水分解ペプチドラウリン酸縮合物ナトリウム塩を得た。
【0031】
(比較例2)
4つ口フラスコに食用ゼラチン100部、水酸化ナトリウム14部及び水46部を仕込み、50〜60℃で6時間攪拌混合して加水分解処理を行い、固形分52%、平均分子量約300のポリペプチドを得た。次いでこのポリペプチド100部に対してプロピレングリコール30部を加え、水酸化ナトリウムでpH10に調整しつつラウリン酸クロリド33部を50℃で滴下した。滴下終了後40〜50℃で1時間熟成した。その後、水酸化ナトリウムで中和して、固形分41%、外観は透明であるコラーゲン加水分解ペプチドラウリン酸縮合物ナトリウム塩を得た。
【0032】
(評価1)
上記実施例及び比較例で得られたアシル化ペプチド類の純度及び不純物を、GPC(カラム:shodex.Ashahipak−310、溶剤:水/アセトニトリル=1/1)にて分析した。尚、単位は%である。
【0033】
【表1】
Figure 0004129069
【0034】
(評価2)
上記実施例及び比較例で得られたアシル化ペプチド類の水溶性を目視にて観察し、白濁を生じるまでの時間を測定した。尚、濃度は純分としてアシル化ペプチド類0.25%、人工硬水は炭酸カルシウム濃度100ppm及び300ppmを用いた。
【0035】
【表2】
Figure 0004129069
【0036】
(評価3)
上記実施例及び比較例で得られたアシル化ペプチド類の臭いをパネラー5名で官能評価した。尚、純分としてアシル化ペプチド類10%を含む40℃の水溶液を調整し、市販のアシル化ペプチド類を対照品として以下の基準に従って評価した。
<評価基準> ○:市販品と比較して臭いが弱い。
△:市販品と同等の臭い。
×:市販品と比較して臭いが強い。
【0037】
【表3】
Figure 0004129069
【0038】
(評価4)
上記実施例及び比較例で得られたアシル化ペプチド類の泡立ちをロスマイルス法により測定した。測定条件は、アシル化ペプチド類の濃度は純分として0.25%、水温40℃で5分後の泡の高さを測定した。又、水はイオン交換水及び人工硬水炭酸カルシウム濃度100ppm及び300ppmを用いた。尚、単位はmmである。
【0039】
【表4】
Figure 0004129069
【0040】
上記の実施例及び比較例から、アシル化ペプチドを製造する際にアシル化工程において溶媒として2−プロパノールを使用した場合は、純度が高く、界面活性剤として使用した場合の性能も良好なアシル化ペプチド類が得られるが、溶媒として1級水酸基を有するアルコールを使用した場合は、不純物を多く含み、界面活性剤として使用した場合の性能にも劣るものしか製造することができないことが明らかになった。
【0041】
【発明の効果】
本発明の効果はアシル化ペプチドの新規な製造方法を提供したことにある。本発明によれば、純度が高く、界面活性剤として使用した場合に、従来の製法で製造したアシル化ペプチド類より良好な性能を示すアシル化ペプチド類を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing acylated peptides, an acylated peptide obtained by the production method, and a surfactant.
[0002]
[Prior art]
Acylated peptides are long-known anionic surfactants. Since acylated peptides are made from animal and plant derived proteins, they are highly safe and have little skin irritation, so they are used in toiletries such as shampoos and hair conditioners, and cosmetics. In particular, it is said that demand is increasing due to recent trends in nature and natural products.
[0003]
Methods for producing acylated peptides have been studied for a long time. In general, acylated peptides are:
1) a step of hydrolyzing a raw material protein;
2) acylating the hydrolyzed protein;
3) purifying and neutralizing the acylated protein;
It is manufactured through.
However, acylated peptides have various problems in production because they are made directly from natural materials called proteins. For example, since nitrogen components in proteins cause odors, these odor components must be completely removed from the final product. Moreover, since the fatty acid halide which is preferably used as an acylating agent is highly reactive, if an alcohol or the like is present in the solvent, it reacts with it to produce a by-product. Further, if it remains unreacted, it reacts with the neutralizing agent in the subsequent neutralization step to produce soap and the like.
[0004]
[Problems to be solved by the invention]
Among the above steps, in the step of acylating the hydrolyzed protein, the hydrolyzed protein is acylated with an acylating agent such as a fatty acid halide, but ethanol, propylene glycol, 1, 3 are used as solvents in that case. A method for acylating using butanediol or the like is disclosed in JP-B-5-37637.
However, since the above method uses an alcohol having a primary hydroxyl group as a solvent, it reacts with a fatty acid halide that is an acylating agent to produce a by-product, consumes an acylating agent, It has been found that the protein acylation reaction is inhibited and the acylation degree is lowered.
[0005]
Since acylated peptides are mainly blended in toiletry products that come into direct contact with the human body, the production of by-products and the mixing of odorous components must be avoided as much as possible.
Therefore, an object of the present invention is to provide a method for producing acylated peptides suitable as surfactants to be blended in toiletry products and the like that do not contain by-products and odor components as compared with conventional methods. .
[0006]
[Means for Solving the Problems]
That is, in the present invention, when acylating a protein or protein hydrolyzate with an acylating agent, at least 2-propanol and propylene glycol are used as a solvent, and the following general formula (1)
[Chemical 2]
Figure 0004129069
(In the formula, R 1 represents a hydrocarbon group, R 2 represents an amino acid side chain, M represents a hydrogen atom, a metal atom or ammonium, n represents 1 or more integer.)
A method for producing acylated peptides represented by the formula:
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the protein that is a raw material for the method for producing acylated peptides of the present invention include collagen derived from silk, bone, cartilage, tendon, fascia, skin, fish scales, etc. derived from eyebrows, eyebrows, raw silk, raw silk , Gelatin derived from collagen, animal hair, hair, feathers, nails, horns, hoofs, scales, keratin, silk fibroin, milk, goat milk, human milk, casein, albumin, globulin, plant Examples include proteins. Plant proteins include rice, rice bran, wheat, hard wheat, rye, barley, buckwheat, corn, soybeans, almonds, nuts, sesame, peanuts, buckwheat, seaweed, sweet potato, sea bream, seaweed, potato, etc. Is mentioned. Moreover, the partial hydrolyzate of these animal protein or vegetable protein may be sufficient.
[0008]
In the general formula (1), R 2 is an amino acid side chain. Examples of amino acids include glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystine, methionine, asparagine, aspartic acid, glutamine, glutamic acid, lysine, arginine, phenylalanine, tyrosine, histidine, tryptophan, proline, hydroxyproline, etc. Is mentioned.
[0009]
The above protein is usually hydrolyzed and used as a raw material for acylated peptides. When hydrolyzing a protein, a method using an acid, a method using an alkali, and a method using an enzyme are preferable.
[0010]
In the method using an acid, a protein hydrolyzate can be obtained by treatment at about 40 to 120 ° C. for about 2 to 24 hours in the presence of acid and water under normal pressure or under pressure. Examples of the acid that can be used include hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, hydrobromic acid, formic acid, and acetic acid.
[0011]
In the method using an alkali, a protein hydrolyzate can be obtained by treating at room pressure to about 100 ° C. for about 30 minutes to 24 hours in the presence of alkali and water. As the alkali, for example, sodium hydroxide, potassium hydroxide, lithium hydroxide, barium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, triethylamine, pyridine and the like can be used, especially sodium hydroxide. Or potassium hydroxide is preferable.
[0012]
In the method using an enzyme, it can be obtained by treatment at room pressure to about 45 ° C. for about 3 to 24 hours in the presence of the enzyme and water. As the enzyme, for example, pepsin, proctase, papain, bromelain, thermolysin, trypsin, pronase, chymotrypsin, subtilin, staphylococcus protease and the like can be used. Moreover, when hydrolyzing a protein using an enzyme, it is preferable to adjust the inside of the system to the optimum pH of the enzyme. In order to adjust the pH, it is preferable to adjust the pH with a buffer solution such as an acetic acid / sodium acetate buffer solution or a phosphate buffer solution, or an acid or an alkali.
[0013]
When the hydrolysis treatment is performed, the protein used as a raw material is decomposed into a low molecular weight polypeptide. The molecular weight of the polypeptide can be controlled by controlling the reaction conditions of the hydrolysis treatment, such as the amount of acid, enzyme or alkali, the amount of water, the treatment time, the treatment temperature, and the like. When the acylated peptides obtained by the production method of the present invention are used as a surfactant, it is preferable to adjust the average molecular weight of the polypeptide to 150 to 2,000. Incidentally, the polymerization degree n of the polypeptide is 1 (if completely hydrolyzed) or more integers.
[0014]
In addition, when the above hydrolysis treatment is performed, impurities such as ammonia and lower amines may be generated. However, these may cause by-products by reacting with acylating agents and become odor components. Therefore, it is preferable to remove the reaction system under reduced pressure using an aspirator, a vacuum pump, or the like. The degree of vacuum is usually 100 mmHg or less, preferably 50 mmHg or less, more preferably 20 mmHg or less. Although the temperature at the time of removing under reduced pressure is not particularly limited, it is usually about 20 ° C. above and below the temperature during the hydrolysis treatment. The time for removal under reduced pressure is not particularly limited, but is preferably 10 minutes to 8 hours, more preferably 10 minutes to 6 hours, and even more preferably about 10 minutes to 3 hours.
[0015]
In the production method of the present invention, at least a mixed solvent of 2-propanol and propylene glycol is used as a solvent for acylating the protein or protein hydrolyzate. In addition, methanol, ethanol, 1-propanol, butanol, ethylene glycol, diethylene glycol, dipropylene glycol, methoxyethanol, ethoxyethanol, butoxyethanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethyl ether, diethyl ether, ethyl methyl ether, water Etc. can also be added.
[0016]
Although the usage-amount of 2-propanol is not specifically limited, 1-100 weight% is preferable with respect to protein or protein hydrolyzate, 5-80 weight% is more preferable, 10-50 weight% is still more preferable. Further, 2-propanol and mixing ratio of propylene glycol is 2-propanol: propylene glycol = 9: 1 to 1: 9 is preferred, 4: 1 to 1: 2 is more preferable.
[0017]
As the acylating agent, for example, carboxylic acid, carboxylic acid halide, carboxylic acid methyl ester, carboxylic acid ethyl ester and the like can be used, but it is preferable to use a highly reactive carboxylic acid or carboxylic acid halide. Examples of carboxylic acids or their halides include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, erucic acid, linoleic acid , Linolenic acid or their chlorides. Usually, a raw material is a single or mixed fatty acid having about 8 to 22 carbon atoms or a chloride thereof. Usually, fatty acids obtained from natural fats or oils or chlorinated fatty acid chlorides are used. Examples of natural fats and oils include linseed oil, olive oil, cacao butter, sesame oil, rice bran oil, safflower oil, soybean oil, camellia oil, corn oil, rapeseed oil, palm oil, palm kernel oil, castor oil, sunflower oil, cottonseed oil, palm Examples include vegetable oils such as oil, animal fats such as beef tallow, pork tallow, milk fat, fish oil, whale oil and the like. Incidentally, the carboxylic acid or its halide is used in the acylation reaction, R 1 of the acylated peptides are determined to be generated.
[0018]
The temperature at which the acylation reaction is carried out is not particularly limited, but it is not efficient because the reaction rate is slow if it is carried out at a too low temperature. It is preferable to carry out at 0-100 degreeC, it is more preferable to carry out at 10-90 degreeC, and it is most preferable to carry out at 20-80 degreeC. Although the time for performing the acylation reaction is not particularly limited, it is preferably 10 minutes to 12 hours, more preferably 20 minutes to 8 hours, and further preferably about 30 minutes to 6 hours. When carboxylic acid chloride is used for the acylation reaction, it is preferable to adjust the pH of the carboxylic acid chloride to be alkaline with an alkali and add it to the reaction system to accelerate the reaction.
[0019]
The acylated peptides represented by the general formula (1) can be obtained by the above reaction, but at any stage after the completion of the acylation reaction, the pH is adjusted to acid with an acid such as hydrochloric acid, sulfuric acid, nitric acid, By washing with water, side reaction products, impurities, unreacted raw materials, remaining catalyst, and the like can be easily removed. The amount of water used for washing is not particularly limited, but is preferably about 5 to 200% by weight, more preferably based on the reaction mixture remaining in the system such as acylated peptides, solvent, acylating agent and the like. It is about 10 to 100% by weight. Thus, when the washing process is performed under acidic conditions, acylated peptides in which M in the general formula (1) is a hydrogen atom are obtained.
[0020]
In addition, at any stage after the completion of the acylation reaction, propylene glycol is added to the acylated peptides and degassed under reduced pressure to remove odor components and impurities derived from side reaction products, solvents, unreacted raw materials, and the like. Can be removed. The amount of propylene glycol used in this treatment is not particularly limited, but is preferably about 5 to 200% by weight based on the reaction mixture remaining in the system such as acylated peptides, solvent, acylating agent, and the like. Preferably, it is about 10 to 100% by weight. When performing vacuum degassing, the reaction system may be depressurized by an aspirator, a vacuum pump, or the like, and the degree of vacuum is usually 100 mmHg or less, preferably 50 mmHg or less, more preferably 20 mmHg or less. Although the temperature at the time of degassing under reduced pressure is not particularly limited, it is usually about 10 to 80 ° C. The time for vacuum degassing is not particularly limited, but is preferably 10 minutes to 8 hours, more preferably 10 minutes to 6 hours, and even more preferably about 10 minutes to 3 hours.
[0021]
Moreover, the acylated peptides obtained by treating the obtained acylated peptides or the above-mentioned purified acylated peptides with an alkali or an amine can be converted into a salt form. In this case, M is determined by the alkali or amine used. Examples of the alkali include those described above, and examples of the amine include ammonia, methylamine, dimethylamine, ethylamine, diethylamine, (iso) propylamine, di (iso) propylamine, ethanolamine, diethanolamine, triethanolamine, 2-amino- Examples include 2-methyl-1,3-propanediol, aminoethylethanolamine, N, N, N ′, N′-tetrakis (2-hydroxypropyl) ethylenediamine, and the like.
[0022]
The acylated peptides produced by the production method of the present invention can be used as an anionic surfactant, and can be used mainly by blending with a detergent. Examples of cleaning agents include hair shampoos, hair rinses, hair conditioners, hair treatments, body shampoos, kitchen detergents, dish cleaners, and clothes detergents. Others, permanent wave agent, hair cream, hair foam, hair bleach, hair lotion, hair liquid, hair nick, lotion, shaving cream, after shaving lotion, pre-shaving lotion, face lotion, moisture cream, cleansing cream, cold cream, etc. It can be blended and used in cosmetics.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In the following examples, “part” or “%” is based on weight unless otherwise specified.
(Example 1)
100 parts of edible gelatin, 20 parts of sodium hydroxide and 50 parts of water are charged into a reactor capable of depressurization, and the mixture is stirred and mixed at 50 to 60 ° C. for 6 hours to carry out hydrolysis treatment. The solid content is 55% and the average molecular weight is about 250 A polypeptide was obtained. Subsequently, 20 parts of 2-propanol and 10 parts of propylene glycol were added to 100 parts of this polypeptide, and 40 parts of lauric acid chloride was added dropwise at 50 ° C. while adjusting the pH to 10 with sodium hydroxide. After completion of dropping, the mixture was aged at 40 to 50 ° C. for 1 hour. Thereafter, hydrochloric acid was added to adjust the pH of the system to 2, followed by washing with water. The oil layer was separated, 30 parts of propylene glycol was added to 100 parts of the oil layer, and vacuum deaeration was performed at 20 mmHg for 2 hours. Thereafter, it was neutralized with sodium hydroxide to obtain a collagen hydrolyzed peptide lauric acid condensate sodium salt having a solid content of 41% and a transparent appearance.
[0024]
(Example 2)
100 parts of edible gelatin, 14 parts of sodium hydroxide and 46 parts of water are charged into a reactor capable of depressurization, and the mixture is stirred and mixed at 50 to 60 ° C. for 6 hours for hydrolysis treatment. A polypeptide was obtained. Subsequently, 20 parts of 2-propanol and 10 parts of propylene glycol were added to 100 parts of this polypeptide, and 33 parts of lauric acid chloride was added dropwise at 50 ° C. while adjusting the pH to 10 with sodium hydroxide. After completion of dropping, the mixture was aged at 40 to 50 ° C. for 1 hour. Thereafter, hydrochloric acid was added to adjust the pH of the system to 2, followed by washing with water. The oil layer was separated, 30 parts of propylene glycol was added to 100 parts of the oil layer, and vacuum deaeration was performed at 20 mmHg for 2 hours. Thereafter, it was neutralized with sodium hydroxide to obtain a sodium salt of collagen hydrolyzed peptide lauric acid condensate having a solid content of 39% and a transparent appearance.
[0025]
(Example 3)
100 parts of edible gelatin, 14 parts of sodium hydroxide and 46 parts of water are charged into a reactor capable of depressurization, and the mixture is stirred and mixed at 50 to 60 ° C. for 6 hours for hydrolysis treatment. A polypeptide was obtained. Subsequently, 20 parts of 2-propanol and 10 parts of propylene glycol were added to 100 parts of this polypeptide, and 37 parts of myristic acid chloride was added dropwise at 50 ° C. while adjusting the pH to 10 with sodium hydroxide. After completion of dropping, the mixture was aged at 40 to 50 ° C. for 1 hour. Thereafter, hydrochloric acid was added to adjust the pH of the system to 2, followed by washing with water, followed by vacuum degassing at 20 mmHg for 2 hours. Thereafter, it was neutralized with sodium hydroxide to obtain a sodium salt of collagen hydrolyzed peptide myristic acid condensate having a solid content of 40% and a transparent appearance.
[0027]
(Example 4 )
100 parts of soybean-separated protein, 10 parts of sodium hydroxide and 190 parts of water were charged into a reactor capable of depressurization, and the mixture was stirred and mixed at 50-60 ° C. for 6 hours for hydrolysis treatment. After cooling the reaction system to 50 ° C., vacuum degassing was performed at 20 mmHg for 1 hour to obtain a polypeptide having a solid content of 48% and an average molecular weight of about 400. Subsequently, 20 parts of 2-propanol and 10 parts of propylene glycol were added to 100 parts of this polypeptide, and 25 parts of lauric acid chloride was added dropwise at 50 ° C. while adjusting the pH to 10 with sodium hydroxide. After completion of dropping, the mixture was aged at 40 to 50 ° C. for 1 hour. Thereafter, hydrochloric acid was added to adjust the pH of the system to 2, followed by washing with water, followed by vacuum degassing at 20 mmHg for 2 hours. Thereafter, it was neutralized with sodium hydroxide to obtain a soybean protein hydrolyzed peptide lauric acid condensate sodium salt having a solid content of 35% and a transparent appearance.
[0028]
(Example 5 )
A reaction apparatus capable of reducing pressure was charged with 100 parts of wheat-separated protein, 10 parts of sodium hydroxide and 190 parts of water, and the mixture was stirred and mixed at 50 to 60 ° C. for 6 hours for hydrolysis treatment. After the reaction system was cooled to 50 ° C., vacuum degassing was performed at 20 mmHg for 1 hour to obtain a polypeptide having a solid content of 47% and an average molecular weight of about 400. Subsequently, 20 parts of 2-propanol and 10 parts of propylene glycol were added to 100 parts of this polypeptide, and 25 parts of lauric acid chloride was added dropwise at 50 ° C. while adjusting the pH to 10 with sodium hydroxide. After completion of dropping, the mixture was aged at 40 to 50 ° C. for 1 hour. Thereafter, hydrochloric acid was added to adjust the pH of the system to 2, followed by washing with water, followed by vacuum degassing at 20 mmHg for 2 hours. Thereafter, it was neutralized with sodium hydroxide to obtain a wheat protein hydrolyzed peptide lauric acid condensate sodium salt having a solid content of 34% and a transparent appearance.
[0029]
(Example 6 )
A corn-separated protein (100 parts), sodium hydroxide (15 parts) and water (260 parts) were charged into a reactor capable of depressurization, and the mixture was stirred and mixed at 50 to 60 ° C. for 6 hours for hydrolysis treatment. After cooling the reaction system to 50 ° C., vacuum degassing was performed at 20 mmHg for 1 hour to obtain a polypeptide having a solid content of 47% and an average molecular weight of about 300. Subsequently, 20 parts of 2-propanol and 10 parts of propylene glycol were added to 100 parts of this polypeptide, and 44 parts of lauric acid chloride was added dropwise at 50 ° C. while adjusting the pH to 10 with sodium hydroxide. After completion of dropping, the mixture was aged at 40 to 50 ° C. for 1 hour. Thereafter, hydrochloric acid was added to adjust the pH of the system to 2, followed by washing with water, followed by vacuum degassing at 20 mmHg for 2 hours. Thereafter, the mixture was neutralized with sodium hydroxide to obtain a corn protein hydrolyzed peptide lauric acid condensate sodium salt having a solid content of 42% and a transparent appearance.
[0030]
(Comparative Example 1)
A four-necked flask is charged with 100 parts of edible gelatin, 20 parts of sodium hydroxide and 50 parts of water, stirred and mixed at 50 to 60 ° C. for 6 hours, and hydrolyzed to obtain a poly having a solid content of 55% and an average molecular weight of about 250. The peptide was obtained. Subsequently, 30 parts of propylene glycol was added to 100 parts of this polypeptide, and 40 parts of lauric acid chloride was added dropwise at 50 ° C. while adjusting the pH to 10 with sodium hydroxide. After completion of dropping, the mixture was aged at 40 to 50 ° C. for 1 hour. Thereafter, the solution was neutralized with sodium hydroxide to obtain a collagen hydrolyzed peptide lauric acid condensate sodium salt having a solid content of 40% and a transparent appearance.
[0031]
(Comparative Example 2)
A four-necked flask is charged with 100 parts of edible gelatin, 14 parts of sodium hydroxide and 46 parts of water, stirred and mixed at 50-60 ° C. for 6 hours, and hydrolyzed to give a poly having a solid content of 52% and an average molecular weight of about 300. The peptide was obtained. Next, 30 parts of propylene glycol was added to 100 parts of this polypeptide, and 33 parts of lauric acid chloride was added dropwise at 50 ° C. while adjusting the pH to 10 with sodium hydroxide. After completion of dropping, the mixture was aged at 40 to 50 ° C. for 1 hour. Then, neutralized with sodium hydroxide to obtain a collagen hydrolyzed peptide lauric acid condensate sodium salt having a solid content of 41% and a transparent appearance.
[0032]
(Evaluation 1)
The purity and impurities of the acylated peptides obtained in the above examples and comparative examples were analyzed by GPC (column: shodex. Asahhipak-310, solvent: water / acetonitrile = 1/1). The unit is%.
[0033]
[Table 1]
Figure 0004129069
[0034]
(Evaluation 2)
The water-solubility of the acylated peptides obtained in the above Examples and Comparative Examples was visually observed, and the time until cloudiness was observed was measured. The concentration was 0.25% of acylated peptides as pure components, and calcium carbonate concentrations of 100 ppm and 300 ppm were used for artificial hard water.
[0035]
[Table 2]
Figure 0004129069
[0036]
(Evaluation 3)
The odor of the acylated peptides obtained in the above Examples and Comparative Examples was sensory evaluated by five panelists. A 40 ° C. aqueous solution containing 10% of acylated peptides as a pure component was prepared and evaluated according to the following criteria using commercially available acylated peptides as control products.
<Evaluation criteria> ○: The odor is weak compared to a commercially available product.
(Triangle | delta): The smell equivalent to a commercial item.
×: Strong odor compared to commercial products.
[0037]
[Table 3]
Figure 0004129069
[0038]
(Evaluation 4)
Foaming of the acylated peptides obtained in the above examples and comparative examples was measured by the Ross Miles method. The measurement conditions were such that the concentration of acylated peptides was 0.25% as a pure component, and the height of the foam after 5 minutes at a water temperature of 40 ° C. was measured. The water used was ion-exchanged water and artificial hard water calcium carbonate concentrations of 100 ppm and 300 ppm. The unit is mm.
[0039]
[Table 4]
Figure 0004129069
[0040]
From the above Examples and Comparative Examples, when 2-propanol is used as a solvent in the acylation step when producing an acylated peptide, the acylation has high purity and good performance when used as a surfactant. Peptides can be obtained, but it has been clarified that when an alcohol having a primary hydroxyl group is used as a solvent, only those having a large amount of impurities and inferior in performance when used as a surfactant can be produced. It was.
[0041]
【The invention's effect】
The effect of the present invention is to provide a novel method for producing acylated peptides. According to the present invention, acylated peptides can be obtained which have a high purity and exhibit better performance than acylated peptides produced by a conventional production method when used as a surfactant.

Claims (4)

蛋白質又は蛋白質加水分解物をアシル化剤によってアシル化する際に、溶媒として少なくとも2−プロパノール及びプロピレングリコールを使用することを特徴とする下記の一般式(1)
Figure 0004129069
(式中、Rは炭化水素基を表わし、Rはアミノ酸側鎖を表わし、Mは水素原子、金属原子又はアンモニウムを表わし、nは1以上の数を表わす。)
で表わされるアシル化ペプチド類の製造方法。
When acylating a protein or a protein hydrolyzate with an acylating agent, at least 2-propanol and propylene glycol are used as a solvent, and the following general formula (1)
Figure 0004129069
(In the formula, R 1 represents a hydrocarbon group, R 2 represents an amino acid side chain, M represents a hydrogen atom, a metal atom or ammonium, n represents 1 or more integer.)
The manufacturing method of acylated peptides represented by these.
アシル化剤が脂肪酸ハライドである請求項1記載の製造方法。The process according to claim 1 Symbol placement acylating agent is a fatty acid halide. アシル化剤によるアシル化が終了した後の任意の段階で、系内を酸性化して水洗することを特徴とする請求項1または2記載の製造方法。The production method according to claim 1 or 2 , wherein the system is acidified and washed with water at an arbitrary stage after the acylation with the acylating agent is completed. アシル化剤によるアシル化が終了した後の任意の段階で、アシル化ペプチド類を含む反応生成物にプロピレングリコールを添加し、減圧脱気することを特徴とする請求項1乃至の何れか1項記載の製造方法。At any stage after the acylation with an acylating agent has been completed, the addition of propylene glycol to the reaction product containing acylated peptides, any one of claims 1 to 3, characterized in that vacuum degassing 1 The manufacturing method of description.
JP25038997A 1997-09-16 1997-09-16 Method for producing acylated peptides Expired - Fee Related JP4129069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25038997A JP4129069B2 (en) 1997-09-16 1997-09-16 Method for producing acylated peptides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25038997A JP4129069B2 (en) 1997-09-16 1997-09-16 Method for producing acylated peptides

Publications (2)

Publication Number Publication Date
JPH1180191A JPH1180191A (en) 1999-03-26
JP4129069B2 true JP4129069B2 (en) 2008-07-30

Family

ID=17207194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25038997A Expired - Fee Related JP4129069B2 (en) 1997-09-16 1997-09-16 Method for producing acylated peptides

Country Status (1)

Country Link
JP (1) JP4129069B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10102006A1 (en) * 2001-01-18 2002-10-02 Cognis Deutschland Gmbh surfactant mixture
AR054631A1 (en) 2005-07-11 2007-07-04 Wyeth Corp DERIVATIVES OF L-ALFA-GLUTAMINE AS INHIBITORS OF GLUTAMATO AGRECANASA, INTERMEDIARIES AND SYNTHESIS METHODS OF THE SAME AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
TW200740729A (en) 2005-10-13 2007-11-01 Wyeth Corp Methods for preparing glutamic acid derivatives
FR3075048B1 (en) * 2017-12-20 2019-11-22 Societe D'exploitation De Produits Pour Les Industries Chimiques Seppic NOVEL COMPOSITION OF LIPOAMINOACIDES AND ALKANEDIOLS, PROCESS FOR THEIR PREPARATION AND COSMETIC OR PHARMACEUTICAL COMPOSITION RESULTING THEREFROM
FR3075197B1 (en) * 2017-12-20 2019-11-15 Societe D'exploitation De Produits Pour Les Industries Chimiques Seppic NOVEL COMPOSITION OF LIPOAMINOACIDES AND DIOLS, PROCESS FOR THEIR PREPARATION AND COSMETIC OR PHARMACEUTICAL COMPOSITION RESULTING THEREFROM
CN117898968B (en) * 2024-03-19 2024-06-07 江苏亨瑞生物医药科技有限公司 Collagen shampoo with sun-screening, anti-dandruff and repairing functions and preparation method thereof

Also Published As

Publication number Publication date
JPH1180191A (en) 1999-03-26

Similar Documents

Publication Publication Date Title
Linder et al. Protein recovery from veal bones by enzymatic hydrolysis
JP2705848B2 (en) N-acylated derivatives of mixtures of amino acids derived from hydrolyzates of cereal proteins and their applications
EP1672055B1 (en) Detergent compositions and processes for the production thereof
JPH09500612A (en) Process for producing N-acylated amino acid mixture
JP4010484B2 (en) Method for producing fish scale-derived hydrolyzed collagen
JP4129069B2 (en) Method for producing acylated peptides
US3898129A (en) Enzymatically hydrolyzed composition of skin rag and derivatives thereof
US4363760A (en) Partially hydrolyzed elastin from limed hide trimmings
JP4090541B2 (en) Method for producing acylated peptides
FR2474036A1 (en) PROCESS FOR PRODUCING OLIGOPEPTIDES FROM COLLAGEN
JPH07500312A (en) Lipopolyamino acid, its production method and its uses
JP2007326869A (en) Hydrolyzed collagen derived from fish scale
JPS6368514A (en) Cosmetic containing vegetable polypeptide derivative
KR100532153B1 (en) producing method of protein hydrolysates from fish scale
JPWO2018034355A1 (en) Cosmetic composition
JP3774735B2 (en) Cleaning composition
JP2003300854A (en) Skin cosmetic
JPH10265496A (en) Production of acylated peptide
JPH06122610A (en) Compounding agent for cosmetics
JP2878287B2 (en) Cosmetic base material
JP2736425B2 (en) Cosmetics containing alkylated modified products of animal or plant-derived protein hydrolysates
JP2652763B2 (en) Production method of vegetable protein hydrolyzed seasoning liquid
US20190314257A1 (en) Aqueous surfactant compositions
JP2746691B2 (en) Method for producing surfactant and cosmetics containing the same
JPH11302683A (en) Liquid detergent composition for kitchen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080516

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees