JP4128267B2 - Method for producing polyol partial ester - Google Patents

Method for producing polyol partial ester Download PDF

Info

Publication number
JP4128267B2
JP4128267B2 JP14381998A JP14381998A JP4128267B2 JP 4128267 B2 JP4128267 B2 JP 4128267B2 JP 14381998 A JP14381998 A JP 14381998A JP 14381998 A JP14381998 A JP 14381998A JP 4128267 B2 JP4128267 B2 JP 4128267B2
Authority
JP
Japan
Prior art keywords
fatty acid
unsaturated fatty
catalyst
reaction
polyol partial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14381998A
Other languages
Japanese (ja)
Other versions
JPH11335322A (en
Inventor
健 冨藤
浩三 野田
裕 安倍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP14381998A priority Critical patent/JP4128267B2/en
Publication of JPH11335322A publication Critical patent/JPH11335322A/en
Application granted granted Critical
Publication of JP4128267B2 publication Critical patent/JP4128267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はポリオール部分エステルの製造法に関し、詳しくは、不飽和脂肪酸残基を有するポリオール部分エステルから、高選択的にポリオール部分エステルを製造する方法に関する。
【0002】
ポリオール部分エステルは、その起泡性、溶質溶解性、乳化性、保湿性、皮膚浸透性、低刺激性、潤滑性から、食品、化粧品、医薬若しくはその原料となる化学品として、産業上極めて重要である。
【0003】
【従来の技術及び発明が解決しようとする課題】
ポリオール部分エステルの製造法としては、ポリオールフルエステルと脂肪酸誘導体とのトランスエステル化、若しくはポリオールと当量以下の脂肪酸誘導体とのエステル化が一般的である。この際、触媒としてアルカリを用いる方法、又はリパーゼなどの酵素触媒を用いる方法が知られている。
【0004】
この2種の触媒を用いて製造されるポリオール部分エステルの特徴について説明すると、前者のアルカリ触媒を用いた場合は選択性の低いランダムエステルが得られ、後者の酵素触媒を用いた場合は選択性の高いエステルが得られる。ここで選択性の高いエステルとは、個々のポリオールのエステル化度の分布が少ないエステルを意味する。即ち、例を挙げて説明すれば、平均エステル化度2の部分エステルにおいては、選択性の高いエステルとはジエステルを多く含有し、選択性の低いエステルとは、未エステル化ポリオール、モノエステル、トリエステル等を多く含有する。
【0005】
任意の脂肪酸誘導体及びポリオールを原料として、これらの触媒を区別して用いることによって、即ち、アルカリ触媒を用いることによって、選択性の低いポリオール部分エステルを、また、酵素触媒を用いることによって、選択性の高いポリオール部分エステルを製造できることから、様々なポリオール部分エステルの製造が可能である。しかしながら、酵素触媒では反応温度を上げることは、選択性の低下及び触媒寿命の低下を引き起こすため、高選択的なポリオール部分エステルの製造においては、原料の脂肪酸、ポリオール、及び製造されるポリオール部分エステルの凝固点には制限があり、高凝固点で選択性の高いエステルの製造は困難とされていた。勿論、適当な有機溶剤を用いることによって、これは可能であるが、製造設備への負担及び危険性が大きくなるという問題点を有している。
【0006】
従って、本発明が解決しようとする課題は、凝固点が高く、高いエステル選択性を有するポリオール部分エステルを製造する方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは上記課題を解決すべく鋭意研究の結果、不飽和脂肪酸残基を有するポリオール部分エステルを特定の触媒の存在下、低温下で水素化することによって、エステル交換反応を併発することなく、高凝固点の選択性の高いエステルを製造できることを見い出し、本発明を完成した。
【0008】
即ち、本発明は、不飽和脂肪酸残基を有するポリオール部分エステルを、白金族の触媒存在下、水素雰囲気中 100℃以下で水素化することを特徴とする高選択的なポリオール部分エステルの製造法を提供するものである。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。
【0010】
本発明において用いられる不飽和脂肪酸残基を有するポリオール部分エステルとは、エチレングリコール、プロピレングリコール等のアルキレングリコール;グリセリン;ペンタエリスリトール;トリメチロールプロパン等のポリオールの水酸基の一部に不飽和脂肪酸残基がエステル結合してなるものであり、具体的にはモノアシルグリセロール、ジアシルグリセロール、モノアシルアルキレングリコール等が挙げられる。
【0011】
ここで不飽和脂肪酸としては、炭素数16〜22の不飽和脂肪酸が好ましく、具体的には、ヘキサデセン酸、オクタデセン酸、オクタデカジエン酸、オクタデカトリエン酸、あるいはこれらの混合物や、これらを含有する例えば牛脂、豚脂等の動物油、パーム油、菜種油、大豆油等の植物油から誘導される脂肪酸等が挙げられ、不飽和脂肪酸だけでなく、飽和の脂肪酸を含んでいても良い。
【0012】
また本発明で用いられる白金属の触媒としては、パラジウム、白金、ルテニウム、ロジウム等の触媒が挙げられ、パラジウム触媒が特に好ましい。またこれらの金属はカーボン、アルミナ、シリカアルミノ、シリカ、ゼオライト等の担体に担持されていてもよい。
本発明において、白金属の触媒の添加量は、反応速度及びコストの点から、不飽和脂肪酸残基を有するポリオール部分エステルに対して10〜1000ppm が好ましく、50〜500 ppm がより好ましい。
【0013】
本発明の水素化反応の温度は、原料の不飽和脂肪酸残基を有するポリオール部分エステル及び水素化後のポリオール部分エステルの凝固点以上であることが必要であるが、100 ℃を超えるとエステル交換が併発し選択性が悪くなることから、100 ℃以下、望ましくは60℃以下で水素化反応を行なうことが好ましい。反応の温度は低すぎると反応速度が遅くなるが、反応系内が固化せずに液状である限りは問題はない。
【0014】
また、水素化反応は必ずしも完結させる必要はなく、反応時間、反応温度、触媒量、水素圧力等を調整することで、任意の凝固点の生成物を得ることができる。しかしながら、ポリオール部分エステルの脂肪酸残基中に含有されるエチレン結合を3個有する不飽和脂肪酸残基は、安定性が低く、色相、匂いの劣化を引き起こすこと、また、高温下では重合し易く、粘度上昇等の好ましくない物性の変化を引き起こすことから、不飽和脂肪酸残基中のエチレン結合を3個有する不飽和脂肪酸残基の割合が1重量%以下になるまで水素化を行なうことが好ましい。また、水素化率(反応率)が低いと、凝固点の調整という観点において効果が小さく、水素化反応は反応率15%以上、即ち、水素化後のポリオール部分エステルのヨウ素価が、原料の不飽和脂肪酸残基を有するポリオール部分エステルのヨウ素価の85%以下となるまで水素化を行なうことが効果的である。
本発明の水素化反応は、設備への負担低減や安全性の面から無溶媒下で行なうことが望ましい。
【0015】
本発明の方法によると、凝固点が高く、高いエステル選択性を有するポリオール部分エステルを製造することができる。
【0016】
【実施例】
以下、実施例及び比較例をもって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0017】
実施例1
菜種油由来の不飽和脂肪酸残基を有するジアシルグリセロール(ヨウ素価120 、アシルグリセロール組成:モノ体2モル%, ジ体91モル%, トリ体7モル%) 500gにパラジウムカーボン触媒(パラジウム担持量5重量%)を10g加え、60℃、4時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルグリセロール組成を表1に示す。尚、ヨウ素価は油脂基準試験法に従ってウィイス法で測定し、アシルグリセロールの組成はガスクロマトグラフィーにて測定した。
【0018】
また、水素添加反応の1時間毎のポリオール部分エステル中のオクタデカトリエン酸残基含量、凝固点、相対重合度及び匂いを評価した。結果を表2に示す。尚、オクタデカトリエン酸残基含量はアシルグリセロールをエステル交換にてメチルエステルとし、ガスクロマトグラフィーにて測定し、凝固点は油脂基準試験法に従ってタイターを測定した。匂いについては、得られたポリオール部分エステルと、これを300 ℃で24時間加熱したものを、官能試験にて比較した。相対重合度については、300 ℃、24時間加熱したものをGPCにて測定し、算出した。
【0019】
比較例1
実施例1と同様の菜種油由来の不飽和脂肪酸残基を有するジアシルグリセロール 500gにニッケル触媒を 0.5g加え、60℃、4時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルグリセロール組成を表1に示す。
【0020】
比較例2
実施例1と同様の菜種油由来の不飽和脂肪酸残基を有するジアシルグリセロール 500gにニッケル触媒を 0.5g加え、 170℃、 0.5時間、0.39MPa(ゲージ圧)の水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルグリセロール組成を表1に示す。
【0021】
比較例3
実施例1と同様の菜種油由来の不飽和脂肪酸残基を有するジアシルグリセロール 500gにパラジウムカーボン触媒(パラジウム担持量5重量%)を10g加え、170 ℃、 0.5時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルグリセロール組成を表1に示す。
【0022】
【表1】

Figure 0004128267
【0023】
【表2】
Figure 0004128267
【0024】
実施例2
菜種油由来の不飽和脂肪酸残基を有するモノアシルグリセロール(ヨウ素価104 、アシルグリセロール組成:モノ体98モル%, ジ体2モル%, トリ体0モル%) 500gにパラジウムカーボン触媒(パラジウム担持量5重量%)を10g加え、60℃、4時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルグリセロール組成を表3に示す。
【0025】
比較例4
実施例2と同様の菜種油由来の不飽和脂肪酸残基を有するモノアシルグリセロール 500gにニッケル触媒を 0.5g加え、60℃、4時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルグリセロール組成を表3に示す。
【0026】
比較例5
実施例2と同様の菜種油由来の不飽和脂肪酸残基を有するモノアシルグリセロール 500gにニッケル触媒を 0.5g加え、 170℃、 0.5時間、0.39MPa(ゲージ圧)の水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルグリセロール組成を表3に示す。
【0027】
比較例6
実施例2と同様の菜種油由来の不飽和脂肪酸残基を有するモノアシルグリセロール 500gにパラジウムカーボン触媒(パラジウム担持量5重量%)を10g加え、 170℃、 0.5時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルグリセロール組成を表3に示す。
【0028】
【表3】
Figure 0004128267
【0029】
実施例3
菜種油由来の不飽和脂肪酸残基を有するモノアシルエチレングリコール(ヨウ素価120 、アシルエチレングリコール組成:モノ体98モル%, ジ体2モル%) 500gにパラジウムカーボン触媒(パラジウム担持量5重量%)を10g加え、60℃、4時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルエチレングリコール組成を表4に示す。
【0030】
比較例7
実施例3と同様の菜種油由来の不飽和脂肪酸残基を有するモノアシルエチレングリコール 500gにニッケル触媒を 0.5g加え、60℃、4時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルエチレングリコール組成を表4に示す。
【0031】
比較例8
実施例3と同様の菜種油由来の不飽和脂肪酸残基を有するモノアシルエチレングリコール 500gにニッケル触媒を 0.5g加え、 170℃、 0.5時間、0.39MPa(ゲージ圧)の水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルエチレングリコール組成を表4に示す。
【0032】
比較例9
実施例3と同様の菜種油由来の不飽和脂肪酸残基を有するモノアシルエチレングリコール 500gにパラジウムカーボン触媒(パラジウム担持量5重量%)を10g加え、 170℃、 0.5時間、常圧水素雰囲気下で水素添加反応を行った。反応終了後、濾過にて触媒を除去し、水素添加された反応終了物を得た。
得られた反応終了物のヨウ素価及びアシルエチレングリコール組成を表4に示す。
【0033】
【表4】
Figure 0004128267
【0034】
上記実施例及び比較例の結果から明らかなように、本発明の方法によると高選択性の水素化されたポリオール部分エステルが得られたが、ニッケル触媒を用い、100 ℃以下の温度で水素化反応を行なうと水素化反応はほとんど進行しなかった。また、ニッケル触媒あるいは白金属触媒を用い、100 ℃より高い温度で水素化反応を行なうと、高選択性のポリオール部分エステルは得られなかった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a polyol partial ester, and more particularly to a method for producing a polyol partial ester with high selectivity from a polyol partial ester having an unsaturated fatty acid residue.
[0002]
Polyol partial esters are extremely important in the industry as foods, cosmetics, pharmaceuticals, or chemicals that are their raw materials because of their foaming properties, solute solubility, emulsifying properties, moisturizing properties, skin permeability, low irritation properties, and lubricity. It is.
[0003]
[Prior art and problems to be solved by the invention]
As a method for producing a polyol partial ester, transesterification of a polyol full ester and a fatty acid derivative, or esterification of a polyol with an equivalent or less fatty acid derivative is generally used. At this time, a method using an alkali as a catalyst or a method using an enzyme catalyst such as lipase is known.
[0004]
The characteristics of the polyol partial ester produced using these two types of catalysts will be described. When the former alkaline catalyst is used, a random ester having low selectivity is obtained, and when the latter enzyme catalyst is used, the selectivity is obtained. High ester is obtained. Here, the highly selective ester means an ester having a small distribution of the degree of esterification of each polyol. That is, by way of example, in a partial ester having an average degree of esterification of 2, the ester having high selectivity contains a large amount of diester, and the ester having low selectivity is an unesterified polyol, monoester, Contains a lot of triesters.
[0005]
By selectively using these fatty acids derivatives and polyols as raw materials, that is, by using an alkali catalyst, a polyol partial ester having low selectivity, and by using an enzyme catalyst, selectivity can be obtained. Since a high polyol partial ester can be produced, various polyol partial esters can be produced. However, in an enzyme catalyst, raising the reaction temperature causes a decrease in selectivity and a decrease in catalyst life. Therefore, in the production of a highly selective polyol partial ester, the starting fatty acid, polyol, and produced polyol partial ester The freezing point is limited, and it has been difficult to produce an ester having a high freezing point and high selectivity. Of course, this can be achieved by using an appropriate organic solvent, but there is a problem that the burden on the production facility and the danger increase.
[0006]
Therefore, the problem to be solved by the present invention is to provide a method for producing a polyol partial ester having a high freezing point and high ester selectivity.
[0007]
[Means for Solving the Problems]
As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention simultaneously generate a transesterification reaction by hydrogenating a polyol partial ester having an unsaturated fatty acid residue at a low temperature in the presence of a specific catalyst. Thus, the present inventors have found that an ester having a high freezing point and high selectivity can be produced.
[0008]
That is, the present invention provides a highly selective method for producing a polyol partial ester characterized by hydrogenating a polyol partial ester having an unsaturated fatty acid residue in the presence of a platinum group catalyst at 100 ° C. or less in a hydrogen atmosphere. Is to provide.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0010]
The polyol partial ester having an unsaturated fatty acid residue used in the present invention is an alkylene glycol such as ethylene glycol or propylene glycol; glycerin; pentaerythritol; a part of a hydroxyl group of a polyol such as trimethylolpropane, an unsaturated fatty acid residue. Is an ester bond, and specific examples include monoacylglycerol, diacylglycerol, and monoacylalkylene glycol.
[0011]
Here, the unsaturated fatty acid is preferably an unsaturated fatty acid having 16 to 22 carbon atoms, specifically, hexadecenoic acid, octadecenoic acid, octadecadienoic acid, octadecatrienoic acid, or a mixture thereof or a mixture thereof. Examples thereof include fatty acids derived from animal oils such as beef tallow and lard, and plant oils such as palm oil, rapeseed oil and soybean oil, and may contain not only unsaturated fatty acids but also saturated fatty acids.
[0012]
Examples of the white metal catalyst used in the present invention include catalysts such as palladium, platinum, ruthenium, rhodium, and the palladium catalyst is particularly preferable. These metals may be supported on a carrier such as carbon, alumina, silica alumino, silica, zeolite or the like.
In the present invention, the amount of the white metal catalyst added is preferably 10 to 1000 ppm, more preferably 50 to 500 ppm, based on the polyol partial ester having an unsaturated fatty acid residue, from the viewpoint of reaction rate and cost.
[0013]
The temperature of the hydrogenation reaction of the present invention must be equal to or higher than the freezing point of the polyol partial ester having an unsaturated fatty acid residue as a raw material and the polyol partial ester after hydrogenation. It is preferable to carry out the hydrogenation reaction at 100 ° C. or lower, preferably 60 ° C. or lower, because it occurs simultaneously and the selectivity becomes poor. If the reaction temperature is too low, the reaction rate becomes slow, but there is no problem as long as the reaction system does not solidify and is liquid.
[0014]
The hydrogenation reaction does not necessarily have to be completed, and a product having an arbitrary freezing point can be obtained by adjusting the reaction time, reaction temperature, catalyst amount, hydrogen pressure, and the like. However, the unsaturated fatty acid residue having three ethylene bonds contained in the fatty acid residue of the polyol partial ester has low stability, causes deterioration in hue and odor, and is easily polymerized at high temperatures. Hydrogenation is preferably carried out until the proportion of unsaturated fatty acid residues having 3 ethylene bonds in the unsaturated fatty acid residue is 1% by weight or less because it causes an undesirable change in physical properties such as an increase in viscosity. In addition, if the hydrogenation rate (reaction rate) is low, the effect is small in terms of adjusting the freezing point, and the hydrogenation reaction has a reaction rate of 15% or more, that is, the iodine value of the polyol partial ester after hydrogenation is inadequate. It is effective to perform hydrogenation until the iodine value of the polyol partial ester having a saturated fatty acid residue is 85% or less.
The hydrogenation reaction of the present invention is preferably carried out in the absence of a solvent from the viewpoint of reducing the burden on equipment and safety.
[0015]
According to the method of the present invention, a polyol partial ester having a high freezing point and high ester selectivity can be produced.
[0016]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these Examples.
[0017]
Example 1
Diacylglycerol having an unsaturated fatty acid residue derived from rapeseed oil (iodine value 120, acylglycerol composition: 2 mol% mono, 91 mol% di, 7 mol% tri) 500 g palladium carbon catalyst (palladium loading 5 wt. %) Was added, and a hydrogenation reaction was performed at 60 ° C. for 4 hours under a normal pressure hydrogen atmosphere. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 1 shows the iodine value and acylglycerol composition of the resulting reaction product. The iodine value was measured by the Wiis method according to the fat and oil standard test method, and the composition of acylglycerol was measured by gas chromatography.
[0018]
In addition, the content of octadecatrienoic acid residue, the freezing point, the relative degree of polymerization, and the odor in the polyol partial ester every hour of the hydrogenation reaction were evaluated. The results are shown in Table 2. The octadecatrienoic acid residue content was measured by gas chromatography using acylglycerol as a methyl ester by transesterification, and the freezing point was measured by titer according to the fat and oil standard test method. Regarding the odor, the obtained polyol partial ester and the one heated at 300 ° C. for 24 hours were compared by a sensory test. The degree of relative polymerization was calculated by measuring a product heated at 300 ° C. for 24 hours with GPC.
[0019]
Comparative Example 1
0.5 g of nickel catalyst was added to 500 g of diacylglycerol having an unsaturated fatty acid residue derived from rapeseed oil similar to that in Example 1, and a hydrogenation reaction was performed at 60 ° C. for 4 hours in a normal pressure hydrogen atmosphere. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 1 shows the iodine value and acylglycerol composition of the resulting reaction product.
[0020]
Comparative Example 2
0.5 g of nickel catalyst was added to 500 g of diacylglycerol having an unsaturated fatty acid residue derived from rapeseed oil as in Example 1, and a hydrogenation reaction was performed in a hydrogen atmosphere at 170 ° C. for 0.5 hour at 0.39 MPa (gauge pressure). . After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 1 shows the iodine value and acylglycerol composition of the resulting reaction product.
[0021]
Comparative Example 3
10 g of palladium carbon catalyst (palladium supported amount of 5% by weight) is added to 500 g of diacylglycerol having an unsaturated fatty acid residue derived from rapeseed oil as in Example 1, and hydrogenation reaction is performed at 170 ° C. for 0.5 hours in a normal pressure hydrogen atmosphere. Went. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 1 shows the iodine value and acylglycerol composition of the resulting reaction product.
[0022]
[Table 1]
Figure 0004128267
[0023]
[Table 2]
Figure 0004128267
[0024]
Example 2
Monoacylglycerol having unsaturated fatty acid residue derived from rapeseed oil (iodine value 104, acylglycerol composition: mono-form 98 mol%, di-form 2 mol%, tri-form 0 mol%) 500 g of palladium carbon catalyst (palladium supported amount 5) 10 g (% by weight) was added, and a hydrogenation reaction was performed at 60 ° C. for 4 hours under a normal pressure hydrogen atmosphere. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 3 shows the iodine value and acylglycerol composition of the reaction product obtained.
[0025]
Comparative Example 4
0.5 g of nickel catalyst was added to 500 g of monoacylglycerol having an unsaturated fatty acid residue derived from rapeseed oil as in Example 2, and a hydrogenation reaction was performed at 60 ° C. for 4 hours in a normal pressure hydrogen atmosphere. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 3 shows the iodine value and acylglycerol composition of the reaction product obtained.
[0026]
Comparative Example 5
0.5 g of nickel catalyst is added to 500 g of monoacylglycerol having an unsaturated fatty acid residue derived from rapeseed oil as in Example 2, and a hydrogenation reaction is performed at 170 ° C. for 0.5 hour in a hydrogen atmosphere of 0.39 MPa (gauge pressure). It was. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 3 shows the iodine value and acylglycerol composition of the reaction product obtained.
[0027]
Comparative Example 6
10 g of a palladium carbon catalyst (palladium supported amount of 5% by weight) is added to 500 g of monoacylglycerol having an unsaturated fatty acid residue derived from rapeseed oil as in Example 2, and hydrogenated at 170 ° C. for 0.5 hours under a normal pressure hydrogen atmosphere. Reaction was performed. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 3 shows the iodine value and acylglycerol composition of the reaction product obtained.
[0028]
[Table 3]
Figure 0004128267
[0029]
Example 3
Monoacylethylene glycol having unsaturated fatty acid residue derived from rapeseed oil (iodine value 120, acylethylene glycol composition: 98 mol% mono, 2 mol% di) 500 g palladium carbon catalyst (palladium loading 5 wt%) 10 g was added, and a hydrogenation reaction was performed at 60 ° C. for 4 hours under a normal pressure hydrogen atmosphere. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 4 shows the iodine value and acylethylene glycol composition of the resulting reaction product.
[0030]
Comparative Example 7
0.5 g of nickel catalyst was added to 500 g of monoacylethylene glycol having an unsaturated fatty acid residue derived from rapeseed oil as in Example 3, and a hydrogenation reaction was performed at 60 ° C. for 4 hours in a normal pressure hydrogen atmosphere. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 4 shows the iodine value and acylethylene glycol composition of the resulting reaction product.
[0031]
Comparative Example 8
0.5 g of nickel catalyst is added to 500 g of monoacylethylene glycol having an unsaturated fatty acid residue derived from rapeseed oil as in Example 3, and the hydrogenation reaction is carried out in a hydrogen atmosphere of 170 ° C., 0.5 hour, 0.39 MPa (gauge pressure). went. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 4 shows the iodine value and acylethylene glycol composition of the resulting reaction product.
[0032]
Comparative Example 9
10 g of a palladium carbon catalyst (palladium supported amount of 5% by weight) is added to 500 g of monoacylethylene glycol having an unsaturated fatty acid residue derived from rapeseed oil as in Example 3, and hydrogenated at 170 ° C. for 0.5 hours in a normal pressure hydrogen atmosphere. The addition reaction was performed. After completion of the reaction, the catalyst was removed by filtration to obtain a hydrogenated reaction end product.
Table 4 shows the iodine value and acylethylene glycol composition of the resulting reaction product.
[0033]
[Table 4]
Figure 0004128267
[0034]
As is clear from the results of the above examples and comparative examples, according to the method of the present invention, a highly selective hydrogenated polyol partial ester was obtained, but hydrogenation was performed at a temperature of 100 ° C. or less using a nickel catalyst. When the reaction was carried out, the hydrogenation reaction hardly proceeded. Further, when a hydrogenation reaction was performed at a temperature higher than 100 ° C. using a nickel catalyst or a white metal catalyst, a highly selective polyol partial ester could not be obtained.

Claims (5)

炭素数 16 22 不飽和脂肪酸残基を有するポリオール部分エステルを、白金族の触媒存在下、水素雰囲気中100℃以下で、水素化後のポリオール部分エステルのヨウ素価が、原料の不飽和脂肪酸残基を有するポリオール部分エステルのヨウ素価の 85 %以下となるまで水素化を行なうことを特徴とするポリオールのエステル化度の分布が少ない高選択的なポリオール部分エステルの製造法。The polyol partial esters having an unsaturated fatty acid residue having 16 to 22 carbon atoms, the presence of a catalyst of a platinum group, at 100 ° C. or less in a hydrogen atmosphere, iodine value of the polyol partial esters after hydrogenation, the raw material of the unsaturated fatty acids A highly selective process for producing a polyol partial ester having a low distribution of the degree of esterification of the polyol, wherein hydrogenation is carried out until the iodine value of the polyol partial ester having a residue is 85 % or less . 不飽和脂肪酸残基中のエチレン結合を3個有する不飽和脂肪酸残基の割合が1重量%以下になるまで水素化を行なう請求項1記載の製造法。  The process according to claim 1, wherein the hydrogenation is carried out until the ratio of unsaturated fatty acid residues having 3 ethylene bonds in the unsaturated fatty acid residues is 1 wt% or less. 白金族の触媒を不飽和脂肪酸残基を有するポリオール部分エステルに対して10〜1000ppm 添加する請求項1又は2記載の製造法。The process according to claim 1 or 2 , wherein a platinum group catalyst is added in an amount of 10 to 1000 ppm based on the polyol partial ester having an unsaturated fatty acid residue. 白金族の触媒がパラジウム触媒である請求項1〜のいずれか一項に記載の製造法。The method according to any one of claims 1 to 3 , wherein the platinum group catalyst is a palladium catalyst. 不飽和脂肪酸残基を有するポリオール部分エステルが、モノアシルグリセロール、ジアシルグリセロール又はモノアシルアルキレングリコールである請求項1〜のいずれか一項に記載の製造法。The production method according to any one of claims 1 to 4 , wherein the polyol partial ester having an unsaturated fatty acid residue is monoacylglycerol, diacylglycerol, or monoacylalkylene glycol.
JP14381998A 1998-05-26 1998-05-26 Method for producing polyol partial ester Expired - Fee Related JP4128267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14381998A JP4128267B2 (en) 1998-05-26 1998-05-26 Method for producing polyol partial ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14381998A JP4128267B2 (en) 1998-05-26 1998-05-26 Method for producing polyol partial ester

Publications (2)

Publication Number Publication Date
JPH11335322A JPH11335322A (en) 1999-12-07
JP4128267B2 true JP4128267B2 (en) 2008-07-30

Family

ID=15347704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14381998A Expired - Fee Related JP4128267B2 (en) 1998-05-26 1998-05-26 Method for producing polyol partial ester

Country Status (1)

Country Link
JP (1) JP4128267B2 (en)

Also Published As

Publication number Publication date
JPH11335322A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JPH10510284A (en) Synthetic esters of fatty acid mixtures and alcohols from high oleic and low stearic vegetable oils
US5672781A (en) Process for the production of fatty alcohols based on vegetable fats and oils by fractionation
JP5502910B2 (en) Lubricants derived from plant and animal fats
JP2815409B2 (en) Production of esterified propoxylated glycerin by transesterification
EP2819987B1 (en) Lubricant composition of matter and methods of preparation
EP0272759B1 (en) Process for the post-hydrogenation of sucrose polyesters
EP0429995B1 (en) Process for hydrogenation of oils
JPH06509366A (en) Production method of fatty acid lower alkyl ester
EP1581607B1 (en) Hydrogenated and partially hydrogenated heat-bodied oils
EP3567091A1 (en) Branched fatty acids and esters thereof
JPH10502115A (en) Unsaturated fatty substances with improved low-temperature behavior
JPS6042495A (en) Methylesterification of oil and fat deodorant distillate
JP4128267B2 (en) Method for producing polyol partial ester
JPH0132814B2 (en)
JPH07179882A (en) Antifreezing oil or fat and its production
US5468406A (en) Mixtures of esters of highly branched carboxylic acids
US2483791A (en) Diene addition product and process for making it
US3119849A (en) Esterification process
JP3639082B2 (en) Solid soap composition
JPS5916595B2 (en) Manufacturing method for suppository base
DE764108C (en) Process for the production of carboxylic acid esters
JPH0237400B2 (en)
Shah et al. Synthetic Methodologies of Ester-Based Eco-Friendly, Biodegradable Lubricant Base Stocks for Industrial Applications
JPH08245997A (en) Production of soap raw material
JP2016154516A (en) Oil-and-fat crystal growth inhibitor and oil-and-fat composition containing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080311

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees