JP4128014B2 - Contaminant concentration measurement method - Google Patents

Contaminant concentration measurement method Download PDF

Info

Publication number
JP4128014B2
JP4128014B2 JP2002063702A JP2002063702A JP4128014B2 JP 4128014 B2 JP4128014 B2 JP 4128014B2 JP 2002063702 A JP2002063702 A JP 2002063702A JP 2002063702 A JP2002063702 A JP 2002063702A JP 4128014 B2 JP4128014 B2 JP 4128014B2
Authority
JP
Japan
Prior art keywords
container
sample
concentration
pollutant
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002063702A
Other languages
Japanese (ja)
Other versions
JP2003262630A (en
Inventor
研介 藤井
一貴 井出
泰 織田
志紀 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Toyota Motor Corp
Original Assignee
Obayashi Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Toyota Motor Corp filed Critical Obayashi Corp
Priority to JP2002063702A priority Critical patent/JP4128014B2/en
Publication of JP2003262630A publication Critical patent/JP2003262630A/en
Application granted granted Critical
Publication of JP4128014B2 publication Critical patent/JP4128014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、汚染土壌や汚染地下水に含まれる汚染物質を微生物の分解活性で分解処理する際、その分解処理状況を検査する際に使用される汚染物質の濃度測定方法に関する。
【0002】
【従来の技術】
工場跡地等の土壌内には、揮発性有機化合物、例えばトリクロロエチレンなどの揮発性有機化合物が含まれていることがあり、このような土壌をそのまま放置すると、揮発性有機化合物等の汚染物質が地下水への滲出や大気中への揮散によって環境に拡散するおそれがあり、それゆえ、かかる汚染土壌や汚染地下水に対しては所定の浄化処理を行わねばならない。
【0003】
一方、微生物の分解活性を利用して環境中の汚染物質を分解無害化する技術、すなわちバイオレメディエーションの研究が進んできており、最近では汚染土壌や汚染地下水へも適用されるようになってきた。
【0004】
ここで、微生物で処理された土壌や地下水については、これを分析することによって汚染物質の濃度が所望の値を下回ったかどうかを検査する必要があるが、かかる揮発性有機化合物の濃度を分析する簡易な方法として、汚染土壌や汚染地下水を試料として該試料を容器内に入れて密閉した後、これを振とう攪拌することで試料中の汚染物質を容器内の気中空間に揮散させ、しかる後、該気中空間に揮散した汚染物質の濃度をガスクロマトグラフ等の分析機器で分析する方法があり、かかる方法によれば、携帯型の分析機器を用いることによって、試料を研究室に持ち帰らずとも土壌調査現場や浄化工事現場で汚染物質の濃度測定を行うことができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した測定方法では、振とう攪拌を行う際、試料中に生息している微生物と該試料に残存している汚染物質との接触が促進されるとともに、攪拌によって微生物に十分な酸素が供給され該微生物の分解活性が高くなる。
【0006】
そのため、試料中の汚染物質は、微生物の分解活性によって振とう攪拌中に分解されてしまい、分析機器で分析される段階では、実際の汚染物質濃度よりも低い値が出てしまい、汚染物質が分解されて濃度低下していく状況を評価する際に判断を誤る懸念があるという問題を生じていた。
【0007】
本発明は、上述した事情を考慮してなされたもので、汚染物質の濃度低下を正確に把握することが可能な汚染物質の濃度測定方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る汚染物質の濃度測定方法は請求項1に記載したように、微生物の分解活性で汚染物質が分解処理された測定対象物を試料として該試料と水と所定の微生物活性停止剤とからなる混合液を所定の容器内に入れて密栓し、かかる状態で前記容器を振とうして該容器内の混合液を攪拌し、所定時間静置後、前記容器内の気中空間に揮散した前記汚染物質の濃度を分析するものである。
【0010】
また、本発明に係る汚染物質の濃度測定方法は、前記汚染物質を揮発性有機化合物、前記微生物活性停止剤を塩化ベンザルコニウムとしたものである。
【0011】
参考発明に係る汚染物質の濃度測定方法においては、まず、微生物の分解活性で汚染物質が分解処理された測定対象物を試料として該試料と酸性水又はアルカリ性水とからなる混合液を所定の容器内に入れて密栓する。
【0012】
次に、かかる状態で上述した容器を振とうして該容器内の混合液を攪拌する。
【0013】
次に、所定時間静置後、容器内の気中空間に揮散した汚染物質の濃度を分析する。
【0014】
このようにすると、試料内の微生物は、酸性又はアルカリ性環境におかれるため、汚染物質に対する分解活性は低下し、又は実質的になくなる。そのため、振とう工程において容器内の混合液を攪拌している間、試料内の汚染物質が微生物の分解活性で分解されるおそれがなくなる。
【0015】
測定対象物としては、例えば汚染土壌や汚染地下水中の汚染物質を微生物分解で分解処理された処理土壌や処理地下水が考えられる。
【0016】
汚染物質の具体例としては揮発性有機化合物、特にトリクロロエチレンが対象となることが考えられる。
【0017】
振とう後の容器の静置時間は、容器内における汚染物質の気中空間への揮散量と水中空間への溶込み量とが平衡状態に達するまでの時間とするのが望ましい。
【0018】
本発明に係る汚染物質の濃度測定方法においては、まず、微生物の分解活性で汚染物質が分解処理された測定対象物を試料として該試料と水と所定の微生物活性停止剤とからなる混合液を所定の容器内に入れて密栓する。
【0019】
次に、かかる状態で上述した容器を振とうして該容器内の混合液を攪拌する。
【0020】
次に、所定時間静置後、容器内の気中空間に揮散した汚染物質の濃度を分析する。
【0021】
このようにすると、試料内の微生物は、微生物活性停止剤によって分解活性が低下する。そのため、振とう工程において容器内の混合液を攪拌している間、試料内の汚染物質が微生物の分解活性で分解されるおそれがなくなる。
【0022】
測定対象物としては、例えば汚染土壌や汚染地下水中の汚染物質を微生物分解で分解処理された処理土壌や処理地下水が考えられる。
【0023】
汚染物質の具体例としては揮発性有機化合物、特にトリクロロエチレンが対象となることが考えられ、微生物活性停止剤の具体例としては塩化ベンザルコニウムとすることが考えられる。
【0024】
振とう後の容器の静置時間は、容器内における汚染物質の気中空間への揮散量と水中空間への溶込み量とが平衡状態に達するまでの時間とするのが望ましい。
【0025】
混合液は、振とう前に容器内で試料と水と微生物活性停止剤とが混合されていれば足り、水と微生物活性停止剤とを予め混合したものを容器内に入れてもよいし、それらを別々に容器内に入れるようにしてもよい。
【0026】
なお、本発明で微生物の分解活性と言うときは、微生物が有する分解酵素の分解能力を意味するのみならず、微生物自体の活性をも包摂するものとする。
【0027】
【発明の実施の形態】
以下、本発明に係る汚染物質の濃度測定方法の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0028】
参考例
【0029】
図1は、参考例に係る汚染物質の濃度測定方法の処理手順を示した図である。同図に示すように、本参考例に係る汚染物質の濃度測定方法においては、まず、図1(a)に示すように測定対象物である微生物処理土壌を試料1とし、該試料を容器3内に入れる。
【0030】
試料1は、汚染物質としてのトリクロロエチレンで汚染されている汚染土壌を微生物の分解活性で分解処理する際、時間経過とともにトリクロロエチレンの濃度がどのように低下していくかを検査すべく、所定の時間が経過するごとに汚染土壌からそのつど抜き取ったものを用いる。なお、試料1内に5mmを超える木片や礫が含まれている場合には、これらを事前に除去しておく。
【0031】
次に、図1(b)に示すように、酸性水又はアルカリ性水4を容器3内に入れ、試料1とともに混合液5を作製する。ここで、酸性水を使用するのであれば、例えば水に塩酸を添加してpHを小さくすればよいし、アルカリ性水を使用するのであれば、例えば水に水酸化ナトリウムを添加してpHを大きくすればよい。
【0032】
次に、容器3の口を栓体6を用いて密栓する。
【0033】
次に、かかる状態で容器3を図1(c)に示すように振とうし、該容器内の混合液5を攪拌する。
【0034】
次に、所定時間静置後、図1(d)に示すように容器3内の気中空間に揮散したトリクロロエチレン7の濃度を携帯型ガスクロマトグラフを用いて分析する。振とう後の容器の静置時間は、容器内におけるトリクロロエチレンの気中空間への揮散量と水中空間への溶込み量とが平衡状態に達するまでの時間とするのが望ましい。
【0035】
このようにすると、試料1内の微生物は、酸性又はアルカリ性環境におかれるため、トリクロロエチレンに対する分解活性は低下し、又は実質的になくなる。
【0036】
以上説明したように、本参考例に係る汚染物質の濃度測定方法によれば、微生物処理土壌を試料1として該試料と酸性水又はアルカリ性水4とからなる混合液5を容器3内に入れて密栓し、かかる状態で容器3を振とうして該容器内の混合液5を攪拌し、所定時間静置後、容器3内の気中空間に揮散したトリクロロエチレン7の濃度を分析するようにしたので、試料1内の微生物は、酸性又はアルカリ性環境におかれることとなり、トリクロロエチレンに対する分解活性は低下し、又は実質的になくなる。
【0037】
したがって、振とう工程において容器3内の混合液5を攪拌している間、試料1内のトリクロロエチレンが微生物の分解活性で分解されるおそれがなくなり、その結果、従来のように、攪拌中において試料に生息している微生物の分解活性によってトリクロロエチレンが分解されてしまい、分析される段階において、実際の汚染物質濃度よりも低い値が出てしまう懸念がなくなるとともに、その結果としてトリクロロエチレンが分解除去されて濃度低下していく進行状況の判断を誤るといった事態を未然に防止することが可能となる。
【0038】
実施形態
【0039】
次に、本実施形態に係る汚染物質の濃度測定方法について説明する。
【0040】
図2は、本実施形態に係る汚染物質の濃度測定方法の処理手順を示した図である。同図に示すように、本実施形態に係る汚染物質の濃度測定方法においては、まず、図2(a)に示すように測定対象物である微生物処理土壌を試料1とし、該試料を容器3内に入れる。
【0041】
試料1は、汚染物質としてのトリクロロエチレンで汚染されている汚染土壌を微生物の分解活性で分解処理する際、時間経過とともにトリクロロエチレンの濃度がどのように低下していくかを検査すべく、所定の時間が経過するごとに汚染土壌からそのつど抜き取ったものを用いる。なお、試料1内に5mmを超える木片や礫が含まれている場合には、これらを事前に除去しておく。
【0042】
次に、図2(b)に示すように、水11を容器3内に入れるとともに微生物活性停止剤2を該容器内に添加し、試料1とともに混合液5aを作製する。ここで、微生物活性停止剤2は、トリクロロエチレンが試料1から溶出するのを阻害せず、なおかつトリクロロエチレンの分解のために試料1内に投与されている微生物を滅菌し又はその分解活性を低下させることができるものから適宜選択すればよい。例えば、微生物活性停止剤2として塩化ベンザルコニウムを用いるのが望ましい。
【0043】
次に、容器3の口を栓体6を用いて密栓する。
【0044】
次に、かかる状態で容器3を図2(c)に示すように振とうし、該容器内の混合液5aを攪拌する。
【0045】
次に、所定時間静置後、図2(d)に示すように容器3内の気中空間に揮散したトリクロロエチレン7の濃度を携帯型ガスクロマトグラフを用いて分析する。振とう後の容器3の静置時間は、容器3内におけるトリクロロエチレンの気中空間への揮散量と水中空間への溶込み量とが平衡状態に達するまでの時間とするのが望ましい。
【0046】
このようにすると、試料1中の微生物は、微生物活性停止剤2により分解活性が低下しているため、容器3内の混合液5aを振とうしている間に試料1内のトリクロロエチレンが微生物の分解活性で分解されるおそれがなくなる。また、微生物活性停止剤2は、トリクロロエチレンが試料1から溶出するのを阻害しないため、トリクロロエチレンの濃度測定に支障が生じる懸念もない。
【0047】
以上説明したように、本実施形態に係る汚染物質の濃度測定方法によれば、微生物処理土壌を試料1として該試料と水11と微生物活性停止剤2とからなる混合液5aを容器3内に入れて密栓し、かかる状態で容器3を振とうして該容器内の混合液5aを攪拌し、所定時間静置後、容器3内の気中空間に揮散したトリクロロエチレン7の濃度を分析するようにしたので、試料1中の微生物は、微生物活性停止剤2により分解活性が低下する。
【0048】
したがって、振とう工程において容器3内の混合液5aを攪拌している間、試料1中のトリクロロエチレンが微生物の分解活性で分解されるおそれがなくなり、その結果、従来のように、攪拌中において試料に生息している微生物の分解活性によってトリクロロエチレンが分解されてしまい、分析される段階において、実際の汚染物質濃度よりも低い値が出てしまう懸念がなくなるとともに、その結果としてトリクロロエチレンが分解除去されて濃度低下していく進行状況の判断を誤るといった事態を未然に防止することが可能となる。
【0049】
【発明の効果】
以上述べたように、本発明に係る汚染物質の濃度測定方法によれば、試料中の微生物は、酸性水、アルカリ水又は微生物活性停止剤によって分解活性が低下する。
【0050】
したがって、振とう工程において容器内の混合液を攪拌している間、試料中の汚染物質が微生物の分解活性で分解されることがなくなり、従来のように、攪拌中において試料に生息している微生物の分解活性によって汚染物質が分解されてしまい、分析される段階において、実際の汚染物質濃度よりも低い値が出てしまう懸念がなくなるとともに、その結果として汚染物質が分解除去されて濃度低下していく状況の判断を誤るといった事態を未然に防止することができる。
【0051】
【図面の簡単な説明】
【図1】第1実施形態に係る汚染物質の濃度測定方法における処理手順を示した図。
【図2】第2実施形態に係る汚染物質の濃度測定方法における処理手順を示した図。
【符号の説明】
1 試料
2 塩化ベンザルコニウム(微生物活性停止剤)
3 容器
4 酸性水又はアルカリ性水
5,5a 混合液
7 トリクロロエチレン(揮発性有機化合物、汚染物質)
11 水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for measuring the concentration of a pollutant used when a pollutant contained in polluted soil or contaminated groundwater is decomposed with the decomposition activity of microorganisms and the state of the decomposition treatment is inspected.
[0002]
[Prior art]
The soil such as the site of the factory may contain volatile organic compounds, for example, volatile organic compounds such as trichlorethylene. If such soil is left as it is, pollutants such as volatile organic compounds will become groundwater. There is a risk that it may diffuse into the environment due to leaching into the atmosphere or volatilization into the atmosphere, and therefore, such contaminated soil and contaminated groundwater must be subjected to a predetermined purification treatment.
[0003]
On the other hand, research on bioremediation, a technology for degrading and detoxifying pollutants in the environment using the microbial decomposition activity, has been progressing, and recently it has been applied to contaminated soil and contaminated groundwater. .
[0004]
Here, for soil and groundwater treated with microorganisms, it is necessary to examine whether or not the concentration of the pollutant is below a desired value by analyzing this, but the concentration of such volatile organic compounds is analyzed. As a simple method, contaminated soil or contaminated groundwater is used as a sample, and the sample is put in a container and sealed, and then this is shaken and stirred to volatilize contaminants in the sample between air and hollow in the container. Later, there is a method of analyzing the concentration of contaminants volatilized between the air and the air with an analytical instrument such as a gas chromatograph. By using such a portable analytical instrument, the sample is not brought back to the laboratory. In both cases, it is possible to measure the concentration of pollutants at the soil survey site and purification site.
[0005]
[Problems to be solved by the invention]
However, in the measurement method described above, when shaking and stirring, the contact between the microorganisms living in the sample and the contaminants remaining in the sample is promoted, and sufficient oxygen is added to the microorganisms by stirring. The degradation activity of the microorganism is increased.
[0006]
Therefore, the contaminants in the sample are decomposed during shaking and stirring due to the decomposition activity of the microorganisms, and at the stage of analysis with an analytical instrument, a value lower than the actual contaminant concentration appears, and the contaminants There has been a problem that there is a concern that a judgment is mistaken when evaluating a situation where the concentration is degraded and the concentration is lowered.
[0007]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a pollutant concentration measurement method capable of accurately grasping a decrease in the concentration of a pollutant.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for measuring the concentration of a pollutant according to the present invention includes a measurement object obtained by decomposing a pollutant by microbial decomposition activity as a sample, A liquid mixture composed of a predetermined microbial activity terminator is put in a predetermined container and sealed, and in this state, the container is shaken to stir the liquid mixture in the container, and left for a predetermined time, and then the container The concentration of the pollutant volatilized between the air cavities is analyzed.
[0010]
Moreover, the pollutant concentration measuring method according to the present invention uses the volatile organic compound as the pollutant and benzalkonium chloride as the microbial activity terminator.
[0011]
In the method for measuring the concentration of pollutants according to the reference invention , first, a measurement object in which the pollutants are decomposed by the microbial decomposition activity is used as a sample, and a mixed solution composed of the sample and acidic water or alkaline water is used in a predetermined container. Put inside and seal tightly.
[0012]
Next, the container mentioned above is shaken in this state, and the liquid mixture in this container is stirred.
[0013]
Next, after allowing to stand for a predetermined time, the concentration of contaminants volatilized between the air and hollow in the container is analyzed.
[0014]
In this way, since the microorganisms in the sample are placed in an acidic or alkaline environment, the degradation activity against the contaminants is reduced or substantially eliminated. Therefore, there is no possibility that the contaminants in the sample are decomposed by the decomposition activity of the microorganism while the mixed solution in the container is stirred in the shaking step.
[0015]
As the measurement object, for example, treated soil or treated groundwater obtained by decomposing a pollutant in contaminated soil or contaminated groundwater by microbial decomposition can be considered.
[0016]
As a specific example of the pollutant, volatile organic compounds, particularly trichlorethylene, can be considered.
[0017]
It is desirable that the standing time of the container after shaking is a time until the volatilization amount of the pollutant in the container and the penetration amount into the underwater space reach an equilibrium state.
[0018]
In the method for measuring the concentration of contaminants according to the present invention , first, a measurement object in which contaminants have been decomposed by microbial decomposition activity is used as a sample, and a mixed solution comprising the sample, water, and a predetermined microbial activity terminator is prepared. Put in a container and seal tightly.
[0019]
Next, the container mentioned above is shaken in this state, and the liquid mixture in this container is stirred.
[0020]
Next, after allowing to stand for a predetermined time, the concentration of contaminants volatilized between the air and hollow in the container is analyzed.
[0021]
When it does in this way, the decomposition activity of the microorganisms in a sample will fall with a microbial activity terminator. Therefore, there is no possibility that the contaminants in the sample are decomposed by the decomposition activity of the microorganism while the mixed solution in the container is stirred in the shaking step.
[0022]
As the measurement object, for example, treated soil or treated groundwater obtained by decomposing a pollutant in contaminated soil or contaminated groundwater by microbial decomposition can be considered.
[0023]
Specific examples of pollutants may be volatile organic compounds, particularly trichlorethylene, and a specific example of a microbial activity terminator may be benzalkonium chloride.
[0024]
It is desirable that the standing time of the container after shaking is a time until the volatilization amount of the pollutant in the container and the penetration amount into the underwater space reach an equilibrium state.
[0025]
The liquid mixture is sufficient if the sample, water, and microbial activity terminator are mixed in the container before shaking, and a mixture of water and microbial activity terminator may be put in the container in advance. You may make it put them in a container separately.
[0026]
In addition, when it says the decomposition activity of microorganisms by this invention, not only the decomposition ability of the degradation enzyme which microorganisms have but the activity of microorganisms itself shall be included.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a pollutant concentration measuring method according to the present invention will be described below with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0028]
( Reference example )
[0029]
FIG. 1 is a diagram showing a processing procedure of a pollutant concentration measuring method according to a reference example . As shown in the figure, in the pollutant concentration measuring method according to this reference example , first, as shown in FIG. Put in.
[0030]
Sample 1 was subjected to a predetermined time to inspect how the concentration of trichlorethylene decreases with the passage of time when degrading contaminated soil contaminated with trichlorethylene as a pollutant with the decomposition activity of microorganisms. Use the one extracted from the contaminated soil each time. In addition, when the sample 1 contains a piece of wood or gravel exceeding 5 mm, these are removed in advance.
[0031]
Next, as shown in FIG. 1 (b), acidic water or alkaline water 4 is put in the container 3, and a mixed solution 5 is prepared together with the sample 1. Here, if acidic water is used, for example, hydrochloric acid may be added to water to reduce the pH. If alkaline water is used, for example, sodium hydroxide is added to water to increase the pH. do it.
[0032]
Next, the mouth of the container 3 is sealed with a stopper 6.
[0033]
Next, in this state, the container 3 is shaken as shown in FIG. 1 (c), and the mixed solution 5 in the container is stirred.
[0034]
Next, after standing for a predetermined time, as shown in FIG. 1 (d), the concentration of trichlorethylene 7 volatilized between the air and hollow in the container 3 is analyzed using a portable gas chromatograph. The standing time of the container after shaking is preferably a time until the volatilization amount of trichlorethylene into the air space and the penetration amount into the underwater space reach an equilibrium state.
[0035]
In this way, since the microorganisms in the sample 1 are placed in an acidic or alkaline environment, the degradation activity on trichlorethylene is reduced or substantially eliminated.
[0036]
As described above, according to the pollutant concentration measuring method according to the present reference example , the mixed liquid 5 composed of the sample and the acidic water or the alkaline water 4 is put in the container 3 using the microorganism-treated soil as the sample 1. Sealed and shaken the container 3 in such a state to stir the mixed solution 5 in the container, left to stand for a predetermined time, and then analyzed the concentration of trichlorethylene 7 volatilized between the air and hollow in the container 3. Therefore, the microorganisms in the sample 1 are placed in an acidic or alkaline environment, and the degradation activity for trichlorethylene is reduced or substantially eliminated.
[0037]
Therefore, while stirring the mixed solution 5 in the container 3 in the shaking step, there is no possibility that the trichlorethylene in the sample 1 is decomposed by the decomposition activity of the microorganism, and as a result, the sample is being stirred during the conventional stirring. Trichlorethylene is decomposed by the degradation activity of microorganisms that live in the area, and at the stage of analysis, there is no concern that the value will be lower than the actual pollutant concentration, and as a result, trichlorethylene is decomposed and removed. It is possible to prevent a situation in which the determination of the progress of the concentration decrease is erroneous.
[0038]
( Embodiment )
[0039]
Next, a method for measuring the concentration of contaminants according to this embodiment will be described.
[0040]
FIG. 2 is a view showing a processing procedure of the pollutant concentration measuring method according to the present embodiment. As shown in the figure, in the pollutant concentration measuring method according to the present embodiment, first, as shown in FIG. Put in.
[0041]
Sample 1 was subjected to a predetermined time to inspect how the concentration of trichlorethylene decreases with the passage of time when degrading contaminated soil contaminated with trichlorethylene as a pollutant with the decomposition activity of microorganisms. Use the one extracted from the contaminated soil each time. In addition, when the sample 1 contains a piece of wood or gravel exceeding 5 mm, these are removed in advance.
[0042]
Next, as shown in FIG. 2 (b), water 11 is put into the container 3 and the microbial activity terminator 2 is added into the container to prepare a mixed solution 5 a together with the sample 1. Here, the microbial activity terminator 2 does not inhibit the elution of trichlorethylene from the sample 1, and sterilizes the microorganisms administered in the sample 1 for the degradation of trichlorethylene or reduces the degradation activity thereof. What is necessary is just to select suitably from what can. For example, it is desirable to use benzalkonium chloride as the microbial activity terminator 2.
[0043]
Next, the mouth of the container 3 is sealed with a stopper 6.
[0044]
Next, in this state, the container 3 is shaken as shown in FIG. 2 (c), and the mixed solution 5a in the container is stirred.
[0045]
Next, after allowing to stand for a predetermined time, as shown in FIG. 2 (d), the concentration of trichlorethylene 7 volatilized between the air and hollow in the container 3 is analyzed using a portable gas chromatograph. It is desirable that the standing time of the container 3 after shaking is a time until the volatilization amount of the trichlorethylene in the container 3 into the air space and the penetration amount into the underwater space reach an equilibrium state.
[0046]
In this way, since the microorganisms in the sample 1 have degraded activity due to the microorganism activity terminator 2, the trichlorethylene in the sample 1 is the microorganisms while the mixed solution 5a in the container 3 is shaken. There is no risk of degradation due to degradation activity. Moreover, since the microbial activity terminator 2 does not inhibit the elution of trichlorethylene from the sample 1, there is no concern that the concentration measurement of trichlorethylene will be hindered.
[0047]
As described above, according to the pollutant concentration measuring method according to the present embodiment, the mixed liquid 5a composed of the sample, water 11 and the microorganism activity terminator 2 is contained in the container 3 using the microorganism-treated soil as the sample 1. Put the container tightly, shake the container 3 in this state, stir the mixed solution 5a in the container, let stand for a predetermined time, and then analyze the concentration of trichlorethylene 7 volatilized between the air and hollow in the container 3 Therefore, the decomposition activity of the microorganisms in the sample 1 is lowered by the microorganism activity terminator 2.
[0048]
Therefore, while stirring the mixed solution 5a in the container 3 in the shaking step, there is no possibility that the trichlorethylene in the sample 1 is decomposed by the decomposition activity of the microorganisms. Trichlorethylene is decomposed by the degradation activity of microorganisms that live in the area, and at the stage of analysis, there is no concern that the value will be lower than the actual pollutant concentration, and as a result, trichlorethylene is decomposed and removed. It is possible to prevent a situation in which the determination of the progress of the concentration decrease is erroneous.
[0049]
【The invention's effect】
As described above, according to the method for measuring the concentration of contaminants according to the present invention, the microorganisms in the sample are degraded in degradation activity by acidic water, alkaline water or a microbial activity terminator.
[0050]
Therefore, while stirring the liquid mixture in the container in the shaking process, the contaminants in the sample are not decomposed by the microbial decomposition activity, and the sample is inhabited during stirring as in the past. Contaminants are decomposed by the decomposition activity of microorganisms, and there is no concern that the value will be lower than the actual pollutant concentration at the stage of analysis. As a result, the contaminants are decomposed and removed, and the concentration decreases. It is possible to prevent situations such as misjudgment of the situation that is going on.
[0051]
[Brief description of the drawings]
FIG. 1 is a view showing a processing procedure in a pollutant concentration measurement method according to a first embodiment.
FIG. 2 is a view showing a processing procedure in a pollutant concentration measurement method according to a second embodiment.
[Explanation of symbols]
1 Sample 2 Benzalkonium chloride (microbe activity terminator)
3 Container 4 Acidic or alkaline water 5,5a Mixture 7 Trichlorethylene (volatile organic compound, pollutant)
11 Water

Claims (2)

微生物の分解活性で汚染物質が分解処理された測定対象物を試料として該試料と水と所定の微生物活性停止剤とからなる混合液を所定の容器内に入れて密栓し、かかる状態で前記容器を振とうして該容器内の混合液を攪拌し、所定時間静置後、前記容器内の気中空間に揮散した前記汚染物質の濃度を分析することを特徴とする汚染物質の濃度測定方法。  Using a measurement object in which contaminants have been decomposed due to the decomposition activity of microorganisms as a sample, a mixture of the sample, water, and a predetermined microbial activity terminator is placed in a predetermined container and sealed, and in this state the container The method for measuring the concentration of contaminants is characterized by analyzing the concentration of the contaminants volatilized between the air cavities in the container after stirring the liquid mixture in the container and allowing to stand for a predetermined time. . 前記汚染物質を揮発性有機化合物、前記微生物活性停止剤を塩化ベンザルコニウムとした請求項1記載の汚染物質の濃度測定方法。  The pollutant concentration measuring method according to claim 1, wherein the pollutant is a volatile organic compound, and the microbial activity terminator is benzalkonium chloride.
JP2002063702A 2002-03-08 2002-03-08 Contaminant concentration measurement method Expired - Fee Related JP4128014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002063702A JP4128014B2 (en) 2002-03-08 2002-03-08 Contaminant concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002063702A JP4128014B2 (en) 2002-03-08 2002-03-08 Contaminant concentration measurement method

Publications (2)

Publication Number Publication Date
JP2003262630A JP2003262630A (en) 2003-09-19
JP4128014B2 true JP4128014B2 (en) 2008-07-30

Family

ID=29196845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002063702A Expired - Fee Related JP4128014B2 (en) 2002-03-08 2002-03-08 Contaminant concentration measurement method

Country Status (1)

Country Link
JP (1) JP4128014B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237821A (en) * 1994-10-14 1996-09-13 Yoshida Denki Kogyo Kk Unit for branch power distribution used in distribution board
JPH09182219A (en) * 1995-12-25 1997-07-11 Nitto Kogyo Kk Distribution board

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08237821A (en) * 1994-10-14 1996-09-13 Yoshida Denki Kogyo Kk Unit for branch power distribution used in distribution board
JPH09182219A (en) * 1995-12-25 1997-07-11 Nitto Kogyo Kk Distribution board

Also Published As

Publication number Publication date
JP2003262630A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
Marchal et al. Comparing the desorption and biodegradation of low concentrations of phenanthrene sorbed to activated carbon, biochar and compost
Townsend et al. A guide to the use of leaching tests in solid waste management decision making
Mansfeldt et al. Determination of total cyanide in soils by micro-distillation
JP2006522602A5 (en)
JP4128014B2 (en) Contaminant concentration measurement method
Campanella et al. Further developments in toxicity cell biosensors
Udovic et al. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil
Gälli et al. Evaluation and application of aquatic toxicity tests: use of the Microtox test for the prediction of toxicity based upon concentrations of contaminants in soil
Harzdorf Analytical chemistry of chromium species in the environment, and interpretation of results
Amezcua-Allieri et al. Impact of microbial activity on copper, lead and nickel mobilization during the bioremediation of soil PAHs
Hupe et al. Enhancement of the biological degradation of soils contaminated with oil by the addition of compost
JP3538643B1 (en) Additives used to remediate contaminated soil, groundwater or sediment
JP3957274B2 (en) Preparation method for microorganism-treated soil
JP3564573B2 (en) Biological remediation methods for contaminated soil and groundwater
Leštan et al. Influence of ozonation on extractability of Pb and Zn from contaminated soils
Smith et al. Cyanide geochemistry and detoxification regulations
JP4354308B2 (en) Method for predicting repair period and method for controlling repair process
JP4920813B2 (en) Activated carbon-containing filler for analysis of dioxins
Rodríguez-Alonso et al. Factors influencing the cleaning of plant samples with ultrasonic technology
Kuppusamy et al. Bioavailability of total petroleum hydrocarbons
Nkusi et al. Naturally produced organohalogens: AOX-monitoring in plants and sediments
JP3565688B2 (en) Microbial purification of soil contaminated with organohalogen compounds
Bielská Chemical methods for prediction of bioavailability of persistent organic pollutants in solid environmental matrices
CN118016183A (en) Method for rapidly predicting structure of stabilized product in vanadium-polluted soil solution
JP2006214782A (en) Method for evaluating and testing adaptability of pollution purification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080509

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees