JP3565688B2 - Microbial purification of soil contaminated with organohalogen compounds - Google Patents

Microbial purification of soil contaminated with organohalogen compounds Download PDF

Info

Publication number
JP3565688B2
JP3565688B2 JP24814997A JP24814997A JP3565688B2 JP 3565688 B2 JP3565688 B2 JP 3565688B2 JP 24814997 A JP24814997 A JP 24814997A JP 24814997 A JP24814997 A JP 24814997A JP 3565688 B2 JP3565688 B2 JP 3565688B2
Authority
JP
Japan
Prior art keywords
soil
strain
microorganisms
tce
trichloroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24814997A
Other languages
Japanese (ja)
Other versions
JPH1177019A (en
Inventor
泰 織田
雅美 宮田
美香 中山
健郎 徳弘
修 浅見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP24814997A priority Critical patent/JP3565688B2/en
Publication of JPH1177019A publication Critical patent/JPH1177019A/en
Application granted granted Critical
Publication of JP3565688B2 publication Critical patent/JP3565688B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機ハロゲン系化合物、例えばトリクロロエチレンにより汚染された土壌の生物学的浄化方法に関する。
【0002】
【従来の技術】
近年、有機ハロゲン化物、例えばトリクロロエチレン等による土壌汚染が問題になっており、微生物を利用した汚染土壌の浄化処理方法が提案されている。汚染土壌を微生物処理する方法としては、土壌に外部から酸素や栄養源を加えて土着の微生物を活性化させる方法(バイオスティミュレーション)や汚染土壌に汚染物質を効率よく分解する微生物を条件良く加えて浄化させる方法(バイオオーギュメンテーション)等がある。
【0003】
例えば、有機塩素系化合物(トリクロロエチレン)汚染土壌の浄化に際しては、上記のバイオスティミュレーション、バイオオーギュメンテーションとも微生物の有機塩素系化合物(トリクロロエチレン)分解能力を誘導するためには、誘導剤としてフェノール等の化学物質が必須である。しかし、誘導剤として用いるフェノール等は、それ自体有毒で問題となっている。その対策技術としては、バイオオーギュメンテーションの実施において、分解微生物を予め培養タンク等で増殖させ且つ誘導剤を加えて分解酵素を誘導して、その後、集菌等の操作でフェノール等を除去して土壌に接種すること(休止菌体法)があり、よって、フェノール等による2次汚染のリスクは回避できる。
【0004】
しかしながら、バイオオーギュメンテーションにおいて、使用する微生物が同一でも、土壌により浄化効果が大きく異なることが知られている。例えば、Migaelら、Journal of Industrial Microbiology Vol.12,p.397〜395(1993)には、微生物による土壌の浄化に影響を及ぼす要因として、土壌のpH、温度、水活性、通気、酸化還元電位等が挙げられている。また、特開平8−70855号公報には、アルカリ条件下で有機塩素系化合物を微生物により浄化することが記載されている。
【0005】
〔関連技術〕
本発明者らは、土壌中の有機ハロゲン化合物、特に有機塩素化合物、例えばトリクロロエチレンを効率的に分解する能力を有する微生物として、MO7株(FERM BP−5624)(特願平8−217456)、N16−1株(FERM BP−5504)(特願平8−100466)等を単離している。これらの微生物株は極めて高いトリクロロエチレン分解能を有するが、その効果は土壌の種類により大きく異なることが判明した。
【0006】
【発明が解決しようとする課題】
従って本発明は、微生物による土壌の浄化における土壌の種類による浄化効率のバラツキを排し、土壌の種類に影響されず常に効率的に土壌の浄化を行うことができる方法を提供するものである。
【0007】
【課題を解決するための手段】
上記の課題を解決するため、本発明は有機ハロゲン化合物で汚染された土壌に微生物を添加することにより該土壌を浄化する方法において、該土壌のpHを5〜9に調整することを特徴とする方法を提供する。
【0008】
【発明の実施の形態】
前記のごとく、微生物による土壌の浄化の効率が土壌の種類により異なる原因としては土壌の粒径、含水率、有機物含量、温度、土壌微生物等の要因が挙げられているものの、真の要因がなにかは必ずしも明確ではなかった。本発明者は、MO7株(FERM BP−5624)及びN16−1株(FERM BP−5504)を用いて、土壌粒径、特に粘土含量、土壌粒子密度、全炭素含量(TC)、土壌微生物、土壌pHなどの要因のそれぞれについて、それらがトリクロロエチレンの分解に与える影響を試験した結果、主として土壌pHの影響が大きいことを見出した。
【0009】
次に、pHの低い土壌を用い、これを種々のpHに中和した後、pHとトリクロロエチレンの分解との関係を試験し、pHが5〜9の範囲においてトリクロロエチレンの分解が効率よく行われることを見出した。従って、本発明においては、処理すべき土壌のpHを5〜9に調整する。例えばMO7株ではpH6〜9が好ましく、N16−1株ではpH5〜7が好ましい。酸性土壌のpHの調整は、任意の塩基性剤、例えばKHPO,CaCO等を用いて行うことができる。これらは粉末の状態で使用するのが好ましい。他方、塩基性土壌の中和は、任意の酸性剤、例えばFeSO,CaSO,NaHPO等を用いて行うことができる。
【0010】
本発明の方法は種々の土壌に対して応用することができ、特に限定されない。添加すべき中和剤の量は、処理すべき土壌のpH値、土壌の緩衝力などにより異なり、土壌のpHが上記の範囲に入るように適宜選択すればよい。ここで、土壌のpHは例えば、以下に示す方法で測定する。未風乾新鮮土の乾土10g相当量あるいは風乾細土10gに水25mlを加え(新鮮土の場合は、水分相当量を差し引く)、かき混ぜるか振り混ぜるかして1時間以上放置する。測定前に軽くかき混ぜて、懸濁状態とし、ガラス電極の薄膜球部を静かに液中に浸し、30秒以上経過してpH計の表示値が安定するのを待って、pHを読みとることにより行われる。(土壌標準分析、測定法、日本土壌肥料学会監修、博支社)
【0011】
土壌の中和操作は、汚染土壌を耕起し、それに中和剤を添加して混合すればよい。土壌のpHを調整した後、浄化用微生物菌体を添加すればよい。
本発明において使用する微生物としては、特に限定されず、トリクロロエチレン等、有機ハロゲン化物を分解し得る任意の微生物を用いることができるが、特に好ましい微生物はMO7株(FERM BP−5624)及びN16−1株(FERM BP−5504)であり、MO7株については特願平8−217456明細書に詳細に記載されており、またN16−1株については特願平8−100466明細書に詳細に記載されている。
【0012】
【実施例】
次に、実施例により本発明をさらに具体的に説明する。
実施例1
MO7株を0.05%のイーストエキストラクト及び500ppm のフェノールを含むNMS培地(表1)で培養し、その後集菌操作により菌体を回収、NMS培地(フェノールは含まない)に再懸濁後、土壌に接種した。TCE分解試験には、11種類の物性の異なる土壌を用いた。TCE汚染土壌は、土壌にガス状のTCEを接触させることで作成した。使用した11種類の土壌の特性を下記表1に示す。
【0013】
【表1】

Figure 0003565688
【0014】
【表2】
Figure 0003565688
【0015】
【表3】
Figure 0003565688
【0016】
結果は図1に示すように、土壌pHとTCE分解率には相関があった。土壌pHが6〜9程度の場合は良好な分解が見られたが、6以下では分解はほとんど見られなかった。
【0017】
実施例2
N16−1株を0.05%のイーストエキストラクト、500ppm のフェノールを含むNMS培地で培養し、その後集菌操作により菌体を回収、NMS培地(フェノールは含まない)に再懸濁後、土壌に接種した。TCE分解試験には、前記11種類の物性の異なる土壌を用いた。TCE汚染土壌は、土壌にガス状のTCEを接触させることで作成した。
結果は図2に示すように、土壌pHが5〜7程度の場合に良好な分解が見られた。
【0018】
実施例3
MO7株を0.05%のイーストエキストラクト、500ppm のフェノールを含むNMS培地で培養し、その後集菌操作により菌体を回収、NMS培地(フェノールは含まない)に再懸濁後、土壌に接種した。用いた土壌は、pHが4.5程度のMMT土壌で、TCEによる汚染は実施例1及び2と同様に実施した。MMT土壌のpHは、適量のCaCOあるいはKHPOを粉末状で混合することで調整した。
分解試験の結果は図3に示したように、元のpH(4.5)に比べてpHを調整(7.1,8.0)してやることのみで大幅にTCE分解が促進された。
【0019】
実施例4
N16−1株を0.05%のイーストエキストラクト、500ppm のフェノールを含むNMS培地で培養し、その後集菌操作により菌体を回収、NMS培地(フェノールは含まない)に再懸濁後、土壌に接種した。用いた土壌は、pHが4.5程度のMMT土壌で、TCEによる汚染は実施例1及び2と同様に実施した。MMT土壌のpHは、適量のCaCOを粉末状で混合することで調整した。
分解試験の結果は図4に示したように、元のpH(4.5)に比べてpHを調整(7.1)してやることのみで大幅にTCE分解が促進された。
【0020】
【発明の効果】
上記のごとく、本発明によれば、処理しようとする土壌のpHのみを測定し、pH値が本発明の範囲外であれば中和剤により本発明で定義するpH範囲内にすればトリクロロエチレン等を効率よく分解することができ、土壌粘土、土着微生物等、他の要因についてあらかじめ試験する必要がないから、事前調査のために時間や費用をかけることなく土壌の浄化を行うことができる。
【図面の簡単な説明】
【図1】図1は、種々のpHを示す11種類の土壌(未中和)中でのMO7株によるトリクロロエチレン(TCE)の分解率を示すグラフである。
【図2】図2は、種々のpHを示す11種類の土壌(未中和)中でのN16−1株によるトリクロロエチレン(TCE)の分解率を示すグラフである。
【図3】図3は、酸性土壌(pH約4.5)を種々のpHに中和した後の、MO7株によるトリクロロエチレン(TCE)の分解率を示すグラフである。
【図4】図4は、酸性土壌(pH約4.5)のpHを中和した後の、N16−1株によるトリクロロエチレン(TCE)の分解率を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for biologically remediating soil contaminated with an organic halogen compound, for example, trichloroethylene.
[0002]
[Prior art]
In recent years, soil contamination by organic halides, such as trichloroethylene, has become a problem, and methods of purifying contaminated soil using microorganisms have been proposed. Methods for treating contaminated soil with microorganisms include a method of activating indigenous microorganisms by adding oxygen and nutrients to the soil from outside (biostimulation), and a method of efficiently removing microorganisms that efficiently decompose pollutants into contaminated soil. In addition, there is a purification method (bioaugmentation).
[0003]
For example, in the purification of soil contaminated with an organochlorine compound (trichloroethylene), in order to induce the above-mentioned biostimulation and bioaugmentation, the ability of the microorganism to decompose the organochlorine compound (trichloroethylene), phenol is used as an inducing agent. And other chemicals are essential. However, phenol or the like used as an inducer is itself toxic and problematic. As a countermeasure technique, in bioaugmentation, decomposed microorganisms are grown in advance in a culture tank and the like, and an inducing agent is added to induce degradative enzymes. And inoculate the soil (resting cell method), thereby avoiding the risk of secondary contamination by phenol or the like.
[0004]
However, in bioaugmentation, it is known that even if the microorganism used is the same, the purification effect varies greatly depending on the soil. See, for example, Migael et al., Journal of Industrial Microbiology Vol. 12, p. 397 to 395 (1993) list factors such as soil pH, temperature, water activity, aeration, and oxidation-reduction potential as factors affecting the purification of soil by microorganisms. Japanese Patent Application Laid-Open No. 8-70855 describes that an organic chlorine compound is purified by microorganisms under alkaline conditions.
[0005]
[Related technology]
The present inventors have proposed MO7 strain (FERM BP-5624) (Japanese Patent Application No. 8-217456), N16 as a microorganism capable of efficiently decomposing organic halogen compounds in soil, especially organic chlorine compounds, for example, trichloroethylene. -1 strain (FERM BP-5504) (Japanese Patent Application No. 8-100466). These microbial strains have very high trichloroethylene degradability, but their effects have been found to vary greatly depending on the type of soil.
[0006]
[Problems to be solved by the invention]
Therefore, the present invention provides a method that eliminates the variation in purification efficiency depending on the type of soil in the purification of soil by microorganisms, and can always efficiently purify the soil without being affected by the type of soil.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a method for purifying soil contaminated with an organic halogen compound by adding microorganisms, wherein the pH of the soil is adjusted to 5 to 9. Provide a method.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, as factors causing the efficiency of purification of soil by microorganisms depending on the type of soil, there are factors such as soil particle size, water content, organic matter content, temperature, soil microorganisms, etc., but there are some real factors. Was not always clear. Using the MO7 strain (FERM BP-5624) and the N16-1 strain (FERM BP-5504), the present inventors have studied soil particle size, especially clay content, soil particle density, total carbon content (TC), soil microorganisms, As a result of examining the influence of each of the factors such as soil pH on the decomposition of trichlorethylene, it was found that the influence of soil pH was large.
[0009]
Next, after using a soil with a low pH and neutralizing it to various pHs, the relationship between the pH and the decomposition of trichlorethylene was tested, and that the decomposition of trichlorethylene was performed efficiently in the pH range of 5 to 9. Was found. Therefore, in the present invention, the pH of the soil to be treated is adjusted to 5 to 9. For example, pH 6 to 9 is preferable for strain MO7, and pH 5 to 7 is preferable for strain N16-1. Adjustment of the pH of the acidic soil can be performed using an arbitrary basic agent, for example, K 2 HPO 4 , CaCO 3 or the like. These are preferably used in the form of a powder. On the other hand, the neutralization of the basic soil can be carried out using an arbitrary acid agent, for example, FeSO 4 , CaSO 4 , NaH 2 PO 4 or the like.
[0010]
The method of the present invention can be applied to various soils, and is not particularly limited. The amount of the neutralizing agent to be added varies depending on the pH value of the soil to be treated, the buffering capacity of the soil, and the like, and may be appropriately selected so that the pH of the soil falls within the above range. Here, the pH of the soil is measured, for example, by the following method. 25 ml of water is added to 10 g of dry soil of unair-dried fresh soil or 10 g of air-dried fine soil (in the case of fresh soil, the water equivalent is subtracted), and the mixture is stirred or shaken and left for 1 hour or more. Stir gently before measurement to make it in a suspended state, gently immerse the thin film sphere of the glass electrode in the solution, wait for at least 30 seconds and the indicated value of the pH meter stabilizes, and read the pH. Done. (Soil standard analysis, measurement method, supervised by Japan Society of Soil Fertilizer, Hiroshi Branch)
[0011]
The neutralization operation of the soil may be performed by cultivating the contaminated soil, adding a neutralizing agent thereto, and mixing. After adjusting the pH of the soil, the microorganism cells for purification may be added.
The microorganism used in the present invention is not particularly limited, and any microorganism capable of decomposing an organic halide such as trichloroethylene can be used. Particularly preferred microorganisms are MO7 strain (FERM BP-5624) and N16-1. Strain (FERM BP-5504), the MO7 strain is described in detail in Japanese Patent Application No. 8-217456, and the N16-1 strain is described in detail in Japanese Patent Application No. 8-100466. ing.
[0012]
【Example】
Next, the present invention will be described more specifically with reference to examples.
Embodiment 1 FIG .
The MO7 strain was cultured in an NMS medium (Table 1) containing 0.05% yeast extract and 500 ppm of phenol, and then the cells were collected by a cell collection operation and resuspended in an NMS medium (containing no phenol). , Inoculated into the soil. For the TCE decomposition test, 11 kinds of soils having different physical properties were used. TCE-contaminated soil was created by contacting gaseous TCE with the soil. The properties of the 11 soils used are shown in Table 1 below.
[0013]
[Table 1]
Figure 0003565688
[0014]
[Table 2]
Figure 0003565688
[0015]
[Table 3]
Figure 0003565688
[0016]
As shown in FIG. 1, the results showed a correlation between soil pH and TCE decomposition rate. When the soil pH was about 6 to 9, good decomposition was observed, but when the soil pH was 6 or less, almost no decomposition was observed.
[0017]
Embodiment 2 FIG .
The N16-1 strain was cultured in an NMS medium containing 0.05% yeast extract and 500 ppm of phenol, and then the cells were collected by a cell collection operation, resuspended in an NMS medium (containing no phenol), and then re-suspended in soil. Was inoculated. For the TCE decomposition test, the above 11 kinds of soils having different physical properties were used. TCE-contaminated soil was created by contacting gaseous TCE with the soil.
As shown in FIG. 2, when the soil pH was about 5 to 7, good decomposition was observed.
[0018]
Embodiment 3 FIG .
The MO7 strain is cultured in an NMS medium containing 0.05% yeast extract and 500 ppm phenol, and then the cells are collected by a cell collection operation, resuspended in an NMS medium (containing no phenol), and inoculated into soil. did. The soil used was an MMT soil having a pH of about 4.5, and contamination with TCE was carried out in the same manner as in Examples 1 and 2. The pH of the MMT soil was adjusted by mixing an appropriate amount of CaCO 3 or K 2 HPO 4 in powder form.
As shown in FIG. 3, as a result of the decomposition test, TCE decomposition was greatly promoted only by adjusting the pH (7.1, 8.0) compared to the original pH (4.5).
[0019]
Embodiment 4 FIG .
The N16-1 strain was cultured in an NMS medium containing 0.05% yeast extract and 500 ppm of phenol, and then the cells were collected by a cell collection operation, resuspended in an NMS medium (containing no phenol), and then re-suspended in soil. Was inoculated. The soil used was an MMT soil having a pH of about 4.5, and contamination with TCE was carried out in the same manner as in Examples 1 and 2. The pH of the MMT soil was adjusted by mixing an appropriate amount of CaCO 3 in powder form.
As shown in FIG. 4, as a result of the decomposition test, TCE decomposition was greatly promoted only by adjusting the pH (7.1) compared to the original pH (4.5).
[0020]
【The invention's effect】
As described above, according to the present invention, only the pH of the soil to be treated is measured, and if the pH value is out of the range of the present invention, if the pH value falls within the pH range defined by the present invention with a neutralizing agent, trichloroethylene or the like is used. Can be efficiently decomposed and there is no need to test in advance for other factors such as soil clay and indigenous microorganisms, so that the soil can be purified without spending time and money for a preliminary investigation.
[Brief description of the drawings]
FIG. 1 is a graph showing the degradation rate of trichloroethylene (TCE) by strain MO7 in 11 types of soils (unneutralized) showing various pHs.
FIG. 2 is a graph showing the degradation rate of trichloroethylene (TCE) by strain N16-1 in 11 types of soils (unneutralized) having various pH values.
FIG. 3 is a graph showing the degradation rate of trichlorethylene (TCE) by strain MO7 after neutralizing acidic soil (pH about 4.5) to various pHs.
FIG. 4 is a graph showing the degradation rate of trichlorethylene (TCE) by strain N16-1 after neutralizing the pH of acidic soil (pH about 4.5).

Claims (3)

有機ハロゲン系化合物で汚染された土壌に微生物を添加することにより該土壌を浄化する方法において、該土壌のpHを5〜9に調整し、前記微生物として、 MO7 株( FERM BP-5624 )又は N16-1 株( FERM BP-5504 を使用する、ことを特徴とする方法。In a method of purifying soil by adding microorganisms to soil contaminated with an organohalogen compound, the pH of the soil is adjusted to 5 to 9 and the microorganisms are strain MO7 ( FERM BP-5624 ) or N16. ( 1) using FERM BP-5504 . 前記有機ハロゲン系化合物がトリクロロエチレンである、請求項1に記載の方法。The method according to claim 1, wherein the organic halogen compound is trichloroethylene. 前記pHの調整を、CaCO3もしくはK2HPO4又はこの両者を土壌に添加することにより行なう、請求項1又は2に記載の方法。The method according to claim 1 or 2 , wherein the pH is adjusted by adding CaCO 3 or K 2 HPO 4 or both to soil.
JP24814997A 1997-09-12 1997-09-12 Microbial purification of soil contaminated with organohalogen compounds Expired - Lifetime JP3565688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24814997A JP3565688B2 (en) 1997-09-12 1997-09-12 Microbial purification of soil contaminated with organohalogen compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24814997A JP3565688B2 (en) 1997-09-12 1997-09-12 Microbial purification of soil contaminated with organohalogen compounds

Publications (2)

Publication Number Publication Date
JPH1177019A JPH1177019A (en) 1999-03-23
JP3565688B2 true JP3565688B2 (en) 2004-09-15

Family

ID=17173957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24814997A Expired - Lifetime JP3565688B2 (en) 1997-09-12 1997-09-12 Microbial purification of soil contaminated with organohalogen compounds

Country Status (1)

Country Link
JP (1) JP3565688B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820203B2 (en) * 2002-09-10 2006-09-13 新日本製鐵株式会社 Purification method for contaminated soil
JP4915200B2 (en) * 2006-10-12 2012-04-11 パナソニック株式会社 Purification device and groundwater purification method using the purification device

Also Published As

Publication number Publication date
JPH1177019A (en) 1999-03-23

Similar Documents

Publication Publication Date Title
JP3450518B2 (en) Novel microorganism J1, biodegradation treatment method for aromatic compound and / or organochlorine compound using the same and environmental restoration method
JP3478619B2 (en) Novel microorganism KB2 and biodegradation treatment method of aromatic compound and / or volatile organochlorine compound using the same
JP3347596B2 (en) A novel microorganism, a method for biodegrading aromatic compounds and / or organic chlorine compounds, and a method for purifying a medium
JP3323746B2 (en) Novel microorganisms, organic compound biodegradation method and environmental restoration method
KR100285035B1 (en) Halogenated Hydrocarbon Degrading Bacteria and Their Uses
US5932472A (en) Method for degradation of polychlorinated biphenyls in soil
JPH09276830A (en) Biological decomposition method of organic compound and environment restoring method
JP3565688B2 (en) Microbial purification of soil contaminated with organohalogen compounds
JP3538643B1 (en) Additives used to remediate contaminated soil, groundwater or sediment
JP2003251331A (en) Method for biologically restoring polluted soil or underground water, and additive
JP2004202364A (en) Soil treatment method
JP4203546B2 (en) Disassembly method and purification method
JP3774878B2 (en) Treatment method of contaminated soil
JP2006075742A (en) Method of treating contaminated soil
JP3435426B2 (en) Halogenated hydrocarbon-degrading bacteria and use thereof
JP3461238B2 (en) Organic compound biodegradation method and environmental restoration method
JP3478620B2 (en) Novel microorganism TL2 and method for biodegrading aromatic compounds and / or volatile organic chlorine compounds using the same
JP2000288528A (en) Microbiological cleaning method for soil polluted by organic compound
JP3436654B2 (en) Halogenated hydrocarbon-degrading bacteria and use thereof
JP2990016B2 (en) Gram-positive bacterial strain
JP2003154382A (en) Method for efficiently restoring environment or medium polluted with organic compound in presence of glutathione by microorganism
JP2003204781A (en) Organochlorine compound-degrading microorganism and method for degrading organochlorine compound using the same microorganism
JPH10290687A (en) Culture of microorganism, biosynthesis of organic compound, maintenance of contaminant decomposing activity of microorganism, decomposition of contaminant and restoration of environment
JP2603182B2 (en) Culture method for organochlorine compound degrading bacteria
JPH09267085A (en) Biologically restoring and purifying method for contaminated soil

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 10

EXPY Cancellation because of completion of term