JP4127796B2 - Polishing tool for optical material, method for manufacturing the same, polishing apparatus and curvature correcting apparatus provided with the polishing tool. - Google Patents

Polishing tool for optical material, method for manufacturing the same, polishing apparatus and curvature correcting apparatus provided with the polishing tool. Download PDF

Info

Publication number
JP4127796B2
JP4127796B2 JP2003029662A JP2003029662A JP4127796B2 JP 4127796 B2 JP4127796 B2 JP 4127796B2 JP 2003029662 A JP2003029662 A JP 2003029662A JP 2003029662 A JP2003029662 A JP 2003029662A JP 4127796 B2 JP4127796 B2 JP 4127796B2
Authority
JP
Japan
Prior art keywords
pitch
polishing tool
polishing
carbon resin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003029662A
Other languages
Japanese (ja)
Other versions
JP2004237396A (en
JP2004237396A5 (en
Inventor
洋 黒澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2003029662A priority Critical patent/JP4127796B2/en
Publication of JP2004237396A publication Critical patent/JP2004237396A/en
Publication of JP2004237396A5 publication Critical patent/JP2004237396A5/ja
Application granted granted Critical
Publication of JP4127796B2 publication Critical patent/JP4127796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高精度な球面レンズ、光学平面板(オプチカルフラット)、又は円筒レンズ(シリンダーレンズ)の研磨に好適に用いられる研磨工具およびその製作方法と、その研磨工具を備えた研磨装置および曲率修正装置に関する。
【0002】
【従来技術】
従来から各種のレンズ研磨に関しては、以下のような研磨工具が採用されてきた。
【0003】
(1).伝統的な光学レンズ研磨用ピッチ工具
伝統的な光学レンズ研磨用ピッチ工具(通称:磨き皿)は以下の手法で製作されている。
【0004】
先ず、所望レンズ曲率半径(R)よりもピッチ層の厚み(T=3〜6mm程度)を加減した曲率を有する磨き皿基板(凹面の磨き皿の場合:R+t、凸面の磨き皿の場合:R−t)に、適量より余分のピッチ(別途容器で加熱溶解された光学研磨用ピッチ)を落とし、基板上に伸ばす。
【0005】
次に、基板背面にグリップ(握り)を付けてバーナー上でピッチを炙り、再加熱する。所望レンズ曲率を有する合わせ皿に押し付け、研磨工具表面形状を整形すると共に、ピッチ層が基盤上に厚さ一様に広がるようにする。
【0006】
ここで、ピッチを炙る時は常時手首を返し、バーナー上で適切な距離を保ちながら一様均等な加熱を心がけ、また合わせ皿にはせっけん水を塗り離型を容易とする等、注意が必要である。
【0007】
また、一度でピッチが基板上に伸び広がらない場合は、同様の作業を繰り返す。
【0008】
ピッチが基板上に伸び広がった際、外周部にはみ出した余分のピッチは加熱したナイフで切り落とし、ピッチ層を整形する。
【0009】
次に、合わせ皿の上に木綿製の網を敷き、上記と同様の手法でピッチ表層を炙り、網目に押し付け、網目の溝構造を転写成形する。
【0010】
前記工程により製作された研磨工具に研磨剤(スラリー)を供し、レンズを研磨した後、ニュートン原器で調べると、所望曲率半径との差異が現れる。光学設計上の要求仕様に合致させるために、この差を小さくする必要がある。一般的には、安全剃刀用の替え刃を手に持ち、前記磨き皿のピッチ層表面を切削除去するか、適当な溶剤で表層を溶解除去する。もしくは研磨工具表面に余分の溝を加え、その部分のピッチ表層の流動の活性化を促す。
【0011】
すなわち、凸レンズの曲率半径を大きくしたい場合は、磨き皿の外周側を除去し、逆に曲率半径を小さくしたい場合は、磨き皿の中央部を除去する。一方、凹レンズでは、曲率半径を大きくしたい場合は、磨き皿の中央部を除去し、逆に曲率半径を小さくしたい場合は磨き皿の外周側を除去する。
【0012】
余分の溝を加える場合も同様であり、例えば、凸レンズの曲率半径を大きくしたい場合は、磨き皿の外周側に余分な溝を加え、逆に曲率半径を小さくしたい場合は、磨き皿の中央部に余分の溝を加える。余分の溝は格子型、螺旋型等、多種多様である。
【0013】
伝統的光学研磨の生産現場では、これらの作業を「当たりを変える」と言う。レンズと磨き皿の外周部が強く接触した状態を「当たりが強い」と言い、逆に中央部が強く接触した状態を「当たりが弱い」と言う。光学研磨技能者は、巧みに「当たりを変える」作業を繰り返し、光学図面上の設計値に曲率半径を誘導してゆく。
【0014】
工業的に利用される光学レンズは単に真球度、表面あらさの表面加工誤差を満たすだけではなく、曲率半径に関しても許容誤差範囲でなければ、光学系は成立しない。
【0015】
(2).G.Otteおよび、A.J.Leistnerの研磨工具
平面に限られるが、G.Otteは、パイレックス(登録商標)の母材の表面に幅・深さ1mmの格子溝を設け、3mm四方の小面積に分割し、光学研磨を施して平面度を整えた後、約0.5mmの厚さのピッチ層を形成し、研磨工具として用いた。形状精度が崩れにくく、高い平面度のオプチカルフラットが得られたとの報告が出ている。
【0016】
加工面のフチダレの原因を、ピッチ表層の摩擦熱による流動変形であると分析し、その低減に狙いを絞った方法である。
【0017】
上記に関しては、以下の文献に記載されている。
【0018】
G.OTTE:An improved method for the production of optically flat surfaces, Journal of Scientific Instruments, vol.42 (1965)
後にOTTEは、上記ポリシャ材をピッチから、より形状安定性の優れたテフロン(登録商標)(FEP:Fluorinated ethylene propylene)の材料に変更し、ポリシャの長寿命化を図った。高精度・高品質表面を得る機会は増大したが、一方で、僅かに研磨面からの散乱光はピッチポリシャの方が小さいとの記載がある。
【0019】
G.OTTE:the use of Teflon polishers for precision optical flats,
Journal of Scientific Instruments, vol.2 (1969) G.OTTEの後、A.J.Leistnerが上記の手法を相続、発展させた。
【0020】
工具母材には石英ガラスの他、Cer-Vit、ZERODURE(登録商標)等無膨張セラ ミックを推奨している。ここでは、テフロン(登録商標)のポリシャの製造方法を詳述している他、二重偏心機構を有する研磨装置により、高精度・高品質表面を得る研磨方法を紹介している。
【0021】
また、テフロン(登録商標)のポリシャは球面の研磨に適合できる可能性も示唆している。
【0022】
また、高分子樹脂から構成された研磨部材及び研磨装置は知られている(特許文献1参照)。
【0023】
【特許文献1】
特開平11−77517号公報
【0024】
【発明が解決しようとする課題】
前掲(1)に記載の、従来の研磨工具は、厚さ:3〜6mm程度のピッチ層があり、その粘弾性により被加工物の仕上がり状態が左右される。すなわち、比較的軟質で遅延弾性を示すピッチ材で製作した研磨工具により光学研磨を施した試料の場合、表面あらさは小さく平滑面が得られ、かつキズも入りにくいが、フチダレが起こり易いため形状精度は悪化する。一方、比較的硬質で遅延弾性を示さないピッチ材で製作した研磨工具にて光学研磨を施した試料の場合、形状精度は良好になるが、表面あらさは大きくなり、かつキズが入りやすい。
【0025】
伝統的光学研磨法で用いる研磨工具では、高精度かつ高品質な表面を得る事は難しい。
【0026】
前掲(2)に記載の特殊な研磨工具は、本来遅延弾性を有するポリシャ材を研磨工具表層にだけ形成し、形状安定性を向上させる事で、表面の平滑性、表面欠陥の最小化を図ると共に、形状精度も向上できる狙いが在る。工具表層のポリシャ材はピッチおよびテフロン(登録商標)だが、前者が若干表面平滑性に優れ、後者は形状安定性・工具寿命に優れている。
【0027】
しかしながら、薄いピッチ層の研磨工具は研磨されたガラス母材表面にポリシャを形成するため容易に剥離し、その剥離片は加工面に巻き込まれてキズの原因になる等のトラブルを起こし、扱いにくかった。テフロン(登録商標)の層はこのトラブルを解決したが、微粒子の埋め込み作用が無いので、若干表面あらさが劣る傾向がある。
【0028】
また、ガラス母材に格子溝加工、曲率を有する球面、円筒面加工等を施すには、専用の工作機械を要する等の不都合があり、多様な曲面の適用可能性を示唆するものの、実用的適用範囲は主として平面に限定されたままだった。
【0029】
また球面に適合しにくい本質的理由は、伝統的光学研磨法で曲率半径修正方法が完備されていた故に、薄いポリシャ層に対しては十分な検討が行なわれず、開発されなかったためである。光学メーカーにおいて、光学設計上用いられるレンズ曲率半径は、社固有の原器曲率に相当し、真球度、表面あらさ等表面加工誤差の要求が厳しいレンズであるほど曲率半径許容誤差も厳しくなり、μmオーダで指定される場合が多く、この問題が解決されない限り、事実上球面レンズ研磨での実用は制限される。
【0030】
本発明の主要な目的は、高精度かつ長寿命で研磨できる研磨工具およびその製作方法と、その研磨工具を備えた研磨装置および曲率修正装置を提供することである。
【0031】
【課題を解決するための手段】
本発明の解決手段を例示すると、以下のとおりである。
【0032】
本願の請求項1によると、光学材料を研磨するのための研磨工具において、母材がカーボン樹脂材で構成され、カーボン樹脂材の表面にピッチ層が形成されていることを特徴とする研磨工具である。
【0033】
請求項2によると、ピッチ層は厚さ0.3mm以下であることを特徴とする前述の研磨工具である。
【0034】
請求項3によると、カーボン樹脂材の表面が、球面、平面、及び円筒面のいずれかの形状に加工されおり、かつ、カーボン樹脂材の表面に、格子状、同心円状、放射状、及びスパイラル状のいずれかの溝が所定のパターンで形成されていることを特徴とする前述の研磨工具である。
【0035】
請求項4によると、カーボン樹脂材が、ガラス又は金属を有する微粒子又は繊維の添加により改質又は補強されていることを特徴とする前述の研磨工具である。
【0036】
請求項5によると、金属又はセラミックの剛体基板上に、セグメント化した複数のカーボン樹脂材を接着したことを特徴とする前述の研磨工具である。
【0037】
請求項6によると、ピッチ層が、液状化したピッチを塗布後に乾燥させることにより形成されていることを特徴とする前述の研磨工具である。
【0038】
請求項7によると、ピッチが溶剤により液状化され、しかるのち、ピッチが再硬化されていることを特徴とする前述の研磨工具である。
【0039】
請求項8によると、カーボン樹脂材からなる母材を所定形状に成形し、しかるのち、カーボン樹脂材の表面に液状化したピッチを塗布する研磨工具の製造方法である。
【0040】
請求項9によると、ピッチを溶剤により液状化し、カーボン樹脂材の表面に液状化したピッチを塗布し、そのピッチを乾燥させて再硬化させて、ピッチ層を形成することを特徴とする前述の研磨工具の製造方法である。
【0041】
請求項10によると、上軸と下軸を対向させて配置し、それらのいずれか一方に前述の研磨工具を装着し、他方に光学材料を装着した光学材料用の研磨装置である。
【0042】
請求項11によると、上軸と下軸を対向させて配置し、それらの双方に前述の研磨工具を装着可能に構成した研磨装置である。
【0043】
請求項12によると、上軸と下軸を対向させて配置し、それらのいずれか一方に前述の研磨工具を装着し、他方に電着ダイヤモンドホイールを装着したことを特徴とする曲率修正装置である。
【0044】
請求項13によると、上軸と下軸の軸間距離が、研磨工具と電着ダイヤモンドホイールの形状に応じて相対的に可変に構成されていることを特徴とする前述の曲率修正装置である。
【0045】
請求項14によると、電着ダイヤモンドホイールの側面に当接する2個以上のガイドローラーを備えた補助装置を有することを特徴とする前述の曲率修正装置である。
【0046】
請求項15によると、電着ダイヤモンドホイールの上面に当接するガイドローラーを備えた補助装置を有することを特徴とする前述の曲率修正装置である。
【0047】
請求項16によると、前述の曲率修正装置を具備した研磨装置である。
【0048】
前述のように、研磨工具形状安定性を保持したまま工具寿命を延ばし、表層に形成したピッチ層と工具表面との「濡れ」を改善し、剥離が起こりにくいものにしている。また、薄いピッチポリシャ層に対するμmオーダの曲率半径許容誤差を有する高精度球面レンズの研磨を可能にしている。
【0049】
【発明の実施の形態】
本発明においては、研磨工具の母材がカーボン樹脂材で構成されている。これにより形状安定性を保持したまま工具寿命を延ばし、形状精度を向上させると同時に表面あらさを低減させる十分な時間を確保でき、ポリシャ剥離片の巻き込みキズも防止できる。カーボン樹脂は本質的に軟質で砥粒が吸着しやすい傾向を有するため、例えばピッチ層が摩滅して、表面に露出した場合でも、相手側部品表面に与えるダメージは極めて小さい。
【0050】
また、母材にカーボン樹脂材を用いる事で、汎用NC旋盤・工作機械等を用いて曲面を有する形状加工、および自由な溝加工が容易に可能になり、多種多様な形状・溝構造を有する研磨工具を実現できる。
【0051】
また、カーボン樹脂は、酸・アルカリ性を示す各種多様な研磨液中においても腐食しにくく、取り扱い・作業上割れにくい点も利点である。
【0052】
ピッチ層の厚さは0.3mm以下であることが好ましい。ピッチ層の厚さが0.3mmを超えると、フチダレが起こり易いからである。詳述すると、ピッチ層が0.3mmより厚いと、従来の研磨工具の性質に近くなってしまい、一般に溶剤にて本来の硬度を喪失させた(すなわち、鎖状高分子炭化水素の分子鎖を分断させた)ピッチを用いるが、レンズとの摩擦に伴い容易に塑性変形が起こり、レンズ面外周にフチダレが生じてしまい、真球度の確保は不可能になってしまう。ピッチ層の下限は、0.05mmとするのが好ましい。なぜなら、母材が局部的に表面に露出してしまう虞が増大するからである。露出母材との接触によるキズが現れたら使用上の限界で、作業者は経験により寿命を把握し、通常はその前にピッチの貼り替えを行う。
【0053】
ピッチ層の厚さの測定方法について述べると、焦点深度の深い顕微鏡測定によるが、大型ルーペにより0.3mmのシャープペンの芯との相対比較観測でも十分である。0.5mmのシャープペンの芯程度のピッチ厚さでは、フチダレが現れてしまう。厚さの測定において、0.3〜0.5mmが境界領域であるが、レンズによっては研磨後の芯取で研削除去される場合もあるし、有効径外になる場合もある。
【0054】
ポリシャ層を形成する際、ピッチ材を溶剤にて液状化し、ピッチ本来の硬度(つまり、高分子の鎖状で半固形状炭化水素を溶剤にて寸断し低分子の半固形状炭化水素の粒子が混濁している割合、あるいは粘度計の針(2mmφ)が一定温度(20℃)のとき一定時間(1分間)に0.1mmだけ沈むときの硬さ(針入度)、あるいは流動性と瞬間弾性・遅延弾性等による粘弾性(光学工業技術研究組合「レンズ・プリズム加工技術‘76」(昭和51年10月20日発行)参照))を喪失させると良い。これにより、砥粒の埋没効果が増大し、超平滑光学表面を得る事もできる。
【0055】
本発明の研磨工具は、多種の研磨スラリーに順応できる。例えば0.5μm以下の粒度分布を有するダイヤモンドスラリーを用いて蛍石(CaF2)製の球面レンズを研磨した場合、深紫外光学系で要求される表面加工誤差、真球度:PV≦λ/30、表面あらさ:rms≦0.2nmを確保できる。表面粗さの測定法法はZygo社製の非接触表面粗さ測定機による。これにより、μmオーダの曲率半径許容誤差を有する高精度球面レンズの研磨が可能になり、光学設計上の曲率確保と並立し、深紫外光学系対応の表面加工誤差も確保できる。
【0056】
【実施例】
図1は、本発明の実施例の1つである、球面レンズ研磨工具の基本構造を示す。
【0057】
所定の球面形状に加工された研磨工具母材1aは、カーボン樹脂、もしくはガラス、金属等から成る微粒子、繊維等の添加にて改質・補強されたカーボン樹脂材で構成されており、その母材1aには、等間隔の格子溝1bが設けられ、小面積1c上に厚さ0.3mm以下のピッチ層2が形成されている。研磨工具母材の加工順としては、先に溝加工を行い、最後に球面加工を行なった方がR(曲率半径)の加工誤差が小さい。小面積1cに比較して格子溝1bの深さが大きい場合、球面加工の際に小四角柱1dが変形し、Rの加工誤差が大きくなる。
【0058】
図2は、球面レンズ研磨工具母材形状の多様なバリエーションを示す。
【0059】
各種の球面レンズ研磨用に球面加工された研磨工具母材は、凸面型3、平面型4、凹面型5等がある。また図示しないが、円筒レンズ研磨用に加工された研磨工具母材として類似の凹凸面型も存在する。また図示しないが、さらに、これらの工具母材をセグメントとして大型基盤上に複数接着もしくは締結し、大型の研磨工具として利用する事もできる。
【0060】
また、研磨工具母材には前記格子溝の他、放射状の溝3a、また図示しないが、同心円状の溝、スパイラル状の溝、自由曲線の溝等、多様な溝が設けられる。また、図示しないが研磨工具母材には一切の溝を設けない型の工具でも良い。
【0061】
図3、図4、図5、図6、図7、図8は、研磨工具表面のピッチ層の形成工程の一例を示す。
【0062】
ポリシャ材としてのピッチは事前にトルエン等の溶剤で液状化し、適切な粘度に調整されている。研磨工具母材5上に高粘度の溶解ピッチを塗布すると、液滴状の形態2aとなる。この状態から自然乾燥もしくは熱風を用いた強制乾燥を行い、溶剤を気化させて、ピッチ材を適度に硬化させる。溶剤により液状化し再硬化したピッチ材は本来の硬度を喪失しており、微粒子の埋没効果が増大するので、研磨されるレンズ等の部品の表面あらさは超平滑面となる。
【0063】
上記ピッチ塗布後乾燥状態の研磨工具1を、所望の曲率半径を有する合わせ工具6上に反転密着させ、ポリシャ表面形状を整える。この時、密着後に加重を加えても良いが、ピッチは常温でもクリープ現象を起こすので、自然に変形するのを待っても良い。ただし、カーボン樹脂は大きな熱膨張率を有するので、整形促進のために加熱しないのが好ましい。
【0064】
加重を加え、短時間の整形を行なう場合は、ピッチ層の表面にポリエチレングリコール等の界面活性剤を塗り、整形後の分離を容易とする。一方、長時間をかけての整形を行なう場合はピッチ層の表面と合わせ工具6の間に薄いフィルム材7を挟み込むと良い。このようにすれば、整形後両者が密着して分離できなくなった際、冷凍庫にて冷却すると両者の熱膨張率の相違からフィルム層の界面ですべりが起こり、容易に分離できる。
【0065】
また、合わせ工具6の真球度および曲率半径等の加工精度は、目的とするレンズの要求仕様に準じて適宜に調整する。
【0066】
整形直後のピッチ層2c外周には余材が広がっているが、カッターナイフで切り落とした状態2bとし、研磨の実用に供する。
【0067】
図9は、主として研磨工具を研磨装置の下軸側に装着する際の基本構造を示す。この場合、上軸側にレンズが装着される。
【0068】
通常、レンズ研磨装置の下軸側は回転軸になっており、ネジもしくはコレットチャックにより研磨工具と接続する。研磨工具母材1aの背面から外周側面の一部を保持する型の下軸ホルダーが8aで示され、研磨工具母材1aの背面にザグリを設け、中心部から保持するフランジ型の下軸ホルダーが9aで示されている。研磨工具母材と下軸ホルダーは接着剤により接合してもよいが、母材背面にネジを設けて締結しても良い。上記のホルダー背面にはそれぞれネジ8b、9bを設けている。また図示しないが、研磨装置側の都合によりコレットチャック用テーパ軸を設けても良い。
【0069】
図10は、主として研磨工具を研磨装置の上軸側に装着する際の基本構造を示す。この場合、下軸側にレンズが装着される。
【0070】
通常、レンズ研磨装置の上軸側は揺動軸になっており、カンザシと呼ばれる球面加工された軸端を挿入する構造の簡易な自在継ぎ手により研磨工具と接続する。研磨工具母材1aの背面の中心に直接カンザシの軸端を挿入する穴10を設けても良いし、研磨工具母材1aの背面にザグリを設け、カンザシの軸端を挿入する穴12を設けた上軸ホルダー11を接着剤により接合するか、ネジ等により締結しても良い。また、上軸ホルダー11内部に自己潤滑性を有する樹脂材料で製作したフランジ型部材11aを装着し、カンザシの軸端を挿入する穴12を設けた構造でも良い。
【0071】
また、上記の上軸ホルダー11のネジ部寸法と、前記の研磨工具を研磨装置の下軸側に装着する際の基本構造で記載した下軸ホルダー8a、9aのネジ部寸法を共通とすれば、ホルダーの交換により研磨装置の上軸と下軸の双方に装着可能となる。
【0072】
また、研磨装置の上軸側のカンザシに代えて円筒構造の部材を装着し、前記の研磨工具を研磨装置の下軸側に装着する際の基本構造で記載したホルダー背面のネジ8b、9bに球面Rを有するゴム製のキャップ材13をかぶせ、円筒内部に挿入すると、別種の自在継ぎ手が構成され、同等の研磨が実施できるので、この構造でも研磨工具は研磨装置上下軸双方に装着可能となる。
【0073】
図11は、電着ダイヤモンドホイールを用いて研磨工具の曲率半径を修正する状態を示す。
【0074】
研磨装置の回転する下軸側に研磨工具1を装着し、上軸側は揺動を止め、ダイヤモンド電着カップホイール(電着ダイヤモンドホイール又はカップホイールともいう)14を装着する。カップホイール14の直径は、研磨工具1の直径の60〜80%が適切である。この例では、カップホイール14上部に自己潤滑性を有する樹脂材料で製作したフランジ型部材15を装着し、その穴15aにカンザシ16の軸端を挿入し、カップホイール14を回転自由に保持している。この状態で研磨装置下軸を回転させると、研磨工具1との摩擦によりカップホイール14も連れ回りを始め、研磨工具表面のピッチ層には研削除去加工が施される。
【0075】
ここで、研磨装置上軸の位置を操作し、カップホイール14の位置を研磨工具1の中心側にシフトさせて静止させると研磨工具の中心部が相対的に多く減耗し、逆にカップホイール14の位置を研磨工具1の外周側にシフトさせて静止させると研磨工具の外周分が相対的に多く減耗する。
【0076】
図12は、カップホイール14の位置のシフト状態を示す。カップホイールは、研磨工具の凹凸形状に応じて曲率半径Rを加減修正する。例えば研磨工具1が凸面ならば、カップホイール14の位置を外周部へシフトするとRは小さくなり、中心部へシフトすると曲率半径Rは大きくなる。
【0077】
また、研磨装置の構造により下軸側がチルトする構造であれば、研磨工具1とカップホイール14との相対的位置関係を変えるために、研磨工具1の傾きを変えても良い。
【0078】
図13は、研磨工具1が凹形状である場合、カップホイール14は横転し易くなる様子を示している。
【0079】
図14から分かるように、この現象が起こるのは、凹面形状研磨工具1の回転にともない、摩擦力Fが、カップホイール14の侵入方向外周側接触点Pを支点に、カンザシ16の軸端部Kへ回転(転倒)モーメントMcとして作用するためである。Mc=f・Lcで表され、LcはP−K間の距離、fは摩擦力FのP−K間方向と直交方向の分力である。凹面形状工具1のR:曲率半径が小さくなるほどカップホイール14にピッチ層は深く食い込み、結果F(f)は増大し、横転しやすくなる。また、Kの位置が高ければLcが増大するとともにf分力が増大し、極めて横転しやすくなる。
【0080】
一方、図15から分かるように、凸面形状研磨工具の場合、研磨工具1の回転にともない、摩擦力Fが、カップホイール14の侵入方向内周側接触点Pを支点に、カンザシ16の軸端部Kへ回転モーメントMxが作用する。Mx=f・Lxで表され、LxはP−K間の距離、fは摩擦力FのP−K間方向と直交方向の分力である。ただし、この場合のfはカップホイール14を持ち上げる向きではなく、研磨工具側に接地する向きに作用し、安定化に働く。凸面形状工具1のR:曲率半径が小さくなるほどカップホイール14にピッチ層は深く食い込み、結果F(f)は増大し、カップホイール14はより安定化する。また、ある程度Kの位置が高ければLcが増大するとともにf分力が増大し安定化するが、一方でカップホイール14が深く食い込み、ピッチ層の過剰減耗を起こす。さらに度を越すとPの反対側Q点を支点に転倒を起こすので適切に調整するのが良い。
【0081】
図16は、凹形状の研磨工具1の横転防止装置(補助装置)の一例を示している。研磨工具1上のカップホイール14は、カンザシ16により回転自由に保持されている。カップホイール14の側面に2個以上の水平ガイドローラー18が当接する事により、回転モーメントを打ち消す。水平ガイドローラー18は、垂直に回転軸を設けた水平板17aに自由回転保持されている。水平板17aは、研磨装置の任意の構成部材から引き出された腕17に接続している。
【0082】
図17も、凹形状の研磨工具1の横転防止装置(補助装置)の別の例である。研磨工具1上のカップホイール14は、カンザシ16により回転自由に保持されている。カップホイール14の上面に1個以上の垂直ガイドローラー19が当接する事により、回転モーメントを打ち消す。垂直ガイドローラー19は、水平に回転軸を設けた腕17に自由回転保持されている。腕17は、研磨装置の任意の構成部材から引き出されている。
【0083】
図16、図17とも研磨装置の任意の構成部材から腕17を引き出すと記載したが、当初から研磨装置と一体的に具備すれば作業性も良い。また、独立した研磨工具曲率修正装置でも良い。
【0084】
上記の装置による研磨工具曲率修正作業は、3〜10rpm以下の低回転にて、30〜60秒程度行い、研磨工具表面のピッチ切屑を洗浄してレンズ研磨に供する。一定時間の研磨により現れるレンズ面の曲率半径の変化を原器、レーザ干渉計等により測定・観察し、目的の曲率半径許容誤差範囲との差を調べ、必要に応じて適宜研磨工具の曲率半径に微調整を加え、レンズ曲率半径を要求仕様に誘導してゆく。
【0085】
前記の研磨工具は多種の研磨スラリーに順応し、例えば0.5μm以下の粒度分布を有するダイヤモンドスラリーを用いて蛍石(CaF2)製の球面レンズを研磨した場合、深紫外光学系で要求される表面加工誤差、真球度:PV≦λ/30、表面あらさ:rms≦0.2nmを確保できた。
【0086】
また、上記研磨工具をそのまま用いた場合のレンズ曲率半径誤差は、凸レンズの場合、35mm≦R≦70mmでは、曲率半径Rの0.037%程度(13〜26μm)に過ぎないが、上記の研磨工具曲率修正法により、0.005〜0.010%程度(2.5〜5μm)、すなわちμmオーダの曲率半径許容誤差を有する高精度球面レンズの研磨が可能になった。
【0087】
なお、上軸と下軸は、回転軸に限られず、揺動軸その他であってもよい。
【0088】
【発明の効果】
請求項1に係る発明によれば、母材にカーボン樹脂材が用いられているため、形状安定性を保持したまま工具寿命を延ばし、形状精度を向上させると同時に表面あらさを低減させる十分な時間を確保でき、ポリシャ剥離片の巻き込みキズも防止できる。カーボン樹脂は本質的に軟質で砥粒が吸着しやすい傾向を有するため、ピッチ層の摩滅により、表面に露出した場合でも、相手側部品表面に与えるダメージは極めて小さい。
【0089】
また、母材にカーボン樹脂材を用いる事で、汎用NC旋盤・工作機械等を用いて曲面を有する形状加工、および自由な溝加工が容易に可能になり、多種多様な形状・溝構造を有する研磨工具を実現できる。
【0090】
また、カーボン樹脂は、酸・アルカリ性を示す各種多様な研磨液中においても腐食しにくく、取り扱い・作業上割れにくい点も利点である。
【0091】
請求項2に係る発明によれば、ピッチ層の厚さが、0.3mm以下であるため、粘弾性が小さく、フチダレが起こりにくい。
【0092】
請求項3に係る発明によれば、カーボン樹脂材の表面が所定形状に加工され溝が設けられているため、種々の形状の光学部材を研磨できる。
【0093】
請求項4に係る発明によれば、カーボン樹脂材が改質又は補強されているため、研磨工具の性能を向上できる。
【0094】
請求項5に係る発明によれば、金属又はセラミックの剛体基板上に、セグメント化した複数のカーボン樹脂材を接着しているため、研磨工具を大型化できる。
【0095】
請求項6に係る発明によれば、ピッチ層が、液状化したピッチを塗布後に乾燥させることにより形成されているため、研磨工具を容易に製作できる。
【0096】
請求項7に係る発明によれば、ピッチが溶剤にて液状化され、しかるのち、ピッチが再硬化されているため、砥粒の埋没効果が増大し、超平滑光学表面を得る事ができる。
【0097】
請求項8に係る発明によれば、カーボン樹脂材からなる母材を所定形状に成形し、しかるのち、カーボン樹脂剤の表面に液状化したピッチを塗布したため、研磨工具の加工誤差を小さくできる。
【0098】
請求項9に係る発明によれば、所定の工程によりピッチ層を形成しているため、微粒子の埋没効果が増大し、研磨されるレンズ等の部品の表面あらさは超平滑面となる。
【0099】
請求項10、11に係る発明によれば、研磨工具は、研磨装置の上軸と下軸のいずれか一方に装着され、又は双方に装着可能に構成されているため、種々の研磨装置に適用できる。
【0100】
請求項12に係る発明によれば、上軸と下軸のいずれか一方に研磨工具を装着し、他方に電着ダイヤモンドホイールを装着したので、研磨工具の曲率半径を容易に修正できる。
【0101】
請求項13に係る発明によれば、上軸と下軸の軸間距離が相対的に可変に構成されているため、μmオーダーで研磨工具の曲率半径が修正でき、μmオーダーの曲率半径許容誤差を有する高精度球面レンズの研磨が可能になる。
【0102】
請求項14、15に係る発明によれば、曲率修正装置が補助装置を有するので、電着ダイヤモンドホイールの転倒を防止できる。
【0103】
請求項16に係る発明によれば、研磨装置が曲率修正装置を具備しているため、装置コストの低減と作業性の改善が図られる。
【図面の簡単な説明】
【図1】本発明の実施例の1つである球面レンズ研磨工具の基本構造を示す。
【図2】球面レンズ研磨工具母材形状の多様なバリエーションを示す。
【図3】研磨工具表面のピッチ層の形成工程の1部を示す。
【図4】研磨工具表面のピッチ層の形成工程の1部を示す。
【図5】研磨工具表面のピッチ層の形成工程の1部を示す。
【図6】研磨工具表面のピッチ層の形成工程の1部を示す。
【図7】研磨工具表面のピッチ層の形成工程の1部を示す。
【図8】研磨工具表面のピッチ層の形成工程の1部を示す。
【図9】主として研磨工具を研磨装置の下軸側に装着する際の基本構造を示す。
【図10】主として研磨工具を研磨装置の上軸側に装着する際の基本構造を示す。
【図11】電着ダイヤモンドホイールを用いて研磨工具の曲率半径を修正する状態を示す。
【図12】カップホイールの位置のシフトを示す。
【図13】研磨工具が凹形状である場合に、カップホイールが横転し易くなる様子を示している。
【図14】研磨工具が凹形状である場合に、カップホイールが横転し易くなる様子を示している。
【図15】研磨工具が凸形状である場合に、カップホイールが安定化する様子を示している。
【図16】凹形状の研磨工具の補助装置の一例を示している。
【図17】凹形状の研磨工具の補助装置の別の例を示している。
【符号の説明】
1 研磨工具
1a 研磨工具母材
1b 格子溝
1c 小面積
1d 小四角柱
2 ピッチ層
2a 液滴状の形態
2b カッターナイフで切り落とした状態
2c 整形直後のピッチ層
3 凸面型
3a 放射状の溝
4 平面型
5 凹面型
6 合わせ工具
7 フィルム材
8a、9a 下軸ホルダー
8b、9b ネジ
10、12、15a 穴
11 上軸ホルダー
11a フランジ型部材
13 キャップ材
14 電着ダイヤモンドホイール
15 フランジ型部材
16 カンザシ
17 腕
17a 水平板
18 水平ガイドローラー
19 垂直ガイドローラー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing tool suitably used for polishing a high-precision spherical lens, optical flat plate (optical flat), or cylindrical lens (cylinder lens), a manufacturing method thereof, a polishing apparatus including the polishing tool, and a curvature thereof. It relates to a correction device.
[0002]
[Prior art]
Conventionally, the following polishing tools have been employed for various types of lens polishing.
[0003]
(1). Traditional pitch tool for polishing optical lenses
Traditional optical lens polishing pitch tools (commonly known as polishing dishes) are manufactured by the following method.
[0004]
First, a polishing dish substrate having a curvature obtained by adjusting the thickness of the pitch layer (T = about 3 to 6 mm) from the desired lens curvature radius (R) (in the case of a concave polishing dish: R + t, in the case of a convex polishing dish: R) -T), an excess pitch (optical polishing pitch separately heated and melted in a container) is dropped from an appropriate amount and stretched on the substrate.
[0005]
Next, a grip (grip) is attached to the back of the substrate, a pitch is applied on the burner, and reheating is performed. It is pressed against a mating plate having a desired lens curvature to shape the surface shape of the polishing tool, and the pitch layer is spread uniformly over the substrate.
[0006]
At this point, when turning the pitch, always turn your wrist, keep an appropriate distance on the burner and keep it evenly heated, and apply soapy water to the mating plate to make it easy to release. It is.
[0007]
If the pitch does not extend on the substrate at one time, the same operation is repeated.
[0008]
When the pitch expands and spreads on the substrate, the excess pitch protruding to the outer peripheral portion is cut off with a heated knife to shape the pitch layer.
[0009]
Next, a cotton net is laid on the mating plate, the pitch surface layer is wound by the same method as described above, pressed against the net, and the groove structure of the net is transferred and molded.
[0010]
When a polishing agent (slurry) is applied to the polishing tool manufactured by the above-described process and the lens is polished, a difference from the desired radius of curvature appears when the lens is examined with the Newton original apparatus. In order to meet the required specifications in optical design, it is necessary to reduce this difference. In general, a hand holding a replacement blade for a safety razor, the surface of the pitch layer of the polishing dish is removed by cutting, or the surface layer is dissolved and removed with an appropriate solvent. Alternatively, an extra groove is added to the surface of the polishing tool to promote activation of the flow of the pitch surface layer in that portion.
[0011]
That is, when it is desired to increase the curvature radius of the convex lens, the outer peripheral side of the polishing dish is removed. Conversely, when it is desired to reduce the curvature radius, the central part of the polishing dish is removed. On the other hand, in the case of a concave lens, when it is desired to increase the curvature radius, the central portion of the polishing dish is removed, and conversely, when the curvature radius is desired to be reduced, the outer peripheral side of the polishing dish is removed.
[0012]
The same applies when adding an extra groove.For example, if you want to increase the radius of curvature of the convex lens, add an extra groove on the outer periphery of the polishing plate, and conversely, if you want to reduce the radius of curvature, use the center of the polishing plate. Add extra grooves to the. There are various types of extra grooves such as a lattice type and a spiral type.
[0013]
In the traditional optical polishing production site, these operations are referred to as “changing the hit”. A state where the lens and the outer periphery of the polishing plate are in strong contact is called “strong”, and conversely, a state where the center is in strong contact is called “weak”. The optical polishing technician skillfully repeats the “changing the hit” operation to induce the radius of curvature to the design value on the optical drawing.
[0014]
An optical lens that is industrially used not only satisfies the surface processing error of sphericity and surface roughness, but the optical system is not established unless the radius of curvature is within an allowable error range.
[0015]
(2). G.Otte and AJLeistner polishing tools
Although limited to flat surfaces, G. Otte provides a 1 mm wide and 1 mm wide grid groove on the surface of the Pyrex (registered trademark) base material, and divides it into 3 mm square areas, and optically polishes the flatness. After the preparation, a pitch layer having a thickness of about 0.5 mm was formed and used as a polishing tool. It has been reported that the optical flatness with high flatness was obtained because the shape accuracy is not easily lost.
[0016]
It is a method focused on reducing the cause of the edge of the machined surface by analyzing it as fluid deformation due to frictional heat on the pitch surface layer.
[0017]
The above is described in the following documents.
[0018]
G.OTTE: An improved method for the production of optically flat surfaces, Journal of Scientific Instruments, vol.42 (1965)
Later, OTTE changed the above-mentioned polisher material from pitch to a Teflon (registered trademark) (FEP: Fluorinated ethylene propylene) material with better shape stability, thereby extending the life of the polisher. Although the opportunity to obtain a high-precision and high-quality surface has increased, there is a description that the pitch polisher is slightly smaller in scattered light from the polished surface.
[0019]
G.OTTE: the use of Teflon polishers for precision optical flats,
Journal of Scientific Instruments, vol.2 (1969) After G.OTTE, AJLeistner inherited and developed the above method.
[0020]
In addition to quartz glass, non-expandable ceramics such as Cer-Vit and ZERODURE (registered trademark) are recommended as tool base materials. Here, in addition to detailing a method of manufacturing a Teflon (registered trademark) polisher, a polishing method for obtaining a high-precision and high-quality surface by a polishing apparatus having a double eccentric mechanism is introduced.
[0021]
It also suggests that the Teflon (registered trademark) polisher may be suitable for polishing a spherical surface.
[0022]
A polishing member and a polishing apparatus made of a polymer resin are known (see Patent Document 1).
[0023]
[Patent Document 1]
JP-A-11-77517
[0024]
[Problems to be solved by the invention]
The conventional polishing tool described in the above (1) has a pitch layer with a thickness of about 3 to 6 mm, and the finished state of the workpiece is influenced by the viscoelasticity. In other words, in the case of a sample that has been optically polished with a polishing tool made of a pitch material that is relatively soft and exhibits delayed elasticity, the surface roughness is small and a smooth surface is obtained, and scratches are not easily formed, but the shape is easy to cause fraying. Accuracy deteriorates. On the other hand, in the case of a sample subjected to optical polishing with a polishing tool made of a pitch material that is relatively hard and does not exhibit delayed elasticity, the shape accuracy is good, but the surface roughness is large and scratches are likely to occur.
[0025]
With polishing tools used in traditional optical polishing methods, it is difficult to obtain a high-precision and high-quality surface.
[0026]
The special polishing tool described in the above (2) is intended to minimize surface defects and surface defects by forming a polisher material having inherently retarded elasticity only on the surface of the polishing tool and improving shape stability. At the same time, there is an aim to improve the shape accuracy. The polisher material for the tool surface layer is pitch and Teflon (registered trademark). The former is slightly superior in surface smoothness, and the latter is excellent in shape stability and tool life.
[0027]
However, a polishing tool with a thin pitch layer easily forms a polisher on the surface of the polished glass base material, and the peeled piece is caught on the work surface and causes troubles such as scratches and is difficult to handle. It was. The Teflon (registered trademark) layer solves this problem, but there is no embedding action of the fine particles, and therefore the surface roughness tends to be slightly inferior.
[0028]
In addition, there are inconveniences such as requiring a dedicated machine tool to perform lattice groove processing, spherical surface with curvature, cylindrical surface processing, etc. on the glass base material, suggesting the applicability of various curved surfaces, but practical Coverage remained largely confined to the plane.
[0029]
The essential reason why it is difficult to conform to the spherical surface is that a thin polisher layer has not been fully studied and developed because the radius of curvature correction method has been completed by the traditional optical polishing method. In optical manufacturers, the lens curvature radius used for optical design is equivalent to the original curvature of the company, and the curvature radius tolerance becomes stricter as the lens requires severe surface processing errors such as sphericity and surface roughness. In many cases, it is specified in the order of μm, and unless this problem is solved, practical use in spherical lens polishing is practically limited.
[0030]
A main object of the present invention is to provide a polishing tool that can be polished with high accuracy and a long life, a manufacturing method thereof, and a polishing apparatus and a curvature correcting apparatus including the polishing tool.
[0031]
[Means for Solving the Problems]
Examples of the solving means of the present invention are as follows.
[0032]
According to claim 1 of the present application, a polishing tool for polishing an optical material, wherein the base material is made of a carbon resin material, and a pitch layer is formed on the surface of the carbon resin material. It is.
[0033]
According to claim 2, the pitch layer has a thickness of 0.3 mm or less.
[0034]
According to claim 3, the surface of the carbon resin material is processed into any one of a spherical surface, a flat surface, and a cylindrical surface, and the surface of the carbon resin material has a lattice shape, a concentric circle shape, a radial shape, and a spiral shape. Any one of the grooves is formed in a predetermined pattern.
[0035]
According to a fourth aspect of the present invention, in the above polishing tool, the carbon resin material is modified or reinforced by the addition of fine particles or fibers having glass or metal.
[0036]
According to a fifth aspect of the present invention, there is provided the above polishing tool, wherein a plurality of segmented carbon resin materials are bonded onto a metal or ceramic rigid substrate.
[0037]
According to a sixth aspect of the present invention, in the above-mentioned polishing tool, the pitch layer is formed by drying a liquefied pitch after application.
[0038]
According to claim 7, the above-mentioned polishing tool is characterized in that the pitch is liquefied with a solvent and then the pitch is re-cured.
[0039]
According to the eighth aspect of the present invention, there is provided a polishing tool manufacturing method in which a base material made of a carbon resin material is formed into a predetermined shape, and then a liquefied pitch is applied to the surface of the carbon resin material.
[0040]
According to claim 9, the pitch is liquefied with a solvent, the liquefied pitch is applied to the surface of the carbon resin material, and the pitch is dried and re-cured to form a pitch layer. It is a manufacturing method of an abrasive tool.
[0041]
According to the tenth aspect of the present invention, there is provided a polishing apparatus for an optical material in which an upper shaft and a lower shaft are arranged to face each other, the above-described polishing tool is mounted on one of them, and the optical material is mounted on the other.
[0042]
According to the eleventh aspect, the polishing apparatus is configured such that the upper shaft and the lower shaft are arranged to face each other, and the above-described polishing tool can be mounted on both of them.
[0043]
According to a twelfth aspect of the present invention, there is provided a curvature correcting device in which an upper shaft and a lower shaft are arranged to face each other, the above-described polishing tool is mounted on one of them, and an electrodeposited diamond wheel is mounted on the other. is there.
[0044]
According to the thirteenth aspect of the present invention, the distance between the upper shaft and the lower shaft is configured to be relatively variable depending on the shapes of the polishing tool and the electrodeposited diamond wheel. .
[0045]
According to a fourteenth aspect of the present invention, there is provided the above-described curvature correcting device having an auxiliary device provided with two or more guide rollers in contact with the side surface of the electrodeposited diamond wheel.
[0046]
According to a fifteenth aspect of the present invention, there is provided the above-described curvature correcting device having an auxiliary device including a guide roller that comes into contact with the upper surface of the electrodeposited diamond wheel.
[0047]
According to a sixteenth aspect of the present invention, there is provided a polishing apparatus provided with the aforementioned curvature correcting device.
[0048]
As described above, the tool life is extended while maintaining the shape stability of the polishing tool, the “wetting” between the pitch layer formed on the surface layer and the tool surface is improved, and peeling is unlikely to occur. Further, it is possible to polish a high-precision spherical lens having a radius of curvature tolerance on the order of μm for a thin pitch polisher layer.
[0049]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the base material of the polishing tool is made of a carbon resin material. As a result, the tool life can be extended while maintaining the shape stability, the shape accuracy can be improved, and sufficient time to reduce the surface roughness can be secured, and the wound of the polishing strip can be prevented. Since the carbon resin is essentially soft and has a tendency to easily adsorb abrasive grains, for example, even when the pitch layer is worn and exposed to the surface, damage to the surface of the counterpart component is extremely small.
[0050]
In addition, by using a carbon resin material as a base material, it is possible to easily perform curved shape processing and free grooving using general-purpose NC lathes and machine tools, and have a wide variety of shapes and groove structures. A polishing tool can be realized.
[0051]
Carbon resins are also advantageous in that they are less likely to corrode in various types of polishing liquids that exhibit acidity and alkalinity, and are difficult to crack in handling and work.
[0052]
The thickness of the pitch layer is preferably 0.3 mm or less. This is because when the thickness of the pitch layer exceeds 0.3 mm, the edge is likely to occur. More specifically, when the pitch layer is thicker than 0.3 mm, it becomes close to the properties of a conventional polishing tool, and the original hardness is generally lost with a solvent (that is, the molecular chain of the chain polymer hydrocarbon is removed). Although a divided pitch is used, plastic deformation easily occurs due to friction with the lens, and a sag occurs on the outer periphery of the lens surface, making it impossible to secure sphericity. The lower limit of the pitch layer is preferably 0.05 mm. This is because the possibility that the base material is locally exposed to the surface increases. If scratches due to contact with the exposed base material appear, it is the limit in use, and the operator grasps the life based on experience, and usually replaces the pitch before that.
[0053]
The measurement method of the thickness of the pitch layer is based on microscopic measurement with a deep focal depth, but relative comparative observation with a 0.3 mm mechanical pencil core is sufficient with a large loupe. When the pitch thickness is about the core of a 0.5 mm mechanical pen, a border appears. In the thickness measurement, 0.3 to 0.5 mm is the boundary region, but depending on the lens, it may be ground and removed by centering after polishing or may be outside the effective diameter.
[0054]
When forming the polisher layer, the pitch material is liquefied with a solvent, and the original hardness of the pitch (that is, the polymer chain-like semi-solid hydrocarbons are cut off with the solvent to form low-molecular semi-solid hydrocarbon particles. Is the turbidity ratio, the hardness when the viscometer needle (2 mmφ) sinks by 0.1 mm in a certain time (1 minute) when the temperature is constant (20 ° C.), or the fluidity Viscoelasticity due to instantaneous elasticity, delayed elasticity, etc. (see “Optical Industry Technology Research Association“ Lens / Prism Processing Technology '76 ”(issued on October 20, 1976))) should be lost. Thereby, the effect of burying the abrasive grains is increased, and an ultra-smooth optical surface can be obtained.
[0055]
The polishing tool of the present invention can adapt to various types of polishing slurries. For example, when a spherical lens made of fluorite (CaF2) is polished using a diamond slurry having a particle size distribution of 0.5 μm or less, surface processing error and sphericity required by the deep ultraviolet optical system: PV ≦ λ / 30 Surface roughness: rms ≦ 0.2 nm can be secured. The surface roughness is measured by a non-contact surface roughness measuring machine manufactured by Zygo. As a result, it is possible to polish a high-precision spherical lens having a radius of curvature tolerance on the order of μm, and in parallel with ensuring the curvature in optical design, it is possible to secure a surface processing error corresponding to the deep ultraviolet optical system.
[0056]
【Example】
FIG. 1 shows the basic structure of a spherical lens polishing tool, which is one embodiment of the present invention.
[0057]
The polishing tool base material 1a processed into a predetermined spherical shape is composed of a carbon resin, or a carbon resin material modified and reinforced by adding fine particles, fibers, etc. made of glass, metal, etc. The material 1a is provided with equally spaced lattice grooves 1b, and a pitch layer 2 having a thickness of 0.3 mm or less is formed on a small area 1c. As the processing order of the polishing tool base material, the processing error of R (curvature radius) is smaller when the groove processing is performed first and the spherical processing is performed last. When the depth of the grating groove 1b is larger than that of the small area 1c, the small rectangular column 1d is deformed during spherical processing, and the R processing error increases.
[0058]
FIG. 2 shows various variations of the spherical lens polishing tool base material shape.
[0059]
Polishing tool base materials that have been processed into a spherical surface for polishing various spherical lenses include a convex mold 3, a flat mold 4, a concave mold 5, and the like. Although not shown, there is a similar uneven surface mold as a polishing tool base material processed for cylindrical lens polishing. Further, although not shown in the drawing, a plurality of these tool base materials can be bonded or fastened as a segment on a large base and used as a large polishing tool.
[0060]
In addition to the lattice grooves, the polishing tool base material is provided with various grooves such as a radial groove 3a, a concentric groove, a spiral groove, and a free-curve groove (not shown). Although not shown, a tool of a type in which no groove is provided in the polishing tool base material may be used.
[0061]
3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG. 8 show an example of a pitch layer forming process on the surface of the polishing tool.
[0062]
The pitch as the polisher material is liquefied beforehand with a solvent such as toluene and adjusted to an appropriate viscosity. When a high-viscosity dissolution pitch is applied on the polishing tool base material 5, a droplet-like form 2a is obtained. From this state, natural drying or forced drying using hot air is performed to evaporate the solvent, and the pitch material is appropriately cured. The pitch material that has been liquefied and re-cured by the solvent has lost its original hardness, and the effect of embedding the fine particles is increased, so that the surface roughness of the parts such as the lens to be polished becomes an ultra-smooth surface.
[0063]
The polishing tool 1 in the dry state after the pitch application is put into reverse contact with the mating tool 6 having a desired radius of curvature, and the polisher surface shape is adjusted. At this time, a weight may be applied after the contact, but since the pitch causes a creep phenomenon even at room temperature, it may wait for natural deformation. However, since the carbon resin has a large coefficient of thermal expansion, it is preferable not to heat for promoting shaping.
[0064]
When weighting is performed and shaping is performed for a short time, a surface active agent such as polyethylene glycol is applied to the surface of the pitch layer to facilitate separation after shaping. On the other hand, when shaping over a long time, it is preferable to sandwich a thin film material 7 between the surface of the pitch layer and the mating tool 6. In this way, when the two cannot be separated from each other after shaping, if they are cooled in a freezer, slippage occurs at the interface of the film layer due to the difference in thermal expansion coefficient between the two, and separation is easy.
[0065]
Further, the processing accuracy such as the sphericity and the radius of curvature of the matching tool 6 is appropriately adjusted according to the required specifications of the target lens.
[0066]
Although the surplus material spreads around the outer periphery of the pitch layer 2c immediately after shaping, it is made into a state 2b cut off with a cutter knife and used for polishing.
[0067]
FIG. 9 shows a basic structure when the polishing tool is mainly mounted on the lower shaft side of the polishing apparatus. In this case, a lens is mounted on the upper shaft side.
[0068]
Usually, the lower shaft side of the lens polishing apparatus is a rotating shaft, and is connected to the polishing tool by a screw or a collet chuck. A lower shaft holder of a mold that holds a part of the outer peripheral side surface from the back surface of the polishing tool base material 1a is indicated by 8a, and a bottom shaft holder of a flange type that is provided with a counterbore on the back surface of the polishing tool base material 1a and held from the center portion Is shown at 9a. The polishing tool base material and the lower shaft holder may be joined by an adhesive, but may be fastened by providing a screw on the back surface of the base material. Screws 8b and 9b are provided on the back surfaces of the holders, respectively. Although not shown, a collet chuck taper shaft may be provided for the convenience of the polishing apparatus.
[0069]
FIG. 10 shows a basic structure when the polishing tool is mainly mounted on the upper shaft side of the polishing apparatus. In this case, a lens is mounted on the lower shaft side.
[0070]
Normally, the upper shaft side of the lens polishing apparatus is a rocking shaft, and is connected to the polishing tool by a simple universal joint having a structure in which a spherically processed shaft end called “kanzashi” is inserted. A hole 10 may be provided directly in the center of the back surface of the polishing tool base material 1a, or a counterbore may be provided in the back surface of the polishing tool base material 1a, and a hole 12 may be provided to insert the shaft end of the Kanzashi. The upper shaft holder 11 may be joined with an adhesive or fastened with screws or the like. Further, a structure in which a flange-type member 11a made of a self-lubricating resin material is mounted inside the upper shaft holder 11 and a hole 12 for inserting a shaft end of a Kanzashi may be provided.
[0071]
Further, if the screw part size of the upper shaft holder 11 and the screw part size of the lower shaft holders 8a and 9a described in the basic structure when the polishing tool is mounted on the lower shaft side of the polishing apparatus are made common. By exchanging the holder, it can be mounted on both the upper shaft and the lower shaft of the polishing apparatus.
[0072]
In addition, a cylindrical member is mounted instead of the upper shaft side of the polishing apparatus, and the screws 8b and 9b on the back surface of the holder described in the basic structure when the polishing tool is mounted on the lower shaft side of the polishing apparatus are attached. When a rubber cap member 13 having a spherical surface R is put on and inserted into the inside of the cylinder, another kind of universal joint is formed, and equivalent polishing can be performed. Even in this structure, the polishing tool can be mounted on both the upper and lower shafts of the polishing apparatus. Become.
[0073]
FIG. 11 shows a state in which the radius of curvature of the polishing tool is corrected using an electrodeposited diamond wheel.
[0074]
The polishing tool 1 is mounted on the rotating lower shaft side of the polishing apparatus, the upper shaft side stops swinging, and a diamond electrodeposited cup wheel (also referred to as an electrodeposited diamond wheel or cup wheel) 14 is mounted. The diameter of the cup wheel 14 is suitably 60 to 80% of the diameter of the polishing tool 1. In this example, a flange-type member 15 made of a self-lubricating resin material is mounted on the upper part of the cup wheel 14, and the shaft end of the Kanzashi 16 is inserted into the hole 15a so that the cup wheel 14 can be freely rotated. Yes. When the lower shaft of the polishing apparatus is rotated in this state, the cup wheel 14 also starts to rotate due to friction with the polishing tool 1 and the pitch layer on the surface of the polishing tool is ground and removed.
[0075]
Here, when the position of the upper shaft of the polishing apparatus is operated and the position of the cup wheel 14 is shifted to the center side of the polishing tool 1 and is stopped, the center portion of the polishing tool is relatively worn down. When the position is shifted to the outer peripheral side of the polishing tool 1 to be stationary, the outer peripheral portion of the polishing tool is relatively worn out.
[0076]
FIG. 12 shows a shift state of the position of the cup wheel 14. The cup wheel adjusts the curvature radius R in accordance with the uneven shape of the polishing tool. For example, if the polishing tool 1 is a convex surface, R is decreased when the position of the cup wheel 14 is shifted to the outer peripheral portion, and the curvature radius R is increased when the position is shifted to the central portion.
[0077]
Further, if the lower shaft side is tilted by the structure of the polishing apparatus, the inclination of the polishing tool 1 may be changed in order to change the relative positional relationship between the polishing tool 1 and the cup wheel 14.
[0078]
FIG. 13 shows a state in which the cup wheel 14 easily rolls over when the polishing tool 1 has a concave shape.
[0079]
As can be seen from FIG. 14, this phenomenon occurs when the concave polishing tool 1 rotates, and the frictional force F acts as a fulcrum at the contact point P on the outer peripheral side in the intrusion direction of the cup wheel 14. This is because it acts as a rotation (falling) moment Mc to K. Mc = f · Lc, Lc is a distance between P-K, and f is a component force of the frictional force F in a direction orthogonal to the P-K direction. R of the concave-shaped tool 1: The smaller the radius of curvature, the deeper the pitch layer digs into the cup wheel 14, and the result F (f) increases and rolls easily. Further, if the position of K is high, Lc increases and f component force increases, so that it is very easy to roll over.
[0080]
On the other hand, as can be seen from FIG. 15, in the case of a convex-shaped polishing tool, the frictional force F with the rotation of the polishing tool 1 causes the axial end of the Kanzashi 16 with the contact point P on the inner peripheral side in the intrusion direction of the cup wheel 14 as a fulcrum. A rotational moment Mx acts on the portion K. Mx = f · Lx, Lx is a distance between P-K, and f is a component force of the frictional force F in a direction orthogonal to the P-K direction. However, f in this case acts not in the direction of lifting the cup wheel 14 but in the direction of grounding to the polishing tool side, and works for stabilization. R of the convex shaped tool 1: The smaller the radius of curvature, the deeper the pitch layer digs into the cup wheel 14, and the result F (f) increases and the cup wheel 14 becomes more stable. Further, if the position of K is high to some extent, Lc increases and f component force increases and stabilizes, but on the other hand, the cup wheel 14 bites deeply and causes excessive wear of the pitch layer. If the angle further exceeds, the point Q on the opposite side of P will fall over the fulcrum, so it is better to adjust appropriately.
[0081]
FIG. 16 shows an example of the rollover prevention device (auxiliary device) of the concave polishing tool 1. The cup wheel 14 on the polishing tool 1 is held freely rotated by a Kanzashi 16. When two or more horizontal guide rollers 18 come into contact with the side surface of the cup wheel 14, the rotational moment is canceled. The horizontal guide roller 18 is freely rotated and held by a horizontal plate 17a provided with a rotation axis vertically. The horizontal plate 17a is connected to the arm 17 drawn out from an arbitrary component of the polishing apparatus.
[0082]
FIG. 17 is also another example of the rollover prevention device (auxiliary device) of the concave polishing tool 1. The cup wheel 14 on the polishing tool 1 is held freely rotated by a Kanzashi 16. When one or more vertical guide rollers 19 come into contact with the upper surface of the cup wheel 14, the rotational moment is canceled. The vertical guide roller 19 is freely rotated and held by an arm 17 having a horizontal rotation shaft. The arm 17 is pulled out from any constituent member of the polishing apparatus.
[0083]
Although FIG. 16 and FIG. 17 described that the arm 17 is pulled out from an arbitrary component of the polishing apparatus, workability is good if the arm 17 is integrated with the polishing apparatus from the beginning. An independent polishing tool curvature correcting device may be used.
[0084]
The polishing tool curvature correction work by the above apparatus is performed for about 30 to 60 seconds at a low rotation of 3 to 10 rpm, and the pitch chips on the surface of the polishing tool are cleaned and used for lens polishing. Changes in the radius of curvature of the lens surface that occurs after polishing for a certain period of time are measured and observed using a prototype, a laser interferometer, etc., and the difference from the target radius of curvature tolerance is checked. The lens curvature radius is guided to the required specifications.
[0085]
The polishing tool adapts to various types of polishing slurries. For example, when a spherical lens made of fluorite (CaF2) is polished with a diamond slurry having a particle size distribution of 0.5 μm or less, it is required for a deep ultraviolet optical system. Surface processing error, sphericity: PV ≦ λ / 30, surface roughness: rms ≦ 0.2 nm could be secured.
[0086]
Further, in the case of a convex lens, the lens curvature radius error when the polishing tool is used as it is is only about 0.037% (13 to 26 μm) of the curvature radius R when 35 mm ≦ R ≦ 70 mm. The tool curvature correction method enables polishing of a high-precision spherical lens having a curvature radius tolerance of about 0.005 to 0.010% (2.5 to 5 μm), that is, μm order.
[0087]
The upper shaft and the lower shaft are not limited to the rotation shaft, and may be a swing shaft or the like.
[0088]
【The invention's effect】
According to the first aspect of the present invention, since the carbon resin material is used as the base material, sufficient time to extend the tool life while maintaining the shape stability, improve the shape accuracy, and simultaneously reduce the surface roughness. Can be ensured, and the wound of the polishing strip can be prevented. Since the carbon resin is inherently soft and tends to adsorb abrasive grains, even when exposed to the surface due to abrasion of the pitch layer, damage to the surface of the counterpart component is extremely small.
[0089]
In addition, by using a carbon resin material as a base material, it is possible to easily perform curved shape processing and free grooving using general-purpose NC lathes and machine tools, and have a wide variety of shapes and groove structures. A polishing tool can be realized.
[0090]
Carbon resins are also advantageous in that they are less likely to corrode in various types of polishing liquids that exhibit acidity and alkalinity, and are difficult to crack in handling and work.
[0091]
According to the second aspect of the present invention, since the thickness of the pitch layer is 0.3 mm or less, the viscoelasticity is small and the edge does not easily occur.
[0092]
According to the invention of claim 3, since the surface of the carbon resin material is processed into a predetermined shape and provided with grooves, optical members having various shapes can be polished.
[0093]
According to the invention of claim 4, since the carbon resin material is modified or reinforced, the performance of the polishing tool can be improved.
[0094]
According to the invention which concerns on Claim 5, since the several carbon resin material segmented is adhere | attached on the rigid board | substrate of a metal or a ceramic, a polishing tool can be enlarged.
[0095]
According to the invention which concerns on Claim 6, since the pitch layer is formed by drying after apply | coating the liquefied pitch, a polishing tool can be manufactured easily.
[0096]
According to the invention of claim 7, since the pitch is liquefied with the solvent and then the pitch is re-cured, the effect of burying the abrasive grains is increased, and an ultra-smooth optical surface can be obtained.
[0097]
According to the eighth aspect of the present invention, since the base material made of the carbon resin material is formed into a predetermined shape and then the liquefied pitch is applied to the surface of the carbon resin agent, the processing error of the polishing tool can be reduced.
[0098]
According to the ninth aspect of the invention, since the pitch layer is formed by a predetermined process, the effect of burying the fine particles is increased, and the surface roughness of the parts such as the lens to be polished becomes an ultra-smooth surface.
[0099]
According to the inventions according to claims 10 and 11, since the polishing tool is mounted on either the upper shaft or the lower shaft of the polishing apparatus, or is configured to be mounted on both, it is applied to various polishing apparatuses. it can.
[0100]
According to the twelfth aspect of the present invention, since the polishing tool is mounted on one of the upper shaft and the lower shaft and the electrodeposited diamond wheel is mounted on the other shaft, the radius of curvature of the polishing tool can be easily corrected.
[0101]
According to the invention of claim 13, since the distance between the upper shaft and the lower shaft is relatively variable, the curvature radius of the polishing tool can be corrected in the μm order, and the curvature radius allowable error in the μm order. It is possible to polish a high-precision spherical lens having
[0102]
According to the invention which concerns on Claim 14, 15, since a curvature correction apparatus has an auxiliary | assistant apparatus, the fall of an electrodeposited diamond wheel can be prevented.
[0103]
According to the sixteenth aspect of the present invention, since the polishing apparatus includes the curvature correcting apparatus, the apparatus cost can be reduced and the workability can be improved.
[Brief description of the drawings]
FIG. 1 shows a basic structure of a spherical lens polishing tool which is one embodiment of the present invention.
FIG. 2 shows various variations of a spherical lens polishing tool base material shape.
FIG. 3 shows a part of a step of forming a pitch layer on the surface of the polishing tool.
FIG. 4 shows a part of a step of forming a pitch layer on the surface of the polishing tool.
FIG. 5 shows a part of a step of forming a pitch layer on the surface of the polishing tool.
FIG. 6 shows a part of a step of forming a pitch layer on the surface of the polishing tool.
FIG. 7 shows a part of a step of forming a pitch layer on the surface of the polishing tool.
FIG. 8 shows a part of a step of forming a pitch layer on the surface of the polishing tool.
FIG. 9 shows a basic structure when a polishing tool is mainly mounted on the lower shaft side of the polishing apparatus.
FIG. 10 shows a basic structure when a polishing tool is mainly mounted on the upper shaft side of a polishing apparatus.
FIG. 11 shows a state in which the radius of curvature of the polishing tool is corrected using an electrodeposited diamond wheel.
FIG. 12 shows a shift in the position of the cup wheel.
FIG. 13 shows how the cup wheel easily rolls over when the polishing tool has a concave shape.
FIG. 14 shows how the cup wheel easily rolls over when the polishing tool has a concave shape.
FIG. 15 shows how the cup wheel is stabilized when the polishing tool has a convex shape.
FIG. 16 shows an example of an auxiliary device for a concave polishing tool.
FIG. 17 shows another example of an auxiliary device for a concave polishing tool.
[Explanation of symbols]
1 Polishing tool
1a Abrasive tool base material
1b Lattice groove
1c Small area
1d small square pillar
2 Pitch layer
2a Droplet form
2b State cut off with a cutter knife
2c Pitch layer immediately after shaping
3 Convex type
3a Radial groove
4 Plane type
5 Concave type
6 Alignment tool
7 Film material
8a, 9a Lower shaft holder
8b, 9b screw
10, 12, 15a hole
11 Upper shaft holder
11a Flange type member
13 Cap material
14 Electroplated diamond wheel
15 Flange type member
16 Kanzashi
17 arms
17a horizontal plate
18 Horizontal guide roller
19 Vertical guide roller

Claims (12)

光学材料用の研磨工具において、母材がカーボン樹脂材で構成されており、その母材を構成するカーボン樹脂材の表面にピッチで構成されたピッチ層が形成され、ピッチ層の厚さは、0.3mm以下で、下限を0.05mmとし、ピッチが、溶剤で液状化して本来の硬度を喪失させたピッチ、すなわち、鎖状高分子炭化水素の分子鎖を分断させたピッチであり、かつ、液状化したピッチを乾燥させて所定の硬度にしたものであることを特徴とする研磨工具。In the polishing tool for optical materials, the base material is composed of a carbon resin material, a pitch layer composed of pitch is formed on the surface of the carbon resin material constituting the base material, and the thickness of the pitch layer is 0.3 mm or less, the lower limit is 0.05 mm, and the pitch is a pitch that is liquefied with a solvent and loses its original hardness, that is, a pitch in which molecular chains of chain polymer hydrocarbons are broken , and A polishing tool , wherein the liquefied pitch is dried to a predetermined hardness . カーボン樹脂材の表面が、球面、平面、及び円筒面のいずれかの形状に加工されており、かつ、カーボン樹脂材の表面に、格子状、同心円状、放射状、及びスパイラル状のいずれかの溝が所定のパターンで形成されていることを特徴とする請求項1に記載の研磨工具。  The surface of the carbon resin material is processed into one of a spherical surface, a flat surface, and a cylindrical surface, and the lattice, concentric, radial, and spiral grooves are formed on the surface of the carbon resin material. The polishing tool according to claim 1, wherein the polishing tool is formed in a predetermined pattern. カーボン樹脂材が、ガラス又は金属を有する微粒子又は繊維の添加により改質又は補強されていることを特徴とする請求項1〜2のいずれか1項に記載の研磨工具。  The polishing tool according to any one of claims 1 to 2, wherein the carbon resin material is modified or reinforced by addition of fine particles or fibers containing glass or metal. 金属又はセラミックの剛体基板上に、セグメント化した複数のカーボン樹脂材を接着したことを特徴とする請求項1〜3のいずれか1項に記載の研磨工具。  The polishing tool according to any one of claims 1 to 3, wherein a plurality of segmented carbon resin materials are bonded onto a metal or ceramic rigid substrate. カーボン樹脂材で構成された母材を所定形状に成形し、しかるのち、その母材を構成するカーボン樹脂材の表面に、0.3mm以下、0.05mm以上の厚みを有するピッチ層を形成し、ピッチ層を構成するピッチが、溶剤で液状化して本来の硬度を喪失させたピッチ、すなわち、鎖状高分子炭化水素の分子鎖を分断させたピッチあり、かつ、液状化したピッチを乾燥させて所定の硬度にしたものであることを特徴とする研磨工具の製造方法。A base material composed of a carbon resin material is molded into a predetermined shape, and then a pitch layer having a thickness of 0.3 mm or less and 0.05 mm or more is formed on the surface of the carbon resin material constituting the base material. The pitch constituting the pitch layer is a pitch that has been liquefied with a solvent and has lost its original hardness, that is, a pitch in which the molecular chains of the chain polymer hydrocarbons are broken , and the liquefied pitch is dried. A method for producing a polishing tool, characterized by having a predetermined hardness . 上軸と下軸を対向させて配置し、それらのいずれか一方に請求項1〜5のいずれか1項に記載の研磨工具を装着し、他方に光学材料を装着した光学材料用の研磨装置。  A polishing apparatus for an optical material in which an upper shaft and a lower shaft are arranged to face each other, the polishing tool according to any one of claims 1 to 5 is mounted on one of them, and the optical material is mounted on the other . 上軸と下軸を対向させて配置し、それらのいずれか一方に請求項1〜5のいずれか1項に記載の研磨工具を装着し、他方に電着ダイヤモンドホイールを装着したことを特徴とする曲率修正装置。  The upper shaft and the lower shaft are arranged to face each other, and the polishing tool according to any one of claims 1 to 5 is mounted on one of them, and an electrodeposited diamond wheel is mounted on the other. Curvature correction device. 上軸と下軸の軸間距離が、研磨工具と電着ダイヤモンドホイールの形状に応じて相対的に可変に構成されていることを特徴とする請求項7に記載の曲率修正装置。  8. The curvature correcting device according to claim 7, wherein the distance between the upper shaft and the lower shaft is relatively variable according to the shapes of the polishing tool and the electrodeposited diamond wheel. 電着ダイヤモンドホイールの側面に当接する2個以上のガイドローラーを備えた補助装置を有することを特徴とする請求項7又は8に記載の曲率修正装置。  The curvature correcting device according to claim 7 or 8, further comprising an auxiliary device including two or more guide rollers that are in contact with a side surface of the electrodeposited diamond wheel. 電着ダイヤモンドホイールの上面に当接するガイドローラーを備えた補助装置を有することを特徴とする請求項7又は8に記載の曲率修正装置。  The curvature correcting device according to claim 7 or 8, further comprising an auxiliary device including a guide roller that comes into contact with an upper surface of the electrodeposited diamond wheel. 請求項8〜10のいずれか1項に記載の曲率修正装置を具備した研磨装置。  A polishing apparatus comprising the curvature correcting device according to any one of claims 8 to 10. 無機化合物の溶剤で液状化し、
粘度を調整したピッチを母材の表面に塗布してピッチ層を形成し、
自然乾燥または熱風を用いた強制乾燥を行い、
溶剤を気化させて、適度に硬化する、研磨工具用のピッチ層の形成方法であって、
ピッチ層の厚みが、0.3mm以下、0.05mm以上であり、
ピッチが、溶剤で液状化して本来の硬度を喪失させたピッチ、すなわち、鎖状高分子炭化水素の分子鎖を分断させたピッチであることを特徴とする研磨工具用のピッチ層の形成方法。
Liquefaction with inorganic compound solvent,
Apply a pitch adjusted viscosity to the surface of the base material to form a pitch layer,
Perform natural drying or forced drying using hot air,
It is a method for forming a pitch layer for an abrasive tool that is vaporized and cured moderately,
The thickness of the pitch layer is 0.3 mm or less, 0.05 mm or more,
A method for forming a pitch layer for a polishing tool, wherein the pitch is a pitch that has been liquefied with a solvent and has lost its original hardness, that is, a pitch in which molecular chains of chain polymer hydrocarbons are broken.
JP2003029662A 2003-02-06 2003-02-06 Polishing tool for optical material, method for manufacturing the same, polishing apparatus and curvature correcting apparatus provided with the polishing tool. Expired - Fee Related JP4127796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003029662A JP4127796B2 (en) 2003-02-06 2003-02-06 Polishing tool for optical material, method for manufacturing the same, polishing apparatus and curvature correcting apparatus provided with the polishing tool.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003029662A JP4127796B2 (en) 2003-02-06 2003-02-06 Polishing tool for optical material, method for manufacturing the same, polishing apparatus and curvature correcting apparatus provided with the polishing tool.

Publications (3)

Publication Number Publication Date
JP2004237396A JP2004237396A (en) 2004-08-26
JP2004237396A5 JP2004237396A5 (en) 2006-06-15
JP4127796B2 true JP4127796B2 (en) 2008-07-30

Family

ID=32956775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003029662A Expired - Fee Related JP4127796B2 (en) 2003-02-06 2003-02-06 Polishing tool for optical material, method for manufacturing the same, polishing apparatus and curvature correcting apparatus provided with the polishing tool.

Country Status (1)

Country Link
JP (1) JP4127796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000154A (en) * 2014-12-17 2017-08-01 奥林巴斯株式会社 The machining tool of optical element and the manufacture method of optical element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5084421B2 (en) * 2007-09-21 2012-11-28 国立大学法人長岡技術科学大学 Lapping tool
CN107297685B (en) * 2017-08-23 2023-10-03 中国工程物理研究院激光聚变研究中心 Small tool correction device for shape error of asphalt polishing disk

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107000154A (en) * 2014-12-17 2017-08-01 奥林巴斯株式会社 The machining tool of optical element and the manufacture method of optical element

Also Published As

Publication number Publication date
JP2004237396A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
EP2995994B1 (en) Rectangular substrate for imprint lithography and making method
CN102601725B (en) Each dish of two scratch diskettes of two-sided process equipment provides the method for smooth working lining
KR20010024145A (en) Abrasive Articles Comprising a Fluorochemical Agent for Wafer Surface Modification
TW201220375A (en) Method for manufacturing electronic grade synthetic quartz glass substrate
WO2011055627A1 (en) Cutting tool, method for manufacturing molding die, and molding die for array lens
US20080026678A1 (en) Diamond tool blade with circular cutting edge
JP6252098B2 (en) Square mold substrate
CN107077865B (en) The manufacturing method of substrate for magnetic disc and the manufacturing method of disk
Li et al. Surface integrity of bearing steel element with a new high-efficiency shear thickening polishing technique
Yin et al. Brittle materials in nano-abrasive fabrication of optical mirror-surfaces
JP4127796B2 (en) Polishing tool for optical material, method for manufacturing the same, polishing apparatus and curvature correcting apparatus provided with the polishing tool.
JP2010076013A (en) Polishing method of rotary grindstone and polishing apparatus, grinding grindstone and grinding apparatus using the grindstone
US5259149A (en) Dicing blade hub and method
US9409274B2 (en) Tool for the polishing of optical surfaces
EP0924043A2 (en) Method for precision polishing non-planar, aspherical surfaces
TW201600229A (en) Scribing wheel and method of manufacturing same
Mertus et al. Implications of diamond-turned vs. diamond-ground mold fabrication techniques on precision-molded optics
Chi et al. Study on float polishing of metal nanometer surface
JP2010173016A (en) Conditioner for semiconductor polishing cloth, method for manufacturing the conditioner for semiconductor polishing cloth, and semiconductor polishing apparatus
JP2015123553A (en) Carrier, production method of carrier and production method of glass substrate for magnetic disk
Evans III et al. Comparison of materials for use in the precision grinding of optical components
RU2223850C1 (en) Method of abrasive treatment of metal optical mirrors
Geng et al. Surface layer damage of quartz glass induced by ultra-precision grinding with different grit size
KR960005296B1 (en) Device and method for centerless grinding cylinderical surfaces externally
US7150676B2 (en) Dual motion polishing tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees