JP4126598B2 - Operation control device for vibration compressor - Google Patents

Operation control device for vibration compressor Download PDF

Info

Publication number
JP4126598B2
JP4126598B2 JP2002266421A JP2002266421A JP4126598B2 JP 4126598 B2 JP4126598 B2 JP 4126598B2 JP 2002266421 A JP2002266421 A JP 2002266421A JP 2002266421 A JP2002266421 A JP 2002266421A JP 4126598 B2 JP4126598 B2 JP 4126598B2
Authority
JP
Japan
Prior art keywords
compressor
linear motor
piston
power supply
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002266421A
Other languages
Japanese (ja)
Other versions
JP2004100640A (en
Inventor
幹彦 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2002266421A priority Critical patent/JP4126598B2/en
Publication of JP2004100640A publication Critical patent/JP2004100640A/en
Application granted granted Critical
Publication of JP4126598B2 publication Critical patent/JP4126598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle

Description

【0001】
【発明の属する技術分野】
本発明は、スターリング冷凍機,パルスチューブ冷凍機などのガスサイクル機関の冷凍機に適用する振動圧縮機の運転制御装置に関する。
【0002】
【従来の技術】
頭記のスターリング冷凍機,パルスチューブ冷凍機において、その圧力振動の発生機構である圧縮機として、ピストンを可動コイル形リニアモータで往復駆動するようように構成したものが公知である。(例えば、特許文献1参照)。
【0003】
また、両端を開放したシリンダに、作動ガス(ヘリウムなどの冷媒)の圧縮/膨張空間を挟んで一対のピストンを向かい合わせに配置し、リニアモータの駆動により各ピストンを同期して互いに逆方向に往復動させるようにしたスプリットタイプのリニア駆動式圧縮機も知られている。(例えば、特許文献2)。
【0004】
次に、前記したスプリットタイプのリニア駆動式圧縮機の詳細構造を図2に示す。
【0005】
図2において、1は圧縮機、2は作動ガスの保圧容器を構成する密閉形ケーシング、3は後記するリニアモータの継鉄を兼ねた円筒形のシリンダ、4A,4Bは作動ガスの圧縮空間3aを挟んで向かい合わせにシリンダ3の両端に嵌入した左右一対のピストン、5は前記ピストン4A,4Bを軸方向へ移動可能に支持した円板形のサスペンションばね、6A.6Bはピストン4A,4Bを個別に駆動する可動コイル形リニアモータである。
【0006】
このリニアモータ6A,6Bは、前記シリンダ3の外周側に一体化して磁気回路を形成する継鉄7と、半径方向に着磁して継鉄7の内周面に装着したリング状の永久磁石8と、永久磁石8に対峙する可動コイル9と、可動コイル9を支持してピストン4A,4Bに連結したボビン10とで構成した単相コイルモータである。なお、3bはシリンダ3を半径方向に貫通して前記ガス圧縮空間3aに通じる作動ガス通路、11は前記ガス通路3bと冷凍機のコールドヘッド(図示せず)に内蔵したディスプレーサとの間に配管したキャピラリチューブである。
【0007】
なお、図示してないが、リニアモータ6A,6Bの可動コイル9に接続したリード線は、ケーシング2を気密に貫通して外部に引出した上で後記する電源部に接続して給電するようにしている。
【0008】
かかる構成になる振動圧縮機の動作は周知であり、可動コイル9に交流電圧を印加すると、可動コイル9に流れる電流と該コイルに鎖交する永久磁石8の磁束との間に働く電磁力により、リニアモータ6A,6Bの可動コイル9が同期して互いに逆方向に往復動作する。これにより、サスペンションばね5で支持されたピストン4Aと4Bがシリンダ3内で圧縮方向,膨張方向に交互に往復動し、左右のピストンで挟まれたシリンダ3内のガス圧縮空間3aに封入した作動ガスが圧縮,膨張して圧力振動を発生する。なお、円板形のサスペンションばね5は可動コイル9の電流ゼロの状態でピストン3を図示の中立位置に保持している。
【0009】
次に、前記圧縮機1に用いる従来の電源,制御回路を図3に示す。図3において、12はスイッチング素子Q1 〜Q4 で構成した単相インバータ(電源装置)であり、該インバータ12の交流出力を圧縮機1のリニアモータ6A,6Bの可動コイル9に給電してピストン4A,4Bを往復駆動する。
【0010】
ここで、圧縮機1の運転時におけるピストン4A,4Bの振幅(往復動のストローク),往復動周期を外部から与えた指令値に対応して制御するために、圧縮機1の内部には一方のピストン4Aに対応する位置センサ13を備え、該位置センサ13で得たピストンの位置情報を基に、次記のようにインバータ12の出力調整を行うようにしている。
【0011】
すなわち、インバータ出力の周波数指令を正弦波発生器14に与えて所望周波数の制御信号(正弦波信号)を得る。そして、前記の正弦波信号とピストンの振幅指令の積を掛け算器15で求め、それぞれに係数を乗じて出力電圧指令を得る。また、この出力電圧指令を比較器17によりキャリア発生器16で発生した三角波と比較してPWM波形に変換し、さらにデットタイム生成回路18によりデットタイムを付加した後、ゲートドライバ19によりインバータ12のスイッチング素子Q1 〜Q4 をON,OFF制御し、インバータ12から所望周波数,電圧値の出力電圧を得る。
【0012】
一方、圧縮機1のピストン位置制御は、前記位置センサ13で得た位置情報を基に直流分検出器20で検出したピストン位置と位置指令を比較して位置調整器(比例制御器あるいは比例積分制御器)21に入力し、その出力(直流電圧)を前記した出力電圧指令に重畳して行うようにしている。この場合に、出力電圧指令に正の直流電圧を重畳すると、リニアモータ6A,6Bで駆動するピストン4A.4Bが外方向に向かって移動するものとする。
【0013】
【特許文献1】
特開平5−288419号公報(p3〜4,図14)
【特許文献2】
特開平6−257871号公報(p3,図1)
【0014】
【発明が解決しようとする課題】
ところで、前記した振動圧縮機に対する従来の運転制御方式では、圧縮機の運転中に左右2組のリニアモータ6A,6Bのうち、片方のリニアモータにコイル断線,あるいは該リニアモータで駆動するピストンとシリンダの齧りなどに起因してモータロックするなどの異常事態が発生すると、他方のリニアモータで駆動するピストンの振幅が異常に大きくなってピストンが圧縮機のケーシングに衝突し、最悪な場合には破損する重大事故に進展するおそれがある。
【0015】
すなわち、図3で述べた運転制御系では、圧縮機1のリニアモータ6A,6Bに対し、位置センサ13の位置情報を基にインバータ12からの出力電圧を調整しているが、位置センサ13でピストン位置を検出しているリニアモータ6Aがコイル断線,あるいは該リニアモータ6Aで駆動するピストン4Aの齧りなどが原因でモータロックしたりすると、この場合にはピストン4Aが往復動作のストローク途中で停止,もしくは拘束されるために位置センサ13では正常にピストン位置情報が得られなくなる。しかも、この場合には前記の位置指令と拘束状態にあるピストン4Aの位置情報との関係から、インバータ12の出力電圧を高めるようにフィードバックが働く。そのために、高い出力電圧の給電を受けて動作する他方のリニアモータ6Bで駆動するピストン6Bの振幅が異常に増大し、その結果としてピストン4Bが圧縮機のケーシング2に衝突する、あるいはリニアモータ6Bのボビン10がシリンダ3の端面に衝突し、最悪な場合には破損して圧縮機1が運転不能となる。
【0016】
そこで、あらかじめインバータ12の出力電圧の上限を制限してピストンの暴走を防ぐようにすることが考えられるが、この方式でもピストンの異常振幅を抑えることが困難である。
【0017】
すなわち、インバータ12の出力電圧を制限した場合に、前記と同様にリニアモータ6Aがモータロックするなどの異常が生じると、ピストン4Aが拘束されたまま、インバータ12の出力電圧の制限から他方のピストン4Bを駆動するリニアモータ6Bの推力も制約されるため、圧縮機の圧縮行程で図2のガス圧縮空間3aにおける作動ガスの圧縮圧力が低下するようになる。一方、圧縮機の圧縮行程でのピストンの振幅は、リニアモータの推力のほか、ガス圧縮空間3aのガス圧力とピストンを支えるサスペンションばね5との釣り合い条件で決まる。
【0018】
このために、前記のように圧縮行程で圧縮されるガス圧縮空間3aのガス圧が低くなると、ピストンに働くガス圧の抗力も弱まることから、結果としてガス圧の低下分だけピストン4Bはリニアモータ6Bの推力を受けてさらに圧縮方向に進み、定常運転時と比べてピストン4Bの振幅が大きくなる。しかも、圧縮機のピストンは、消費電力を低く抑えるためにその振動系の共振周波数で振幅するよう設計されていることから、前記のようにインバータ12の出力電圧の上限を制限したとしても、前記の状況になるとピストン4Bの振幅は自励的に増加してピストン4Bがケーシングに衝突し、最悪時には破壊する危険がある。
【0019】
また、圧縮機1に装備した左右一対のピストン4A.4Bのうち、前記とは逆に位置センサ13で位置検出を行ってない右側のピストン4Bがコイル断線,ピストンの齧りなどが原因でピストンの往復動が拘束,停止した場合には、左側のピストン4Aは位置センサ13で検出した位置情報を基にしたインバータ12の出力電圧により定常運転時と同様な振幅で往復動するが、右側のピストン4Bはモータロックにより往復動のストローク途中で拘束,停止しているために、圧縮機から吐き出す作動ガス圧が下がって冷凍機の能力が低下するようになる。
【0020】
本発明は上記の点に鑑みなされたものであり、その目的は前記課題を解決し、圧縮機の運転中にリニアモータの異常が原因でピストンの振幅が増大した場合にこれを電気的にいち早く検出し、ピストンが暴走してケーシングに衝突するのを回避できるようにした振動圧縮機の運転制御装置を提供することにある。
【0021】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、圧縮機のケーシング内部に作動ガスの圧縮/膨張空間を挟んでシリンダの両端側に向かい合わせに嵌入した一対のピストン,および各ピストンを個別に駆動する2組のリニアモータを装備した構成になり、電源装置の交流出力を各リニアモータに給電し、前記ピストンを互いに逆方向へ往復駆動して作動ガスに圧力振動を発生させるようにした振動圧縮機の運転制御装置として、
第1の発明では、前記リニアモータの給電回路で各リニアモータに流れるコイル電流の電流検出手段、その電流差を求める演算手段、および電源装置の出力調整手段を装備し、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合に、ピストンに異常振幅が発生したと判断して演算手段から電源装置の出力調整手段に異常信号を出力し、この異常信号を基にリニアモータへの給電を止めて圧縮機の運転を停止させるようにする(請求項1)。
【0022】
また、第2の発明では、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合には、異常信号を基にリニアモータに給電する電源装置の出力電圧を定常運転時よりも下げてピストンの振幅をケーシングに衝突しないように縮小し、圧縮機の出力を低めた状態で継続運転するようにする(請求項2)。
【0023】
上記において、圧縮機の運転中に2組のリニアモータのうち、片方のリニアモータに断線,モータロックなどの異常が発生すると、そのリニアモータに流れるコイル電流と他方のリニアモータに流れるコイル電流との間に大きな電流差が生じるようになる。そこで、この電流差を検出し、その電流差に対応した検出値(絶対値)が前記した閾値を超えた際にはピストンに異常振幅が発生したと判断して、圧縮機の運転を強制的に停止する、あるいは電源装置の出力電圧を定常運転時よりも下げてピストンの振幅を抑えた状態で圧縮機を運転することにより、ピストンがケーシングに衝突して破損する非常事態を回避して、圧縮機を安全に運転制御することかできる。
【0024】
【発明の実施の形態】
以下、本発明の実施の形態を図1に示す実施例に基づいて説明する。なお、実施例の図中で図3に対応する部分には同じ符号を付してその説明は省略する。
【0025】
図1の電源,制御回路は図3と基本的に同じであるが、図3と比べて電流検出器24,電流差演算器25,およびインバータ出力調整回路26が新たに追加装備されている。
【0026】
すなわち、インバータ(電源装置)12の出力端と圧縮機1との間に配線した給電回路22に対し、圧縮機1に装備した2組のリニアモータ6A,6Bに対応する分岐給電回路22A,22BにはCT23を設けてリニアモータ6A,6Bに流れるコイル電流IA,IBを計測する。また、電流検出器24はCT23で計測した電流IA,IBを電圧VA,VB に変換して後段の電流差演算器25に出力する。一方、電流差演算器25は、各電流検出器24の出力電圧VA,VBの差を演算し、その差の絶対値が後記する閾値を超えた際に異常信号をインバータ出力調整回路26に出力する。さらに、インバータ出力調整回路26は、電流差演算器25から出力する異常信号を受けた場合に、インバータ12のスイッチング素子Q1〜Q4をOFFにして圧縮機1への給電を完全に停止するか、もしくはインバータ12の出力電圧を下げて圧縮機1を低出力運転させるとともに、同時にアラーム信号を出して異常発生を外部に知らせる。
【0027】
次に、前記した閾値の設定について説明する。すなわち、圧縮機1に内蔵したピストン4A,4Bの振幅(往復動ストローク)は、各ピストンを個別に駆動するリニアモータ6A,6Bの可動コイルに流れる電流IA,IBの大きさに応じて変化することから、定常運転におけるピストン4A,4Bの最大振幅をLMAX、そのときにリニアモータ6A,6Bに流すコイル電流をIMAXとしてこの電流を電流検出器24で検出した検出電圧をVMAX、最大振幅LMAXのピストン位置と圧縮機1のケーシング2(図2参照)との間に残る余裕寸法をL0、ピストンを前記の最大振幅LMAXを超えて余裕寸法 0 まで拡大させた場合にリニアモータに流すコイル電流の増加分に対応する前記検出電圧の増分をV0とすると、V0は次の(1)式で得られる。
【0028】
0 =V MAX +V 0 −V MAX ・・・(1)
したがって、上記のV0を閾値として、圧縮機の運転中に図1の電流検出器24,電流差演算器25で検出した出力電圧VA,VBの差(絶対値)が閾値V0を超えた際に、前記のように圧縮機1の運転を強制的に停止すれば、ピストンが異常振幅してケーシングに衝突する事態を未然に回避できる。
【0029】
また、この圧縮機を適用する冷凍機の環境によっては、圧縮機の運転を強制的に停止せずに、圧縮機を低出力の状態にして継続運転させることも可能である。この場合には、閾値を例えば前記V0値の80%程度に設定しておき、圧縮機の運転中に前記した出力電圧VA,VBの差(絶対値)が閾値(0.8V0)を超えた際に、インバータ12の出力電圧を定常運転時の90%に下げるように調整して運転すれば、圧縮機の出力は定常運転時に比べて低下するが、ピストンの衝突を避けた状態で継続運転を行うことが可能である。
【0030】
なお、リニアモータ6A,6Bのいずれか一方に異常が発生した場合のケースとして、リニアモータ6Aの可動コイルが断線するとコイル電流IAはゼロとなるのでIA<IBとなり、リニアモータ6Aがモータロックした場合にはコイル電流IAが増大するのでIA>IBとなる。また、リニアモータ6Bに異常が発生した場合にはコイル電流IA,IBの大小関係は前記と逆になるが、いずれの場合でもコイル電流IA,IBを監視することにより、ピストンの振幅異常をいち早く電気的に検知し、これを基にインバータ(電源装置)12の出力調整を行うことで圧縮機のピストンがケーシングに衝突する危険を回避できる。
【0031】
また、リニアモータ6A,6Bのコイル電流IA,IBの検出方法として、図示実施例では給電回路22の給電分岐回路22A,22BにCT23,電流検出器24を装備してコイル電流IA,IBを検出しているが、これとは別にリニアモータ6Aと6Bのコイル電流IAとIBとの合計電流IA+Bが流れる給電回路22と、一方の給電分岐回路,例えば22AにCT23,電流検出器24を配備し、リニアモータ6Bのコイル電流IBを演算(IB=IA+B−IA)によって求めることもできる。
【0032】
【発明の効果】
以上述べたように、本発明によれば、圧縮機のケーシング内部に作動ガスの圧縮/膨張空間を挟んでシリンダの両端側に向かい合わせに嵌入した一対のピストン,および各ピストンを個別に駆動する2組のリニアモータを装備した構成になり、電源装置の交流出力を各リニアモータに給電し、前記ピストンを互いに逆方向へ往復駆動して作動ガスに圧力振動を発生させるようにした振動圧縮機において、前記リニアモータの給電回路で各リニアモータに流れるコイル電流の電流検出手段、その電流差を求める演算手段、および電源装置の出力調整手段を備え、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合にピストンに異常振幅が発生したと判断し、リニアモータへの給電を止めて圧縮機の運転を停止する、あるいはリニアモータに給電する電源装置の出力電圧を下げて圧縮機を継続運転することにより、圧縮機の運転中に、2組のリニアモータのうち、一方のリニアモータにコイル断線,モータロックなどの異常が発生した場合でも、この異常を電気的にいち早く検出し、ピストンがケーシングに衝突して破損する非常事態を回避して、圧縮機を安全に運転制御することかでき、これにより振動圧縮機の事故予防への対応が可能となる。
【図面の簡単な説明】
【図1】 本発明の実施態様に係る振動圧縮機の電源,制御回路図
【図2】 図1における圧縮機の詳細構造を表す構成断面図
【図3】 従来における振動圧縮機の電源,制御回路図
【符号の説明】
1 圧縮機
2 ケーシング
3 シリンダ
3a 作動ガスの圧縮空間
4A,4B ピストン
5 サスペンションばね
6A,6B リニアモータ
9 可動コイル
12 インバータ(電源装置)
22 給電回路
23 電流検出用CT
24 電流検出器
25 電流差演算器
26 インバータ出力調整回路
A,IB リニアモータのコイル電流
A,VB コイル電流に対応した検出電圧
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an operation control device for a vibration compressor applied to a refrigerator of a gas cycle engine such as a Stirling refrigerator or a pulse tube refrigerator.
[0002]
[Prior art]
In the above-mentioned Stirling refrigerator and pulse tube refrigerator, as a compressor that is a mechanism for generating the pressure vibration, a configuration in which a piston is reciprocally driven by a moving coil linear motor is known. (For example, refer to Patent Document 1).
[0003]
In addition, a pair of pistons are arranged opposite to each other across a compression / expansion space for working gas (refrigerant such as helium) in a cylinder with both ends open, and the pistons are synchronized with each other in the opposite directions by driving a linear motor. A split-type linear drive compressor that is reciprocated is also known. (For example, patent document 2).
[0004]
Next, FIG. 2 shows a detailed structure of the above-described split type linear drive compressor.
[0005]
In FIG. 2, 1 is a compressor, 2 is a sealed casing that constitutes a pressure-holding vessel for working gas, 3 is a cylindrical cylinder that also serves as a yoke for a linear motor to be described later, and 4A and 4B are working gas compression spaces. A pair of left and right pistons 5 fitted to both ends of the cylinder 3 facing each other across the cylinder 3a, 5 are disk-shaped suspension springs that support the pistons 4A and 4B so as to be movable in the axial direction, 6A. Reference numeral 6B denotes a moving coil linear motor that individually drives the pistons 4A and 4B.
[0006]
The linear motors 6A and 6B include a yoke 7 that is integrated with the outer peripheral side of the cylinder 3 to form a magnetic circuit, and a ring-shaped permanent magnet that is magnetized in the radial direction and attached to the inner peripheral surface of the yoke 7. 8 and a movable coil 9 that faces the permanent magnet 8 and a bobbin 10 that supports the movable coil 9 and is connected to the pistons 4A and 4B. 3b is a working gas passage that passes through the cylinder 3 in the radial direction and communicates with the gas compression space 3a, and 11 is a pipe between the gas passage 3b and a displacer built in a cold head (not shown) of the refrigerator. Capillary tube.
[0007]
Although not shown, the lead wire connected to the movable coil 9 of the linear motor 6A, 6B passes through the casing 2 in an airtight manner and is pulled out to the outside, and then connected to a power supply unit described later to supply power. ing.
[0008]
The operation of the vibration compressor having such a configuration is well known. When an AC voltage is applied to the movable coil 9, an electromagnetic force acting between the current flowing through the movable coil 9 and the magnetic flux of the permanent magnet 8 linked to the coil is used. The movable coils 9 of the linear motors 6A and 6B reciprocate in opposite directions in synchronization with each other. As a result, the pistons 4A and 4B supported by the suspension spring 5 reciprocate alternately in the compression direction and the expansion direction in the cylinder 3 and are enclosed in the gas compression space 3a in the cylinder 3 sandwiched between the left and right pistons. Gas compresses and expands, generating pressure oscillations. The disc-shaped suspension spring 5 holds the piston 3 at the neutral position shown in the figure with the current of the movable coil 9 being zero.
[0009]
Next, a conventional power supply and control circuit used in the compressor 1 is shown in FIG. In FIG. 3, reference numeral 12 denotes a single-phase inverter (power supply device) composed of switching elements Q1 to Q4. The AC output of the inverter 12 is supplied to the movable coils 9 of the linear motors 6A and 6B of the compressor 1 to supply the piston 4A. , 4B are driven back and forth.
[0010]
Here, in order to control the amplitudes (reciprocating strokes) and reciprocating cycles of the pistons 4A and 4B during the operation of the compressor 1 in accordance with the command values given from the outside, The position sensor 13 corresponding to the piston 4A is provided, and based on the position information of the piston obtained by the position sensor 13, the output of the inverter 12 is adjusted as follows.
[0011]
That is, the inverter output frequency command is given to the sine wave generator 14 to obtain a control signal (sine wave signal) having a desired frequency. Then, a product of the sine wave signal and the piston amplitude command is obtained by a multiplier 15, and each is multiplied by a coefficient to obtain an output voltage command. Further, the output voltage command is compared with the triangular wave generated by the carrier generator 16 by the comparator 17 and converted into a PWM waveform. Further, the dead time is added by the dead time generation circuit 18 and then the gate driver 19 The switching elements Q1 to Q4 are ON / OFF controlled, and an output voltage having a desired frequency and voltage value is obtained from the inverter 12.
[0012]
On the other hand, the piston position control of the compressor 1 is performed by comparing the piston position detected by the DC component detector 20 with the position command based on the position information obtained by the position sensor 13 and a position adjuster (proportional controller or proportional integration). Controller 21) and its output (DC voltage) is superimposed on the output voltage command described above. In this case, if a positive DC voltage is superimposed on the output voltage command, the pistons 4A. Assume that 4B moves outward.
[0013]
[Patent Document 1]
JP-A-5-288419 (p3-4, FIG. 14)
[Patent Document 2]
Japanese Patent Laid-Open No. 6-257871 (p3, FIG. 1)
[0014]
[Problems to be solved by the invention]
By the way, in the conventional operation control system for the above-described vibration compressor, the coil is disconnected in one of the two left and right linear motors 6A and 6B during the operation of the compressor, or the piston is driven by the linear motor. When an abnormal situation occurs such as the motor being locked due to cylinder turn or the like, the amplitude of the piston driven by the other linear motor becomes abnormally large and the piston collides with the casing of the compressor. There is a risk of progressing to a serious accident that breaks.
[0015]
That is, in the operation control system described in FIG. 3, the output voltage from the inverter 12 is adjusted based on the position information of the position sensor 13 for the linear motors 6A and 6B of the compressor 1. If the linear motor 6A detecting the piston position is locked due to a broken coil or the piston 4A driven by the linear motor 6A, the piston 4A stops in the middle of a reciprocating stroke. Or, because of the restraint, the position sensor 13 cannot normally obtain the piston position information. In addition, in this case, feedback acts so as to increase the output voltage of the inverter 12 from the relationship between the position command and the position information of the piston 4A in the restrained state. For this reason, the amplitude of the piston 6B driven by the other linear motor 6B that operates by receiving a high output voltage is abnormally increased. As a result, the piston 4B collides with the casing 2 of the compressor, or the linear motor 6B. The bobbin 10 collides with the end face of the cylinder 3, and in the worst case, it is damaged and the compressor 1 cannot be operated.
[0016]
Therefore, it is conceivable to limit the upper limit of the output voltage of the inverter 12 in advance so as to prevent the piston from running away, but even with this method, it is difficult to suppress the abnormal amplitude of the piston.
[0017]
In other words, when the output voltage of the inverter 12 is limited, if an abnormality such as the linear motor 6A being locked as described above occurs, the piston 4A remains restrained, and the other piston is restricted due to the limitation of the output voltage of the inverter 12. Since the thrust of the linear motor 6B that drives 4B is also restricted, the compression pressure of the working gas in the gas compression space 3a in FIG. 2 decreases during the compression stroke of the compressor. On the other hand, the amplitude of the piston in the compression stroke of the compressor is determined by the balance condition between the gas pressure in the gas compression space 3a and the suspension spring 5 supporting the piston, in addition to the thrust of the linear motor.
[0018]
For this reason, when the gas pressure in the gas compression space 3a compressed in the compression stroke is lowered as described above, the drag of the gas pressure acting on the piston is also weakened. Receiving the thrust of 6B, it further proceeds in the compression direction, and the amplitude of the piston 4B becomes larger than that in the steady operation. Moreover, since the piston of the compressor is designed to swing at the resonance frequency of the vibration system in order to keep power consumption low, even if the upper limit of the output voltage of the inverter 12 is limited as described above, In this situation, the amplitude of the piston 4B increases self-excitingly, causing the piston 4B to collide with the casing, and in the worst case, there is a danger of destruction.
[0019]
Further, a pair of left and right pistons 4A. 4B, if the piston 4B on the right side that has not been detected by the position sensor 13 constrains and stops the reciprocating movement of the piston due to coil disconnection, piston stroke, etc. 4A reciprocates with the same amplitude as during steady operation by the output voltage of the inverter 12 based on the position information detected by the position sensor 13, but the right piston 4B is restrained and stopped during the reciprocating stroke by the motor lock. Therefore, the working gas pressure discharged from the compressor is lowered, and the capacity of the refrigerator is lowered.
[0020]
The present invention has been made in view of the above points. The object of the present invention is to solve the above-mentioned problems, and when the amplitude of the piston increases due to an abnormality of the linear motor during the operation of the compressor, this is electrically fastened. It is an object of the present invention to provide an operation control device for a vibration compressor that can detect and avoid a piston from running away and colliding with a casing.
[0021]
[Means for Solving the Problems]
In order to achieve the above-described object, according to the present invention, a pair of pistons fitted into opposite ends of a cylinder with a working gas compression / expansion space sandwiched inside a casing of the compressor, and each piston individually. Vibration that is configured to drive two sets of linear motors, supplying the AC output of the power supply to each linear motor, and reciprocally driving the pistons in opposite directions to generate pressure oscillations in the working gas As a compressor operation control device,
According to a first aspect of the present invention, the linear motor power supply circuit includes a current detection means for a coil current flowing through each linear motor, a calculation means for obtaining the current difference, and an output adjustment means for the power supply device. When the detection value corresponding to the difference in coil current flowing through each linear motor exceeds a preset threshold value, it is determined that an abnormal amplitude has occurred in the piston, and an abnormal signal is output from the calculation means to the output adjustment means of the power supply device Then, based on this abnormal signal, the power supply to the linear motor is stopped to stop the operation of the compressor (claim 1).
[0022]
In the second invention, when the detected value corresponding to the difference between the coil currents flowing through the respective linear motors during the operation of the compressor exceeds a preset threshold value, power is supplied to the linear motor based on the abnormal signal. The output voltage of the power supply device is lowered from that during steady operation to reduce the piston amplitude so that it does not collide with the casing, and the compressor is continuously operated with the output of the compressor lowered (claim 2).
[0023]
In the above, when an abnormality such as disconnection or motor lock occurs in one of the two linear motors during operation of the compressor, the coil current flowing in the linear motor and the coil current flowing in the other linear motor are A large current difference occurs between the two. Therefore, this current difference is detected, and when the detected value (absolute value) corresponding to the current difference exceeds the above-described threshold value, it is determined that an abnormal amplitude has occurred in the piston, and the compressor operation is forced. By operating the compressor in a state where the output voltage of the power supply device is lowered than in the steady operation and the amplitude of the piston is suppressed, the emergency situation where the piston collides with the casing and breaks, The compressor can be safely operated and controlled.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described based on the example shown in FIG. In the drawing of the embodiment, portions corresponding to those in FIG.
[0025]
The power supply and control circuit of FIG. 1 are basically the same as those of FIG. 3, but a current detector 24, a current difference calculator 25, and an inverter output adjustment circuit 26 are newly added as compared with FIG.
[0026]
That is, for the power feeding circuit 22 wired between the output terminal of the inverter (power supply device) 12 and the compressor 1, the branch power feeding circuits 22 </ b> A and 22 </ b> B corresponding to the two sets of linear motors 6 </ b> A and 6 </ b> B equipped in the compressor 1. CT 23 is provided to measure coil currents I A and I B flowing through the linear motors 6A and 6B. The current detector 24 converts the currents I A and I B measured by the CT 23 into voltages V A and V B and outputs them to the current difference calculator 25 at the subsequent stage. On the other hand, the current difference calculator 25 calculates the difference between the output voltages V A and V B of each current detector 24 and outputs an abnormal signal to the inverter output adjustment circuit 26 when the absolute value of the difference exceeds a threshold value to be described later. Output to. Further, when receiving an abnormal signal output from the current difference calculator 25, the inverter output adjustment circuit 26 turns off the switching elements Q1 to Q4 of the inverter 12 to completely stop the power supply to the compressor 1, or Alternatively, the output voltage of the inverter 12 is lowered to cause the compressor 1 to operate at a low output, and at the same time, an alarm signal is issued to notify the outside of the occurrence of abnormality.
[0027]
Next, the above threshold value setting will be described. That is, the amplitude (reciprocating stroke) of the pistons 4A and 4B built in the compressor 1 depends on the magnitudes of the currents I A and I B flowing in the movable coils of the linear motors 6A and 6B that individually drive the pistons. Since the maximum amplitude of the pistons 4A and 4B in steady operation is L MAX and the coil current flowing through the linear motors 6A and 6B at that time is I MAX , the detected voltage detected by the current detector 24 is V MAX. The margin dimension remaining between the piston position of the maximum amplitude L MAX and the casing 2 (see FIG. 2) of the compressor 1 is L 0 , and the piston is expanded to the margin dimension L 0 exceeding the maximum amplitude L MAX . In this case, when the increment of the detection voltage corresponding to the increase in the coil current flowing through the linear motor is V 0 , V 0 is obtained by the following equation (1).
[0028]
V 0 = V MAX + V 0 −V MAX (1)
Accordingly, the V 0 which said as a threshold, the current detector 24 of FIG. 1 during operation of the compressor, the output voltage V A detected by the current difference calculator 25, the difference V B (absolute value) a threshold value V 0 If the operation of the compressor 1 is forcibly stopped as described above, the situation where the piston collides with the casing due to an abnormal amplitude can be avoided.
[0029]
Further, depending on the environment of the refrigerator to which this compressor is applied, it is possible to continue the operation with the compressor in a low output state without forcibly stopping the operation of the compressor. In this case, the threshold value is set to about 80% of the V 0 value, for example, and the difference (absolute value) between the output voltages V A and V B during the operation of the compressor is the threshold value (0.8 V 0 ). If the output voltage of the inverter 12 is adjusted so as to be lowered to 90% of that in the steady operation when the pressure exceeds), the output of the compressor is lower than that in the steady operation, but the piston collision is avoided. It is possible to continue operation in the state.
[0030]
As a case where an abnormality occurs in one of the linear motors 6A and 6B, if the movable coil of the linear motor 6A is disconnected, the coil current I A becomes zero, so I A <I B , and the linear motor 6A When the motor is locked, the coil current I A increases, so that I A > I B. Further, when an abnormality occurs in the linear motor 6B, the magnitude relationship between the coil currents I A and I B is opposite to the above, but in either case, by monitoring the coil currents I A and I B , The risk of the piston of the compressor colliding with the casing can be avoided by detecting the abnormality in the amplitude quickly and adjusting the output of the inverter (power supply device) 12 based on this.
[0031]
Further, as a method of detecting the coil currents I A and I B of the linear motors 6A and 6B, in the illustrated embodiment, the power feeding branch circuits 22A and 22B of the power feeding circuit 22 are equipped with a CT 23 and a current detector 24, and the coil currents I A , While detecting the I B, and the feeding circuit 22 through which the total current I a + B of the coil current I a and I B of separate linear motors 6A and 6B is this one feeder branch circuits, for example, 22A The CT 23 and the current detector 24 can be provided, and the coil current I B of the linear motor 6B can be obtained by calculation (I B = I A + B −I A ).
[0032]
【The invention's effect】
As described above, according to the present invention, a pair of pistons that are fitted opposite to both ends of the cylinder across the compression / expansion space of the working gas inside the casing of the compressor, and each piston are individually driven. A vibration compressor that has two sets of linear motors, supplies the AC output of the power supply to each linear motor, and drives the pistons to reciprocate in opposite directions to generate pressure vibrations in the working gas. The power supply circuit of the linear motor includes a current detection means for the coil current that flows to each linear motor, a calculation means for obtaining the current difference, and an output adjustment means for the power supply device, and flows to each linear motor during operation of the compressor. When the detected value corresponding to the difference in coil current exceeds a preset threshold, it is determined that an abnormal amplitude has occurred in the piston, and the supply to the linear motor is made. One of the two sets of linear motors during the operation of the compressor by stopping the compressor and stopping the operation of the compressor, or lowering the output voltage of the power supply unit that supplies power to the linear motor and continuing the compressor operation. Even if an abnormality such as coil disconnection or motor lock occurs in the linear motor of this type, this abnormality is electrically detected quickly, and an emergency situation in which the piston collides with the casing and breaks can be avoided to operate the compressor safely. It can be controlled, and this makes it possible to cope with accident prevention of the vibration compressor.
[Brief description of the drawings]
FIG. 1 is a power supply and control circuit diagram of a vibration compressor according to an embodiment of the present invention. FIG. 2 is a structural cross-sectional view showing a detailed structure of the compressor in FIG. Circuit diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Casing 3 Cylinder 3a Compression space of working gas 4A, 4B Piston 5 Suspension spring 6A, 6B Linear motor 9 Moving coil 12 Inverter (power supply device)
22 Power supply circuit 23 Current detection CT
24 Current detector 25 Current difference calculator 26 Inverter output adjustment circuit I A , I B Linear motor coil current V A , V B Coil current detection voltage

Claims (2)

圧縮機のケーシング内部に作動ガスの圧縮/膨張空間を挟んでシリンダの両端側に向かい合わせに嵌入した一対のピストン,および各ピストンを個別に駆動する2組のリニアモータを装備した構成になり、電源装置の交流出力を各リニアモータに給電し、前記ピストンを互いに逆方向へ往復駆動して作動ガスに圧力振動を発生させるようにした振動圧縮機の運転制御装置であって、
前記リニアモータの給電回路で各リニアモータに流れるコイル電流の電流検出手段、その電流差を求める演算手段、および電源装置の出力調整手段を備え、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合にピストンに異常振幅が発生したと判断し、リニアモータへの給電を止めて圧縮機の運転を停止することを特徴とする振動圧縮機の運転制御装置。
The compressor casing is equipped with a pair of pistons fitted opposite to both ends of the cylinder across the compression / expansion space of the working gas, and two linear motors that individually drive each piston. An operation control device for a vibration compressor that feeds alternating current output of a power supply device to each linear motor and drives the piston to reciprocate in opposite directions to generate pressure vibration in the working gas,
Coil current flowing through each linear motor during operation of the compressor, comprising: current detection means for coil current flowing through each linear motor in the power supply circuit of the linear motor; calculation means for obtaining the current difference; and output adjustment means for the power supply device. When the detected value corresponding to the difference exceeds a preset threshold value, it is determined that an abnormal amplitude has occurred in the piston, and the compressor is stopped by stopping power supply to the linear motor. Machine operation control device.
圧縮機のケーシング内部に作動ガスの圧縮/膨張空間を挟んでシリンダの両端側に向かい合わせに嵌入した一対のピストン,および各ピストンを個別に駆動する2組のリニアモータを装備した構成になり、電源装置の交流出力を各リニアモータに給電し、前記ピストンを互いに逆方向へ往復駆動して作動ガスに圧力振動を発生させるようにした振動圧縮機の運転制御装置であって、
前記リニアモータの給電回路で各リニアモータに流れるコイル電流の電流検出手段、その電流差を求める演算手段、および電源装置の出力調整手段を備え、圧縮機の運転中に各リニアモータに流れるコイル電流の差分に対応した検出値があらかじめ設定した閾値を超えた場合にピストンに異常振幅が発生したと判断し、リニアモータに給電する電源装置の出力電圧を下げて圧縮機を継続運転するようにしたことを特徴とする振動圧縮機の運転制御装置。
The compressor casing is equipped with a pair of pistons fitted opposite to both ends of the cylinder across the compression / expansion space for the working gas, and two linear motors that individually drive each piston. An operation control device for a vibration compressor that feeds alternating current output of a power supply device to each linear motor and drives the piston to reciprocate in opposite directions to generate pressure vibration in the working gas,
Coil current flowing through each linear motor during operation of the compressor, comprising: current detection means for coil current flowing through each linear motor in the power supply circuit of the linear motor; calculation means for obtaining the current difference; and output adjustment means for the power supply device. When the detected value corresponding to the difference exceeds a preset threshold, it is judged that an abnormal amplitude has occurred in the piston, and the output voltage of the power supply unit that supplies power to the linear motor is lowered to continue the compressor operation. An operation control apparatus for a vibration compressor.
JP2002266421A 2002-09-12 2002-09-12 Operation control device for vibration compressor Expired - Fee Related JP4126598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002266421A JP4126598B2 (en) 2002-09-12 2002-09-12 Operation control device for vibration compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002266421A JP4126598B2 (en) 2002-09-12 2002-09-12 Operation control device for vibration compressor

Publications (2)

Publication Number Publication Date
JP2004100640A JP2004100640A (en) 2004-04-02
JP4126598B2 true JP4126598B2 (en) 2008-07-30

Family

ID=32265240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002266421A Expired - Fee Related JP4126598B2 (en) 2002-09-12 2002-09-12 Operation control device for vibration compressor

Country Status (1)

Country Link
JP (1) JP4126598B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001479A1 (en) 2004-06-29 2006-01-05 Thk Co., Ltd. Error detection method and motor control device
KR101214489B1 (en) * 2011-06-13 2012-12-24 엘지전자 주식회사 Apparatus for controlling compressor and method of the same
CN104124911B (en) * 2014-07-25 2017-05-31 宁波华斯特林电机制造有限公司 A kind of electric power supply control system and Stirling motor
JP7143272B2 (en) * 2019-12-24 2022-09-28 ツインバード工業株式会社 Free piston Stirling refrigerator
US20220154714A1 (en) * 2020-11-19 2022-05-19 Haier Us Appliance Solutions, Inc. Linear compressor and internal collision mitigation

Also Published As

Publication number Publication date
JP2004100640A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
KR100587795B1 (en) Linear motor controller
US8079825B2 (en) Sensor-less control method for linear compressors
US5980211A (en) Circuit arrangement for driving a reciprocating piston in a cylinder of a linear compressor for generating compressed gas with a linear motor
US6832898B2 (en) Driving apparatus of a linear compressor
US7121099B2 (en) Stirling refrigerator and method of controlling operation of the refrigerator
KR20060110234A (en) Linear compressor controller
JP3869481B2 (en) Linear compressor drive unit
JP4129126B2 (en) Linear compressor drive control method and vehicle linear compressor drive control method
JP4126598B2 (en) Operation control device for vibration compressor
US6181090B1 (en) Drive control method for linear oscillating motors and a linear oscillating motor
JP3469777B2 (en) Control device for linear compressor
JP3768064B2 (en) Linear compressor drive unit
JP3869632B2 (en) Linear compressor drive controller
JP2002044977A (en) Drive device for linear compressor
JPH09126147A (en) Drive device for linear compressor
CN111836961B (en) Linear compressor and linear compressor control system
JPH11132585A (en) Oscillatory compressor
JP3118413B2 (en) Drive unit for linear compressor
JP3269454B2 (en) Vibration compressor
JP4096665B2 (en) Linear motor control device
JP4059048B2 (en) Linear motor control device
KR101948563B1 (en) Apparatus for controlling compressor and refrigerator having the same
JP3566213B2 (en) Stirling refrigerator and operation control method thereof
WO2022064989A1 (en) Ultra-low-temperature freezer and monitoring method for ultra-low-temperature freezer
JP2009017755A (en) Linear-motor controller and stirling engine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees