JP4126382B2 - Ozone generator and ozonized gas production method - Google Patents

Ozone generator and ozonized gas production method Download PDF

Info

Publication number
JP4126382B2
JP4126382B2 JP2003325259A JP2003325259A JP4126382B2 JP 4126382 B2 JP4126382 B2 JP 4126382B2 JP 2003325259 A JP2003325259 A JP 2003325259A JP 2003325259 A JP2003325259 A JP 2003325259A JP 4126382 B2 JP4126382 B2 JP 4126382B2
Authority
JP
Japan
Prior art keywords
gas
ozone
electrodes
discharge
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003325259A
Other languages
Japanese (ja)
Other versions
JP2005089248A (en
Inventor
正樹 田口
信 虎口
一樹 甲斐
啓輔 山城
Original Assignee
富士電機水環境システムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機水環境システムズ株式会社 filed Critical 富士電機水環境システムズ株式会社
Priority to JP2003325259A priority Critical patent/JP4126382B2/en
Publication of JP2005089248A publication Critical patent/JP2005089248A/en
Application granted granted Critical
Publication of JP4126382B2 publication Critical patent/JP4126382B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は上下水処理、パルプ漂白処理、殺菌処理、脱臭処理などに用いるオゾン化ガス製造装置およびその装置の運転方法に関する。また、濃度が高いオゾン化ガス製造方法に関するものである。 The present invention relates to an ozonized gas production apparatus used for water and sewage treatment, pulp bleaching treatment, sterilization treatment, deodorization treatment, and the like, and a method of operating the device. Moreover, it is related with the ozonized gas manufacturing method with a high density | concentration.

従来からオゾン化ガスは上下水処理、パルプ漂白処理、殺菌処理、脱臭処理などの各種処理を行う際に用いられて来た。そのオゾン化ガスの製法としては、空気あるいは酸素ガスを原料ガスとし、誘電体を配置した対向する電極の電極間に原料ガスを供給しながら交流高電圧を印加して放電させる無声放電方式にて製造する方法が知られている。この方法は他のオゾン製造法と比較すると経済的であり、酸素ガスを高い純度で含む原料ガスを用いることにより効率的に濃度が高いオゾン化ガスを製造することができるため、近年ではオゾン化ガスを製造する方法として多用されている。 Conventionally, ozonized gas has been used for various treatments such as water and sewage treatment, pulp bleaching treatment, sterilization treatment, and deodorization treatment. As a method for producing the ozonized gas, a silent discharge method in which air or oxygen gas is used as a source gas and an AC high voltage is applied to discharge while supplying the source gas between electrodes of opposing electrodes arranged with a dielectric is used. Manufacturing methods are known. This method is economical compared to other ozone production methods, and since ozone gas having a high concentration can be efficiently produced by using a raw material gas containing oxygen gas with high purity, in recent years ozonization It is often used as a method for producing gas.

この無声放電方式でオゾン化ガスを製造しようとするときには、対向する電極の電極間の距離、より正確には電極間の放電ギャップ長が発生するオゾンの濃度に大きな影響をあたえることが知られている。すなわち、電極間に与えるエネルギーが同じであるならば、オゾン濃度を向上させるためには放電ギャップ長を短くする必要がある。
一方、大量にオゾン化ガスを供給するためにはオゾン発生装置は大型化してきた。無声放電方式で用いる電極も大型となり、0.5m以上の長さを有する電極が多用されている。そして、放電電極0.5mに対して電極の放電ギャップ長は現在1mm以下である。生成するオゾン化ガスのオゾン濃度を向上させるためには、ギャップ長を例えば0.2mm程度に短くすればよいのであるが、0.5m以上の長さを持つ電極の放電ギャップ長さを0.2mmとすることは現実的ではない。とくに、多用されている同軸円筒管において放電電0.5mに対して電極の放電ギャップ長を0.2mmとすることは、歩留まりなどの点を考慮すると到底実用的な方法ということはできない。
When trying to produce ozonized gas by this silent discharge method, it is known that the distance between the electrodes of the opposing electrodes, more precisely, the discharge gap length between the electrodes has a great influence on the concentration of ozone generated. Yes. In other words, if the energy applied between the electrodes is the same, it is necessary to shorten the discharge gap length in order to improve the ozone concentration.
On the other hand, in order to supply ozonized gas in large quantities, the ozone generator has been enlarged. An electrode used in the silent discharge method is also large, and an electrode having a length of 0.5 m or more is frequently used. The discharge gap length of the electrode is currently 1 mm or less with respect to 0.5 m of the discharge electrode. In order to improve the ozone concentration of the ozonized gas to be generated, the gap length may be shortened to, for example, about 0.2 mm. However, the discharge gap length of an electrode having a length of 0.5 m or more is set to 0.5 mm. It is not realistic to set it to 2 mm. In particular, setting the discharge gap length of the electrode to 0.2 mm with respect to the discharge power of 0.5 m in a commonly used coaxial cylindrical tube is not a practical method in view of the yield.

また、対向する電極間に多大なエネルギーを投入すれば濃度が高いオゾン化ガスを製造できるのであるが、この方法は経済的ではなく、現実的な方法ということができない。
なお、高純度な酸素ガスを用いて無声放電方式によりオゾン化ガスを長い時間続けて製造すると、時間の経過と共にオゾン化ガス濃度が低下する問題点が明らかとなり、その点を解決するために、酸素を含んだ原料ガス中に空気あるいは窒素ガスを添加してオゾン化ガスを製造する技術が本出願人により開示されている。すなわち、特許文献1にはオゾン化ガス製造の原料ガスとして、高純度の酸素ガスを用い、この原料ガスに空気を3vol%の割合で混合すると、発生したオゾンと窒素とが反応して生成した化合物が電極表面に吸着されている水分子と結合し、その結果オゾン化ガスの濃度低下減少が抑制されると開示している。
特開2001−172005号公報
Further, if a large amount of energy is input between the opposing electrodes, an ozonized gas having a high concentration can be produced. However, this method is not economical and cannot be a practical method.
In addition, when the ozonized gas is produced continuously for a long time by the silent discharge method using high-purity oxygen gas, the problem that the ozonized gas concentration decreases with the passage of time becomes clear, and in order to solve the point, A technique for producing ozonized gas by adding air or nitrogen gas to a source gas containing oxygen has been disclosed by the present applicant. That is, in Patent Document 1, high purity oxygen gas is used as a raw material gas for producing ozonized gas, and when the raw material gas is mixed with air at a rate of 3 vol%, the generated ozone and nitrogen react to generate. It is disclosed that the compound binds to water molecules adsorbed on the electrode surface, and as a result, the decrease in the concentration of ozonized gas is suppressed.
JP 2001-172005 A

そこで、本発明の課題は経済的な方法で、しかも効率良く濃度が高いオゾン化ガスを得る方法およびその方法を実施する装置を提供することにある。また、放電電極間のギャップ長が現在のままである対向電極を用いて、効率良く濃度が高いオゾン化ガスを得る方法およびその方法を実施するオゾン発生装置を提供することにあり、そのオゾン発生装置の運転方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for obtaining an ozonized gas having a high concentration and an efficient method and an apparatus for carrying out the method. Another object of the present invention is to provide a method for efficiently obtaining a high-concentration ozonized gas using a counter electrode in which the gap length between discharge electrodes remains the same, and an ozone generator for carrying out the method. It is in providing the operating method of an apparatus.

上記課題を達成するために、本発明者らは鋭意研究を進め、つぎのような発明に到達した。
なお、特許文献1には高純度の酸素を用い、この原料ガスに空気を混合してオゾン化ガスを製造する技術が開示されているが、そこでは空気を3vol%の割合で混合することが好ましいと記載されており、空気3vol%は窒素ガス2.4vol%と換算されることからみても、本発明が規定する窒素ガスの混合割合と異なるし、更に窒素ガスを混合する目的も異なるので、特許文献1は本発明とは関係がないといえる。
In order to achieve the above-mentioned problems, the present inventors have conducted intensive research and have reached the following invention.
Patent Document 1 discloses a technique for producing ozonized gas by using high-purity oxygen and mixing this raw material gas with air. However, in this case, air is mixed at a rate of 3 vol%. Since it is described that it is preferable and 3 vol% of air is converted to 2.4 vol% of nitrogen gas, it is different from the mixing ratio of nitrogen gas defined by the present invention, and the purpose of mixing nitrogen gas is also different. Patent Document 1 is not related to the present invention.

すなわち、本発明の請求項1に係る発明は、少なくとも一方の電極に誘電体を配置した対向電極の電極間に酸素を主成分とする原料ガスを供給しながら、その電極間に交流高電圧を印加し、放電を発生させてオゾン化ガスを製造する方法において、酸素を主成分とする原料ガスに窒素を0.1〜0.6vol%混合した原料ガスとし、該ガス圧力を0.1〜0.2MPaとすることを特徴とするオゾン化ガスを製造する方法である。 That is, the invention according to claim 1 of the present invention supplies an AC high voltage between the electrodes while supplying a source gas mainly composed of oxygen between the electrodes of the counter electrode having a dielectric disposed on at least one of the electrodes. In the method of producing an ozonized gas by applying and generating electric discharge, a raw material gas in which 0.1 to 0.6 vol% of nitrogen is mixed with a raw material gas mainly composed of oxygen, and the gas pressure is 0.1 to It is a method for producing an ozonized gas characterized by being 0.2 MPa.

本発明の請求項2に係る発明は、上記請求項1記載の発明において、放電ギャップ間隔が0.3mm〜0.5mmであることを特徴とするオゾン化ガスを製造する方法である。 The invention according to claim 2 of the present invention is the method for producing ozonized gas according to the invention of claim 1, wherein the discharge gap interval is 0.3 mm to 0.5 mm.

以下、本発明を詳細に説明する。
本発明の電極構造は、電極の少なくとも一方に誘電体を配置した、対向する電極から構成され、交流高電圧を印加して放電を発生させることができ、しかもオゾン化ガスの原料ガスを電極間に供給することができる構造をとる。
上記対向する電極はオゾン発生装置で通常使用される電極を使用すればよいのであって、例えば高電圧電極と接地電極とを一定の間隔を保った状態で配置する。代表的な対向電極は図2に示されているような断面構造を有する同軸円筒管状電極である。電極を構成する材料は特に限定されないのであり、一般的な材料で構成する。
本発明では少なくとも一つの電極表面に誘電体を配置する必要があるが、両方の電極に誘電体が配置されることが好ましい。誘電体としても一般的な材料であればとくに制限されないが、たとえばガラスが用いられる。
Hereinafter, the present invention will be described in detail.
The electrode structure of the present invention is composed of opposing electrodes in which a dielectric is disposed on at least one of the electrodes, and can generate an electric discharge by applying an alternating high voltage, and the raw material gas of ozonized gas is used between the electrodes. Take a structure that can be supplied to.
As the opposing electrode, an electrode normally used in an ozone generator may be used. For example, a high voltage electrode and a ground electrode are arranged in a state of maintaining a constant interval. A typical counter electrode is a coaxial cylindrical tubular electrode having a cross-sectional structure as shown in FIG. The material constituting the electrode is not particularly limited, and is constituted by a general material.
In the present invention, it is necessary to dispose a dielectric on the surface of at least one electrode, but it is preferable that a dielectric be disposed on both electrodes. The dielectric is not particularly limited as long as it is a general material, but for example, glass is used.

上記二つの電極を一定の間隔を維持するよう配置する。すなわち、オゾン発生装置の放電ギャップ間隔は狭いほど、高濃度のオゾンが得られる。しかしながら、製造上の難易度を考慮すると、放電ギャップ間隔の最適値は0.3〜0.5mmの範囲である。
この電極の少なくとも一方、あるいは両方に冷却手段を設けて、発生する熱を吸収することが望ましい。とくに内部電極は高温となりやすいので、冷却効果は大きい。 冷却手段としては一般的な手段であれば特に限定されないが、少なくともオゾン発生器に必要な冷却水を精製し、供給する手段であればよい。接地電極の冷却には工業用水を用いればよいが、高電圧電極の冷却には冷却水による電力の漏洩を防止するために、電気伝導度を下げた冷却水を用いることが望ましい。冷却水の外部との熱交換は、通常熱交換器を使用する。
The two electrodes are arranged so as to maintain a constant distance. That is, as the discharge gap interval of the ozone generator is narrower, higher concentration of ozone can be obtained. However, considering the manufacturing difficulty, the optimum value of the discharge gap interval is in the range of 0.3 to 0.5 mm.
It is desirable to provide cooling means on at least one or both of these electrodes to absorb the generated heat. In particular, the internal electrode tends to become high temperature, so the cooling effect is great. The cooling means is not particularly limited as long as it is a general means, but it may be any means as long as it purifies and supplies at least the cooling water necessary for the ozone generator. Although industrial water may be used for cooling the ground electrode, it is desirable to use cooling water with reduced electrical conductivity for cooling the high voltage electrode in order to prevent leakage of electric power due to the cooling water. A heat exchanger is usually used for heat exchange with the outside of the cooling water.

本発明では上記電極間に交流高電圧を印加し、放電空間に放電を形成させる。放電空間を通過する原料ガスはオゾン化ガスに変化することとなる。交流高電圧を印加する方法は一般的な方法を使用すればよい。
上記電極構造内の電極間に、あるいは上記放電空間にオゾン発生原料ガスを供給する。原料ガスとしては高純度な酸素ガスを使用することが有利である。高純度な酸素ガスを得るためには、代表的には吸着方式の酸素製造装置や液体酸素設備を使用する。吸着方式の酸素製造装置は空気中の窒素や炭酸ガスなどを吸着剤で吸着し、酸素濃度90%以上の酸素富化空気を得る装置である。液体酸素設備は液体酸素から気化する高純度の酸素ガスを得る設備である。
この酸素ガスに窒素ガスを混合するのであるが、オゾン発生管に入る前に所定の割合でガスが混合されていればよいのであって、その混合手段はとくに限定されるものではなく、また、得られるガス源が、液体酸素及び液体窒素であっても、ガスボンべによるものであってもよい。
In the present invention, an alternating high voltage is applied between the electrodes to form a discharge in the discharge space. The raw material gas that passes through the discharge space changes to an ozonized gas. A general method may be used as a method of applying the alternating high voltage.
An ozone generating raw material gas is supplied between the electrodes in the electrode structure or to the discharge space. It is advantageous to use high-purity oxygen gas as the source gas. In order to obtain high-purity oxygen gas, typically, an adsorption-type oxygen production apparatus or liquid oxygen equipment is used. The adsorption-type oxygen production apparatus is an apparatus that obtains oxygen-enriched air having an oxygen concentration of 90% or more by adsorbing nitrogen or carbon dioxide in the air with an adsorbent. The liquid oxygen equipment is equipment for obtaining high-purity oxygen gas that is vaporized from liquid oxygen.
Nitrogen gas is mixed with this oxygen gas, but it is sufficient that the gas is mixed at a predetermined ratio before entering the ozone generating tube, and the mixing means is not particularly limited, The obtained gas source may be liquid oxygen and liquid nitrogen, or may be a gas cylinder.

オゾン発生装置の原料ガスとして、液体酸素設備から供給される高純度酸素ガスを用いる場合、酸素純度は99.6%以上であることが通常である。酸素以外の0.4%以下に相当する成分のほとんどは、アルゴンであり、窒素は0.01%以下しか存在していない。図1に示される結果が得られた実験条件では、原料ガスに上記のような液体酸素源から得られる高純度酸素ガスを用いている。液体酸素源から得られた酸素ガス中には、上述の通り、窒素ガス成分はほとんど含まれていないため、原料ガス中の窒素ガス含有量を、窒素ガス添加量で示した。   When high purity oxygen gas supplied from a liquid oxygen facility is used as a raw material gas for an ozone generator, the oxygen purity is usually 99.6% or more. Most of the components corresponding to 0.4% or less other than oxygen are argon, and nitrogen is present at 0.01% or less. In the experimental conditions where the results shown in FIG. 1 are obtained, high-purity oxygen gas obtained from a liquid oxygen source as described above is used as the source gas. Since the nitrogen gas component is hardly contained in the oxygen gas obtained from the liquid oxygen source as described above, the nitrogen gas content in the raw material gas is indicated by the amount of nitrogen gas added.

本発明では、酸素ガスに窒素ガスを0.1〜0.6vol%混合することが重要である。本発明の特徴の一つがこの点にある。すなわち、原料ガスである酸素ガスに0.1〜0.6vol%の窒素ガスを混合させると約14%程度と著しく発生オゾン濃度が向上することが判明した(図1を参照)。
エネルギーコストの高い電力をエネルギー源としてオゾン化ガスを製造する技術が主流であり、しかも10%以上オゾン濃度を高めることは極めて困難な技術分野である現在の技術からみて、本発明のように14%程度もオゾン濃度を高めることができたことは極めて優れた効果であるということができる。
なお、放電電極間のギャップ長が狭くなれば発生するオゾン濃度が高くなること、およびオゾン濃度を10%程度上昇させることが極めて困難なことは図4からも明らかである。すなわち、放電電極間のギャップ長が0.3mmのときには、発生オゾン濃度は放電電極への投入電力が65%程度のときに極大となり、それよりもオゾン濃度を高めようと放電電極間へ電力を投入してもオゾン濃度はけっして高くはならない。しかしながら、放電電極間のギャップ長を0.2mmに狭くすると、上記オゾン濃度を高めることができるのであり、投入電力が80%程度のときには約1.15倍高まることになる。
これらのことから、オゾン濃度を10%以上高めることは極めて困難なことであることが分かり、放電電極間のギャップ長を狭くするという困難性を回避して、窒素ガスを酸素ガスに0.1〜0.6vol%混合するという単純な構成でオゾン濃度を高めることができる本発明は極めて実用的であるといえる。
In the present invention, it is important to mix 0.1 to 0.6 vol% of nitrogen gas with oxygen gas. This is one of the features of the present invention. That is, it was found that when the oxygen gas as the raw material gas was mixed with 0.1 to 0.6 vol% nitrogen gas, the generated ozone concentration was remarkably improved to about 14% (see FIG. 1).
The technology for producing ozonized gas using electric power with high energy cost as the energy source is mainstream, and in view of the current technology which is an extremely difficult technical field to increase the ozone concentration by 10% or more, as in the present invention, 14 It can be said that the ozone concentration can be increased by about%, which is an extremely excellent effect.
It is apparent from FIG. 4 that the ozone concentration generated increases as the gap length between the discharge electrodes becomes narrow, and that it is extremely difficult to increase the ozone concentration by about 10%. In other words, when the gap length between the discharge electrodes is 0.3 mm, the generated ozone concentration becomes maximal when the input power to the discharge electrodes is about 65%, and power is supplied between the discharge electrodes to increase the ozone concentration. Even if it is added, the ozone concentration never increases. However, when the gap length between the discharge electrodes is narrowed to 0.2 mm, the ozone concentration can be increased, and when the input power is about 80%, it increases about 1.15 times.
From these facts, it can be seen that it is extremely difficult to increase the ozone concentration by 10% or more, avoiding the difficulty of narrowing the gap length between the discharge electrodes, and changing the nitrogen gas to 0.1% oxygen gas. It can be said that the present invention capable of increasing the ozone concentration with a simple configuration of mixing ~ 0.6 vol% is extremely practical.

本発明により、発生オゾン濃度が向上するオゾン製造技術を提供することができる。すなわち、酸素ガスに0.1〜0.6vol%の窒素ガスを混合し、該ガス圧力を0.1〜0.2MPaにするという簡単な操作を施すことにより14%程度オゾン濃度を高めることを可能となった。この方法は現在使用している電極を換える必要が無くオゾン濃度が向上することを可能とする方法であり、現在使用しているエネルギー以上のエネルギーを必要としないので、経済的な方法といえ、しかも効率よくオゾンを製造することができる技術であるといえるから、極めて実用的である。
この濃度が高いオゾン化ガスは、例えば上下水処理、パルプ漂白処理、殺菌処理、脱臭処理など広い分野にわたって利用可能である。
According to the present invention, it is possible to provide an ozone production technique in which the generated ozone concentration is improved. That is, it is possible to increase the ozone concentration by about 14% by mixing oxygen gas with 0.1 to 0.6 vol% nitrogen gas and performing a simple operation of setting the gas pressure to 0.1 to 0.2 MPa. It has become possible. This method is a method that makes it possible to improve the ozone concentration without having to change the electrode that is currently used, and since it does not require more energy than the energy currently used, it can be said to be an economical method. Moreover, since it can be said that it is a technique that can efficiently produce ozone, it is extremely practical.
The ozonized gas having a high concentration can be used in a wide range of fields such as water and sewage treatment, pulp bleaching treatment, sterilization treatment, and deodorization treatment.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施の形態を図を用いて説明するが、本発明はこの実施の形態に何ら限定されるものではない。
図2は本発明のオゾン発生装置内の電極構造の一例を示す概略図である。
この電極構造は、高電圧電極1と接地電極2との対向する電極を有し、その放電空間側の面に各々誘電体3を配置した構造をとる。原料ガスは原料ガスIn 10から高電圧電極1と設置接地電極2で形成される放電空間4を通過し、オゾン化ガスout 11へと流れる。両電極間に交流高電圧を印加して、放電空間4に放電を形成して原料ガスを、オゾン化ガスへと変化させる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the embodiments.
FIG. 2 is a schematic view showing an example of an electrode structure in the ozone generator of the present invention.
This electrode structure has a structure in which the high voltage electrode 1 and the ground electrode 2 are opposed to each other, and the dielectrics 3 are arranged on the surface on the discharge space side. The source gas passes from the source gas In 10 through the discharge space 4 formed by the high voltage electrode 1 and the installation ground electrode 2 and flows to the ozonized gas out 11. An alternating high voltage is applied between both electrodes to form a discharge in the discharge space 4 to change the source gas into an ozonized gas.

図3は本発明のオゾン発生装置を用いたオゾン製造フローを示す図である。
酸素製造設備20から流量計22を経て酸素を主成分とする原料ガスがオゾン発生装置24に供給される。窒素ガス製造装置21から流量計23を経て窒素ガスが酸素を主成分とする原料ガスに混合され、オゾン発生装置24に供給される。オゾン装置内では交流高電圧が対向電極間(図示しない)に印加され、放電空間内(図示しない)で放電が形成され、その空間を通過する原料ガスはオゾン化ガスに変化する。オゾン発生装置の対向電極を構成する電極それぞれは冷却装置25からの冷却水により冷却される。オゾン発生装置24からオゾン化ガスはオゾンメータ26を経て、オゾンを必要とする装置に注入される。余ったオゾン化ガスはオゾン分解塔内27で分解され、大気中に放出される。
FIG. 3 is a diagram showing an ozone production flow using the ozone generator of the present invention.
A raw material gas mainly composed of oxygen is supplied from the oxygen production facility 20 to the ozone generator 24 through the flow meter 22. Nitrogen gas is mixed with the raw material gas mainly composed of oxygen from the nitrogen gas production device 21 through the flow meter 23 and supplied to the ozone generator 24. In the ozone device, an alternating high voltage is applied between the counter electrodes (not shown), a discharge is formed in the discharge space (not shown), and the raw material gas passing through the space changes to an ozonized gas. Each of the electrodes constituting the counter electrode of the ozone generator is cooled by cooling water from the cooling device 25. The ozonized gas is injected from the ozone generator 24 through an ozone meter 26 into a device that requires ozone. The excess ozonized gas is decomposed in the ozonolysis tower 27 and released into the atmosphere.

上記電極構造を有するオゾン発生装置を用いてオゾン化ガスを製造した。オゾン発生装置は、放電ギャップ間隔が0.4mmであり、一対の放電電極は両方とも、誘電体で被覆して10℃程度の冷却水で冷却する構造である。オゾン発生装置に原料ガスを、ガス圧力が0.18MPaで供給した。その結果を図1に示す。図1は、横軸に窒素添加量(酸素に対する体積比)を示し、縦軸は、窒素ガス添加量が0vol%のときに得られるオゾン濃度を基準として規格化したオゾン発生濃度で示した。 Ozonized gas was manufactured using the ozone generator which has the said electrode structure. The ozone generator has a discharge gap interval of 0.4 mm, and both of the pair of discharge electrodes are covered with a dielectric and cooled with cooling water of about 10 ° C. The raw material gas to the ozone generator, gas pressure is supplied in 0.18 M Pa. The result is shown in FIG. In FIG. 1, the horizontal axis indicates the amount of nitrogen added (volume ratio to oxygen), and the vertical axis indicates the ozone generation concentration normalized based on the ozone concentration obtained when the nitrogen gas addition amount is 0 vol%.

原料ガスへの窒素ガス添加により、オゾン発生濃度は向上することがグラフから読み取ることができる。窒素ガス添加によるオゾン発生濃度の向上は窒素ガスの添加量に依存し、原料ガスに対する窒素ガス添加量が0.05〜2.0vol%のときに、窒素の添加を行なわないときに得られるオゾン発生濃度に対して、1.1倍以上の高濃度オゾンが得られている。
さらに、窒素ガス添加量が0.1〜0.6vol%のときに、発生するオゾン濃度が最も向上し、基準値に対して約14%向上することがわかる。窒素ガス添加による向上は、前記添加量が最適値であり、0.6vol% を超える窒素添加では基準値に対するオゾン発生濃度は向上しているが、この濃度は徐々に低下する傾向となる。
この時の最適ガス圧力は、放電ギャップ間隔が0.3mmの時が0.2MPaであり0.5mmの時には0.1MPaである。また、原料ガスに液体酸素原料のみを使った場合に対し、窒素を添加することで高いオゾン出力濃度が得られる窒素添加量の範囲は、上記の放電ギャップ間隔の範囲では依存しない。
It can be read from the graph that the ozone generation concentration is improved by adding nitrogen gas to the source gas. Improvement of ozone generation concentration by adding nitrogen gas depends on the amount of nitrogen gas added. When the amount of nitrogen gas added to the raw material gas is 0.05 to 2.0 vol%, the ozone generation concentration obtained when nitrogen is not added is obtained. On the other hand, high concentration ozone of 1.1 times or more is obtained.
Further, it can be seen that when the nitrogen gas addition amount is 0.1 to 0.6 vol%, the generated ozone concentration is most improved, and is improved by about 14% with respect to the reference value. The improvement due to the addition of nitrogen gas is the optimum value, and the addition of nitrogen exceeding 0.6 vol% increases the ozone generation concentration relative to the reference value, but this concentration tends to gradually decrease.
The optimum gas pressure at this time is 0.2 MPa when the discharge gap interval is 0.3 mm, and 0.1 MPa when the discharge gap interval is 0.5 mm. Further, in contrast to the case where only the liquid oxygen source is used as the source gas, the range of the amount of nitrogen added to obtain a high ozone output concentration by adding nitrogen does not depend on the range of the discharge gap interval.

図1に示す結果は、図2に示す電極の両方に誘電体を配置した電極構成での結果であるが、対向する電極のどちらか一方に誘電体を配置した場合(図示していない)も同様のことがいえる。図2に示す電極構成は無声放電方式の構造になっているが、図示していないが、沿面放電方式の構造においても同様の効果がえられ、オゾン発生器に供給する原料ガスへの窒素添加効果は、電極形状、方式に関係なく同様に得ることができる。   The result shown in FIG. 1 is a result of the electrode configuration in which the dielectric is arranged on both of the electrodes shown in FIG. 2, but also when the dielectric is arranged on one of the opposing electrodes (not shown) The same can be said. Although the electrode configuration shown in FIG. 2 has a silent discharge type structure, although not shown, the same effect can be obtained in a creeping discharge type structure, in which nitrogen is added to a raw material gas supplied to an ozone generator. The effect can be obtained similarly regardless of the electrode shape and method.

本発明は上記説明から、次のようにも記載することができる。
(1)少なくとも一方の電極に誘電体を配置した対向電極を含む空間に、酸素を主成分とし、窒素を0.1〜0.6vol%混合した原料ガスを供給しながら、その電極間に交流高電圧を印加し、放電を発生させることを特徴とするオゾン化ガスを製造する方法。
(2)対向して配置された電極と前記電極の少なくとも一方に誘電体を配置した構成で、その間に酸素を主成分とする原料ガスを供給しながら、交流高電圧を印加することにより放電を発生させる電極構造を有するオゾン発生装置の運転方法において、
前記オゾン発生装置内の放電部に導入する前記原料ガス中に、窒素ガスを0.1〜0.6vol%混合することを特徴とするオゾン発生装置の運転方法。
(3) (2)記載のオゾン発生装置の運転方法において、酸素を主成分とする原料ガスに窒素ガスを0.1〜0.6vol%混合した原料ガスを供給することを特徴とするオゾン発生装置の運転方法。
(4)電極の少なくとも一方に誘電体を配置した対向する電極と、その電極間に酸素を主成分とする原料ガスを供給する原料ガス供給手段と、交流高電圧を印加して放電を発生させる交流高電圧印加手段を有するオゾン発生装置において、
該オゾン発生装置内の放電部に導入する酸素を主成分とする原料ガス中に窒素ガスを0.1〜0.6vol%混合することを特徴とするオゾン発生装置。
(5)さらに電極の少なくとも一方に冷却手段を備えることを特徴とする(4)記載のオゾン発生装置。

From the above description, the present invention can also be described as follows.
(1) While supplying a raw material gas mainly composed of oxygen and mixed with 0.1 to 0.6 vol% of nitrogen into a space including a counter electrode in which a dielectric is disposed on at least one electrode, an alternating current is provided between the electrodes. A method for producing an ozonized gas, wherein a high voltage is applied to generate a discharge.
(2) A structure in which a dielectric is disposed on at least one of the electrodes arranged opposite to each other, and discharge is performed by applying an alternating high voltage while supplying a source gas mainly composed of oxygen therebetween. In the operation method of the ozone generator having the electrode structure to be generated,
A method for operating an ozone generator, wherein nitrogen gas is mixed in an amount of 0.1 to 0.6 vol% in the raw material gas introduced into a discharge section in the ozone generator.
(3) In the method for operating an ozone generator according to (2), ozone generation characterized by supplying a raw material gas in which 0.1 to 0.6 vol% of nitrogen gas is mixed with a raw material gas mainly composed of oxygen. How to operate the device.
(4) Opposite electrodes in which a dielectric is disposed on at least one of the electrodes, source gas supply means for supplying a source gas mainly composed of oxygen between the electrodes, and applying an alternating high voltage to generate a discharge In the ozone generator having AC high voltage application means,
An ozone generator characterized by mixing 0.1 to 0.6 vol% of nitrogen gas in a raw material gas mainly composed of oxygen introduced into a discharge part in the ozone generator.
(5) The ozone generator according to (4), further comprising a cooling means on at least one of the electrodes.

酸素を主成分とする原料ガスへの窒素ガス添加量による発生オゾン濃度の変化を示す図である。It is a figure which shows the change of the generated ozone density | concentration by the nitrogen gas addition amount to the source gas which has oxygen as a main component. 本発明のオゾン発生装置内の電極構造の一例を示す概略図である。It is the schematic which shows an example of the electrode structure in the ozone generator of this invention. 本発明のオゾン発生装置を用いたオゾン製造フローを示す図である。It is a figure which shows the ozone manufacturing flow using the ozone generator of this invention. オゾン濃度の放電電極間ギャップ長依存性を示す図である。It is a figure which shows the gap length dependence between discharge electrodes of ozone concentration.

符号の説明Explanation of symbols

1:高電圧電極
2:設置電極
3:誘電体
4:放電空間
10:原料ガスIn(入り口)
11:原料ガスOut(出口)
20:液体酸素設備
21:窒素ガス製造装置
22:流量計
23:流量計
24:オゾン発生装置
25:冷却装置
26:オゾンメータ
27:オゾン分解塔
29:オゾンを必要とする装置
1: High voltage electrode 2: Installation electrode 3: Dielectric material 4: Discharge space 10: Source gas In (inlet)
11: Raw material gas Out (exit)
20: Liquid oxygen equipment 21: Nitrogen gas production device 22: Flow meter 23: Flow meter 24: Ozone generator 25: Cooling device 26: Ozone meter 27: Ozone decomposition tower 29: Device that requires ozone

Claims (2)

少なくとも一方の電極に誘電体を配置した対向電極の電極間に酸素を主成分とする原料ガスを供給しながら、その電極間に交流高電圧を印加し、放電を発生させてオゾン化ガスを製造する方法において、酸素を主成分とする原料ガスに窒素を0.1〜0.6vol%混合した原料ガスとし、該ガス圧力を0.1〜0.2MPaとすることを特徴とするオゾン化ガスを製造する方法。 While supplying a source gas mainly composed of oxygen between the electrodes of the counter electrode in which a dielectric is disposed on at least one electrode, an alternating high voltage is applied between the electrodes to generate an electric discharge to produce ozonized gas And a raw material gas in which 0.1 to 0.6 vol% of nitrogen is mixed with a raw material gas containing oxygen as a main component, and the gas pressure is 0.1 to 0.2 MPa. How to manufacture. 放電ギャップ間隔が0.3mm〜0.5mmであることを特徴とする請求項1記載のオゾン化ガスを製造する方法。 The method for producing ozonized gas according to claim 1, wherein a discharge gap interval is 0.3 mm to 0.5 mm.
JP2003325259A 2003-09-17 2003-09-17 Ozone generator and ozonized gas production method Expired - Fee Related JP4126382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325259A JP4126382B2 (en) 2003-09-17 2003-09-17 Ozone generator and ozonized gas production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325259A JP4126382B2 (en) 2003-09-17 2003-09-17 Ozone generator and ozonized gas production method

Publications (2)

Publication Number Publication Date
JP2005089248A JP2005089248A (en) 2005-04-07
JP4126382B2 true JP4126382B2 (en) 2008-07-30

Family

ID=34455745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325259A Expired - Fee Related JP4126382B2 (en) 2003-09-17 2003-09-17 Ozone generator and ozonized gas production method

Country Status (1)

Country Link
JP (1) JP4126382B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096692A (en) * 2007-10-18 2009-05-07 Kansai Electric Power Co Inc:The Method and apparatus for generating ozone by intermittent inert gas injection
JP2009298669A (en) * 2008-06-16 2009-12-24 Sumitomo Precision Prod Co Ltd Method of producing ozone and ozone generator
JP5677344B2 (en) * 2012-03-16 2015-02-25 株式会社東芝 Ozone generator

Also Published As

Publication number Publication date
JP2005089248A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
Abdelaziz et al. Quantitative analysis of ozone and nitrogen oxides produced by a low power miniaturized surface dielectric barrier discharge: effect of oxygen content and humidity level
US6277248B1 (en) Ozone production facilities and method of their operation
US6007785A (en) Apparatus for efficient ozone generation
KR101266157B1 (en) Apparatus for generating underwater capillary plasma with gas channel
Kuraica et al. Ozonized water generator based on coaxial dielectric-barrier-discharge in air
JP5779321B2 (en) High concentration ozone water manufacturing method and high concentration ozone water manufacturing apparatus
KR20140110866A (en) Ozone production and ozone dissolution device
JP4126382B2 (en) Ozone generator and ozonized gas production method
Bulychev Experimental studies on hydrogen production in plasma discharge in a liquid-phase medium flow
Yulianto et al. Power analysis of ozone generator for high capacity production
US10882021B2 (en) Plasma reactor for liquid and gas and method of use
JP2012206898A (en) Ozone generator
JP2569739B2 (en) Oxygen atom generation method and apparatus
Luo et al. Electrodeless discharge in water: Reactive species in liquid and gas phase and energy cost for nitrogen fixation
RU2582697C1 (en) Method for synthesis of endohedral fullerenes
Liu et al. Role of water and discharge mode on modulating properties in an atmospheric air MHCD jet
Lopez Progress in large-scale ozone generation using microplasmas
JPH07242403A (en) Ozonizer
JPH0741306A (en) Ozonizer
JP4206048B2 (en) Ozone generator that suppresses decomposition of ozonized gas
JP2012197205A (en) Method and apparatus for producing nitrogen dioxide
JP4161019B2 (en) Ozone generator
CN204162415U (en) A kind of ozone mist generating unit
Siriprom et al. The comparison of ozone production with oxygen concentration and feed gas flow rate at atmospheric pressure
CN102049056A (en) High concentration ozone water production machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4126382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080619

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20081021

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees