JP4125810B2 - Oil / water separator and oil / water separator - Google Patents

Oil / water separator and oil / water separator Download PDF

Info

Publication number
JP4125810B2
JP4125810B2 JP29335197A JP29335197A JP4125810B2 JP 4125810 B2 JP4125810 B2 JP 4125810B2 JP 29335197 A JP29335197 A JP 29335197A JP 29335197 A JP29335197 A JP 29335197A JP 4125810 B2 JP4125810 B2 JP 4125810B2
Authority
JP
Japan
Prior art keywords
water
oil
adsorption
separation
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29335197A
Other languages
Japanese (ja)
Other versions
JPH11114304A (en
Inventor
哲夫 外谷
康夫 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP29335197A priority Critical patent/JP4125810B2/en
Publication of JPH11114304A publication Critical patent/JPH11114304A/en
Application granted granted Critical
Publication of JP4125810B2 publication Critical patent/JP4125810B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、潤滑油等が混入した産業廃水である油水を、水と油とに分離する方法と、廃水中から油分を除去するための装置とに関するものである。
【0002】
【従来技術】
この種の装置としては、油水を静置して、比重差によって上層に浮上させて油滴を分離する装置や、油水を吸着材槽を通して、吸着分離する装置、或いは、微粒子状の油滴がエマルジョン状態になってしまったものを、電解処理槽に通して、油滴と水との界面電位の差を利用して電気泳動により分離する装置などが、用いられている。
【0003】
これらの装置は、夫々、一長一短があり、要求される分離精度に応じて、使い分けられているが、近年の環境汚染防止の観点から、一層精度の高い分離装置が望まれている。このような目的を達成すべく、比重差によって油滴を分離した後の処理水を、加圧空気を用いて油分吸着材を収納した吸着槽底部に導入し、上部から排出される水を分離処理水として放出する装置が開示されている。(例えば、特公昭63−39799号公報参照)。
【0004】
油分吸着処理装置は、吸着材が十分に機能すれば、装置の構成が簡単で、しかも、分離精度に優れている。しかしながら、吸着材は、一般に長期にわたる吸着力の維持が困難で、度々交換を必要とする欠点がある。従来の吸着分離装置は、油分吸着材層を1回通しただけで放出する方式であるため、油分の吸着分離が不十分であったり、吸着材を通過する油水が、吸着材層を短絡して通過してしまい、吸着材と油水との接触効率が十分でないこと等の欠点があった。更に、吸着すべき油分の負荷が大きいと、吸着材の寿命が短くなってしまい、特に、活性炭などのような多孔質素材から成る吸着材にあっては、頻繁な吸着材の交換が必要となるなど維持管理が繁雑で費用がかかる欠点があった。
【0005】
【解決すべき課題】
本発明の第1の目的は、吸着分離装置に対する油分の負荷が少ないため、吸着材(剤)の分離能力が長持ちする油水分離装置と油水分離方法とを開示することにある。
本発明の第2の目的は、吸着分離装置における吸着材と油水との接触効率が高くて、油分の分離精度が高い油水分離装置と油水分離方法とを開示することにある。
本発明の第3の目的は、油水に接触すべき吸着材を複数のブロックに区分して、これに常に一定の順序で油水を通過させることにより、最終ブロックの吸着材の吸着能力を高く維持することにより、精度の高い油水分離ができる油水分離装置と油水分離方法とを開示することにある。
本発明の第4の目的は、油水分離の各工程がバランスよく結合することにより、分離性能が高く、維持管理の負担が小さい油水分離装置と方法とを開示することにある。
【0006】
【課題の解決手段】
本発明の第一の要旨は、油水の受入口と分離水の排出管とを備えた貯留槽から成る浮上油分離手段と、前記排出管を介して前記貯留槽と連結する電解槽中にアルミニウム電極を収納して成る電解分離手段と、該電解分離手段によって処理された電解処理水の入口と出口とを備え内部に吸着材を収納して成る吸着処理室を有する吸着分離手段とを備えていることを特徴とする油水分離装置にある。
【0007】
本願において、アルミニウム電極とは、アルミニウム合金製の電極を包含する意味で用いている。上記装置は、油水を貯留槽に受け入れて静置し、比重差によって、油滴を浮上させて分離する。水との比重差が小さいため、浮上油分離手段によっては分離できなかったエマルジョン状の油滴は、排出管を通って電解槽に入る。電解槽では、アルミニウム電極を陽極に用いることにより、電解液中に、活性度の高い水酸化アルミニウムが生成する。陰陽電極間に導入されたエマルジョンは、電気泳動作用によって、O/W型エマルジョンを破壊して微細油滴が分離され、この分離油滴は、水酸化アルミニウムによって凝集し電極間を浮上する。陰極から生成する水素気泡もこの浮上を助ける。
【0008】
分離浮上した油滴は、スカム状になる。このスカムは、掻き取り、オーバーフロー、吸引等の適宜な手段で除去される。 電解分離手段から排出された電解処理水は、多孔質吸着材や疎水性と親油性とを併有することにより油分を選択的に吸着する吸着材などを収納して成る吸着処理室に導入され吸着材と接触して、油分を除去され、清浄水として放流される。廃水中に含まれる油分の大部分は、重力分離処理及び電解分離処理によって殆ど除去されているので、吸着材に対する油分負荷は小さくて、吸着材の寿命が長くなる。電解処理水の流れは、吸着処理室の上部から、電解処理水が流入して、重力で吸着材間を下降して吸着処理室下方から流出する場合と、反対に、下から上に抜ける場合などがある。
【0009】
本発明の第二の要旨は、油水の受入口と分離水の排出管とを備えた貯留槽から成る浮上油分離手段と、前記排出管を介して前記貯留槽と連結する電解槽中にアルミニウム電極を収納して成る電解分離手段と、気液の出入り口を備え内部に吸着材を収納して成る1以上の吸着処理室が一連の気液流路をなすように上下方向に連結して成る吸着分離手段とを備え、前記1以上の吸着処理室の中で最下部に位置する油分の吸着処理室には、加圧空気供給手段と前記電解槽からの電解処理水の圧送手段とが接続して成る吸着分離手段とを備えていることを特徴とする油水分離装置にある。
【0010】
上記第二要旨の装置において、電解処理水の圧送手段としては、電解処理水の吸着処理室との水位差によって、吸着処理室に電解処理液が圧送される場合や液体圧送ポンプなどである。吸着処理室内では、空気と電解処理水とが、加圧空気によって撹拌されることにより、吸着材と電解処理水との接触効率が向上する。
【0011】
本発明の第三の要旨は、上記第二要旨によって規定される油水分離装置において、複数の吸着処理室が、下部に加圧空気供給手段と電解処理水圧送手段とが接続する直立筒状容器中に、上下方向に複数の空間を画成する仕切体と、該空間の夫々に収納された吸着材とから成り、前記仕切体は、中央部に開口を有するバッフルAと該バッフルAの開口と対向しない位置に複数の開口を有するバッフルBとによって構成されていることを特徴とする油水分離装置にある。
【0012】
バッフルAとバッフルBとから成る仕切体は、該仕切体を通過する気液の混合効果、気泡発生効果を促進する。仕切体から突出する気泡に富んだ電解処理水は、吸着材層に進入する際に、より多くの通過抵抗を受けることになり、この通過抵抗が、吸着材に作用して、吸着材を上下左右に移動させ、電解処理水との接触を助ける作用をする。それによって、吸着材の位置による吸着作用の偏りを防止し、全体として、吸着効率を高める。圧入する気流の量により、吸着材と電解処理水との撹拌状態の態様が選択できる。又バッフルAとBとの開口部面積の比率によっても、撹拌態様を様々に変化させることができる。
【0013】
本発明の第四の要旨は、油水を貯留槽に受け入れて静置し、比重差によって油滴を浮上させて分離した後、該貯留槽の下層の水をアルミニウム電極を備えた電解分離槽に導入して電解処理し、分離油滴を電解処理水中に生成した水酸化アルミニウムによって凝集浮上させて分離除去し、次いで、得られた電解処理水を、吸着材を収納して成る吸着槽を通過させることを特徴とする、油水分離方法にある。
【0014】
本発明の第五の要旨は、油水を貯留槽に受け入れて静置し、比重差によって油滴を浮上させて分離した後、該貯留槽の下層の水をアルミニウム電極を備えた電解分離槽に導入して電解処理し、分離油滴を電解処理水中に生成した水酸化アルミニウムによって凝集浮上させて分離除去し、次いで、得られた電解処理水を、気液の流通口を備えた吸着処理室中に吸着材を収納して成る吸着槽に導入すると共に該吸着槽中の電解処理水に加圧空気を導入して、該電解処理水が前記吸着材と撹拌されつつ吸着槽を通過するようにしたことを特徴とする油水分離方法にある。
【0015】
本発明の第六の要旨は、上記第五要旨によって規定される油水分離方法において、吸着槽が、気液の出入り口を有する1以上の仕切体によって区画されることにより、上下方向に重なり前記出入り口を通して一連につながる複数の吸着処理室を備えており、吸着槽に導入された電解処理水と加圧空気とが、最下部の吸着処理室から順次上方の吸着処理室へと移動するように構成されていることを特徴とする油水分離方法にある。
【0016】
上記において、仕切体としては、前述のバッフルAとバッフルBとによって構成される筒体状のもの、或いは、バッフルAやBを単体で用いるもの、或いは、無数の直線状の貫通孔が形成された板状体などを、適宜組み合わせたものを挙げることができる。
【0017】
本発明の第七の要旨は、前記第四〜要旨の何れかに規定される貯留槽に流入する油水が、液位上限より上方に油水入口を有し貯溜槽内をその底部に向かって下降した後に液位上限より下方において油水出口が開口している油水分離流路を少なくとも備えた熱交換流路に受け入れられた後、該熱交換流路を経て昇温して貯留槽に放出されることを特徴とする、油水分離方法にある。
【0018】
油水から油分を分離する場合、一般に、温度が高いほど容易になる。例えば、圧縮空気を冷凍機によって冷却することによって発生したドレンは、室温に蓄えられている貯留槽内の分離水中に導入された場合、水温の低いドレンは、比重差により速やかに貯留槽底部に到達し、油滴を分離する前に、その一部が排出管によって、電解処理槽に入ってしまう虞れがある。したがって、貯留槽に導入される油水の温度が、貯留槽に溜まっている水温より低い場合、熱交換流路を通すことにより、油滴の分離効率は向上する。貯留槽を囲む雰囲気が、低温の場合は、積極的に、貯留槽を加温してもよい。
【0019】
【発明の実施形態】
図1は、本願装置の第一実施態様の全体構成を示すものである。本願油水分離装置は、油水の発生源100から発生する油水を受け入れて静置し、比重差によって油滴を分離する浮上油分離手段Dと、浮上油を分離した分離水を電解分離処理してエマルジョン状の微細油滴を分離浮上させる電解分離手段Eと、電解分離処理を経て油分を分離した電解処理水を加圧空気と共に導入して吸着材に接触させて油分除去して精製する吸着分離手段Fとによって構成されている。
【0020】
浮上油分離手段Dは、図2に示すように、貯留槽21と、該貯留槽21の下層に開口する流入口22aを有し、貯留槽21の側壁を貫通して、該貯留槽外に開口することにより貫通位置21bが、貯留槽21の液位上限を規定する分離水の排出管22と、液位上限より上方に油水入口25を有し貯留槽21中をその底部21aに向かって下降した後、液位上限より下方において油水出口24bが開口している油水分離流路23と、該油水分離流路23の下降域24の上部から分岐する分離油流路26で構成され、該分離油流路26の上端には、液位上限付近に浮上油放出口26aを有している。
【0021】
油水分離流路23においては、主として、油分は該流路23の下降域24において、水との分離が行われるので、油水分離流路の下降域24の容量は、供給される油水が、油滴を分離するのに十分な時間滞留できる容量を持つ必要がある。比較的径の大きい油滴と水滴との混在系やエマルジョン状態の油水の、水と油への分離は、一般に、温度が高いほど容易になる。従って、油水分離流路に供給される油分を含む廃水の温度が、貯留槽の温度(室温)より高い場合は、油水分離流路は、断熱性を持つ素材で構成されるのが好ましい。反対に、廃水の温度が、貯留槽水温より低ければ、伝熱性の高い素材によって構成されるのが望ましい。即ち、油水分離流路23を、アルミニウムやその他の金属などの伝熱パイプによって構成することにより、油水分離流路23は、熱交換流路となる。
【0022】
油水発生源100が圧縮空気タンクやエアドライヤなどとすれば、コンプレッサー潤滑油を含むドレンとして排出される油水は、電磁弁101、ドレントラップ102を経て、ドレン排出管103を通って、油水入口25に導入される。油水分離流路23に流入した油水は、該流路23の下部24cに至る前に、油滴を分離浮上させると共に、他は、該油水分離流路の下部から上方に移動して、貯留槽21の上部表面に形成された浮上油層20より、やや下方に開口する油水出口24bから放出される。一方、油水分離流路内の上層に分離浮上した浮上油は、分離油流路26が分岐する位置まで溜まると分離油流路26に分流し、分離油放出口26aから浮上油層20に放出される。
【0023】
上記実施態様に係る浮上油分離手段Dは、流入する油水によって、貯留槽内が撹乱されることがないので、浮上分離可能な油滴が、分離水の排出管22に混入することを未然に防止することができる。圧縮空気を冷凍機によって冷却することにより発生したドレンが、10℃前後の温度で、油水入口に流下するものとし、貯留槽21を囲む雰囲気温度は、25℃前後とすれば、貯留槽21に貯留されている水温と、流入するドレンとの温度差は15℃前後である。従って、熱交換流路となる中に流入した油水は、下降するにつれて、貯留槽内に既に溜まっている貯留水と熱交換し、温度が上昇して行く。
【0024】
ドレンの温度上昇に伴って、水と油滴との分離が促進されると共に、比重が、小さくなるので、比重差に基づいて流入ドレンが分離水中を速やかに沈降する傾向は、加速度的に抑制される。かくして、流入したドレンが、熱交換流路として油水分離流路23の水平部24cに到達するころには、浮上分離可能な油滴は、ほとんど、油水入口から水平部24cに至る垂直な下降域24において分離放出され、乳化状をなし容易に分離不可能な微粒油滴を含む油水が、油水出口24bから、貯留水中に排出される。
【0025】
一方、前記下降域24で分離された油滴は、浮上して、管内に溜まるが、油層が分離油流路26の分岐部付近にまで達するようになると、油滴は、分離油流路26中に移行し、該流路26を通って浮上油層下部に静かに放出される。又、排水管22は、油水入口25から流入したドレンの量だけ、排水管22を通して、貯留槽内底部の、油分を殆ど含まない分離水が、槽外に排出される。
【0026】
上記実施態様に係る浮上油分離手段では、圧縮空気除湿装置からのドレンが、室温に対して十数度低いという条件があったために、貯留槽内の貯留水温を流入する油水温度に対して高く保持するための手段は、不要であったが、両温度が近接している場合や、室温が流入油水より低い場合などにおいては、油水分離流路は、断熱性の高い素材で構成して、貯留分離水の影響を阻んでもよいが、油水分離速度を上げるために、貯留水の加温手段を用いて、熱交換パイプを囲む貯留されている分離水の温度を更に上げてもよい。
【0027】
上記浮上油分離手段は、油水流入管103から落下流入するドレンによって、貯留槽21内の浮上油層20やその下の分離水が、撹乱されることがないので、分離効率が高い。又、油水分離流路が、熱交換作用をもつときは、流入するドレンの温度を速やかに上昇させ、流入ドレンと貯留水との比重差を小さくすると共に、油滴の分離を容易にすることができる。油水分離流路が存在しない場合やそれが熱交換作用を持たないときは、油滴が分離浮上する前に、流入ドレンの温度と室温近くに保持される分離水温度との差に基づく比重差で、温度の高い貯留水中を冷たいドレンが急速に沈降して、そのまま排出管22に流入してしまうといった虞れがなくなる。
【0028】
電解分離手段Eは、浮上油分離手段Dによって油滴を分離した分離水(貯留槽下層の水)を排出管22から受け入れる電解槽30と、該電解槽30中に収納された電極31とを備えている。電極31は、アルミニウム製陽極板と鉄製陰極板とを所定の間隔で交互に対面状態に配列した構成を備えている。図示を省略した電源から直流電流を印加されている陰陽電極板列の間に導入された分離水が、陰陽電極板間を通過する際に、乳化状の油滴と水とが、その界面電位の差によって、電気泳動作用を受けて、分離される。分離された微粒油滴は、陽極に発生する水酸化アルミニウムによって、凝集して塊状になり、これに更に陰極で発生した水素気泡が付着することにより、微細油滴は、電解水中を速やかに浮上し、水面に集まり、スカム状になって分離される。
【0029】
油水の電解分離作用を促進するために、電解槽30中には、撹拌装置を設けてもよいし、加圧空気や循環ポンプ等により電極板と平行な方向に、水流を発生する手段を設けてもよい。但し、上方に分離浮上して形成されたスカム層32を壊さないことが重要である。浮上分離した油滴は、スカムの掬い取りや水位浮上によるオーバーフロー、選択的吸収材(親油性処理を施したパルプ素材など)、吸引ポンプ等による吸引除去など、適宜な手段を講じ得る。33は、浮上油分離手段Dにおける排出管22と同様に、スカム層をトラップして、電解槽30の電解処理水のみを電解槽外に流出させるための流出管である。
【0030】
該流出管33は、吸着分離手段Fの底部に連通し、電解槽30の水位による位置水頭圧によって、該手段Fの吸着槽3内へ、電解処理水を送り込む圧送手段となる。
吸着分離手段Fは、吸着槽3と、該吸着槽3の下部と連通する加圧空気供給手段4と、該吸着槽4内に所定の空間を隔てて配置された複数の仕切体7、7、…と、該仕切体7で仕切られた空間に収納された吸着材8とを有し、仕切体7は、中央部に開口6aを有するバッフルAと、該バッフルAの開口6aと対向しない位置(重ね合わせたとき両開口が連通しない位置)に設けられた複数の開口6b、…とで、筒状に構成され、前記電解処理水と共に、加圧空気供給手段から加圧空気を吸着槽内の下部へ供給するように構成されている。
【0031】
Gは、吸着分離手段Fの流出管12から、吸着処理水を吸着槽49内下部に受け入れて、該吸着槽49に収納されている、高精度な吸着能力を持つ吸着材48に通すことにより、吸着処理水を精製する精製吸着槽であって、必要に応じて省略する事ができる。吸着分離手段Fは、単一槽で構成されているが、複数の吸着槽3を直列に連結して能力と精度とを上げることも可能である。
【0032】
吸着分離手段Fの第1実施態様について、以下詳細に説明する。図3において、電解処理水の流出管33は、円筒状の吸着槽3の下方部と連通している。該吸着槽3の下方部は、加圧空気供給手段4と、電磁弁5をを介して連通しており、吸着槽3の上部は開放されている。吸着槽3内は、図4に示すように、中央に開口6aを有するバッフルA(表面)と、該開口6aと対向しない位置に複数穿設された開口6bとを有するバッフルBとを対面させて略円筒状をなすように構成した仕切体7が、所定間隔で仕切体7,7間に吸着処理室としての空間を有するように多段状に配置されている。
【0033】
該空間(吸着処理室)内には、高い油吸着性能を有し、疎水性で親油性の高いポリプロピレン製のチップ又はリボンが、メッシュ網袋若しくは円筒状の篭に充填されて成る吸着材8が収納されている。上記吸着材の具体例としては、オルソーブ(帝人株式会社の登録商標)を挙げることができる。バッフルAとバッフルBの開口6a,bは、開口6aの断面積が開口6bの全断面積の合計より小さくなるように設定してある。また、前記仕切体7の側面にはスポンジ等の弾性体から成る隙間閉塞材9が接合されている。
【0034】
吸着分離手段Fの第2実施態様としては、上部に開放部を有する筒状吸着槽3と、該吸着槽3の下部と連通する加圧空気供給手段4と、該吸着槽4内に所定の空間を隔てて配置された複数の仕切体7と、該仕切体7で仕切られた吸着処理室としての空間に収納された吸着材8とを有し、前記仕切体のうち上層部にあるものは、中央部に開口6aを有するバッフルAと該バッフルAの開口6aと対向しない位置に設けられた複数の開口6b、…とで筒状に構成され、前記仕切体の下層部に位置するものは、筒状で表裏面の中央寄りに複数の開口を有する仕切体と、筒状で表裏全面にわたって無数の孔が穿設された仕切体とによって構成され、前記電解処理水と共に、加圧空気供給手段から加圧空気を吸着槽内の下部へ供給するように構成されたものを提示できる。
【0035】
図5〜7に吸着分離手段の第2実施態様の一例を示す。図5において、上層には、前記第1実施態様における仕切体と同じ仕切体7が配置され、下層には、最下層に表裏面に複数の貫通孔10aが穿孔され、側面にスポンジ等の弾性体から成る隙間閉塞材9が接合された仕切体10と、表裏面に無数の貫通孔11aが穿孔され、側面に隙間閉塞材9が接合された仕切体11とを若干の間隙16をおいて重ね合わせるように配置されており、仕切体7,11間の空間には、第1実施態様の場合と同様に、抜群の油吸着性能を有し、疎水性で親油性の高いポリプロピレンを原料とする合成樹脂チップ若しくはリボンを網袋若しくは円筒状の篭に充填した吸着材8が装填されている。尚、12は吸着槽の上部と接続された流出管であり、上部開口から常時オーバーフローする吸着分離処理水が流出されるように構成されている。
【0036】
吸着槽3には、電解槽30から電解処理水が流入すると共に、電磁弁5が開放されることにより加圧空気供給手段4から加圧空気が供給される。吸着槽3の最下部にある吸着処理室に注目すると、吸着槽3の下方から流入した電解処理水及び加圧空気は、仕切体7や11の開口から吸着材8に向けて吹き出される(図8ーa)。電解処理水の量にかかわりなく常に加圧空気が供給されているので、吸着材8を浸している電解処理水は常に撹拌と振動が与えられた状態となり、複雑に何度も吸着材8と接触しながら油分は吸着されていく。吸着材8が、電解処理水で浸された状態にあるために加圧空気は吸着材間を直線的に通過しにくい状況となっており、吸着材8に泡状の加圧空気が保持されやすい状態となり、吸着材8は電解処理水と共に押し上げられる(図8ーb)。
【0037】
次いで、空気は、上昇した吸着材と電解処理水との間を一気に通り抜け、吸着材と電解処理水は下方の仕切体に向け落下する(図8ーc)。そして再び加圧空気によって押し上げられる。すると、上層に設けた仕切体7の開口6aから一部の電解処理水と加圧空気とが抜け出し、上層の仕切体7、7間の空間から成る吸着処理室(図8における中央の吸着処理室)に導かれ、該空間内に収納された吸着材8は、撹拌された電解処理水と接触しながら油分の吸着を行う。やがて上層の吸着材8も多数の加圧空気の泡を保持した状態となり、前述した現象を繰り返して吸着材8を持ち上げ(図8−cにおける中央の吸着処理室)、気泡は、上層の仕切体7の開口6aを介して更に上層の吸着材8(図8における最上部の吸着処理室)へと導かれる。このような現象が繰り返される。
【0038】
吸着材8を押し上げた加圧空気の泡は、吸着材片8a、…間を一気に通り抜ける結果、吸着材8と電解処理水の一部は、揚力を失い、下方の仕切体7に向けて落下することになる。一方、最上層の吸着材と電解処理水とを通り抜けた加圧空気と一部の電解処理水は、一方は大気中に放出され、他方は吸着処理水となって、流出管12から、排出される。吸着槽内を占める電解処理水と空気の体積比率は、空気の流量によって一定に保持され電解処理水が流入した分だけ、吸着槽上部の流出管12からオーバーフローする。第2実施態様のものでは、吸着処理室が一つであるので、吸着材8が、加圧空気によって撹拌される電解処理水と接触した後、ある程度加圧空気の泡を含んだ状態となったときに、上部に設けられた開口からオーバーフローされることになる。尚、加圧空気を供給している際に、仕切体7,10,11の側面にスポンジ等の隙間閉塞材9を装着しているので、加圧空気が仕切体の側面部の隙間から逃げることがないので、吸着材8は、上に押し上げられ、又供給された加圧空気は、最終的に吸着槽3の上部開口から槽外に放出される。
【0039】
図3に示す第1実施態様では、下層の吸着材8が加圧空気を含んだことにより押し上げられ、吸着材片8a間に保持した加圧空気が抜け出ることにより落下するという上下動作用の繰り返し(例えば3〜4回/秒)により、下層の電解処理水は、加圧空気と共に仕切体7の開口6aを介して上層に押し上げられる。
かくして電解処理水の一部分が、上層の吸着材8へと移動する。この過程で、電解処理水は、吸着処理室中で、加圧空気による撹拌作用を受け、何度も吸着材と接触し、電解分離できなかった油分は、吸着材8に吸着されつつ、吸着材8の押し上げ作用により再度上層の仕切体7の開口6aを介して上層に移動する。その結果、電解処理水は、徐々に、油分を除去されつつ、より上層の吸着処理室に移動する。従って、上層の吸着材は、下層の吸着材より、油分による汚染度が小さくなる。換言すれば、上層へ行くほど、吸着材8の油分吸着による汚水清浄化能力を高く維持しており、従って、吸着処理室が単一のものより複層化が高いものほど、吸着処理水の清浄度は高い。
【0040】
上記第1及び第2実施態様では、巨視的には、加圧空気が電解処理水を撹拌して泡を発生し、この泡によって吸着材が上下動する(換言すれば、円筒容器中に水と空気とを入れて容器を上下に振ったときのような水と空気の動き)場合を例示したが、吸着処理室中の電解処理水に吹き込んだ気流により、渦流や衝突流を発生させて吸着処理室中の吸着材片自体を撹拌して、電解処理水と吸着材との接触効率を高めてもよい。吸着分離手段Fによる吸着処理水は、必要に応じて、更に活性炭などの吸着材48を充填して成る吸着槽43を通過させる。これにより、より清浄度を一段と向上させることができ、処理済み水は、廃棄するだけでなく、他の用途に、直接再利用することも可能になる。
【0041】
本願装置及びこれを用いた油水からの油分分離方法によれば、浮上油分離手段により、径の大きい油滴を先ず分離し、次いで、微細なエマルジョン状の油滴を、電極間において微細油滴として分離すると同時に、副生する水酸化アルミニウムと水素気泡とにより、該微細油滴をフロック化して浮上分離することにより、吸着分離手段に入る電解処理水中の油分の大部分は、除去された状態となる。従って、吸着材の油分負荷は、従来の場合に比して極めて小さい。従って、吸着材の使用期間が大幅に長くなる。特に、活性炭などの多孔質タイプの吸着材の場合に、その効果は顕著である。
【0042】
更に、吸着分離手段として、仕切体で画成された吸着処理室中に、電解処理水と加圧空気とを導入するタイプのものを使用した場合、油分の分離効率は、一段と向上する。特に、仕切体の裏面が中央部を除く複数の開口を有し表面が中央に開口を有する構造のときは、電解処理水と加圧空気とは、吸着材の底部中央から吹き出す形で供給されることになる。加圧空気の吹き出し作用で、電解処理水は撹拌され吸着材と接触して、油分は極めて高い効率で吸着除去される。
【図面の簡単な説明】
【図1】本願油水分離装置の一実施態様を示す説明図である。
【図2】図1に示す装置の浮上油分離手段の詳細を示す説明図である。
【図3】図1に示す装置の吸着分離手段の詳細を示す断面説明図である。
【図4】図3の仕切体の表裏の構造を示す斜視図である。
【図5】図1に示す装置の吸着分離手段の他の実施態様の詳細を示す説明図である。
【図6】図5の吸着分離手段の下層に配置する仕切体の構造を示す斜視図である。
【図7】図5の吸着分離手段の最下層に配置する仕切体の構造を示す斜視図である。
【図8】図3に示す吸着槽内の状態aから状態cへの経時変化を示す説明図である。
【符号の説明】
D 浮上油分離手段
20 浮上油層
21 貯留槽
23 油水分離流路
26 分離油流路
100 油水発生源
103 ドレン排出管
E 電解分離手段
30 電解槽
31 電極
32 スカム
33 流出管
F 吸着分離手段
3 吸着槽
4 加圧空気供給手段
7、10、11 仕切体
8 吸着材
G 精製吸着槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for separating oil water, which is industrial waste water mixed with lubricating oil, into water and oil, and an apparatus for removing oil from the waste water.
[0002]
[Prior art]
As this type of device, oil water is allowed to stand and float to the upper layer due to the difference in specific gravity to separate oil droplets, oil water is absorbed and separated through an adsorbent tank, or fine oil droplets are used. An apparatus that separates an emulsion that has passed through an electrolytic treatment tank by electrophoresis using an interface potential difference between oil droplets and water is used.
[0003]
Each of these devices has advantages and disadvantages, and is used properly according to the required separation accuracy. However, in recent years, a separation device with higher accuracy is desired from the viewpoint of preventing environmental pollution. In order to achieve this purpose, treated water after separating the oil droplets by the difference in specific gravity is introduced into the bottom of the adsorption tank containing the oil adsorbent using pressurized air, and the water discharged from the top is separated. An apparatus for discharging as treated water is disclosed. (For example, see Japanese Patent Publication No. 63-39799).
[0004]
If the adsorbent functions sufficiently, the oil adsorption processing apparatus has a simple structure and excellent separation accuracy. However, the adsorbent generally has a drawback that it is difficult to maintain the adsorptive power over a long period of time, and it often requires replacement. Since the conventional adsorption separation device releases the oil adsorbent layer by passing it once, the oil adsorbent separation is insufficient, or the oil water passing through the adsorbent short-circuits the adsorbent layer. There are disadvantages such as insufficient contact efficiency between the adsorbent and the oil water. Furthermore, if the load of the oil to be adsorbed is large, the life of the adsorbent is shortened. In particular, in the case of an adsorbent made of a porous material such as activated carbon, frequent replacement of the adsorbent is necessary. There is a drawback that maintenance is complicated and expensive.
[0005]
【task to solve】
A first object of the present invention is to disclose an oil / water separation device and an oil / water separation method in which the separation capacity of the adsorbent (agent) lasts long because the load on the adsorption / separation device is small.
The second object of the present invention is to disclose an oil / water separation device and an oil / water separation method in which the contact efficiency between the adsorbent and the oil / water in the adsorption / separation device is high and the oil separation accuracy is high.
The third object of the present invention is to maintain the adsorption capacity of the adsorbent in the final block by dividing the adsorbent to be contacted with the oil and water into a plurality of blocks and always allowing the oil and water to pass through the block. Accordingly, an oil / water separation apparatus and an oil / water separation method capable of highly accurate oil / water separation are disclosed.
A fourth object of the present invention is to disclose an oil / water separation apparatus and method having high separation performance and low maintenance burden by combining the steps of oil / water separation in a balanced manner.
[0006]
[Means for solving problems]
The first gist of the present invention is a floating oil separating means comprising a storage tank provided with an oil water inlet and a separation water discharge pipe, and an aluminum in the electrolytic tank connected to the storage tank through the discharge pipe. Electrolytic separation means containing an electrode, and adsorption separation means having an adsorption treatment chamber containing an adsorbent inside and having an inlet and an outlet for electrolytically treated water treated by the electrolytic separation means It is in the oil-water separator characterized by having.
[0007]
In the present application, the aluminum electrode is used to include an electrode made of an aluminum alloy. The above apparatus receives oil water in a storage tank and leaves it standing, and floats and separates oil droplets due to a difference in specific gravity. Since the specific gravity difference with water is small, the emulsion-like oil droplets that could not be separated by the floating oil separating means enter the electrolytic cell through the discharge pipe. In the electrolytic cell, aluminum hydroxide having high activity is generated in the electrolytic solution by using the aluminum electrode for the anode. The emulsion introduced between the yin and yang electrodes breaks the O / W emulsion by electrophoretic action to separate fine oil droplets, and the separated oil droplets are aggregated by aluminum hydroxide and float between the electrodes. Hydrogen bubbles generated from the cathode also help this rise.
[0008]
The separated and floating oil droplets are scum-like. This scum is removed by appropriate means such as scraping, overflow, and suction. The electrolytically treated water discharged from the electrolytic separation means is adsorbed by being introduced into an adsorption treatment chamber containing a porous adsorbent and an adsorbent that selectively adsorbs oil by having both hydrophobic and lipophilic properties. In contact with the material, the oil is removed and discharged as clean water. Since most of the oil contained in the wastewater is almost removed by the gravity separation process and the electrolytic separation process, the oil load on the adsorbent is small and the life of the adsorbent is extended. The flow of electrolyzed water flows from the upper part of the adsorption treatment chamber, when the electrolytic treatment water flows in, falls between the adsorbents by gravity and flows out from the lower part of the adsorption treatment chamber, and conversely, when it flows out from the bottom to the top and so on.
[0009]
According to a second aspect of the present invention, there is provided a floating oil separating means comprising a storage tank provided with an oil water inlet and a separation water discharge pipe, and aluminum in the electrolytic tank connected to the storage tank via the discharge pipe. Electrolytic separation means containing electrodes, and one or more adsorption processing chambers having gas / liquid entrances and containing adsorbents inside are connected vertically to form a series of gas-liquid flow paths. An adsorption separation means, and a pressurized air supply means and a pressure feed means for electrolytic treatment water from the electrolytic cell are connected to the oil adsorption treatment chamber located at the bottom of the one or more adsorption treatment chambers And an adsorption / separation means.
[0010]
In the apparatus of the second aspect, the electrolytic treatment water pressure feeding means includes a case where the electrolytic treatment liquid is pumped into the adsorption treatment chamber due to a difference in water level from the electrolytic treatment water adsorption treatment chamber or a liquid pressure feed pump. In the adsorption treatment chamber, the contact efficiency between the adsorbent and the electrolytic treatment water is improved by stirring the air and the electrolytic treatment water with pressurized air.
[0011]
According to a third aspect of the present invention, in the oil / water separator defined by the second aspect, a plurality of adsorption processing chambers are connected to a lower part of an upright cylindrical container connected with pressurized air supply means and electrolytic treatment water pressure feeding means. It comprises a partition that defines a plurality of spaces in the vertical direction, and an adsorbent housed in each of the spaces, the partition having a baffle A having an opening in the center and an opening of the baffle A And the baffle B having a plurality of openings at positions that do not face each other.
[0012]
The partition composed of the baffle A and the baffle B promotes the gas-liquid mixing effect and bubble generation effect that pass through the partition. When the electrolytically treated water rich in bubbles protruding from the partition enters the adsorbent layer, it receives more passage resistance, and this passage resistance acts on the adsorbent, causing the adsorbent to move up and down. Move to the left and right to help contact with the electrolyzed water. Thereby, the bias of the adsorption action due to the position of the adsorbent is prevented, and the adsorption efficiency is improved as a whole. The mode of the stirring state of the adsorbent and the electrolytically treated water can be selected depending on the amount of the airflow to be injected. Further, the stirring mode can be changed variously depending on the ratio of the opening area of the baffles A and B.
[0013]
The fourth gist of the present invention is that the oil water is received in a storage tank and allowed to stand, and oil droplets are floated and separated due to a difference in specific gravity, and then water in the lower layer of the storage tank is supplied to an electrolytic separation tank equipped with an aluminum electrode. Introduced and electrolyzed, separated oil droplets are agglomerated and separated by aluminum hydroxide generated in the electrolyzed water, separated and removed, and then the obtained electrolyzed water passed through an adsorption tank containing an adsorbent In the oil-water separation method,
[0014]
The fifth gist of the present invention is that the oil water is received in a storage tank and allowed to stand, and after the oil droplets are floated and separated due to the difference in specific gravity, the water under the storage tank is separated into an electrolytic separation tank equipped with an aluminum electrode. Introduced and electrolytically treated, separated oil droplets are agglomerated and separated by aluminum hydroxide produced in the electrolytically treated water, separated and removed, and then the obtained electrolytically treated water is adsorbed to the adsorption treatment chamber equipped with a gas-liquid distribution port. Introducing the adsorbent into the adsorbing tank and introducing pressurized air into the electrolytically treated water in the adsorbing tank so that the electrolytically treated water passes through the adsorbing tank while being stirred with the adsorbent. The oil-water separation method is characterized by that.
[0015]
A sixth aspect of the present invention is the oil-water separation method defined by the fifth aspect, wherein the adsorption tank is partitioned by one or more partitions having a gas-liquid inlet / outlet, so that the inlet / outlet overlaps in the vertical direction. It is equipped with a plurality of adsorption treatment chambers that are connected in series, and the electrolytic treatment water and pressurized air introduced into the adsorption tank are moved from the lowest adsorption treatment chamber to the upper adsorption treatment chamber sequentially. It is in the oil-water separation method characterized by the above-mentioned.
[0016]
In the above, as a partition, the cylindrical thing comprised by the above-mentioned baffle A and the baffle B, the thing using the baffles A and B alone, or innumerable linear through-holes are formed. In addition, a suitable combination of plate-like bodies can be used.
[0017]
The seventh gist of the present invention is the fourth to fourth aspects. Six Oil flowing into the storage tank defined in any of the gist At least an oil / water separation channel having an oil / water inlet above the upper limit of the liquid level and having an oil / water outlet opened below the upper limit of the liquid level after descending toward the bottom of the storage tank. After being received in the heat exchange channel, the temperature is raised through the heat exchange channel. Storage tank In the oil-water separation method,
[0018]
When separating oil from oil water, generally, the higher the temperature, the easier. For example, when the drain generated by cooling the compressed air with a refrigerator is introduced into the separated water in the storage tank stored at room temperature, the drain having a low water temperature is quickly brought to the bottom of the storage tank due to the difference in specific gravity. Before reaching and separating the oil droplets, some of them may enter the electrolytic treatment tank by the discharge pipe. Therefore, when the temperature of the oil water introduced into the storage tank is lower than the temperature of the water stored in the storage tank, the oil droplet separation efficiency is improved by passing through the heat exchange channel. Storage tank When the atmosphere surrounding the tank is low, the storage tank may be positively heated.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows the overall configuration of the first embodiment of the device of the present application. The oil-water separator of the present application receives the oil water generated from the oil-water generation source 100 and leaves the oil-water separation means D to separate the oil droplets by the difference in specific gravity, and the electrolytic separation treatment of the separated water from which the floating oil has been separated. Electrolytic separation means E that separates and floats the emulsion-like fine oil droplets, and adsorptive separation in which electrolytically treated water from which oil has been separated through electrolytic separation is introduced together with pressurized air and brought into contact with the adsorbent to remove the oil and purify it. And means F.
[0020]
As shown in FIG. 2, the floating oil separating means D has a storage tank 21 and an inlet 22 a that opens to the lower layer of the storage tank 21, penetrates the side wall of the storage tank 21, and is outside the storage tank. By opening, the penetrating position 21b has a separation water discharge pipe 22 that defines the upper limit of the liquid level of the storage tank 21, and an oil water inlet 25 above the upper limit of the liquid level, and the inside of the storage tank 21 toward its bottom 21a. An oil-water separation channel 23 having an oil-water outlet 24b opened below the liquid level upper limit and a separation oil channel 26 branched from the upper part of the descending region 24 of the oil-water separation channel 23 after being lowered, A floating oil discharge port 26 a is provided near the upper limit of the liquid level at the upper end of the separation oil passage 26.
[0021]
In the oil / water separation channel 23, oil is mainly separated from water in the descending region 24 of the channel 23, so that the capacity of the descending region 24 of the oil / water separation channel is determined by the supply of oil / water. It needs to have a volume that can stay for a sufficient time to separate the drops. Separation of a mixed system of oil droplets and water droplets having a relatively large diameter or oil water in an emulsion state into water and oil is generally easier as the temperature is higher. Therefore, when the temperature of the waste water containing the oil component supplied to the oil / water separation channel is higher than the temperature (room temperature) of the storage tank, the oil / water separation channel is preferably made of a material having heat insulation properties. On the other hand, if the temperature of the wastewater is lower than the temperature of the storage tank, it is desirable that the wastewater is made of a highly heat-conductive material. That is, when the oil / water separation channel 23 is configured by a heat transfer pipe made of aluminum or other metal, the oil / water separation channel 23 becomes a heat exchange channel.
[0022]
If the oil / water generation source 100 is a compressed air tank or an air dryer, the oil water discharged as drain containing compressor lubricating oil passes through the solenoid valve 101 and the drain trap 102, passes through the drain discharge pipe 103, and enters the oil / water inlet 25. be introduced. The oil water that has flowed into the oil / water separation channel 23 separates and floats oil droplets before reaching the lower part 24c of the channel 23, and the other moves upward from the lower part of the oil / water separation channel. From the floating oil layer 20 formed on the upper surface of the oil 21, the oil is discharged from an oil / water outlet 24 b that opens slightly downward. On the other hand, the floating oil separated and floated on the upper layer in the oil / water separation flow path is branched to the separation oil flow path 26 when the separation oil flow path 26 diverges and is discharged to the floating oil layer 20 from the separation oil discharge port 26a. The
[0023]
The floating oil separation means D according to the above embodiment does not disturb the inside of the storage tank by the flowing oil water, so that oil droplets that can be floated and separated are mixed in the discharge pipe 22 of the separated water beforehand. Can be prevented. The drain generated by cooling the compressed air with a refrigerator flows down to the oil water inlet at a temperature of about 10 ° C., and the ambient temperature surrounding the storage tank 21 is about 25 ° C. The temperature difference between the stored water temperature and the inflowing drain is around 15 ° C. Therefore, the oil water that has flowed into the heat exchange channel exchanges heat with the stored water already stored in the storage tank, and the temperature rises.
[0024]
As the drain temperature rises, the separation of water and oil droplets is promoted and the specific gravity decreases, so the tendency for the inflow drain to settle quickly in the separated water based on the specific gravity difference is suppressed at an accelerated rate. Is done. Thus, when the drained drain reaches the horizontal part 24c of the oil / water separation channel 23 as a heat exchange channel, most of the oil droplets that can be floated and separated are vertically descending areas extending from the oil / water inlet to the horizontal part 24c. Oil water containing fine oil droplets that are separated and released at 24 and cannot be easily separated is discharged from the oil water outlet 24b into the stored water.
[0025]
On the other hand, the oil droplets separated in the descending region 24 float up and collect in the pipe. However, when the oil layer reaches the vicinity of the branching portion of the separation oil channel 26, the oil droplets are separated from the separation oil channel 26. It moves inward and is gently discharged to the lower part of the floating oil layer through the flow path 26. Further, the drain pipe 22 discharges the separated water containing almost no oil at the bottom of the storage tank through the drain pipe 22 by the amount of drain flowing from the oil water inlet 25.
[0026]
In the floating oil separation means according to the above embodiment, since the drain from the compressed air dehumidifier has a condition that it is ten times lower than room temperature, the stored water temperature in the storage tank is higher than the oil water temperature flowing in. The means for holding was unnecessary, but when both temperatures are close to each other or when the room temperature is lower than the inflowing oil water, the oil-water separation flow path is made of a highly heat-insulating material, Although the influence of the stored separated water may be hindered, in order to increase the oil-water separation speed, the temperature of the stored separated water surrounding the heat exchange pipe may be further increased by using the warming means of the stored water.
[0027]
The floating oil separation means has high separation efficiency because the floating oil layer 20 in the storage tank 21 and the separated water below the disturbance oil are not disturbed by the drain that flows down from the oil / water inflow pipe 103. In addition, when the oil / water separation channel has a heat exchange function, the temperature of the inflowing drain is quickly raised, the specific gravity difference between the inflowing drain and the stored water is reduced, and the oil droplets can be easily separated. Can do. When there is no oil / water separation flow path or when it does not have a heat exchange effect, the specific gravity difference based on the difference between the temperature of the inflow drain and the temperature of the separation water held near room temperature before oil droplets separate and float Thus, there is no possibility that the cold drain quickly settles in the hot stored water and flows into the discharge pipe 22 as it is.
[0028]
The electrolytic separation means E includes an electrolytic tank 30 that receives the separated water (water in the lower layer of the storage tank) separated from the oil droplets by the floating oil separation means D from the discharge pipe 22, and an electrode 31 that is accommodated in the electrolytic tank 30. I have. The electrode 31 has a configuration in which aluminum anode plates and iron cathode plates are alternately arranged in a facing state at a predetermined interval. When the separated water introduced between the yin and yang electrode plates to which a direct current is applied from a power source (not shown) passes between the yin and yang electrode plates, the emulsified oil droplets and water have their interface potential. Due to the difference, the electrophoretic action causes separation. The separated fine oil droplets are agglomerated and agglomerated by aluminum hydroxide generated at the anode, and further, hydrogen bubbles generated at the cathode adhere to this, so that the fine oil droplets quickly float in the electrolytic water. Then, they gather on the surface of the water and are separated into a scum shape.
[0029]
In order to promote the electrolytic separation of oil and water, the electrolytic cell 30 may be provided with a stirring device, or provided with means for generating a water flow in a direction parallel to the electrode plate by pressurized air, a circulation pump, or the like. May be. However, it is important not to break the scum layer 32 that is separated and floated upward. The oil droplets that have floated and separated can be subjected to appropriate measures such as scum scooping, overflow due to water surface floating, selective absorption materials (such as pulp materials subjected to lipophilic treatment), suction removal using a suction pump or the like. 33 is an outflow pipe for trapping the scum layer and allowing only the electrolyzed water in the electrolysis tank 30 to flow out of the electrolysis tank in the same manner as the discharge pipe 22 in the floating oil separating means D.
[0030]
The outflow pipe 33 communicates with the bottom of the adsorption separation means F, and serves as a pressure feeding means for feeding electrolytically treated water into the adsorption tank 3 of the means F by the position head pressure due to the water level of the electrolytic tank 30.
The adsorption separation means F includes an adsorption tank 3, a pressurized air supply means 4 communicating with the lower part of the adsorption tank 3, and a plurality of partitions 7 and 7 disposed in the adsorption tank 4 with a predetermined space therebetween. ,..., And an adsorbent 8 housed in a space partitioned by the partition 7, and the partition 7 does not oppose the baffle A having an opening 6 a in the center and the opening 6 a of the baffle A. A plurality of openings 6b provided at positions (positions where both openings do not communicate with each other when overlapped) are formed in a cylindrical shape, and the pressurized air is supplied from the pressurized air supply means together with the electrolytically treated water. It is comprised so that it may supply to the lower part inside.
[0031]
G receives the adsorption treated water from the outflow pipe 12 of the adsorption separation means F into the lower part of the adsorption tank 49 and passes it through the adsorbent 48 stored in the adsorption tank 49 and having a high-accuracy adsorption capability. A purification adsorption tank for purifying the adsorption treated water, which can be omitted if necessary. Although the adsorption separation means F is comprised by the single tank, it is also possible to connect a some adsorption tank 3 in series, and to raise a capability and precision.
[0032]
The first embodiment of the adsorption separation means F will be described in detail below. In FIG. 3, the outflow pipe 33 of the electrolyzed water communicates with the lower part of the cylindrical adsorption tank 3. The lower part of the adsorption tank 3 communicates with the pressurized air supply means 4 via the electromagnetic valve 5 and the upper part of the adsorption tank 3 is open. In the adsorption tank 3, as shown in FIG. 4, a baffle A (surface) having an opening 6a at the center and a baffle B having a plurality of openings 6b formed at positions not facing the opening 6a are opposed to each other. The partition bodies 7 configured to have a substantially cylindrical shape are arranged in multiple stages so as to have a space as an adsorption processing chamber between the partition bodies 7 and 7 at a predetermined interval.
[0033]
In the space (adsorption treatment chamber), an adsorbent 8 is formed by filling a mesh net bag or a cylindrical bag with polypropylene chips or ribbons having high oil adsorbing performance and having high hydrophobicity and lipophilicity. Is stored. Specific examples of the adsorbent include Orthosorb (registered trademark of Teijin Limited). The openings 6a and b of the baffle A and the baffle B are set so that the cross-sectional area of the opening 6a is smaller than the total cross-sectional area of the opening 6b. A gap closing member 9 made of an elastic material such as sponge is joined to the side surface of the partition 7.
[0034]
As a second embodiment of the adsorption separation means F, a cylindrical adsorption tank 3 having an open part in the upper part, a pressurized air supply means 4 communicating with the lower part of the adsorption tank 3, and a predetermined amount in the adsorption tank 4 What has a plurality of partitioning bodies 7 arranged across a space and an adsorbent 8 housed in a space as an adsorption processing chamber partitioned by the partitioning body 7 and is in the upper layer portion of the partitioning bodies Is formed in a cylindrical shape with a baffle A having an opening 6a in the center and a plurality of openings 6b provided at positions not facing the opening 6a of the baffle A, and located in the lower layer portion of the partition Is composed of a cylindrical partition having a plurality of openings near the center of the front and back surfaces, and a cylindrical partition having numerous holes drilled over the entire front and back surfaces, together with the electrolytically treated water, pressurized air Configured to supply pressurized air from the supply means to the lower part of the adsorption tank The can be presented.
[0035]
5-7 show an example of the second embodiment of the adsorption separation means. In FIG. 5, in the upper layer, the same partition body 7 as the partition body in the first embodiment is disposed, in the lower layer, a plurality of through holes 10a are drilled in the front and back surfaces in the lowermost layer, and elastic such as sponge is formed in the side surface. The partition body 10 joined with the gap closing material 9 made of a body and the partition body 11 with innumerable through holes 11a on the front and back surfaces and joined with the gap closing material 9 on the side surface are provided with a slight gap 16. As in the case of the first embodiment, the space between the partitions 7 and 11 is arranged so as to be superposed, and has excellent oil adsorption performance, and is made of polypropylene that is hydrophobic and highly oleophilic. The adsorbent 8 is filled with a synthetic resin chip or ribbon filled in a net bag or a cylindrical bag. In addition, 12 is an outflow pipe connected to the upper part of the adsorption tank, and it is comprised so that the adsorption separation process water which always overflows may flow out from upper opening.
[0036]
Electrolytically treated water flows into the adsorption tank 3 from the electrolytic tank 30 and pressurized air is supplied from the pressurized air supply means 4 by opening the electromagnetic valve 5. When attention is paid to the adsorption treatment chamber at the lowermost part of the adsorption tank 3, electrolytically treated water and pressurized air that have flowed from below the adsorption tank 3 are blown out toward the adsorbent 8 from the openings of the partitions 7 and 11 ( FIG. 8-a). Since pressurized air is always supplied regardless of the amount of the electrolytic treatment water, the electrolytic treatment water soaking the adsorbent 8 is always in a state of being stirred and vibrated, and the adsorbent 8 The oil is adsorbed while contacting. Since the adsorbent 8 is immersed in the electrolytically treated water, the pressurized air is difficult to pass linearly between the adsorbents, and the adsorbent 8 holds the foam-like pressurized air. The adsorbent 8 is pushed up together with the electrolytically treated water (FIG. 8B).
[0037]
Next, the air passes through the raised adsorbent and the electrolytically treated water all at once, and the adsorbent and the electrolytically treated water fall toward the lower partition (FIG. 8C). And it is pushed up by pressurized air again. Then, a part of the electrolytically treated water and the pressurized air escape from the opening 6a of the partition 7 provided in the upper layer, and the adsorption processing chamber (the central adsorption process in FIG. 8) is formed by the space between the upper partitions 7 and 7. The adsorbent 8 guided to the chamber and accommodated in the space adsorbs oil while contacting the agitated electrolytically treated water. Eventually, the upper-layer adsorbent 8 is also in a state of holding a large number of bubbles of pressurized air, and the above-described phenomenon is repeated to lift the adsorbent 8 (the central adsorption processing chamber in FIG. 8C). It is led to the upper adsorbent 8 (the uppermost adsorption processing chamber in FIG. 8) through the opening 6a of the body 7. Such a phenomenon is repeated.
[0038]
The pressurized air bubbles that pushed up the adsorbent 8 pass between the adsorbent pieces 8a,..., And as a result, part of the adsorbent 8 and the electrolytically treated water loses lift and falls toward the partition 7 below. Will do. On the other hand, one part of the pressurized air and part of the electrolytically treated water that have passed through the uppermost adsorbent and the electrolytically treated water is released into the atmosphere, and the other is adsorbed treated water that is discharged from the outflow pipe 12. Is done. The volume ratio between the electrolytically treated water and the air occupying the adsorption tank is kept constant by the air flow rate, and overflows from the outflow pipe 12 at the upper part of the adsorption tank by the amount of the electrolytically treated water flowing in. In the second embodiment, since there is only one adsorption treatment chamber, the adsorbent 8 comes into a state containing bubbles of pressurized air to some extent after contacting the electrolytic treatment water stirred by the pressurized air. Overflow from the opening provided in the upper part. In addition, since the gap closing material 9 such as a sponge is attached to the side surfaces of the partitions 7, 10, 11 when the pressurized air is supplied, the compressed air escapes from the gaps at the side portions of the partition body. Therefore, the adsorbent 8 is pushed up, and the supplied pressurized air is finally discharged from the upper opening of the adsorption tank 3 to the outside of the tank.
[0039]
In the first embodiment shown in FIG. 3, the adsorbent 8 in the lower layer is pushed up by containing pressurized air, and is repeatedly moved up and down for falling by the escape of the pressurized air held between the adsorbent pieces 8a. (For example, 3 to 4 times / second), the lower-layer electrolytically treated water is pushed up to the upper layer through the opening 6 a of the partition 7 together with the pressurized air.
Thus, a part of the electrolytically treated water moves to the upper adsorbent 8. In this process, the electrolytically treated water is subjected to the stirring action by the pressurized air in the adsorption treatment chamber, contacts with the adsorbent many times, and the oil that could not be electrolytically separated is adsorbed while adsorbed on the adsorbent 8. Due to the pushing-up action of the material 8, the material 8 moves again to the upper layer through the opening 6 a of the upper partition 7. As a result, the electrolytically treated water gradually moves to the upper adsorption treatment chamber while removing oil. Therefore, the upper layer adsorbent is less contaminated with oil than the lower layer adsorbent. In other words, the higher the layer is, the higher the sewage cleaning ability by adsorbing the oil content of the adsorbent 8 is maintained. Cleanliness is high.
[0040]
In the first and second embodiments, macroscopically, the pressurized air stirs the electrolytically treated water to generate bubbles, and the adsorbent moves up and down by the bubbles (in other words, water in the cylindrical container). Water and air movement as if the container was shaken up and down with air and air), but the air current blown into the electrolytically treated water in the adsorption treatment chamber generated vortex and collision flow. The adsorbent pieces themselves in the adsorption treatment chamber may be agitated to increase the contact efficiency between the electrolytically treated water and the adsorbent. The water treated by the adsorption separation means F passes through an adsorption tank 43 that is further filled with an adsorbent 48 such as activated carbon, if necessary. As a result, the cleanliness can be further improved, and the treated water can be not only discarded but also directly reused for other purposes.
[0041]
According to the apparatus of the present application and the method of separating oil from oil and water using the apparatus, oil droplets having a large diameter are first separated by the floating oil separating means, and then the fine emulsion-like oil droplets are separated into fine oil droplets between the electrodes. At the same time, the fine oil droplets are flocked and floated and separated by the by-product aluminum hydroxide and hydrogen bubbles, so that most of the oil in the electrolytically treated water entering the adsorption separation means is removed. It becomes. Therefore, the oil load of the adsorbent is extremely small as compared with the conventional case. Therefore, the use period of the adsorbent is significantly increased. In particular, the effect is significant in the case of a porous type adsorbent such as activated carbon.
[0042]
Furthermore, when the adsorption separation means is of a type that introduces electrolytically treated water and pressurized air into the adsorption treatment chamber defined by the partition, the oil separation efficiency is further improved. In particular, when the rear surface of the partition has a structure having a plurality of openings excluding the central portion and the front surface has an opening in the center, the electrolytically treated water and the pressurized air are supplied in a form that blows out from the bottom center of the adsorbent. Will be. Due to the blowing action of the pressurized air, the electrolytically treated water is stirred and brought into contact with the adsorbent, and the oil is adsorbed and removed with extremely high efficiency.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of the present oil / water separator.
2 is an explanatory view showing details of floating oil separating means of the apparatus shown in FIG. 1. FIG.
FIG. 3 is an explanatory cross-sectional view showing details of the adsorption separation means of the apparatus shown in FIG. 1;
4 is a perspective view showing the structure of the front and back of the partition body of FIG. 3. FIG.
5 is an explanatory view showing details of another embodiment of the adsorption separation means of the apparatus shown in FIG. 1. FIG.
6 is a perspective view showing a structure of a partition body arranged in a lower layer of the adsorption separation means of FIG. 5. FIG.
7 is a perspective view showing a structure of a partition body arranged in the lowermost layer of the adsorption separation means of FIG.
8 is an explanatory diagram showing a change with time from state a to state c in the adsorption tank shown in FIG. 3;
[Explanation of symbols]
D Floating oil separation means
20 Floating oil layer
21 Reservoir
23 Oil-water separation channel
26 Separation oil passage
100 Oil and water source
103 Drain discharge pipe
E Electrolytic separation means
30 Electrolyzer
31 electrodes
32 Scum
33 Outflow pipe
F Adsorption separation means
3 Adsorption tank
4 Pressurized air supply means
7, 10, 11 Partition
8 Adsorbent
G Purification adsorption tank

Claims (7)

油水の受入口と分離水の排出管とを備えた貯留槽から成る浮上油分離手段と、前記排出管を介して前記貯留槽と連結する電解槽中にアルミニウム電極を収納して成る電解分離手段と、該電解分離手段によって処理された電解処理水の入口と出口とを備え内部に吸着材を収納して成る吸着処理室を有する吸着分離手段とを備えていることを特徴とする油水分離装置。Floating oil separation means comprising a storage tank provided with an oil water inlet and separation water discharge pipe, and electrolytic separation means comprising an aluminum electrode housed in an electrolytic tank connected to the storage tank via the discharge pipe And an adsorption separation means having an adsorption treatment chamber having an inlet and an outlet for electrolytic treatment water treated by the electrolytic separation means and containing an adsorbent therein. . 油水の受入口と分離水の排出管とを備えた貯留槽から成る浮上油分離手段と、前記排出管を介して前記貯留槽と連結する電解槽中にアルミニウム電極を収納して成る電解分離手段と、気液の出入り口を備え内部に吸着材を収納して成る1以上の吸着処理室が一連の気液流路をなすように上下方向に連結して成る吸着分離手段とを備え、前記1以上の吸着処理室の中で最下部に位置する吸着処理室には、加圧空気供給手段と前記電解槽からの電解処理水の圧送手段とが接続して成る吸着分離手段とを備えていることを特徴とする油水分離装置。Floating oil separation means comprising a storage tank provided with an oil water inlet and separation water discharge pipe, and electrolytic separation means comprising an aluminum electrode housed in an electrolytic tank connected to the storage tank via the discharge pipe And an adsorbing / separating means in which one or more adsorption processing chambers each having a gas-liquid entrance and exit and containing an adsorbent therein are connected in a vertical direction so as to form a series of gas-liquid flow paths. The adsorption treatment chamber located at the bottom of the adsorption treatment chamber is provided with an adsorption separation means formed by connecting a pressurized air supply means and a pressure feed means for electrolytic treatment water from the electrolytic cell. An oil-water separator characterized by that. 複数の吸着処理室が、下部に加圧空気供給手段と電解処理水圧送手段とが接続する直立筒状容器中に、上下方向に複数の空間を画成する仕切体と、該空間の夫々に収納された吸着材とから成り、前記仕切体は、中央部に開口を有するバッフルAと該バッフルAの開口と対向しない位置に複数の開口を有するバッフルBとによって構成されている請求項2の油水分離装置。A plurality of adsorption processing chambers are provided in an upright cylindrical container with a pressurized air supply means and an electrolyzed water pumping means connected to the lower part, and a partition that defines a plurality of spaces in the vertical direction, and each of the spaces The said partition is comprised by the baffle A which has an opening in the center part, and the baffle B which has several opening in the position which does not oppose the opening of this baffle A. Oil-water separator. 油水を貯留槽に受け入れて静置し、比重差によって油滴を浮上させて分離した後、該貯留槽の下層の水をアルミニウム電極を備えた電解分離槽に導入して電解処理し、分離油滴を電解処理水中に生成した水酸化アルミニウムによって凝集浮上させて分離除去し、次いで、得られた電解処理水を、吸着材を収納して成る吸着槽を通過させることを特徴とする油水分離方法。Oil water is received in a storage tank and allowed to stand, and oil droplets are floated and separated due to the difference in specific gravity, and then water in the lower layer of the storage tank is introduced into an electrolytic separation tank equipped with an aluminum electrode, followed by electrolytic treatment, and separated oil. An oil-water separation method characterized in that droplets are agglomerated and separated by aluminum hydroxide produced in electrolytic treatment water, separated and removed, and then the obtained electrolytic treatment water is passed through an adsorption tank containing an adsorbent. . 油水を貯留槽に受け入れて静置し、比重差によって油滴を浮上させて分離した後、該貯留槽の下層の水をアルミニウム電極を備えた電解分離槽に導入して電解処理し、分離油滴を電解処理水中に生成した水酸化アルミニウムによって凝集浮上させて分離除去し、次いで、得られた電解処理水を、気液の流通口を備えた吸着処理室中に吸着材を収納して成る吸着槽に導入すると共に該吸着槽中の電解処理水に加圧空気を導入して、該電解処理水が前記吸着材と撹拌されつつ吸着槽を通過するようにしたことを特徴とする油水分離方法。Oil water is received in a storage tank and allowed to stand, and oil droplets are floated and separated due to the difference in specific gravity, and then water in the lower layer of the storage tank is introduced into an electrolytic separation tank equipped with an aluminum electrode, followed by electrolytic treatment, and separated oil. The droplets are agglomerated and separated by aluminum hydroxide produced in the electrolyzed water, separated and removed, and then the obtained electrolyzed water is stored in an adsorption treatment chamber equipped with a gas-liquid circulation port. Oil-water separation, wherein the water is introduced into the adsorption tank and pressurized air is introduced into the electrolytically treated water in the adsorption tank so that the electrolytically treated water passes through the adsorption tank while being stirred with the adsorbent. Method. 吸着槽が、気液の出入り口を有する1以上の仕切体によって区画されることにより、上下方向に重なり前記出入り口を通して一連につながる複数の吸着処理室を備えており、吸着槽に導入された電解処理水と加圧空気とが、最下部の吸着処理室から順次上方の吸着処理室へと移動するように構成されている請求項5の油水分離方法。The adsorption tank is partitioned by one or more partitions having gas / liquid entrances and exits, so that it has a plurality of adsorption treatment chambers that overlap in the vertical direction and are connected in series through the entrances and exits, and the electrolytic treatment introduced into the adsorption tank The oil-water separation method according to claim 5, wherein water and pressurized air are configured to move sequentially from the lowermost adsorption treatment chamber to the upper adsorption treatment chamber. 貯留槽に流入する油水が、液位上限より上方に油水入口を有し貯溜槽内をその底部に向かって下降した後に液位上限より下方において油水出口が開口しており熱交換作用を持つ油水分離流路を少なくとも備えた熱交換流路に受け入れられた後、該熱交換流路を経て昇温して貯留槽に放出されることを特徴とする、請求項4から6のいずれか1項記載の油水分離方法。Oil water flowing into the storage tank has an oil water inlet above the upper limit of the liquid level and descends toward the bottom in the storage tank, and then the oil water outlet opens below the upper limit of the liquid level and has an heat exchange effect. after received in the heat exchange passage at least includes the separated channel, characterized in that it is released into the reservoir by raising the temperature through the heat exchange passage, any one of claims 4 6 The oil-water separation method as described .
JP29335197A 1997-10-09 1997-10-09 Oil / water separator and oil / water separator Expired - Fee Related JP4125810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29335197A JP4125810B2 (en) 1997-10-09 1997-10-09 Oil / water separator and oil / water separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29335197A JP4125810B2 (en) 1997-10-09 1997-10-09 Oil / water separator and oil / water separator

Publications (2)

Publication Number Publication Date
JPH11114304A JPH11114304A (en) 1999-04-27
JP4125810B2 true JP4125810B2 (en) 2008-07-30

Family

ID=17793678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29335197A Expired - Fee Related JP4125810B2 (en) 1997-10-09 1997-10-09 Oil / water separator and oil / water separator

Country Status (1)

Country Link
JP (1) JP4125810B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG65542B1 (en) * 2002-03-04 2008-11-28 Владко ПАНАЙОТОВ Method of electrochemical purification of waste waters and organic contaminants suspensions
KR101055785B1 (en) 2005-09-09 2011-08-09 경상대학교산학협력단 Oil-water separator and its separation method
JP2013128890A (en) * 2011-12-22 2013-07-04 Orion Machinery Co Ltd Oil-water separator and drain water purification system
CN104129874B (en) * 2014-05-30 2016-06-15 中国石油化工股份有限公司 The treatment process of product oil storage field sewage
JP6461573B2 (en) 2014-07-30 2019-01-30 三菱マテリアル株式会社 Oil / water separator / collector
JP5879013B1 (en) 2014-07-30 2016-03-08 三菱マテリアル株式会社 Filter medium, filter medium manufacturing method, water treatment module and water treatment apparatus
CN106574166B (en) 2014-07-30 2018-10-02 三菱综合材料株式会社 Surface covering material, coated film and hydrophilic oil repellent material
WO2016017686A1 (en) 2014-07-30 2016-02-04 三菱マテリアル株式会社 Hydrophilic oil repellent agent and method for manufacturing same, and surface covering material, coating film, resin composition, oil-water separation filter medium, and porous body
CN104368208B (en) * 2014-11-13 2016-06-08 常熟市高压容器制造有限公司 Combination bubble-cap formula triphase separator
KR101720869B1 (en) * 2015-07-31 2017-03-29 김경태 Waste water and oil treatment method using cocopeat
CN109896671A (en) * 2019-03-01 2019-06-18 陈俊敏 One kind being based on greasy sewage processing unit
KR102286731B1 (en) 2019-07-16 2021-08-06 박종경 Apparatus for separating water and oil with structure of extracting high concentrated oil liquid
CN114377436A (en) * 2021-12-24 2022-04-22 太仓万贺精密科技有限公司 Oil-water separation system of numerical control machine tool and working method thereof

Also Published As

Publication number Publication date
JPH11114304A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP4125810B2 (en) Oil / water separator and oil / water separator
US8142655B2 (en) Filtration unit
US3321191A (en) Gas and liquid contact apparatus
CA1172605A (en) Electrolytic halogen generators
KR100567114B1 (en) Device for clarifying a charged liquid by flotation
ES2206247T3 (en) SEPARATOR APPARATUS AND SEPARATE METHOD.
MX2010011231A (en) Method for the removal of organic components from a mixture of organic components and water and a device for applying such a method.
US4062775A (en) Method and a device for promoting the separation of components suspended in a liquid
JP3210936U (en) Wastewater treatment equipment
RU2339583C1 (en) Device for electrochemical water purification
JP2004098044A (en) Oil separator
CN101296871A (en) Plant for wastewater treatment
JP3163259B2 (en) Oil adsorption tank and oil adsorption method for oil-water separator
JP4194469B2 (en) Oil / water separator
US6149827A (en) Device for separating particles from a particle containing liquid and a method for cleaning such a device
JP2540158B2 (en) Scum removal device in upflow type sludge blanket type anaerobic treatment tank
GB1585141A (en) Apparatus for separating a discontinuous phase from a continuous phase
JP3278544B2 (en) Activated sludge treatment equipment
JP4701219B2 (en) Pollutant removal device
KR20110132039A (en) Immersion type membrane separator device
JPS6135919B2 (en)
CA1071544A (en) Closed loop coalescence device containing coalescence promoting bodies
JPH0712472Y2 (en) Grease interceptor
JP2002027863A (en) Exhibition aquarium with water treating device
SU1049099A1 (en) Apparatus for processing water solutions of hydrogen peroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080409

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees