JP4125657B2 - Displacement correction method for rotating spindle - Google Patents

Displacement correction method for rotating spindle Download PDF

Info

Publication number
JP4125657B2
JP4125657B2 JP2003324685A JP2003324685A JP4125657B2 JP 4125657 B2 JP4125657 B2 JP 4125657B2 JP 2003324685 A JP2003324685 A JP 2003324685A JP 2003324685 A JP2003324685 A JP 2003324685A JP 4125657 B2 JP4125657 B2 JP 4125657B2
Authority
JP
Japan
Prior art keywords
temperature
heat generating
displacement
main shaft
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003324685A
Other languages
Japanese (ja)
Other versions
JP2005088126A (en
Inventor
澤 泰 則 武
山 政 寛 奥
倉 善 啓 朝
田 誠 一 冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuura Machinery Corp
Original Assignee
Matsuura Machinery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuura Machinery Corp filed Critical Matsuura Machinery Corp
Priority to JP2003324685A priority Critical patent/JP4125657B2/en
Publication of JP2005088126A publication Critical patent/JP2005088126A/en
Application granted granted Critical
Publication of JP4125657B2 publication Critical patent/JP4125657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Description

本発明は、回転中の主軸において生ずる発熱に対応して主軸の先端における作動部位につき、必要な補正を行う方法に関するものである。   The present invention relates to a method for performing a necessary correction for an operating part at the tip of a main shaft in response to heat generated in the rotating main shaft.

主軸が回転する場合には、ボールベアリングによる軸受部、及び駆動モータとの接続部等の発熱部における発熱によって、主軸が加熱され、当該加熱を原因として、主軸の先端における作動部の軸方向の位置がそれぞれ変化する。   When the main shaft rotates, the main shaft is heated by the heat generated in the heat generating portion such as the bearing portion by the ball bearing and the connection portion with the drive motor, and due to the heating, the axial direction of the working portion at the tip of the main shaft Each position changes.

上記位置の変化は、通常熱変位と称されており、従来当該熱変位を防止するために、主軸及びその周辺部をクーラーによって冷却することが行われているが、このような方法では熱変位を完全に消滅することはできない。   The change in the position is usually referred to as thermal displacement. Conventionally, in order to prevent the thermal displacement, the main shaft and its periphery are cooled by a cooler. Cannot disappear completely.

このような状況に鑑み、従来、発熱部又はその近傍にて温度測定を行い、測定された温度に基づいて予め設定した熱変位に関する数式によって熱変位量を算出し、当該算出値に基づいて主軸の先端にしている作動部の位置を補正することが行われている。   In view of such a situation, conventionally, temperature measurement is performed at or near the heat generating portion, and the amount of thermal displacement is calculated by a mathematical formula relating to the thermal displacement set in advance based on the measured temperature, and the spindle is calculated based on the calculated value. The position of the operating part at the tip of the head is corrected.

本来、主軸の変位は、決して発熱部及びその近傍の温度変化のみに対応して変化する訳ではない。   Originally, the displacement of the main shaft does not change in response to only the temperature change in the heat generating portion and its vicinity.

このような状況を反映して、従来技術による方法では、発熱部又はその近傍の位置の測定温度を入力温度として、所定の数式によって熱変位を算出しているが、如何に複雑な数式を採用したところで、前記数式に基づいて演算を行うコンピュータに対する入力温度が発熱部又はその近傍の位置の温度に限定されている以上、熱変位を正確に算出することは、困難である。   Reflecting this situation, in the method according to the prior art, the thermal displacement is calculated by a predetermined mathematical formula using the measured temperature at the heat generating part or the vicinity thereof as the input temperature, but how complicated the mathematical formula is adopted. By the way, it is difficult to accurately calculate the thermal displacement as long as the input temperature to the computer that performs the calculation based on the mathematical formula is limited to the temperature of the heat generating portion or the vicinity thereof.

他方、主軸の回転速度に応じて、先端における作動部の変位を算出し、当該変位に基づいて、先端の作動部の位置を補正する方法も提唱されている。   On the other hand, a method of calculating the displacement of the working portion at the tip according to the rotational speed of the main shaft and correcting the position of the working portion at the tip based on the displacement has been proposed.

確かに主軸の回転数と主軸自体における発熱温度とは相関関係を有しているが、先端の作動部の変位を直接支配するのは、回転数ではなく、主軸に対する全体の加熱温度であることを考慮するならば、前記回転数を基準とする補正方法もまた、精度において不十分である。   Certainly, the rotational speed of the spindle and the heat generation temperature in the spindle itself have a correlation, but it is not the rotational speed but the overall heating temperature for the spindle that directly controls the displacement of the working part at the tip. Is taken into consideration, the correction method based on the rotational speed is also insufficient in accuracy.

特開2002−86329号公報JP 2002-86329 A 特開平9−108992号公報JP-A-9-108992 特開平5−116053号公報Japanese Patent Application Laid-Open No. 5-116053 特開平8−141883号公報Japanese Patent Laid-Open No. 8-141883 特開2002−160142号公報JP 2002-160142 A 特開2002−36068号公報JP 2002-36068 A

本発明が解決しようとする課題は、主軸全体における温度状況を可能な限り正確に反映させた状態にて、変位を算出し、先端部における作動部の位置の補正を実現することを課題とするものである。   The problem to be solved by the present invention is to calculate the displacement in a state in which the temperature condition in the entire main shaft is reflected as accurately as possible, and to realize the correction of the position of the operating part in the tip part. Is.

前記課題を解決するため、本発明の基本構成は、主軸が回転する段階における主軸外の発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置の何れか、又は全てに、単数又は複数の温度センサを設置すると共に、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得るような位置に、単数又は複数個の温度センサを設置し、前記発熱部の位置又はその近傍の位置における温度センサによる入力温度(T:絶対温度を基準とする。以下の温度表示もまた同一である)、及び前記発熱部から所定の距離を隔てている位置における温度センサによる入力温度(T’:絶対温度を基準とする。以下の温度表示においても同様である。)に対応する軸方向の推定変位(ΔX)を下記の線形による数式によって設定し、前記数式における定数(a)、及び各係数(a、a’)を事前の各温度センサによる入力温度(T、T’)の組み合わせに対応した実際の軸方向の変位(ΔX)の測定値に基づいて算出し、かつコンピュータのメモリに記録させておき、回転時に順次変化する温度センサによる入力温度(T、T’)に対応して、順次軸方向の変位(ΔX)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位量(ΔX)だけ、主軸が作動する先端における軸方向の位置を調整することによる回転主軸の変位補正方法において、回転主軸の軸方向の変位に加え、回転主軸の先端に装着した工具の軸方向の刃先の変位(ΔX’)を回転速度(ω)、最も前側に位置している発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサによる入力温度(T)に基づいて下記の式を設定し、定数(c)、及び係数(k)については、事前の前記各温度センサによる入力温度(T)に対する実際の刃先の変位(ΔX’)の測定値に基づいて算出したうえで、コンピュータメモリに記録し、回転時には順次変化する前記回転速度(ω)と前記発熱部による入力温度(T)との積に対応して、工具の刃先の変位(ΔX’)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位分(ΔX’)だけ、主軸の位置を更に調整することに基づく回転主軸の変位補正方法からなる。

Figure 0004125657
(但し、aについては、主軸が回転している時間だけ算出し、残りの項は、主軸の回転が終了した後においても、T、T’がそれぞれ測定し得る期間算出することによって、前記ΔXの補正を算出するものとし、nは、発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサによる入力温度(T)の数を示し、mは、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得る位置に設けた温度センサによる入力温度(T’)の数を示す。)
Figure 0004125657
In order to solve the above problems, the basic configuration of the present invention is the position of the heat generating portion outside the main shaft at the stage where the main shaft rotates or in the vicinity thereof, and a position that can sense a temperature change substantially similar to the heat generating portion. One or a plurality of temperature sensors are installed in any or all of them, and at a predetermined distance from the heat generating portion, a temperature that is changed with a predetermined time delay with respect to the temperature change of the heat generating portion. One or a plurality of temperature sensors are installed at a position where they can be sensed in a change state, and an input temperature (T i : absolute temperature is used as a reference) by the temperature sensor at the position of the heat generating portion or a position in the vicinity thereof. . the following temperature display also identical), and the input from the temperature sensor at a position that is at a predetermined distance from the heating unit temperature (T i ':. absolute temperature as a reference to the following temperature display There are the same also estimated displacement in the axial direction corresponding to.) The ([Delta] X) set by the equation by linear below, the constant in the equation (a 0), and each coefficient (a i, a i ') pre Is calculated based on the measured value of the actual axial displacement (ΔX) corresponding to the combination of the input temperatures (T i , T i ′) by each temperature sensor of FIG. Corresponding to the input temperature (T i , T i ′) by the temperature sensor that changes sequentially, the axial displacement (ΔX) is calculated by a computer every predetermined time based on the following formula, and the displacement amount ([Delta] X) only, the displacement correction method for rotating the spindle by adjusting the axial position of the tip of the main shaft is operated, in addition to the axial displacement of the rotary spindle, the axial direction of the tool attached to the distal end of the rotary spindle blade of The displacement (ΔX ′) is the rotational speed (ω), the position of the heat generating part located at the foremost side, or the vicinity thereof, and the temperature provided at a position that can sense a temperature change substantially similar to the heat generating part. The following formula is set based on the input temperature (T) by the sensor, and the constant (c) and the coefficient (k) are the actual displacement of the cutting edge (ΔX) with respect to the input temperature (T) by each of the temperature sensors in advance. ') Is calculated on the basis of the measured value and recorded in the computer memory, and corresponding to the product of the rotational speed (ω), which changes sequentially during rotation, and the input temperature (T) by the heating unit, Displacement correction method for a rotating spindle based on calculating the displacement (ΔX ′) of the blade edge by a computer every predetermined time based on the following formula and further adjusting the position of the spindle by the amount of displacement (ΔX ′) Consists of.
Record
Figure 0004125657
(However, a 0 is calculated only for the time during which the main shaft is rotating, and the remaining terms are calculated by calculating the periods during which T i and T i ′ can be measured even after the main shaft has been rotated. The correction of ΔX is calculated, and n is an input temperature (T) by a temperature sensor provided at or near the position of the heat generating portion and can detect a temperature change substantially similar to the heat generating portion. i ) indicates the number of m, and m can be sensed in a state of a changed temperature change with a predetermined time delay with respect to the temperature change of the heat generating part by being separated from the heat generating part by a predetermined distance. Indicates the number of input temperatures (T i ′) by the temperature sensor provided at the position.)
Figure 0004125657

本発明においては、熱変位以外の回転自体に伴う変位、ベアリング支持部、又は駆動モータとの接続部等の発熱部における温度変化を直接反映する熱変位、及び当該発熱部から所定の距離を隔てることによって、当該発熱部の温度変化と異なる温度変化を反映している熱変位をそれぞれ加味することによって、比較的簡単な線形の数式に基づいて、相当正確に熱変位に基づく主軸の作動部の位置の補正を行うことができ、しかも軸方向において工具の刃先位置を回転速度及び温度に対応して更に一層正確に設定することが可能となる。 In the present invention, a displacement other than the thermal displacement is caused by the rotation itself, a thermal displacement that directly reflects a temperature change in a heat generating part such as a bearing support part or a connection part with a drive motor, and a predetermined distance from the heat generating part. Thus, by taking into account the thermal displacements that reflect the temperature changes different from the temperature changes of the heat generating part, it is possible to fairly accurately calculate the operating part of the main spindle based on the thermal displacements based on a relatively simple linear mathematical expression. The position can be corrected , and the cutting edge position of the tool in the axial direction can be set even more accurately according to the rotational speed and temperature.

前記解決手段の項からも明らかなように、前記基本構成は、以下のような各項目の変位に基づいて、主軸の軸方向の位置の調整を行っている。

ΔX=発熱部の発熱温度と無関係な項+発熱部の温度変化を直接反映する項+発熱部の
温度変化に対し時間遅れを伴い、かつ相当変容した状態にて間接的に反映する項
……(1)’
As is apparent from the section of the solution means, the basic configuration adjusts the position of the main shaft in the axial direction based on the displacement of each item as follows.
ΔX = A term that is not related to the heat generation temperature of the heat generating part + A term that directly reflects the temperature change of the heat generating part + A term that is indirectly reflected in a state of considerable change with time delay with respect to the temperature change of the heat generating part
...... (1) '

前記(1)'式の意義について説明する。   The significance of the formula (1) ′ will be described.

図3に示すように、主軸1は、少なくとも2ヶ所のベアリングを介した支持部、及び後端の1ヶ所の駆動モータ3との接続部等において発熱が生じており、当該発熱を原因として、主軸1の先端における作動部の熱変位が生ずる。   As shown in FIG. 3, the main shaft 1 generates heat at a support portion via at least two bearings, a connection portion with the drive motor 3 at one rear end, and the like. Thermal displacement of the working part at the tip of the main shaft 1 occurs.

しかしながら、主軸1における前記熱変位は、決して発熱部の温度変化のみによって直接規律される訳ではない。   However, the thermal displacement in the main shaft 1 is not directly regulated only by the temperature change of the heat generating part.

実際に、主軸1を回転した場合の先端の作動部の変位は、図1(a)に示すように、回転開始(t=0の時刻)と共に、一度パルス的に後退する方向の変位が生じ、回転終了の段階(t=tの時刻)に、逆にパルス的に前進する方向の変位が生じている(尚、図1(a)では、後退する方向を+方向とし、前進する方向を−方向に設定しているが、主軸1の先端の位置を補正する場合には、主軸1の後退が生じた場合には、先端の位置を前進させるので、後退する方向をプラスとしていることから、前記のような設定を行っている。)。 Actually, the displacement of the working part at the tip when the main shaft 1 is rotated, as shown in FIG. 1 (a), occurs in the direction of retreating in a pulse once with the start of rotation (time of t = 0). On the other hand, at the stage of the end of rotation (time of t = t 0 ), a displacement in the direction of moving forward in a pulse manner occurs (in FIG. 1A, the direction of moving backward is the + direction and the direction of moving forward) Is set in the-direction, but when the position of the tip of the main shaft 1 is corrected, the position of the front end is advanced when the main shaft 1 is retracted. To make the settings as described above.)

他方、前記のような各パルス的な変位とは別に、主軸1が回転開始と共に順次伸長することによって前進する方向に変位し、回転開始後所定の時間にて当該変位状態は概略一定となり、回転終了後において発熱部位の温度が速やかに下降するにも拘らず、主軸1を縮小する方向における変位状態は、図1(a)に示すように、発熱部の温度低下よりも時間遅れを伴って、相当緩慢に縮小することによって後退している。   On the other hand, apart from the pulse-like displacements as described above, the main shaft 1 is displaced in the forward direction by sequentially extending with the start of rotation, and the displacement state becomes substantially constant at a predetermined time after the start of rotation. Although the temperature of the heat generating part rapidly decreases after the end, the displacement state in the direction of reducing the main shaft 1 is accompanied by a time delay from the temperature decrease of the heat generating part as shown in FIG. Retreat by shrinking, quite slowly.

上記のように、回転開始及び回転終了時においてパルス的な変化が生じているのは、主軸1の回転の有無によって段階的な変化が生じているものと考えられ、主軸1の変位としては、図1(b)のラインAに示すように、回転自体を原因として、当初後退する方向に変位し、回転終了後元の位置に戻るような変位と、図1(b)のBのラインに示すように、発熱を原因として回転開始後順次伸長によって前進し、所定時間を経過後、略一定となり、回転終了後順次縮小によって後退するような変位との2つの要因に区分することが可能である。 As described above, the pulse-like change at the start and end of rotation is considered to be caused by a step change depending on the presence or absence of rotation of the main shaft 1. as shown in line a 0 in FIG. 1 (b), as the cause of the rotation itself, displaced in the direction of retraction initially displacement and as return to the rotation after completion original position, the B shown in FIG. 1 (b) line As shown in Fig. 2, it can be divided into two factors: displacement that advances sequentially by the start of rotation due to heat generation, becomes substantially constant after a predetermined time, and moves backward by successive reduction after the end of rotation. It is.

そして前記(1)式において、第1項の補正係数aは、ラインAに示すような回転自体に基づく変位(但し、主軸が回転し得る時期のみに限定される。)に由来しており、その余の第2項及び第3項は、ラインBに示すような発熱による変位(但し、主軸の回転が終了した後においても変位している。)に由来している。 In the equation (1), the correction coefficient a 0 of the first term is derived from the displacement based on the rotation itself as shown by the line A 0 (however, it is limited only to the time when the main shaft can rotate). cage, the remaining second and third terms of are derived from the displacement due to heat generation as shown in line B (provided that the rotation of the main shaft is also displaced in after completion.).

発熱部の温度は、回転終了後速やかに低下(減衰)するにも拘らず、主軸1の変位の縮小、即ち低下の度合いが緩慢であるのは、主軸1における温度が、単に発熱部位の温度変化と同じように変化するのではなく、その周辺部と同じように、発熱部の温度変化よりも遅れ、しかも当該温度変化を変容した状態にて変化する要因を有していることを示している。   Although the temperature of the heat generating portion decreases (decays) immediately after the end of rotation, the displacement of the main shaft 1 is reduced, that is, the degree of decrease is slow because the temperature in the main shaft 1 is simply the temperature of the heat generating portion. It shows that it does not change in the same way as the change, but has a factor that changes in the state where the temperature change is delayed and the temperature change in the heat generating part, as in the peripheral part. Yes.

前記(1)式における第2項の

Figure 0004125657
は、(1)’式の第2項に対応しており、ベアリングを介した支持部、駆動モータ3との接続部等の発熱部、又はその近傍であって、発熱部の温度変化を直接反映している項を示している。 In the second term in the equation (1)
Figure 0004125657
Corresponds to the second term of the formula (1) ′, and is a heat generating part such as a support part via a bearing, a connection part with the drive motor 3 or the like, and its temperature change directly in the heat generating part. The reflecting item is shown.

これに対し、前記(1)式における第3項の

Figure 0004125657
は、前記(1)’式の第3項に対応し、発熱部の温度変化が時間遅れを伴い、かつ相当変容した状態にて間接的に反映している要因を表わす項に該当する。 On the other hand, the third term in the equation (1)
Figure 0004125657
Corresponds to the third term of the expression (1) ′ and corresponds to a term representing a factor that is indirectly reflected in a state in which the temperature change of the heat generating portion is accompanied by a time delay and considerably transformed.

前記(1)式において、第2項の発熱部の温度変化を直接反映している測定温度(T)の部分、及び第3項の発熱部の温度変化を時間遅れを伴って間接的に反映している測定温度(T’)の部分は、それぞれ図1(c)に示すように、ラインBを分解したラインA、及びAによって表現することができる。 In the equation (1), the temperature change of the measured temperature (T i ) that directly reflects the temperature change of the heat generation part of the second term and the temperature change of the heat generation part of the third term are indirectly related with a time delay. The portion of the reflected measurement temperature (T i ′) can be expressed by lines A 1 and A 2 obtained by disassembling line B, as shown in FIG.

前記第2項における入力温度(T)の数(n)及び第3項における入力温度(T’)の数(m)は、必ずしも複数であることを要件としている訳ではない。 The number (n) of input temperatures (T i ) in the second term and the number (m) of input temperatures (T i ′) in the third term are not necessarily required to be plural.

その根拠は、第2項において1ヶ所の発熱部の温度変化は、他の発熱部と概略同じような変化が生じており、第3項の発熱部に対し所定の時間遅れを伴って温度変化が間接的に反映する要因もまた、概ね同じような変化が生ずることから、それぞれ1ヶ所の温度入力を以って、略近似的に主軸1の熱変位を反映するような入力温度を設定できることに由来している。   The reason for this is that the temperature change of one heat generating part in the second term is almost the same as the other heat generating parts, and the temperature change with a predetermined time delay with respect to the heat generating part of the third term The factor that is indirectly reflected also causes almost the same change, so that it is possible to set an input temperature that approximately reflects the thermal displacement of the main spindle 1 with one temperature input each. Is derived from.

しかしながら、各発熱部の温度変化は、正確には決して同一ではなく、また各発熱部の温度変化に基づいて、第3項のように所定の時間遅れを伴って間接的に変容した温度変化が反映する要因も様々であることから、第2項の測定温度(T)は、発熱部の各位置に対応して複数個設けることが好ましく、第3項の測定温度(T’)もまた、当該発熱部から所定の距離を以って置かれた色々な位置に基づいて、複数個採用することが好ましい。 However, the temperature change of each heating part is not exactly the same, and based on the temperature change of each heating part, there is a temperature change indirectly transformed with a predetermined time delay as in the third section. Since there are various factors to reflect, it is preferable to provide a plurality of measured temperatures (T i ) of the second term corresponding to each position of the heat generating portion, and the measured temperatures (T i ′) of the third term are also set. Moreover, it is preferable to employ a plurality based on various positions placed at a predetermined distance from the heat generating portion.

特に、発熱部から所定の距離を隔てている位置における温度センサ3を、対応する各発熱部毎のグループに区分けし、当該グループ内においてそれぞれ複数の温度センサ3を設置し、かつ各グループ内における温度センサ3の測定温度を平均したうえで、入力温度(T’)とすることによる実施形態は、各発熱部の温度変化に対応して、第3項の時間遅れを伴い、かつ相当変容した状態の温度変化を総合的に反映し得る点において、極めて好ましい。 In particular, the temperature sensors 3 at a position away from the heat generating part are divided into groups corresponding to the respective heat generating parts, a plurality of temperature sensors 3 are installed in the group, and The embodiment in which the measured temperature of the temperature sensor 3 is averaged and set as the input temperature (T i ′) is accompanied by a time delay of the third term corresponding to the temperature change of each heat generating part, and is considerably changed. This is extremely preferable in that the temperature change in the obtained state can be comprehensively reflected.

本発明においては、前記(1)式の線形近似を採用しているが、定数(a)、及び各係数(a、a’)は、事前の実験、即ち、入力温度(T、Ti’)につき、前記定数(a)、及び各係数(a、a’)の数に相当する複数個の組み合わせを設定し、当該複数個の組み合わせに対応して、実際に生じた変位(ΔX)を測定することによって、前記(1)式に当該測定値を投入し、定数(a)、及び各係数(a、a’)について、線形の連立方程式を設定し、前記定数及び各係数を算出することになる。 In the present invention, the linear approximation of the above equation (1) is adopted. However, the constant (a 0 ) and the coefficients (a i , a i ′) are determined based on prior experiments, that is, the input temperature (T i). , Ti ′), a plurality of combinations corresponding to the number of the constant (a 0 ) and each coefficient (a i , a i ′) are set, and actually generated in correspondence with the plurality of combinations. By measuring the displacement (ΔX), the measured value is input to the equation ( 1 ), and a linear simultaneous equation is set for the constant (a 0 ) and each coefficient (a i , a i ′). The constant and each coefficient are calculated.

測定温度(T、T’)の数が増えることによって、前記定数及び各係数の数が増加しても、実際の算出は、コンピュータによるマトリックス演算によって速やかに実現することができる。 Even if the number of the measurement temperature (T i , T i ′) increases and the number of the constants and each coefficient increases, the actual calculation can be realized quickly by matrix calculation by a computer.

実際の補正においては、所定の時間間隔毎の入力温度(T、T’)に対しコンピュータによって前記(1)式の計算を行い、当該計算に基づいて変位の補正を行うことになる。 In actual correction, the computer calculates the equation (1) with respect to the input temperature (T i , T i ′) at predetermined time intervals, and the displacement is corrected based on the calculation.

但し、定数aは、主軸の回転自体に由来していることから、主軸が回転している期間においてのみ算出され、他の項目

Figure 0004125657
は、主軸の回転が終了した後においても、各温度T、T’が測定し得る期間 も算出されることになる。 However, since the constant a 0 is derived from the rotation of the spindle itself, it is calculated only during the period in which the spindle is rotating, and other items
Figure 0004125657
In other words, the period during which the temperatures T i and T i ′ can be measured is calculated even after the spindle has been rotated.

実際の主軸1の回転操作においては、発熱が生ずるのは、前記のように、ベアリングを介して主軸1を支えている2ヶ所の支持部、及び駆動モータ3とを接続している1ヶ所の接続部であることから、測定温度は、T、T、Tの3個で済むことが多い。 In the actual rotation operation of the main shaft 1, heat is generated at the two locations where the main shaft 1 is supported via the bearing and the drive motor 3 as described above. Since it is a connecting part, it is often sufficient to measure three temperatures T 1 , T 2 , and T 3 .

これに対し、発熱部から所定の距離を隔て、温度変化を間接的に反映している測定温度(T’)については、3ヶ所の発熱部の内、駆動モータ3との接続部は、主軸1の先端から遠いため、これを省略し、2ヶ所のベアリングを介した支持部の周辺におけるに発熱温度 を間接的に反映している状態の測定温度にて間に合うことが多いことから、当該2ヶ所の支持部から所定の距離を以って隔てた位置における測定温度(T’及びT’)を採用することによって、相当正確に熱変位を表現することができ、前記(1)式は、

Figure 0004125657
と表現することが可能である。 On the other hand, with respect to the measured temperature (T i ′) that indirectly reflects the temperature change at a predetermined distance from the heat generating portion, the connection portion with the drive motor 3 among the three heat generating portions is: Since it is far from the tip of the main shaft 1, this is omitted, and it is often in time for the measured temperature that indirectly reflects the heat generation temperature around the support part via the two bearings. By adopting the measured temperatures (T 1 ′ and T 2 ′) at positions separated by a predetermined distance from the two support portions, the thermal displacement can be expressed fairly accurately, (1) ceremony,
Figure 0004125657
Can be expressed.

したがって、本発明においては、合計5個の温度要因であるT、T、T、T’、T’、T’によって予め実験によって求めた定数(a)、及び各係数(a、a、a、a’、a’)を採用することによって、回転自体による変位と熱変位とによる変位を算出し、当該変位の補正を行うことによって、簡略性と正確性とを両立させることができる。 Therefore, in the present invention, a constant (a 0 ) obtained in advance by experiment using T 1 , T 2 , T 3 , T 1 ′, T 2 ′, T 3 ′, which are a total of five temperature factors, and each coefficient By adopting (a 1 , a 2 , a 3 , a 1 ′, a 2 ′), the displacement due to the rotation itself and the displacement due to the thermal displacement are calculated, and by correcting the displacement, simplicity and Both accuracy can be achieved.

但し、前記の温度変化を間接的に反映している入力温度(T’、T’)については、2ヶ所の発熱部にグループ分けしたうえで、各発熱部のグループ毎に、複数個の温度センサ3を設置し、かつ各発熱部に対応する複数個の温度センサ3による測定温度を平均したうえで、各発熱部の温度変化を間接的に反映している入力温度(T’、T’)として採用する実施形態は、正確な熱変位の補正を行うために極めて好ましいことは、既に述べたとおりである。 However, the input temperatures (T 1 ′, T 2 ′) that indirectly reflect the temperature change are grouped into two heat generating parts, and a plurality of input temperatures are provided for each heat generating group. Temperature sensor 3 is installed and the temperature measured by a plurality of temperature sensors 3 corresponding to each heat generating part is averaged, and the input temperature (T 1 ′) that indirectly reflects the temperature change of each heat generating part As described above, the embodiment adopted as T 2 ′) is highly preferable for performing accurate thermal displacement correction.

かくして、熱変位に対応する補正は、前記(1)式の第2項及び第3項に基づき、図1(d)において、ラインB’に示すような時間変化を以って表現することが可能であり、このような熱変位に対応する補正に加えて、ラインA’に示すような、前記(1)式の第1項である回転自体に基づく変位に対応する補正を重畳したことによる補正は、図1(e)に示すようなラインによって表現することができる。 Thus, the correction corresponding to the thermal displacement can be expressed with a time change as shown by the line B ′ in FIG. 1 (d) based on the second and third terms of the equation (1). In addition to the correction corresponding to such thermal displacement, the correction corresponding to the displacement based on the rotation itself, which is the first term of the equation (1), is superimposed as shown in the line A 0 ′. The correction by can be expressed by a line as shown in FIG.

このように、前記(1)’に示すような3個の要因を重畳したことに基づく変位の計算によって、主軸1の変位を相当正確に補正することが可能となる。   As described above, the displacement of the main shaft 1 can be corrected fairly accurately by calculating the displacement based on the superposition of the three factors as shown in (1) ′.

前記基本構成においては、回転主軸の軸方向の変位に加え、回転主軸の先端に装着した工具4の軸方向の刃先の変位(ΔX’)を回転速度(ω)と最も前側に位置している発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサ3による入力温度(T)との積に基づいて下記の式を設定し、定数(c)、及び係数(k)については、事前の前記各温度センサ3による入力温度(T)に対する実際の刃先の変位(ΔX’)の測定値に基づいて算出したうえで、コンピュータメモリに記録し、回転時には順次変化する前記回転速度(ω前記発熱部による入力温度(T)に対応して、工具4の刃先の変位(ΔX’)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位分(ΔX’)だけ、主軸1の位置を更に調整している。

Figure 0004125657
In the basic configuration, in addition to the axial displacement of the rotating spindle, the axial cutting edge displacement (ΔX ′) of the tool 4 attached to the tip of the rotating spindle is positioned in front of the rotational speed (ω). The following equation is set based on the product of the input temperature (T) by the temperature sensor 3 provided at or near the position of the heat generating portion and at a position where the temperature change can be detected substantially the same as the heat generating portion. The constant (c) and the coefficient (k) are calculated based on the measured values of the actual cutting edge displacement (ΔX ′) with respect to the input temperature (T) by the temperature sensors 3 in advance, and then the computer memory In accordance with the rotational speed (ω and the input temperature (T) by the heat generating portion) that changes sequentially at the time of rotation, the displacement (ΔX ′) of the cutting edge of the tool 4 is calculated at predetermined time intervals based on the following formula. Calculated by the computer and the displacement The position of the spindle 1 is further adjusted by the minute (ΔX ′).
Record
Figure 0004125657

主軸1が回転している場合に、先端における主軸1のテーパ部は、温度上昇及び回転に伴う遠心力によって膨張が生じており、当該膨張を原因として、主軸1のテーパ部が工具4に食込んだ状態となり、当該食込みによって工具4の位置は軸方向に更に変位することにならざるを得ない。   When the main shaft 1 is rotating, the taper portion of the main shaft 1 at the tip is expanded due to the centrifugal force accompanying the temperature rise and rotation, and the taper portion of the main shaft 1 erodes the tool 4 due to the expansion. The position of the tool 4 must be further displaced in the axial direction due to the biting.

前記基本構成においては、このような主軸1のテーパ部の膨張→工具4への食込み→工具4の刃先の変位による因果関係を考慮し、上記刃先の変位を補正するために、前記(4)式による変位式に基づく数式を設定したうえで、当該数式に基づく補正を行っている。 In the basic configuration, in order to correct the displacement of the cutting edge in consideration of the causal relationship due to the expansion of the tapered portion of the spindle 1 → the biting into the tool 4 → the displacement of the cutting edge of the tool 4, the above (4) After setting a mathematical formula based on the displacement formula, a correction based on the mathematical formula is performed.

前記(2)式において、第1項の定数(c)は、回転自体に伴う刃先の変位に対応しており、第2項は、図2に示すように、前記第1項の変位以外の変位による寄与部分が、回転速度(ω)及び主軸1の先端部に最も近い発熱部(通常の場合には、前側のベアリングを介したベース部2)の温度に概略比例していることに由来している。 In the equation (2) , the constant (c) of the first term corresponds to the displacement of the cutting edge accompanying the rotation itself, and the second term is other than the displacement of the first term as shown in FIG. The contribution due to the displacement is roughly proportional to the rotational speed (ω) and the temperature of the heat generating part (base part 2 via the front bearing in the normal case) closest to the tip of the spindle 1. is doing.

前記(2)式の定数(c)及び係数(k)の算出方法は、前記(1)式の定数(a)、係数(a、a’)の算出方法と全く同様である。 The calculation method of the constant (c) and the coefficient (k) in the equation (2) is exactly the same as the calculation method of the constant (a 0 ) and the coefficients (a i , a i ′) in the equation (1).

但し、前記(2)式は、前記(1)式に重畳した状態にて、工具4の変位を呈することから、上記定数(c)及び係数(k)を算出するための事前の実験の際には、前記(1)式の定数(a)、係数(a、a’)を予め、既知の数値として確定していることが効率的な実験を行ううえで好ましい。 However, since the expression (2) exhibits the displacement of the tool 4 in a state of being superimposed on the expression (1), it is necessary to perform the preliminary experiment for calculating the constant (c) and the coefficient (k). In order to perform an efficient experiment, it is preferable that the constant (a 0 ) and the coefficients (a i , a i ′) of the formula (1) are previously determined as known numerical values.

回転速度(ω)は、回転開始から終了に至るまで略一定であるが、その大きさによって前記温度(T)の大きさ及び変化の状況が左右されることを考慮するならば、前記(2)式は回転速度(ω)の複雑な関数によって表現されているものと解することも可能である。 The rotational speed (ω) is substantially constant from the start to the end of the rotation. However, considering that the magnitude of the temperature (T) and the state of change depend on the magnitude, the above (2 ) expression is possible also be interpreted as being represented by a complex function of the rotational speed (omega).

前記(2)式に立脚している前記基本構成においては、単に主軸1の軸方向の変位だけでなく、工具4の刃先の変位をも重畳して補正すること、即ち前記(1)式と(2)式とを加えることによる補正が可能となり、軸方向において工具4の刃先位置を更に一層正確に設定することが可能となる。 In the basic configuration based on the equation (2) , not only the axial displacement of the main shaft 1 but also the displacement of the cutting edge of the tool 4 is superimposed and corrected, that is, the equation (1) Correction by adding equation (2) becomes possible, and the cutting edge position of the tool 4 in the axial direction can be set even more accurately.

以下実施例に従って説明する。   A description will be given below in accordance with examples.

実施例1は、発熱部の温度変化を殆ど感知せずに、主軸1の周囲における環境温度の変化を感知する単数又は複数の位置に温度センサ3を設置し、当該温度センサ3による入力温度(Ti”)をも加味したことによる推定変位(ΔX)を下記の線形式によって設定し、前記数式における定数(a)、及び各係数(a、a’、a”)を事前の各温度センサ3による入力温度(T、T’、T”)の組み合わせに対応した実際の軸方向の変位(ΔX)の測定値に基づいて算出し、かつコンピュータのメモリに記録させておき、回転時に順次変化する温度センサ3による入力温度(T、T’、T”)に対応して、順次軸方向の変位(ΔX)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位量(ΔX)だけ、主軸1が作動する先端の位置を調整することを特徴としている。

Figure 0004125657
(但し、aについては、主軸が回転している時間だけ算出し、残りの項は、主軸の回転が終了した後においても、T、T’がそれぞれ測定し得る期間算出することによって、前記ΔXの補正を算出するものとし、n、mは、請求項1と同趣旨であり、lは、環境温度を感知する位置に設置した温度センサ3による入力温度(T”)の数を示す。) In the first embodiment, the temperature sensor 3 is installed at one or a plurality of positions where the change in the environmental temperature around the spindle 1 is sensed without almost sensing the temperature change of the heat generating portion, and the input temperature ( The estimated displacement (ΔX) due to the addition of Ti ″) is set by the following linear format, and the constant (a 0 ) and each coefficient (a i , a i ′, a i ″) in the above formula are set in advance. Calculated based on the measured value of the actual axial displacement (ΔX) corresponding to the combination of the input temperatures (T i , T i ′, T i ″) by each temperature sensor 3 and recorded in the memory of the computer Corresponding to the input temperature (T i , T i ′, T i ″) of the temperature sensor 3 that changes sequentially at the time of rotation, the axial displacement (ΔX) is sequentially changed every predetermined time based on the following formula. Calculated by computer Position quantity only ([Delta] X), the spindle 1 is characterized by adjusting the position of the tip operating.
Record
Figure 0004125657
(However, a 0 is calculated only for the time during which the main shaft is rotating, and the remaining terms are calculated by calculating the periods during which T i and T i ′ can be measured even after the main shaft has been rotated. The correction of ΔX is calculated, where n and m have the same meaning as in claim 1, and l is the number of input temperatures (T i ″) by the temperature sensor 3 installed at a position for sensing the environmental temperature. Is shown.)

実際の主軸1の変位においては、発熱部による温度変位だけでなく、当該発熱温度とは無関係の環境温度によっても左右されることから、実施例1においては、前記(1)”式を採用している。   Since the actual displacement of the main shaft 1 depends not only on the temperature displacement due to the heat generating part but also on the environmental temperature unrelated to the heat generating temperature, in the first embodiment, the expression (1) ”is adopted. ing.

発熱温度を殆ど感知せずに、主軸1の温度に影響する環境温度としては、主軸1を下方から支えているベース部2の各温度、更には部屋の室温等が該当している。   The environmental temperature that hardly affects the temperature of the main shaft 1 and hardly affects the temperature of the main shaft 1 includes the temperatures of the base portion 2 that supports the main shaft 1 from below, and the room temperature of the room.

実施例1においては、これらの環境温度について単数又は複数の測定温度を採用し、前記(1)”式の第4項として更に加えているが、前記(1)”式の定数(a)、及び各係数(a、a’、a”)の算出方法は、前記(1)式の定数及び各係数の算出方法と全く同様である。 In the first embodiment, one or a plurality of measured temperatures are adopted for these environmental temperatures, and are further added as the fourth term of the formula (1) ". The constant (a 0 ) of the formula (1)" is used. , And the calculation method of each coefficient (a i , a i ′, a i ″) are exactly the same as the constant and the calculation method of each coefficient in the equation (1).

前記(1)”式を採用している実施例1においては、発熱温度とは別に環境温度をも変位に反映させ、更に正確な軸方向の位置の補正を実現することができる。   In the first embodiment that employs the expression (1) ", the environmental temperature can be reflected in the displacement in addition to the heat generation temperature, and more accurate axial position correction can be realized.

実施例2は、主軸1が回転する段階における主軸1外の発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置の何れか、又は全てに、単数又は複数の温度センサ3を設置すると共に、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得るような位置に、単数又は複数個の温度センサ3を設置し、前記発熱部の位置又はその近傍の位置における温度センサ3による入力温度(T)、及び前記発熱部から所定の距離を隔てている位置における温度センサ3による入力温度(T’)に対応する軸方向と直交する方向の推定変位(ΔY)を下記の線形による数式によって設定し、前記数式における定数(b)、及び各係数(b、b’)を事前の各温度センサ3による入力温度(T、T’)の組み合わせに対応した実際の軸方向と直交する方向の変位(ΔY)の測定値に基づいて算出し、かつコンピュータのメモリに記録させておき、回転時によって順次変化する温度センサ3による入力温度(T、T’)に対応して、順次軸方向と直交する方向の変位(ΔY)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位量(ΔY)だけ、主軸1が作動する先端における軸方向と直交する方向の位置を調整することを軸方向の変位の補正に重畳することを特徴としている。

Figure 0004125657

(但し、bについては、主軸が回転している時間だけ算出し、残りの項は、主軸の回転が終了した後においても、T、T’がそれぞれ測定し得る期間算出することによって、前記ΔYの補正を算出するものとし、nは、発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサ3による入力温度(T)の数を示し、mは、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得る位置に設けた温度センサ3による入力温度(T’)の数を示す。) In the second embodiment, the position of the heat generating portion outside the main shaft 1 at the stage where the main shaft 1 rotates, or the vicinity thereof, and any or all of the positions where temperature changes similar to those of the heat generating portion can be sensed. By installing one or a plurality of temperature sensors 3 and separating a predetermined distance from the heat generating part, the temperature change of the heat generating part is detected with a predetermined time delay and a changed temperature change state. One or a plurality of temperature sensors 3 are installed at such positions, and an input temperature (T i ) by the temperature sensor 3 at the position of the heat generating part or a position in the vicinity thereof, and a predetermined distance from the heat generating part are set. estimated direction of displacement perpendicular to the axial direction corresponding to the input temperature from the temperature sensor 3 at spaced by being positioned (T i ') a ([Delta] Y) set by the equation by linear below, the constant in the equation (b 0 , And measurement of the coefficients (b i, b i ') prior input temperature by the temperature sensor 3 (T i, T i' ) the actual direction of displacement perpendicular to the axial direction corresponding to the combination of ([Delta] Y) Is calculated based on the value and recorded in the memory of the computer, and sequentially corresponds to the input temperature (T i , T i ′) by the temperature sensor 3 that changes sequentially according to the rotation. The displacement (ΔY) is calculated by a computer every predetermined time based on the following formula, and the position in the direction perpendicular to the axial direction at the tip where the main shaft 1 operates is adjusted by the amount of displacement (ΔY). It is characterized by being superimposed on the correction of the axial displacement.
Record
Figure 0004125657

(However, b 0 is calculated only for the time during which the main shaft is rotating, and the remaining terms are calculated by calculating periods during which T i and T i ′ can be measured even after the main shaft has been rotated. The correction of ΔY is calculated, and n is an input temperature (Temperature sensor 3 provided at a position at or near the position of the heat generating portion and capable of detecting a temperature change substantially similar to the heat generating portion ( T i ), and m is a predetermined distance from the heat generating part, and is detected in a transformed temperature change state with a predetermined time delay with respect to the temperature change of the heat generating part. Indicates the number of input temperatures (T i ′) by the temperature sensor 3 provided at the position to be obtained.)

図1のような変位は、単に軸方向だけでなく、ベース部2の支持に基づく主軸1の軸方向と直交する方向の変位を反映している。   The displacement as shown in FIG. 1 reflects not only the axial direction but also a displacement in a direction perpendicular to the axial direction of the main shaft 1 based on the support of the base portion 2.

即ち、軸方向と直交する方向についても、
ΔY=発熱部の発熱温度と無関係な項+発熱部の温度変化を直接反映する項+発熱部の
温度変化に対し時間遅れを伴い、かつ相当変容した状態に間接的にて反映する項
の各要因のように、変位が生じていることから、前記(3)式のような一般式によって熱変位を算定し、当該算定値に基づく高さ方向の補正を行うことになる。
That is, for the direction orthogonal to the axial direction,
ΔY = a term that is unrelated to the heat generation temperature of the heat generating part + a term that directly reflects the temperature change of the heat generating part + each term that is indirectly reflected in the state with a time delay with respect to the temperature change of the heat generating part. Since the displacement has occurred as a factor, the thermal displacement is calculated by a general expression such as the above expression (3) , and correction in the height direction based on the calculated value is performed.

前記(3)式の定数(b)、及び各係数(b、b’)の算出方法は、前記(1)式の定数及び各乗数の算出方法と全く同一である。 The calculation method of the constant (b 0 ) and the coefficients (b i , b i ′) in the equation (3) is exactly the same as the calculation method of the constants and the multipliers in the equation (1).

前記(3)式に立脚している実施例2の場合には、軸方向の変位に加え、軸方向と直交する方向の変位をも補正することが可能となり、主軸1による工具4の作動位置を極めて正確な位置に設定することができる。 In the case of the second embodiment based on the expression (3), it is possible to correct not only the axial displacement but also the displacement in the direction orthogonal to the axial direction, and the operating position of the tool 4 by the main shaft 1. Can be set to an extremely accurate position.

尚、前記(3)式においても、前記(1)”式と同じように、発熱温度と無関係な環境温度を加味した式を設定し、環境温度による変化を反映させることは、当然可能である。 In the equation (3), as in the equation (1) ", it is naturally possible to set an equation that takes into account the environmental temperature that is irrelevant to the heat generation temperature and reflect the change due to the environmental temperature. .

実施例3は、主軸1が回転する段階における主軸1外の発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置の何れか、又は全てに、単数又は複数の温度センサ3を設置すると共に、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得るような位置に、単数又は複数個の温度センサ3を設置し、前記発熱部の位置又はその近傍の位置における温度センサ3による入力温度(T)、及び前記発熱部から所定の距離を隔てている位置における温度センサ3による入力温度(T’)に対応する高さ方向の推定変位(ΔZ)を下記の線形による数式によって設定し、前記数式における定数(c)、及び各係数(c、c’)を事前の各温度センサ3による入力温度(T、T’)の組み合わせに対応した実際の高さ方向の変位(ΔZ)の測定値に基づいて算出し、かつコンピュータのメモリに記録させておき、回転時によって順次変化する温度センサ3による入力温度(T、T’)に対応して、順次高さ方向の変位(ΔZ)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位量(ΔZ)だけ、主軸1が作動する先端における高さ方向の位置を調整することを軸方向の変位の補正に重畳することを特徴としている。

Figure 0004125657
(但し、cについては、主軸が回転している時間だけ算出し、残りの項は、主軸の回転が終了した後においても、T、T’がそれぞれ測定し得る期間算出することによって、前記ΔZの補正を算出するものとし、nは、発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサ3による入力温度(T)の数を示し、mは、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得る位置に設けた温度センサ3による入力温度(T’)の数を示す。) In the third embodiment, the position of the heat generating portion outside the main shaft 1 at the stage where the main shaft 1 rotates, or the vicinity thereof, and any or all of the positions where temperature changes similar to those of the heat generating portion can be detected. By installing one or a plurality of temperature sensors 3 and separating a predetermined distance from the heat generating part, the temperature change of the heat generating part is detected with a predetermined time delay and a changed temperature change state. One or a plurality of temperature sensors 3 are installed at such positions, and an input temperature (T i ) by the temperature sensor 3 at the position of the heat generating part or a position in the vicinity thereof, and a predetermined distance from the heat generating part are set. separated current input from the temperature sensor 3 at the position temperature (T i ') corresponds to the height direction of the estimated displacement of the ([Delta] Z) is set by equation by linear below, the constant in the equation (c 0), and each engaging (C i, c i ') is calculated based on the measurement values of the pre-input temperature by the temperature sensor 3 (T i, T i' ) actual height direction of displacement corresponding to the combination of ([Delta] Z), In addition, the displacement (ΔZ) in the height direction is sequentially calculated based on the following equation in correspondence with the input temperature (T i , T i ′) by the temperature sensor 3 that is recorded in the memory of the computer and changes sequentially with the rotation. Calculated by a computer every predetermined time, and adjusting the position in the height direction at the tip where the spindle 1 operates by the amount of displacement (ΔZ) is superimposed on the correction of the displacement in the axial direction. Yes.
Record
Figure 0004125657
(However, c 0 is calculated only for the time during which the main shaft is rotating, and the remaining terms are calculated by calculating periods during which T i and T i ′ can be measured even after the main shaft has been rotated. The correction of ΔZ is calculated, and n is an input temperature (Temperature sensor 3 provided at a position where the temperature change can be detected substantially the same as or near the position of the heat generating portion. T i ), and m is a predetermined distance from the heat generating part, and is detected in a transformed temperature change state with a predetermined time delay with respect to the temperature change of the heat generating part. Indicates the number of input temperatures (T i ′) by the temperature sensor 3 provided at the position to be obtained.)

図1のような変位は、単に軸方向だけでなく、ベース部2の支持に基づく主軸1の高さ方向の変位を反映している。   The displacement shown in FIG. 1 reflects not only the axial direction but also the displacement of the main shaft 1 in the height direction based on the support of the base portion 2.

即ち、高さ方向についても、
ΔZ=発熱部の発熱温度と無関係な項+発熱部の温度変化を直接反映する項+発熱部の
温度変化に対し時間遅れを伴い、かつ相当変容した状態に間接的にて反映する項
の各要因のように、変位が生じていることから、前記(4)式のような一般式によって熱変位を算定し、当該算定値に基づく高さ方向の補正を行うことになる。
That is, in the height direction,
ΔZ = a term irrelevant to the heat generation temperature of the heat generating part + a term that directly reflects the temperature change of the heat generating part + each term of the term that is indirectly reflected in the state with a time delay with respect to the temperature change of the heat generating part. Since the displacement has occurred as a factor, the thermal displacement is calculated by the general formula such as the above formula (4) , and the correction in the height direction based on the calculated value is performed.

前記(4)式の定数(c)、及び各係数(c、c’)の算出方法は、前記(1)式の定数及び各乗数の算出方法と全く同一である。 The calculation method of the constant (c 0 ) and the respective coefficients (c i , c i ′) in the equation (4) is exactly the same as the calculation method of the constant and each multiplier in the equation (1).

前記(4)式に立脚している実施例3の場合には、軸方向の変位に加え、高さ方向の変位をも補正することが可能となり、主軸1による工具4の作動位置を極めて正確な位置に設定することができる。 In the case of the third embodiment based on the formula (4), it is possible to correct the displacement in the height direction in addition to the displacement in the axial direction, and the operation position of the tool 4 by the spindle 1 is very accurate. Can be set to any position.

尚、前記(4)式においても、前記(1)”式と同じように、発熱温度と無関係な環境温度を加味した式を設定し、環境温度による変化を反映させることは、当然可能である。 In the equation (4), as in the equation (1) ", it is naturally possible to set an equation that takes into account the environmental temperature that is irrelevant to the heat generation temperature and reflect the change due to the environmental temperature. .

本発明は、先端に工具を保持している主軸の回転に基づく工作機械の分野において主軸先端の正確な変位補正に利用することができる。   The present invention can be used for accurate displacement correction of the spindle tip in the field of machine tools based on rotation of the spindle holding a tool at the tip.

本発明の基本構成を示すグラフであり、(a)は、回転している主軸の先端部における軸方向の変位状況を示しており、(b)は、上記変位において回転部自体に基づく変位と熱変位とに分解した状況を示しており、(c)は、熱変位の内、発熱部の温度変化を直接反映した項、及び発熱部の温度変化を時間遅れを伴い、かつ変容した状態にて間接的に反映する項とに分解される状況を示しており、(d)は、(b)の各変位に対応した補正量を示しており、(e)は、前記(1)式による補正の状況を示している。It is a graph which shows the basic composition of the present invention, (a) shows the axial displacement situation in the tip part of the rotating main axis, and (b) shows the displacement based on the rotation part itself in the above-mentioned displacement. (C) shows a term that directly reflects the temperature change of the heat generating part and the temperature change of the heat generating part with a time delay and transformed. (D) shows the amount of correction corresponding to each displacement of (b), and (e) shows the above equation (1). The situation of correction is shown. 実施例2において、工具の刃先が、前記(2)式によって支配されることを示したグラフである。In Example 2, it is the graph which showed that the blade edge of a tool was governed by the said (2) Formula. 先端に工具を有している主軸と当該主軸を支えているベース部、駆動モータ等の配置関係を示す側面図である。It is a side view which shows the arrangement | positioning relationship between the main axis | shaft which has a tool at the front-end | tip, the base part which supports the said main axis | shaft, a drive motor, etc.

符号の説明Explanation of symbols

1 主軸
2 ベース部
3 駆動モータ
4 工具
5 温度センサ
6 オイル供給部

DESCRIPTION OF SYMBOLS 1 Main shaft 2 Base part 3 Drive motor 4 Tool 5 Temperature sensor 6 Oil supply part

Claims (6)

主軸が回転する段階における主軸外の発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置の何れか、又は全てに、単数又は複数の温度センサを設置すると共に、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得るような位置に、単数又は複数個の温度センサを設置し、前記発熱部の位置又はその近傍の位置における温度センサによる入力温度(T :絶対温度を基準とする。以下の温度表示においても同様である。)、及び前記発熱部から所定の距離を隔てている位置における温度センサによる入力温度(T’)に対応する軸方向の推定変位(ΔX)を下記の線形による数式によって設定し、前記数式における定数(a)、及び各係数(a、a’)を事前の各温度センサによる入力温度(T、T’)の組み合わせに対応した実際の軸方向の変位(ΔX)の測定値に基づいて算出し、かつコンピュータのメモリに記録させておき、回転時に順次変化する温度センサによる入力温度(T、T’)に対応して、順次軸方向の変位(ΔX)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位量(ΔX)だけ、主軸が作動する先端における軸方向の位置を調整することによる回転主軸の変位補正方法において、回転主軸の軸方向の変位に加え、回転主軸の先端に装着した工具の軸方向の刃先の変位(ΔX’)を回転速度(ω)、最も前側に位置している発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサによる入力温度(T)に基づいて下記の式を設定し、定数(c)、及び係数(k)については、事前の前記各温度センサによる入力温度(T)に対する実際の刃先の変位(ΔX’)の測定値に基づいて算出したうえで、コンピュータメモリに記録し、回転時には順次変化する前記回転速度(ω)と前記発熱部による入力温度(T)との積に対応して、工具の刃先の変位(ΔX’)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位分(ΔX’)だけ、主軸の位置を更に調整することに基づく回転主軸の変位補正方法

Figure 0004125657
(但し、aについては、主軸が回転している時間だけ算出し、残りの項は、主軸の回転が終了した後においても、T、T’がそれぞれ測定し得る期間算出することによって、前記ΔXの補正を算出するものとし、nは、発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサによる入力温度(T)の数を示し、mは、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得る位置に設けた温度センサによる入力温度(T’)の数を示す。)
Figure 0004125657
One or a plurality of temperature sensors are provided at any or all of the positions near or near the position of the heat generating portion outside the main shaft at the stage where the main shaft rotates and can detect a temperature change substantially similar to the heat generating portion. A single position is provided at a position where a predetermined distance from the heat generating portion can be sensed by a predetermined time delay with respect to the temperature change of the heat generating portion by being separated from the heat generating portion. Alternatively, a plurality of temperature sensors are installed, and the temperature input by the temperature sensor at the position of the heat generating portion or in the vicinity thereof (T i : based on the absolute temperature. The same applies to the following temperature display ), and the axial estimated displacement corresponding to by the input temperature (T i ') a temperature sensor at the position that at a predetermined distance from the heating portion ([Delta] X) set by the equation by linear below, the Constants in the formula (a 0), and the coefficients (a i, a i ') prior input temperature by the temperature sensor (T i, T i') the actual axial displacement corresponding to the combination of ([Delta] X) Is calculated on the basis of the measured values and recorded in the memory of the computer, and sequentially displaced in the axial direction (ΔX) corresponding to the input temperature (T i , T i ′) by the temperature sensor that sequentially changes during rotation. the every lapse of a predetermined time based on the following equation, calculated by a computer, the amount of displacement by ([Delta] X), in the displacement correcting method of the rotating main shaft by the main shaft to adjust the axial position of the tip operating, In addition to the axial displacement of the rotating spindle, the axial displacement (ΔX ') of the tool mounted on the tip of the rotating spindle is the rotational speed (ω), the position of the heating part located at the forefront, or Near the The following equation is set based on an input temperature (T) by a temperature sensor provided at a position where the temperature change can be sensed approximately the same as the unit, and the constant (c) and the coefficient (k) The rotation speed (ω) and the heat generating portion that are calculated based on the measured value of the actual blade edge displacement (ΔX ′) with respect to the input temperature (T) by the temperature sensor, recorded in a computer memory, and sequentially changing during rotation. Corresponding to the product of the input temperature (T) by the calculation of the displacement (ΔX ′) of the cutting edge of the tool every predetermined time based on the following formula, and only the displacement (ΔX ′), A displacement correction method for a rotating spindle based on further adjusting the position of the spindle .
Record
Figure 0004125657
(However, a 0 is calculated only for the time during which the main shaft is rotating, and the remaining terms are calculated by calculating the periods during which T i and T i ′ can be measured even after the main shaft has been rotated. The correction of ΔX is calculated, and n is an input temperature (T) by a temperature sensor provided at or near the position of the heat generating portion and can detect a temperature change substantially similar to the heat generating portion. i ) indicates the number of m, and m can be sensed in a state of a changed temperature change with a predetermined time delay with respect to the temperature change of the heat generating part by being separated from the heat generating part by a predetermined distance. Indicates the number of input temperatures (T i ′) by the temperature sensor provided at the position.)
Figure 0004125657
発熱部から所定の距離を隔てている位置における温度センサを、対応する各発熱部毎のグループに区分けし、当該グループ内においてそれぞれ複数の温度センサを設置し、かつ各グループ内における温度センサの測定温度を平均したうえで、入力温度(T’)とすることを特徴とする請求項1記載の回転主軸の変位補正方法。 Divide the temperature sensors at a predetermined distance from the heat generating parts into groups for each corresponding heat generating part, install multiple temperature sensors in each group, and measure the temperature sensors in each group The displacement correction method for a rotating spindle according to claim 1, wherein the temperature is averaged to obtain an input temperature (T i '). 主軸が2個のベアリングを介した支持部を有し、かつ後端部における1個の駆動モーターとの接続部を有している構成において、3ヶ所の発熱部の位置又はその近傍の位置に温度センサを設置し、2個のベアリング支持部の位置からそれぞれ所定の距離を隔てた単数又は複数の位置に温度センサを設けることを特徴とする請求項1記載の回転主軸の変位補正方法。   In a configuration in which the main shaft has a support portion via two bearings and a connection portion with one drive motor at the rear end portion, at the position of three heat generating portions or in the vicinity thereof 2. The method of correcting a displacement of a rotating spindle according to claim 1, wherein a temperature sensor is provided and the temperature sensor is provided at one or a plurality of positions separated from each other by a predetermined distance from the positions of the two bearing support portions. 発熱部の温度変化を殆ど感知せずに、主軸の周囲における環境温度の変化を感知する単数又は複数の位置に温度センサを設置し、当該温度センサによる入力温度(Ti”)をも加味したことによる推定変位(ΔX)を下記の線形式によって設定し、前記数式における定数(a)、及び各係数(a、a’、a”)を事前の各温度センサによる入力温度(T、T’、T”)の組み合わせに対応した実際の軸方向の変位(ΔX)の測定値に基づいて算出し、かつコンピュータのメモリに記録させておき、回転時に順次変化する温度センサによる入力温度(T、T’、T”)に対応して、順次軸方向の変位(ΔX)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位量(ΔX)だけ、主軸が作動する先端の位置を調整することに基づく請求項1記載の回転主軸の変位補正方法。

Figure 0004125657
(但し、aについては、主軸が回転している時間だけ算出し、残りの項は、主軸の回転が終了した後においても、T、T’がそれぞれ測定し得る期間算出することによって、前記ΔXの補正を算出するものとし、n、mは、請求項1と同趣旨であり、lは、環境温度を感知する位置に設置した温度センサによる入力温度(T”)の数を示す。)
A temperature sensor is installed at one or more positions that sense the environmental temperature change around the main shaft, almost without detecting the temperature change of the heat generating part, and the input temperature (Ti ") by the temperature sensor is also taken into account The estimated displacement (ΔX) is set by the following linear format, and the constant (a 0 ) and each coefficient (a i , a i ′, a i ″) in the above equation are set to the input temperature (T i , T i ′, T i ″) based on a measured value of the actual axial displacement (ΔX) corresponding to the combination, and recorded in a memory of a computer, and a temperature sensor that sequentially changes during rotation Corresponding to the input temperature (T i , T i ′, T i ″) by the computer, the axial displacement (ΔX) is calculated by a computer every predetermined time based on the following formula, and the displacement amount ( ΔX) only, spindle The method of correcting a displacement of a rotating spindle according to claim 1, wherein the method is based on adjusting a position of a tip at which the actuator operates.
Record
Figure 0004125657
(However, a 0 is calculated only for the time during which the main shaft is rotating, and the remaining terms are calculated by calculating the periods during which T i and T i ′ can be measured even after the main shaft has been rotated. The correction of ΔX is calculated, and n and m have the same meaning as in claim 1, and l represents the number of input temperatures (T i ″) by a temperature sensor installed at a position for sensing the environmental temperature. Show.)
主軸が回転する段階における主軸外の発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置の何れか、又は全てに、単数又は複数の温度センサを設置すると共に、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得るような位置に、単数又は複数個の温度センサを設置し、前記発熱部の位置又はその近傍の位置における温度センサによる入力温度(T)、及び前記発熱部から所定の距離を隔てている位置における温度センサによる入力温度(T’)に対応する軸方向と直交する方向の推定変位(ΔY)を下記の線形による数式によって設定し、前記数式における定数(b)、及び各係数(b、b’)を事前の各温度センサによる入力温度(T、T’)の組み合わせに対応した実際の軸方向と直交する方向の変位(ΔY)の測定値に基づいて算出し、かつコンピュータのメモリに記録させておき、回転時によって順次変化する温度センサによる入力温度(T、T’)に対応して、順次軸方向と直交する方向の変位(ΔY)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位量(ΔY)だけ、主軸が作動する先端における軸方向と直交する方向の位置を調整することを軸方向の変位の補正に重畳することを特徴とする請求項1記載の回転主軸の変位補正方法。

Figure 0004125657
(但し、bについては、主軸が回転している時間だけ算出し、残りの項は、主軸の回転が終了した後においても、T、T’がそれぞれ測定し得る期間算出することによって、前記ΔYの補正を算出するものとし、nは、発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサによる入力温度(T)の数を示し、mは、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得る位置に設けた温度センサによる入力温度(T’)の数を示す。)
One or a plurality of temperature sensors are provided at any or all of the positions near or near the position of the heat generating portion outside the main shaft at the stage where the main shaft rotates and can detect a temperature change substantially similar to the heat generating portion. A single position is provided at a position where a predetermined distance from the heat generating portion can be sensed by a predetermined time delay with respect to the temperature change of the heat generating portion by being separated from the heat generating portion. Alternatively, a plurality of temperature sensors are installed, and the input temperature (T i ) by the temperature sensor at the position of the heat generating part or the vicinity thereof, and the input temperature by the temperature sensor at a position away from the heat generating part by a predetermined distance (T i ') perpendicular to the axial direction corresponding to the direction of the estimated displacement of the ([Delta] Y) set by the equation by linear below, the constant in the equation (b 0), and the coefficients (b i, i ') prior input temperature by the temperature sensor (T i, T i' actual corresponding to a combination of) axially calculated based on the measured value of the displacement in the direction perpendicular ([Delta] Y), and the computer The displacement (ΔY) in the direction perpendicular to the axial direction is predetermined based on the following formula in correspondence with the input temperature (T i , T i ′) by the temperature sensor that is recorded in the memory and changes sequentially with the rotation. Calculated by a computer every time, and adjusting the position in the direction orthogonal to the axial direction at the tip where the main shaft operates by the amount of displacement (ΔY) is superimposed on the correction of the axial displacement. The displacement correction method of the rotating spindle according to claim 1.
Record
Figure 0004125657
(However, b 0 is calculated only for the time during which the main shaft is rotating, and the remaining terms are calculated by calculating periods during which T i and T i ′ can be measured even after the main shaft has been rotated. The correction of ΔY is calculated, and n is an input temperature (T) provided by a temperature sensor provided at or near the position of the heat generating portion and can detect a temperature change substantially similar to that of the heat generating portion. i ) indicates the number of m, and m can be sensed in a state of a changed temperature change with a predetermined time delay with respect to the temperature change of the heat generating part by being separated from the heat generating part by a predetermined distance. Indicates the number of input temperatures (T i ′) by the temperature sensor provided at the position.)
主軸が回転する段階における主軸外の発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置の何れか、又は全てに、単数又は複数の温度センサを設置すると共に、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得るような位置に、単数又は複数個の温度センサを設置し、前記発熱部の位置又はその近傍の位置における温度センサによる入力温度(T)、及び前記発熱部から所定の距離を隔てている位置における温度センサによる入力温度(T’)に対応する高さ方向の推定変位(ΔZ)を下記の線形による数式によって設定し、前記数式における定数(c)、及び各係数(c、c’)を事前の各温度センサによる入力温度(T、T’)の組み合わせに対応した実際の高さ方向の変位(ΔZ)の測定値に基づいて算出し、かつコンピュータのメモリに記録させておき、回転時によって順次変化する温度センサによる入力温度(T、T’)に対応して、順次高さ方向の変位(ΔZ)を下記数式に基づいて所定の時間経過毎に、コンピュータによって算出し、当該変位量(ΔZ)だけ、主軸が作動する先端における高さ方向の位置を調整することを軸方向の変位の補正に重畳することを特徴とする請求項1記載の回転主軸の変位補正方法。

Figure 0004125657
(但し、cについては、主軸が回転している時間だけ算出し、残りの項は、主軸の回転が終了した後においても、T、T’がそれぞれ測定し得る期間算出することによって、前記ΔZの補正を算出するものとし、nは、発熱部の位置、又はその近傍であって、当該発熱部と概略同様の温度変化を感知し得る位置に設けた温度センサによる入力温度(T)の数を示し、mは、前記発熱部から所定の距離を隔てることによって、当該発熱部の温度変化に対し、所定の時間遅れを伴い、かつ変容した温度変化の状態にて感知し得る位置に設けた温度センサによる入力温度(T’)の数を示す。)
One or a plurality of temperature sensors are provided at any or all of the positions near or near the position of the heat generating portion outside the main shaft at the stage where the main shaft rotates and can detect a temperature change substantially similar to the heat generating portion. A single position is provided at a position where a predetermined distance from the heat generating portion can be sensed by a predetermined time delay with respect to the temperature change of the heat generating portion by being separated from the heat generating portion. Alternatively, a plurality of temperature sensors are installed, and the input temperature (T i ) by the temperature sensor at the position of the heat generating part or the vicinity thereof, and the input temperature by the temperature sensor at a position away from the heat generating part by a predetermined distance (T i ') corresponds to the height direction of the estimated displacement of the ([Delta] Z) is set by equation by linear below, the constant in the equation (c 0), and each coefficient (c i, c i') a thing Input temperature (T i, T i ') by each temperature sensor is calculated based on a measurement of the actual height direction displacement corresponding to a combination of ([Delta] Z), and allowed to recorded in the memory of the computer, rotating Corresponding to the input temperature (T i , T i ′) by the temperature sensor that changes sequentially with time, the displacement in the height direction (ΔZ) is calculated by the computer at every predetermined time based on the following formula, The displacement correction method for a rotating spindle according to claim 1, wherein adjusting the position in the height direction at the tip where the spindle operates by the amount of displacement (ΔZ) is superimposed on the correction of the displacement in the axial direction.
Record
Figure 0004125657
(However, c 0 is calculated only for the time during which the main shaft is rotating, and the remaining terms are calculated by calculating periods during which T i and T i ′ can be measured even after the main shaft has been rotated. The correction of ΔZ is calculated, and n is the input temperature (T) provided by a temperature sensor provided at or near the position of the heat generating portion and can detect a temperature change substantially similar to the heat generating portion. i ) indicates the number of m, and m can be sensed in a state of a changed temperature change with a predetermined time delay with respect to the temperature change of the heat generating part by being separated from the heat generating part by a predetermined distance. Indicates the number of input temperatures (T i ′) by the temperature sensor provided at the position.)
JP2003324685A 2003-09-17 2003-09-17 Displacement correction method for rotating spindle Expired - Fee Related JP4125657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324685A JP4125657B2 (en) 2003-09-17 2003-09-17 Displacement correction method for rotating spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324685A JP4125657B2 (en) 2003-09-17 2003-09-17 Displacement correction method for rotating spindle

Publications (2)

Publication Number Publication Date
JP2005088126A JP2005088126A (en) 2005-04-07
JP4125657B2 true JP4125657B2 (en) 2008-07-30

Family

ID=34455369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324685A Expired - Fee Related JP4125657B2 (en) 2003-09-17 2003-09-17 Displacement correction method for rotating spindle

Country Status (1)

Country Link
JP (1) JP4125657B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914379B2 (en) * 2008-01-24 2012-04-11 中村留精密工業株式会社 2-spindle facing NC lathe
JP4879225B2 (en) * 2008-06-13 2012-02-22 株式会社ソディック Machine tool and displacement correction method in machine tool
JP2010172981A (en) * 2009-01-27 2010-08-12 Okuma Corp Tool position correction method of machine tool
JP2010284737A (en) * 2009-06-10 2010-12-24 Jtekt Corp Positioning device
JP2017024108A (en) 2015-07-21 2017-02-02 ファナック株式会社 Machine tool thermal displacement correction apparatus

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0747257B2 (en) * 1989-08-22 1995-05-24 日立精機株式会社 Method for correcting thermal displacement of machine tool and its control device
JPH08141883A (en) * 1994-11-24 1996-06-04 Toyoda Mach Works Ltd Method for correcting thermal displacement of machine tool
JPH08300242A (en) * 1995-05-07 1996-11-19 Hitachi Seiki Co Ltd Thermal displacement compensating method of machine tool and device therefor
JP2942547B2 (en) * 1997-06-10 1999-08-30 真一 中平 Method and apparatus for correcting thermal displacement of machine tool
KR100264247B1 (en) * 1998-03-28 2000-08-16 김영삼 Heat change error measuring system
JP2001062677A (en) * 1999-08-24 2001-03-13 Canon Inc Machining method and device in machine tool
JP2002160142A (en) * 2000-11-22 2002-06-04 Mori Seiki Co Ltd Numerical control device for machine tool
JP2002036068A (en) * 2001-06-22 2002-02-05 Okuma Corp Method and device for correcting tool position of machine tool

Also Published As

Publication number Publication date
JP2005088126A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP4182082B2 (en) Machine Tools
JP5113086B2 (en) Method and apparatus for correcting displacement of machine tool
JP4469325B2 (en) Thermal displacement correction device
JP2006272539A (en) Machine tool and displacement correction method of machine tool
US20140379117A1 (en) Machine tool with thermal displacement correction
JPH07299701A (en) Heat displacement correction method of machine tool
JPH08174380A (en) Method and device for correcting thermal displacement for machine tool
JP4125657B2 (en) Displacement correction method for rotating spindle
JP4538480B2 (en) Ball screw thermal displacement compensation method and NC machine tool executing the compensation method
JP6350481B2 (en) Machine tool controller
JP2010160019A (en) System and method for correcting rotation balance
CN109597352B (en) Numerical control machine tool and control system and method thereof
JP2006272538A (en) Machine tool and displacement correction method of machine tool
TWI833070B (en) Machine tool and method of operating the machine tool
JP6656945B2 (en) Compensation method for thermal displacement of machine tools
JP2001269828A (en) Magnetic bearing device for machine tool
JP2007007752A (en) Displacement correcting method of spindle tool tip
JP2004148443A (en) Method for correcting thermal displacement of tool
JP7098544B2 (en) Machine tool thermal displacement correction method and thermal displacement compensation device
JP5127603B2 (en) Processing method and processing apparatus
JP4559912B2 (en) Magnetic bearing device
JP2014061567A (en) Machine tool
JP6556413B1 (en) Numerical control device, learning device, and learning method
JP4271611B2 (en) Compensation method for thermal displacement of machine tools
JP3218219B2 (en) Thermal displacement compensation method for machine tool and machine tool for thermal displacement compensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080508

R150 Certificate of patent or registration of utility model

Ref document number: 4125657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees